1
|
Inamura J, Taketani T, Mochida M, Goto T, Suzuki R, Igarashi S, Tsukada N, Yamamoto M, Shindo M, Sato K. Acute myeloid leukemia with NUP98::RARG rearrangement: a case report and review of the relevant literature. Int J Hematol 2025; 121:265-271. [PMID: 39630349 DOI: 10.1007/s12185-024-03881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025]
Abstract
We herein report a rare case of acute myeloid leukemia (AML) with t(11;12)(p15;q13) and NUP98::RARG, which seems to be involved in the development of AML. The morphological features were similar to those of classic acute promyelocytic leukemia (APL), but unlike classic APL, this leukemia was resistant to treatment with all-trans retinoic acid (ATRA). We decided to use standard chemotherapy for AML with monitoring of minimal residual disease (MRD) by qualitative reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for NUP98::RARG mRNA. Although MRD disappeared after induction chemotherapy, it later reappeared, and hematological relapse occurred during subsequent chemotherapies. The patient received haploidentical hematopoietic stem cell transplantation while not in remission and achieved a second molecular remission. However, relapse occurred 4 months after transplantation. The specific mechanism of ATRA resistance in this unique case of AML remains unclear, and no standard treatment has been determined. This is the first case report of AML with NUP98::RARG rearrangement in Japan. Qualitative RT-PCR analysis for NUP98::RARG mRNA was helpful for the accurate diagnosis and evaluation of MRD to choose an adequate treatment for this type of AML.
Collapse
MESH Headings
- Humans
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 12/genetics
- Gene Rearrangement
- Hematopoietic Stem Cell Transplantation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Neoplasm, Residual
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Receptors, Retinoic Acid/genetics
- Translocation, Genetic
- Tretinoin/pharmacology
- Tretinoin/therapeutic use
Collapse
Affiliation(s)
- Junki Inamura
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan.
| | - Takeshi Taketani
- Department of Pediatrics, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Miho Mochida
- Regenerative Medicine Center, Shimane University Hospital, Izumo, Japan
| | - Tsukimi Goto
- Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan
| | - Ritsuro Suzuki
- Department of Hematology, Shimane University Hospital, Izumo, Japan
| | - Sho Igarashi
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan
| | - Nodoka Tsukada
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan
| | - Masayo Yamamoto
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Motohiro Shindo
- Division of Hematology, Department of Internal Medicine, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuya Sato
- Department of Hematology/Oncology, Asahikawa Kosei Hospital, Asahikawa, Japan
| |
Collapse
|
2
|
Wang F, Zhao L, Tan Y, Cen X, Gao H, Jiang H, Liu Y, Li Y, Zhang T, Zhao C, Shi T, Xu G, Wang C, Hu J, Li X, Qin YZ, Wang K, Zhu HH, Li K. Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia. Nat Commun 2025; 16:617. [PMID: 39805831 PMCID: PMC11729897 DOI: 10.1038/s41467-024-55047-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 11/27/2024] [Indexed: 01/30/2025] Open
Abstract
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3. RARG fusions overexpression leads to preleukemic phenotypes but fails to induce oncogenic transformation. However, the co-occurrence of RARG fusions and heterozygous Wt1 loss induce fully penetrant AML by activating MYC and HOXA9/MEIS1 targets. Leveraging Connectivity Map resources and high-throughput screening, we identify venetoclax, homoharringtonine, and daunorubicin as potential therapeutic options for RARG-AML. Overall, our findings provide pivotal insights into the molecular mechanisms governed by RARG fusions and enhanced by WT1 loss in AML development and propose a rational therapeutic strategy for RARG-AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/pathology
- Leukemia, Promyelocytic, Acute/drug therapy
- Animals
- WT1 Proteins/genetics
- WT1 Proteins/metabolism
- Retinoic Acid Receptor gamma/genetics
- Mice
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Myeloid Ecotropic Viral Integration Site 1 Protein/genetics
- Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism
- Daunorubicin/pharmacology
- Daunorubicin/therapeutic use
- Homoharringtonine/pharmacology
- Homeodomain Proteins/metabolism
- Homeodomain Proteins/genetics
- Cell Differentiation/genetics
- Hematopoietic Stem Cells/metabolism
- Proto-Oncogene Proteins c-myc/metabolism
- Proto-Oncogene Proteins c-myc/genetics
- Cell Proliferation/genetics
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Gene Rearrangement
- Cell Line, Tumor
- Antineoplastic Agents/pharmacology
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luyao Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xufeng Cen
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Huan Gao
- Marine College, Shandong University, Weihai, China
| | - Huimin Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunxuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tingting Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Shi
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Guilin Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Churan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiong Hu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Marine College, Shandong University, Weihai, China
| | - Ya-Zhen Qin
- National Clinical Research Center for Hematologic Disease, Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
- Chinese Institutes for Medical Research, Beijing, China.
| | - Ke Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Zhou X, Chen X, Chen J, Wen L, Zhang Z, Qin YZ, Cao P, Xing H, Mi Y, Wang W, Zhang G, Li J, Wu H, Zhang Z, Zhang J, Su Z, Wang F, Zhang Y, Ma X, Fang J, Wu P, Wang T, Fan G, Zhao Y, Jin D, Zhang X, Ma X, Wu Q, Zhang Z, Wang L, Ma F, Xiao X, Wu C, Sun K, Tang R, Zhang Y, Wu S, Gao R, Zhang L, Zheng H, Zhao Y, Zhu HH, Lu D, Lu P, Chen S, Liu H. Critical role of tripartite fusion and LBD truncation in certain RARA- and all RARG-related atypical APL. Blood 2024; 144:1471-1485. [PMID: 39046762 DOI: 10.1182/blood.2024023883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
Atypical acute promyelocytic leukemia (aAPL) presents a complex landscape of retinoic acid receptor (RAR) fusion genes beyond the well-known PML::RARA fusion. Among these, 31 individually rare RARA and RARG fusion genes have been documented, often reported in the canonical X::RAR bipartite fusion form. Intriguingly, some artificially mimicked bipartite X::RAR fusions respond well to all-trans retinoic acid (ATRA) in vitro, contrasting with the ATRA resistance observed in patients. To unravel the underlying mechanisms, we conducted a comprehensive molecular investigation into the fusion transcripts in 27 RARA fusion gene-positive aAPL (RARA-aAPL) and 21 RARG-aAPL cases. Our analysis revealed an unexpected novel form of X::RAR::X- or X::RAR::Y-type tripartite fusions in certain RARA-aAPL and all RARG-aAPL cases, with shared features and notable differences between these 2 disease subgroups. In RARA-aAPL cases, the occurrence of RARA 3' splices was associated with their 5' fusion partner genes, mapping across the coding region of helix 11_12 (H11_12) within the ligand-binding domain (LBD), resulting in LBD-H12 or H11_12 truncation. In RARG-aAPL cases, RARG 3' splices were consistently localized to the terminus of exon 9, leading to LBD-H11_12 truncation. Significant differences were also observed between RARA and RARG 5' splice patterns. Our analysis also revealed extensive involvement of transposable elements in constructing RARA and RARG 3' fusions, suggesting transposition mechanisms for fusion gene ontogeny. Both protein structural analysis and experimental results highlighted the pivotal role of LBD-H11_12/H12 truncation in driving ATRA unresponsiveness and leukemogenesis in tripartite fusion-positive aAPL, through a protein allosteric dysfunction mechanism.
Collapse
MESH Headings
- Humans
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/metabolism
- Leukemia, Promyelocytic, Acute/pathology
- Retinoic Acid Receptor alpha/genetics
- Retinoic Acid Receptor alpha/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Retinoic Acid Receptor gamma
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Male
- Tretinoin/metabolism
- Female
Collapse
Affiliation(s)
- Xiaosu Zhou
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Xue Chen
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jiaqi Chen
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhanglin Zhang
- Department of Blood Transfusion, First Affiliated Hospital of Nanchang University, Jiangxi Key Laboratory of transfusion, Institute of Transfusion, Jiangxi Academy of Clinical Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Panxiang Cao
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Haizhou Xing
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingchang Mi
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Wei Wang
- Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangsen Zhang
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Huanling Wu
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhifen Zhang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jian Zhang
- Department of Clinical Laboratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhan Su
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fang Wang
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yang Zhang
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiaoli Ma
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Jiancheng Fang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Ping Wu
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Division of Pathology and Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Tong Wang
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Division of Pathology and Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Gaowei Fan
- Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yang Zhao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - David Jin
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Xian Zhang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Xiujuan Ma
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Qisheng Wu
- Division of Pathology and Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
| | - Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Linya Wang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Futian Ma
- Department of Hematology, Hebei Children's Hospital, Shijiazhuang, China
| | - Xia Xiao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Chengye Wu
- Institute of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Kai Sun
- Department of Hematology, Beijing Ji-Shui-Tan Hospital, Capital Medical University, Beijing, China
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou, China
| | - Ruijie Tang
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yun Zhang
- Department of Clinical Laboratory, The People's Hospital of Zhangqiu District, Jinan, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ran Gao
- Department of Hematology, The First Hospital of China Medical University, Shenyang, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Huyong Zheng
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Clinical Discipline of Pediatric Hematology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yanli Zhao
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Daopei Lu
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Department of Hematology, Beijing Lu Daopei Hospital, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| | - Peihua Lu
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Department of Hematology, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Department of Hematology, Beijing Lu Daopei Hospital, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Hongxing Liu
- Precision Medicine Center, Beijing Lu Daopei Institute of Hematology, Beijing, China
- Division of Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Division of Pathology and Laboratory Medicine, Beijing Lu Daopei Hospital, Beijing, China
- Department of Oncology, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wei Z, Shao L, Xu S, Zhang X, Wang L, Qin P, Song Q, Hou M, Shi Y. Case report: Successful therapy with azacitidine for acute myeloid leukemia with NUP98::RARG resembling acute promyelocytic leukemia. Front Oncol 2024; 14:1460557. [PMID: 39296977 PMCID: PMC11408469 DOI: 10.3389/fonc.2024.1460557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/14/2024] [Indexed: 09/21/2024] Open
Abstract
We report a case of acute myeloid leukemia (AML) with retinoic acid receptor gamma (RARG) rearrangement, exhibiting clinical, morphological, and immunophenotypic features similar to classic acute promyelocytic leukemia (APL). RNA sequencing analysis of the patient's bone marrow samples revealed the presence of nucleoporin 98 (NUP98)-RARG caused by translocation. AML with RARG rearrangement is insensitive to all-trans retinoic acid (ATRA) and arsenic trioxide. The patient received azacitidine therapy after failing ATRA and standard 3 + 7 therapy (idarubicin and cytarabine) and achieved complete remission. Conclusively, this acute myeloid leukemia subtype may benefit from azacitidine.
Collapse
Affiliation(s)
- Zhichen Wei
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Linlin Shao
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaolin Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ping Qin
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Qiang Song
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Shi
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
5
|
Song D, Yang F, Sun Y, Wu X, Zhou Q, Bi W, Sun J, Li S, Yu Y. Single-cell RNA sequencing reveals the heterogeneity of epithelial cell and fibroblast cells from non- to metastatic lymph node OTSCC. FASEB J 2024; 38:e23390. [PMID: 38169064 DOI: 10.1096/fj.202301724r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
Lymph node metastasis (LNM) is one of the common features of oral tongue squamous cell carcinoma (OTSCC). LNM is also taken as a sign of advanced OTSCC and poor survival rate. Recently, single-cell RNA sequencing has been applied in investigating the heterogeneity of tumor microenvironment and discovering the potential biomarkers for helping the diagnosis and prognosticating. Pathogenesis of LNM in OTSCC remains unknown. Specifically, cancer-associated fibroblasts (CAFs) and epithelial tumor cells could foster the progression of tumors. Thus, in this study, we aimed to comprehensively analyze the roles of subpopulations of CAFs and epithelial tumor cells in lymph node metastatic OTSCC using the integration of OTSCC single-cell RNA sequencing datasets. Four distinct subtypes of CAFs, namely vascular CAFs, myofibroblast CAFs, inflammatory CAFs, and growth arrest CAFs were successfully discovered in LNM tumor and confirmed the roles of GAS and PTN pathways in the progression of tumor metastasis. In addition, NKAIN2+ epithelial cells and FN1+ epithelial cells specifically exhibited an upregulation of PTN, NRG, MIF, and SPP1 signaling pathways in the metastatic OTSCC. In doing so, we put forth some potential biomarkers that could be utilized for the purpose of diagnosing and prognosticating OTSCC during its metastatic phase and tried to confirm by immunofluorescence assays.
Collapse
Affiliation(s)
- Dandan Song
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Yang
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xingwen Wu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianrong Zhou
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Bi
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Sun
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Siyi Li
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youcheng Yu
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Chen X, Zhao Y, Zhou X, Chen J, Cao P, Wang F, Zhang Y, Wu P, Zhang L, Liu H. Recurrent RARG trinary fusion and ligand binding domain truncation in variant acute promyelocytic leukemia resistant to retinoic acid but sensitive to homoharringtonine-based therapy. Int J Lab Hematol 2023; 45:1016-1019. [PMID: 37605819 DOI: 10.1111/ijlh.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Affiliation(s)
- Xue Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yang Zhao
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Xiaosu Zhou
- Beijing Lu Daopei Institute of Hematology, Beijing, China
| | - Jiaqi Chen
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Panxiang Cao
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Fang Wang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Yang Zhang
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Ping Wu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Hongxing Liu
- Division of Pathology & Laboratory Medicine, Hebei Yanda Lu Daopei Hospital, Langfang, China
- Beijing Lu Daopei Institute of Hematology, Beijing, China
| |
Collapse
|
7
|
Zhu HH, Qin YZ, Zhang ZL, Liu YJ, Wen LJ, You MJ, Zhang C, Such E, Luo H, Yuan HJ, Zhou HS, Liu HX, Xu R, Li J, Li JH, Hao JP, Jin J, Yu L, Zhang JY, Liu LP, Zhang LP, Huang RB, Shen SH, Gao SJ, Wang W, Yan XJ, Zhang XY, Du X, Chu XX, Yu YF, Wang Y, Mi YC, Lu Y, Cai Z, Su Z, Taussig DC, MacMahon S, Ball ED, Wang HY, Welch JS, Yin CC, Borthakur G, Sanz MA, Kantarjian HM, Huang JY, Hu J, Chen SN. A global study for acute myeloid leukemia with RARG rearrangement. Blood Adv 2023; 7:2972-2982. [PMID: 36799929 PMCID: PMC10320208 DOI: 10.1182/bloodadvances.2022008364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 02/18/2023] Open
Abstract
Acute myeloid leukemia (AML) with retinoic acid receptor γ (RARG) rearrangement has clinical, morphologic, and immunophenotypic features similar to classic acute promyelocytic leukemia. However, AML with RARG rearrangement is insensitive to alltrans retinoic acid (ATRA) and arsenic trioxide (ATO) and carries a poor prognosis. We initiated a global cooperative study to define the clinicopathological features, genomic and transcriptomic landscape, and outcomes of AML with RARG rearrangements collected from 29 study groups/institutions worldwide. Thirty-four patients with AML with RARG rearrangements were identified. Bleeding or ecchymosis was present in 18 (54.5%) patients. Morphology diagnosed as M3 and M3v accounted for 73.5% and 26.5% of the cases, respectively. Immunophenotyping showed the following characteristics: positive for CD33, CD13, and MPO but negative for CD38, CD11b, CD34, and HLA-DR. Cytogenetics showed normal karyotype in 38% and t(11;12) in 26% of patients. The partner genes of RARG were diverse and included CPSF6, NUP98, HNRNPc, HNRNPm, PML, and NPM1. WT1- and NRAS/KRAS-mutations were common comutations. None of the 34 patients responded to ATRA and/or ATO. Death within 45 days from diagnosis occurred in 10 patients (∼29%). At the last follow-up, 23 patients had died, and the estimated 2-year cumulative incidence of relapse, event-free survival, and overall survival were 68.7%, 26.7%, and 33.5%, respectively. Unsupervised hierarchical clustering using RNA sequencing data from 201 patients with AML showed that 81.8% of the RARG fusion samples clustered together, suggesting a new molecular subtype. RARG rearrangement is a novel entity of AML that confers a poor prognosis. This study is registered with the Chinese Clinical Trial Registry (ChiCTR2200055810).
Collapse
Affiliation(s)
- Hong-Hu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Zhang-Lin Zhang
- Department of Transfusion, Institute of Transfusion, Jiangxi Key Laboratory of Transfusion, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong-Jing Liu
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Li-Jun Wen
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - M. James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
| | | | - Hong Luo
- Department of Hematology, The First Hospital of Qiqihar, Heilongjiang, Qiqihar, China
| | - Hong-Jian Yuan
- Department of Hematology, The Second People's Hospital of Taizhou, Taizhou, China
| | - Hong-Sheng Zhou
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-Xing Liu
- Molecular Medicine Center, Beijing Lu Daopei lnstitute of Hematology, Beijing, China
| | - Reng Xu
- Shanghai Righton Biotechnology Co. Ltd, Shanghai, China
| | - Ji Li
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Hu Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China
| | - Jian-Ping Hao
- Department of Hematology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai’an No.1 People’s Hospital of Nanjing Medical University, Huaian, China
| | - Jing-Ying Zhang
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine, Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health, Hangzhou, China
| | - Li-Ping Liu
- Department of Hematology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Le-Ping Zhang
- Department of Pediatrics, Peking University People's Hospital, Beijing, China
| | - Rui-Bin Huang
- Department of Hematology, The First Affiliated hospital of Nanchang University, Nanchang, China
| | - Shu-Hong Shen
- Department of Hematology/Oncology, National Children's Medical Center, Key Laboratory of Pediatric Hematology and Oncology of China Ministry of Health, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Su-Jun Gao
- Department of Hematology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Wang
- Department of Hematology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao-Jing Yan
- Department of Hematology, First Hospital of China Medical University, Shenyang, China
| | - Xin-You Zhang
- Department of Hematology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China
| | - Xin Du
- Department of Hematology, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Xia Chu
- Department of Hematology, Qindao University Medical College, Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Yan-Fang Yu
- Department of Hematology, Peking University Shougang Hospital, Beijing, China
| | - Yi Wang
- Department of Hematology, Provincial People Hospital, Xian, Shaanxi, China
| | - Ying-Chang Mi
- Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhan Su
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - David Christopher Taussig
- Centre for Molecular Pathology, The Royal Marsden, Institute of Cancer Research, Sutton, United Kingdom
| | - Suzanne MacMahon
- Centre for Molecular Pathology, The Royal Marsden, Institute of Cancer Research, Sutton, United Kingdom
| | - Edward D. Ball
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Huan-You Wang
- Division of Blood and Marrow Transplantation, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - John S. Welch
- Department of Internal Medicine, Washington University, St. Louis, MO
| | - C. Cameron Yin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Jin-Yan Huang
- Biomedical Big Data Center, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jiong Hu
- Department of Hematology, Shanghai Institute of Hematology, Blood and Marrow Transplantation Center, and Collaborative Innovation Center of Hematology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
8
|
Li J, Zhang Y, Li J, Xu Y, Zhang G. A novel SART3::RARG fusion gene in acute myeloid leukemia with acute promyelocytic leukemia phenotype and differentiation escape to retinoic acid. Haematologica 2023; 108:627-632. [PMID: 36300779 PMCID: PMC9890015 DOI: 10.3324/haematol.2022.281766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/11/2022] [Indexed: 02/03/2023] Open
Affiliation(s)
- Ji Li
- Department of Hematology, the Second Xiangya hospital of Central South University, Changsha, Hunan, China
| | - Yang Zhang
- Department of Oncology, the Second Xiangya Hospital of Central South University, Renmin middle road, Changsha, Hunan, China
| | - Junjun Li
- Department of Hematology, the First Affiliated hospital of University of South China, Hengyang, Hunan, China
| | - Yunxiao Xu
- Department of Hematology, the Second Xiangya hospital of Central South University, Changsha, Hunan, China
| | - Guangsen Zhang
- Department of Hematology, the Second Xiangya hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
9
|
[Advances in the recognition of acute myeloid leukemia with RARG-rearrangement]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:612-614. [PMID: 36709143 PMCID: PMC9395575 DOI: 10.3760/cma.j.issn.0253-2727.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
10
|
Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y, Zhou Y. ALDH1A1 in Cancers: Bidirectional Function, Drug Resistance, and Regulatory Mechanism. Front Oncol 2022; 12:918778. [PMID: 35814382 PMCID: PMC9256994 DOI: 10.3389/fonc.2022.918778] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 01/16/2023] Open
Abstract
Aldehyde dehydrogenases 1 family member A1(ALDH1A1) gene codes a cytoplasmic enzyme and shows vital physiological and pathophysiological functions in many areas. ALDH1A1 plays important roles in various diseases, especially in cancers. We reviewed and summarized representative correlative studies and found that ALDH1A1 could induce cancers via the maintenance of cancer stem cell properties, modification of metabolism, promotion of DNA repair. ALDH1A1 expression is regulated by several epigenetic processes. ALDH1A1 also acted as a tumor suppressor in certain cancers. The detoxification of ALDH1A1 often causes chemotherapy failure. Currently, ALDH1A1-targeted therapy is widely used in cancer treatment, but the mechanism by which ALDH1A1 regulates cancer development is not fully understood. This review will provide insight into the status of ALDH1A1 research and new viewpoint for cancer therapy.
Collapse
Affiliation(s)
- Hanxun Yue
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zenan Hu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Rui Hu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zeying Guo
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Ya Zheng
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Yongning Zhou, ; Yuping Wang,
| |
Collapse
|
11
|
Zhang J, Shen H, Song H, Shen D, Liao C, Fang M, Wang Y, Tang Y, Zhu H. A Novel NUP98/RARG Gene Fusion in Pediatric Acute Myeloid Leukemia Resembling Acute Promyelocytic Leukemia. J Pediatr Hematol Oncol 2022; 44:e665-e671. [PMID: 35319505 DOI: 10.1097/mph.0000000000002331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/17/2021] [Indexed: 01/04/2023]
Abstract
Here, we introduced the first case of acute myeloid leukemia (AML) with RARG-NUP98 in a pediatric patient. The young male presented with structural and functional abnormalities similar to hypergranular acute promyelocytic leukemia, but was resistant to all transretinoic acids and arsenic trioxide. Till date, only 12 adult AML cases involving RARG rearrangement have been reported. At present, there is no standardized or optimal treatment option for this AML subtype. Disease management may typically require a joint treatment strategy involving chemotherapy, immunotherapy, and support therapy. In this study, we report the clinical manifestations and experimental results of a 10-year-old male and review other cases of RARG gene rearrangement reported in the literature.
Collapse
Affiliation(s)
- Jingying Zhang
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Heping Shen
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Hua Song
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Diying Shen
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Chan Liao
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Meixin Fang
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Yan Wang
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Yongmin Tang
- Department of Hematology-Oncology, The Children Hospital of Zhejiang University School of Medicine; Zhejiang Childhood Leukemia Diagnosis and Treatment Technology Research Center, National Medical Research Center for Child Health
| | - Honghu Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine; Hangzhou, People's Republic of China
| |
Collapse
|
12
|
Manhas KR, Marshall PA, Wagner CE, Jurutka PW, Mancenido MV, Debray HZ, Blattman JN. Rexinoids Modulate Effector T Cell Expression of Mucosal Homing Markers CCR9 and α4β7 Integrin and Direct Their Migration In Vitro. Front Immunol 2022; 13:746484. [PMID: 35154092 PMCID: PMC8829570 DOI: 10.3389/fimmu.2022.746484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Altering T cell trafficking to mucosal regions can enhance immune responses towards pathogenic infections and cancers at these sites, leading to better outcomes. All-trans-retinoic acid (ATRA) promotes T cell migration to mucosal surfaces by inducing transcription of the mucosal-homing receptors CCR9 and α4β7 via binding to retinoic acid receptors (RARs), which heterodimerize with retinoid X receptors (RXRs) to function. However, the unstable nature and toxicity of ATRA limit its use as a widespread treatment modality for mucosal diseases. Therefore, identifying alternatives that could reduce or eliminate the use of ATRA are needed. Rexinoids are synthetically derived compounds structurally similar to ATRA. Originally named for their ability to bind RXRs, rexinoids can enhance RAR-mediated gene transcription. Furthermore, rexinoids are more stable than ATRA and possess an improved safety profile, making them attractive candidates for use in clinical settings. Here we show that select novel rexinoids act as ATRA mimics, as they cause increased CCR9 and α4β7 expression and enhanced migration to the CCR9 ligand, CCL25 in vitro, even in the absence of ATRA. Conversely, other rexinoids act synergistically with ATRA, as culturing cells with suboptimal doses of both compounds resulted in CCR9 expression and migration to CCL25. Overall, our findings show that rexinoids can be used independently or synergistically with ATRA to promote mucosal homing of T cells in vitro, and lends support for the prospective clinical use of these compounds in immunotherapeutic approaches for pathogenic infections or cancers at mucosal surfaces.
Collapse
Affiliation(s)
- Kavita R. Manhas
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, United States
| | - Pamela A. Marshall
- School of Mathematical and Natural Sciences, Arizona State University West Campus, Glendale, AZ, United States
| | - Carl E. Wagner
- School of Mathematical and Natural Sciences, Arizona State University West Campus, Glendale, AZ, United States
| | - Peter W. Jurutka
- School of Mathematical and Natural Sciences, Arizona State University West Campus, Glendale, AZ, United States
| | - Michelle V. Mancenido
- School of Mathematical and Natural Sciences, Arizona State University West Campus, Glendale, AZ, United States
| | - Hannah Z. Debray
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, United States
| | - Joseph N. Blattman
- Biodesign Center for Immunotherapy, Vaccines, and Virotherapy, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
13
|
Zhang X, Sun J, Yu W, Jin J. Current views on the genetic landscape and management of variant acute promyelocytic leukemia. Biomark Res 2021; 9:33. [PMID: 33957999 PMCID: PMC8101136 DOI: 10.1186/s40364-021-00284-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/15/2021] [Indexed: 11/30/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is characterized by the accumulation of promyelocytes in bone marrow. More than 95% of patients with this disease belong to typical APL, which express PML-RARA and are sensitive to differentiation induction therapy containing all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), and they exhibit an excellent clinical outcome. Compared to typical APL, variant APL showed quite different aspects, and how to recognize, diagnose, and treat variant APL remained still challenged at present. Herein, we drew the genetic landscape of variant APL according to recent progresses, then discussed how they contributed to generate APL, and further shared our clinical experiences about variant APL treatment. In practice, when APL phenotype was exhibited but PML-RARA and t(15;17) were negative, variant APL needed to be considered, and fusion gene screen as well as RNA-sequencing should be displayed for making the diagnosis as soon as possible. Strikingly, we found that besides of RARA rearrangements, RARB or RARG rearrangements also generated the phenotype of APL. In addition, some MLL rearrangements, NPM1 rearrangements or others could also drove variant APL in absence of RARA/RARB/RARG rearrangements. These results indicated that one great heterogeneity existed in the genetics of variant APL. Among them, only NPM1-RARA, NUMA-RARA, FIP1L1-RARA, IRF2BP2-RARA, and TFG-RARA have been demonstrated to be sensitive to ATRA, so combined chemotherapy rather than differentiation induction therapy was the standard care for variant APL and these patients would benefit from the quick switch between them. If ATRA-sensitive RARA rearrangement was identified, ATRA could be added back for re-induction of differentiation. Through this review, we hoped to provide one integrated view on the genetic landscape of variant APL and helped to remove the barriers for managing this type of disease.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China.,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China
| | - Jiewen Sun
- Center Laboratory, Affiliated Secondary Hospital, Zhejiang Chinese Medical University, Zhejiang, Hangzhou, China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, #79 Qingchun Rd, Zhejiang, 310003, Hangzhou, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, China. .,Zhejiang University Cancer Center, Zhejiang, Hangzhou, China.
| |
Collapse
|
14
|
Abstract
Acute myeloid leukemia (AML) is a clinically, morphologically, and genetically heterogeneous disorder. Like many malignancies, the genomic landscape of pediatric AML has been mapped recently through sequencing of large cohorts of patients. Much has been learned about the biology of AML through studies of specific recurrent genetic lesions. Further, genetic lesions have been linked to specific clinical features, response to therapy, and outcome, leading to improvements in risk stratification. Lastly, targeted therapeutic approaches have been developed for the treatment of specific genetic lesions, some of which are already having a positive impact on outcomes. While the advances made based on the discoveries of sequencing studies are significant, much work is left. The biologic, clinical, and prognostic impact of a number of genetic lesions, including several seemingly unique to pediatric patients, remains undefined. While targeted approaches are being explored, for most, the efficacy and tolerability when incorporated into standard therapy is yet to be determined. Furthermore, the challenge of how to study small subpopulations with rare genetic lesions in an already rare disease will have to be considered. In all, while questions and challenges remain, precisely defining the genomic landscape of AML, holds great promise for ultimately leading to improved outcomes for affected patients.
Collapse
Affiliation(s)
- Shannon E Conneely
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA
| | - Rachel E Rau
- Division of Pediatric Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, 1102 Bates Avenue, Feigin Tower, Suite 1025, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Tao S, Song L, Deng Y, Chen Y, Shi Y, Gan Y, Deng Z, Ding B, He Z, Wang C, Yu L. Acute Myeloid Leukemia with NUP98-RARG Gene Fusion Similar to Acute Promyelocytic Leukemia: Case Report and Literature Review. Onco Targets Ther 2020; 13:10559-10566. [PMID: 33116634 PMCID: PMC7574910 DOI: 10.2147/ott.s273172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023] Open
Abstract
Retinoic acid receptor gamma (RARG) belongs to the nuclear receptor superfamily and has 90% homology to RAR alpha (RARA) and RAR beta. The promyelocytic leukemia (PML)–RARA fusion gene has been implicated in acute promyelocytic leukemia (APL). RARG gene rearrangement has been identified in a rare subtype of acute myeloid leukemia (AML) that resembles APL. To date, only 10 cases of gene rearrangements involving RARG (nucleoporin [NUP]98–RARG, promyelocytic leukemia protein–RARG, cleavage and polyadenylation-specific factor 6–RARG, or nucleophosmin [NPM]1–RARG–NPM1) have been reported. These patients show characteristics similar to APL, including bone marrow morphology, coagulation abnormality, and immunophenotype; however, they are resistant to all-trans retinoic acid and arsenic trioxide treatment. Moreover, there is no optimal therapeutic regimen for this subtype of AML. In this study, we report the clinical presentation and experimental findings of a case of AML with NUP98–RARG gene fusion similar to APL and review other cases of RARG gene rearrangement described in the literature.
Collapse
Affiliation(s)
- Shandong Tao
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Lixiao Song
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuan Deng
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yue Chen
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Yimin Gan
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhikui Deng
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Banghe Ding
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Zhengmei He
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, People's Republic of China.,Key Laboratory of Hematology of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
16
|
Wei W, Liu Q, Song F, Cao H, Liu M, Jiang Y, Li Y, Gao S. Alkaloid-based regimen is beneficial for acute myeloid leukemia resembling acute promyelocytic leukemia with NUP98/RARG fusion and RUNX1 mutation: A case report. Medicine (Baltimore) 2020; 99:e22488. [PMID: 33019444 PMCID: PMC7535657 DOI: 10.1097/md.0000000000022488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/19/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Some acute myeloid leukemia (AML) patients present with features mimicking the classical hypergranular subtype of acute promyelocytic leukemia (APL) but without the typical promyelocytic leukemia/retinoic acid receptor α (PML/RARα) rearrangement. Herein, we report an AML patient resembling APL but with nucleoporin 98/retinoid acid receptor gamma gene (NUP98/RARG) fusion transcript and Runt-related transcription factor 1 (RUNX1) mutation. PATIENT CONCERNS An 18-year-old male presented at the hospital with a diagnosis of AML. DIAGNOSES The patient was diagnosed with bone marrow examination. Bone marrow smear displayed 90.5% promyelocytes. Fluorescence in situ hybridization analysis failed to detect the PML/RARα fusion transcript or RARα amplification. While real-time polymerase chain reaction showed positivity for the NUP98/RARG fusion transcript. G-banding karyotype analysis showed a normal karyotype. INTERVENTIONS The patient showed resistance to arsenic trioxide and standard 3 + 7 chemotherapy, but eventually achieved complete remission through the Homoharringtonine, Cytarabine, and Aclarubicin chemotherapy. OUTCOMES These measures resulted in a rapid response and disease control. LESSONS Acute myeloid leukemia with the NUP98/RARG fusion gene and the RUNX1 mutation may be a special subtype of AML and may benefit from the alkaloid-based regimen.
Collapse
MESH Headings
- Adolescent
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Core Binding Factor Alpha 2 Subunit/genetics
- Diagnosis, Differential
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Promyelocytic, Acute/diagnosis
- Male
- Nuclear Pore Complex Proteins/genetics
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Wei Wei
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Qiuju Liu
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Fei Song
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - He Cao
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Mengmeng Liu
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Yan Jiang
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| | - Yanchun Li
- Peking High Trust Diagnostics, Co., Ltd., Peking, China
| | - Sujun Gao
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun
| |
Collapse
|
17
|
Zhu H, Yang M, Wang F, Lou Y, Jin J, Li K, Zhang S. Identification of a novel NUP98-RARA fusion transcript as the 14th variant of acute promyelocytic leukemia. Am J Hematol 2020; 95:E184-E186. [PMID: 32242976 DOI: 10.1002/ajh.25807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Hong‐Hu Zhu
- Department of Hematology, the First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment Hangzhou China
- Institute of HematologyZhejiang University Hangzhou China
| | - Meng‐Cheng Yang
- Department of PhysiologyMedical College of China Three Gorges University Yichang China
| | - Feng Wang
- Institute of Materia MedicaChinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Yin‐Jun Lou
- Department of Hematology, the First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment Hangzhou China
- Institute of HematologyZhejiang University Hangzhou China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, College of MedicineZhejiang University Hangzhou China
- Zhejiang Province Key Laboratory of Hematology Oncology Diagnosis and Treatment Hangzhou China
- Institute of HematologyZhejiang University Hangzhou China
| | - Ke Li
- Institute of Medicinal BiotechnologyChinese Academy of Medical Sciences & Peking Union Medical College Beijing China
| | - Shi‐Zhong Zhang
- Department of PhysiologyMedical College of China Three Gorges University Yichang China
| |
Collapse
|
18
|
Geoffroy MC, de Thé H. Classic and Variants APLs, as Viewed from a Therapy Response. Cancers (Basel) 2020; 12:E967. [PMID: 32295268 PMCID: PMC7226009 DOI: 10.3390/cancers12040967] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Most acute promyelocytic leukemia (APL) are caused by PML-RARA, a translocation-driven fusion oncoprotein discovered three decades ago. Over the years, several other types of rare X-RARA fusions have been described, while recently, oncogenic fusion proteins involving other retinoic acid receptors (RARB or RARG) have been associated to very rare cases of acute promyelocytic leukemia. PML-RARA driven pathogenesis and the molecular basis for therapy response have been the focus of many studies, which have now converged into an integrated physio-pathological model. The latter is well supported by clinical and molecular studies on patients, making APL one of the rare hematological disorder cured by targeted therapies. Here we review recent data on APL-like diseases not driven by the PML-RARA fusion and discuss these in view of current understanding of "classic" APL pathogenesis and therapy response.
Collapse
Affiliation(s)
- Marie-Claude Geoffroy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Hugues de Thé
- Institut National de la Santé et de la Recherche Médicale (INSERM) U944, Equipe Labellisée par la Ligue Nationale contre le Cancer, 75010 Paris, France;
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 7212, Institut Universitaire d'Hématologie (IUH), 75010 Paris, France
- Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
- Assistance Publique-Hôpitaux de Paris, Service de Biochimie, Hôpital St-Louis, 75010 Paris, France
- Collège de France, PSL Research University, INSERM U1050, CNRS UMR 7241, 75005 Paris, France
| |
Collapse
|
19
|
Jiang L, Zheng J, Kwan JSH, Dai S, Li C, Li MJ, Yu B, To KF, Sham PC, Zhu Y, Li M. WITER: a powerful method for estimation of cancer-driver genes using a weighted iterative regression modelling background mutation counts. Nucleic Acids Res 2019; 47:e96. [PMID: 31287869 PMCID: PMC6895256 DOI: 10.1093/nar/gkz566] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/30/2019] [Accepted: 06/26/2019] [Indexed: 12/31/2022] Open
Abstract
Genomic identification of driver mutations and genes in cancer cells are critical for precision medicine. Due to difficulty in modelling distribution of background mutation counts, existing statistical methods are often underpowered to discriminate cancer-driver genes from passenger genes. Here we propose a novel statistical approach, weighted iterative zero-truncated negative-binomial regression (WITER, http://grass.cgs.hku.hk/limx/witer or KGGSeq,http://grass.cgs.hku.hk/limx/kggseq/), to detect cancer-driver genes showing an excess of somatic mutations. By fitting the distribution of background mutation counts properly, this approach works well even in small or moderate samples. Compared to alternative methods, it detected more significant and cancer-consensus genes in most tested cancers. Applying this approach, we estimated 229 driver genes in 26 different types of cancers. In silico validation confirmed 78% of predicted genes as likely known drivers and many other genes as very likely new drivers for corresponding cancers. The technical advances of WITER enable the detection of driver genes in TCGA datasets as small as 30 subjects and rescue of more genes missed by alternative tools in moderate or small samples.
Collapse
Affiliation(s)
- Lin Jiang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China.,First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jingjing Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China
| | - Johnny S H Kwan
- Departmelnt of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong.,State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, New Territories, Hong Kong.,Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Sheng Dai
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China
| | - Cong Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Mulin Jun Li
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Key Laboratory of Inflammation Biology, Tianjin Medical University, Tianjin 300070, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Ka F To
- Departmelnt of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, New Territories, Hong Kong.,State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, New Territories, Hong Kong.,Li Ka-Shing Institute of Health Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong
| | - Pak C Sham
- The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong.,Department of Psychiatry, the University of Hong Kong, Pokfulam, Hong Kong.,State Key Laboratory for Cognitive and Brain Sciences, the University of Hong Kong, Pokfulam, Hong Kong
| | - Yonghong Zhu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Precision Medicine, Sun Yat-sen University, Guangzhou 510080, China.,Center for Genome Research, Sun Yat-sen University, Guangzhou 510080, China.,The Centre for Genomic Sciences, the University of Hong Kong, Pokfulam, Hong Kong.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou 510080, China
| |
Collapse
|
20
|
Conserva MR, Redavid I, Anelli L, Zagaria A, Specchia G, Albano F. RARG Gene Dysregulation in Acute Myeloid Leukemia. Front Mol Biosci 2019; 6:114. [PMID: 31709264 PMCID: PMC6822255 DOI: 10.3389/fmolb.2019.00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/10/2019] [Indexed: 12/19/2022] Open
Abstract
Retinoic acid receptor γ (RARγ) belongs to the nuclear receptor superfamily and shares 90% homology with retinoic acid receptor α (RARα) and retinoic acid receptor β (RARβ). RARA rearrangements are well-known to be involved in acute promyelocytic leukemia (APL), but RARG rearrangements can also resemble this kind of leukemia. In this review we trace the role of RARγ, considering both its physiological and oncogenic contribution; from 2011 to date, nine cases of patients harboring RARG fusions have been reported. These patients showed typical APL features, including the clinical presentation, coagulation abnormalities and morphological features of bone marrow (BM), but are not responsive to APL standard therapy. We stress the urgent need for a better comprehension of the critical role of RARG dysregulation in the leukemogenesis process, since optimum therapy strategies have not yet been established.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Immacolata Redavid
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Giorgina Specchia
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari, Bari, Italy
| |
Collapse
|
21
|
Zhang X, Li F, Wang J, Suo S, Ling Q, Yu W, Jin J. RARγ-rearrangements resemble acute promyelocytic leukemia and benefit from 3 + 7 regimen. Leuk Lymphoma 2019; 60:1831-1834. [PMID: 30632861 DOI: 10.1080/10428194.2018.1553302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 10/27/2022]
Affiliation(s)
- Xiang Zhang
- a Department of Hematology , The First Affiliated Hospital, Zhejiang University College of Medicine , Hangzhou , PR China
- b Institute of Hematology, Zhejiang University , Hangzhou , PR China
- c Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment , Zhejiang , PR China
| | - Fenglin Li
- a Department of Hematology , The First Affiliated Hospital, Zhejiang University College of Medicine , Hangzhou , PR China
- b Institute of Hematology, Zhejiang University , Hangzhou , PR China
- c Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment , Zhejiang , PR China
| | - Jinghan Wang
- a Department of Hematology , The First Affiliated Hospital, Zhejiang University College of Medicine , Hangzhou , PR China
- b Institute of Hematology, Zhejiang University , Hangzhou , PR China
- c Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment , Zhejiang , PR China
| | - Shanshan Suo
- a Department of Hematology , The First Affiliated Hospital, Zhejiang University College of Medicine , Hangzhou , PR China
- b Institute of Hematology, Zhejiang University , Hangzhou , PR China
- c Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment , Zhejiang , PR China
| | - Qing Ling
- a Department of Hematology , The First Affiliated Hospital, Zhejiang University College of Medicine , Hangzhou , PR China
- b Institute of Hematology, Zhejiang University , Hangzhou , PR China
- c Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment , Zhejiang , PR China
| | - Wenjuan Yu
- a Department of Hematology , The First Affiliated Hospital, Zhejiang University College of Medicine , Hangzhou , PR China
- b Institute of Hematology, Zhejiang University , Hangzhou , PR China
- c Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment , Zhejiang , PR China
| | - Jie Jin
- a Department of Hematology , The First Affiliated Hospital, Zhejiang University College of Medicine , Hangzhou , PR China
- b Institute of Hematology, Zhejiang University , Hangzhou , PR China
- c Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment , Zhejiang , PR China
| |
Collapse
|
22
|
Conserva MR, Anelli L, Zagaria A, Specchia G, Albano F. The Pleiotropic Role of Retinoic Acid/Retinoic Acid Receptors Signaling: From Vitamin A Metabolism to Gene Rearrangements in Acute Promyelocytic Leukemia. Int J Mol Sci 2019; 20:ijms20122921. [PMID: 31207999 PMCID: PMC6627493 DOI: 10.3390/ijms20122921] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
The family of retinoic acid receptors (RARs: RARα, -β, and -γ) has remarkable pleiotropy characteristics, since the retinoic acid/RARs pathway is involved in numerous biological processes not only during embryonic development, but also in the postnatal phase and during adulthood. In this review, we trace the roles of RA/RARs signaling in the immune system (where this pathway has both an immunosuppressive role or is involved in the inflammatory response), in hematopoiesis (enhancing hematopoietic stem cell self-renewal, progenitor cells differentiation or maintaining the bone marrow microenvironment homeostasis), and in bone remodeling (where this pathway seems to have controversial effects on bone formation or osteoclast activation). Moreover, in this review is shown the involvement of RAR genes in multiple chromosomal rearrangements generating different fusion genes in hematological neoplasms, with a particular focus on acute promyelocytic leukemia and its variant subtypes. The effect of different RARs fusion proteins on leukemic transformation, on patients’ outcome, and on therapy response is also discussed.
Collapse
Affiliation(s)
- Maria Rosa Conserva
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Luisa Anelli
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Antonella Zagaria
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Giorgina Specchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| | - Francesco Albano
- Department of Emergency and Organ Transplantation (D.E.T.O.), Hematology Section, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
23
|
A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG- CPSF6 fusion. Blood Adv 2019; 2:1295-1299. [PMID: 29891591 DOI: 10.1182/bloodadvances.2017014183] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/13/2018] [Indexed: 12/18/2022] Open
Abstract
Key Points
Novel RARG-CPSF6 fusion in an AML case with promyelocytic features and no evidence of PML-RARA or X-RARA fusion. Gene fusions involving RARG can initiate AML with promyelocytic morphological features.
Collapse
|
24
|
Luo H, Zhang S, Li K, Chen XH, Li YC, Sun Y, Liu LF, Yu HY, Zhu HH. A novel entity of acute myeloid leukaemia with recurrent RARG-rearrangement resembling acute promyelocytic leukaemia. Leuk Res 2019; 77:14-16. [PMID: 30612054 DOI: 10.1016/j.leukres.2018.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
MESH Headings
- Diagnosis, Differential
- Female
- Gene Rearrangement
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Promyelocytic, Acute/diagnosis
- Leukemia, Promyelocytic, Acute/genetics
- Middle Aged
- Nuclear Pore Complex Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Prognosis
- Receptors, Retinoic Acid/genetics
- Retinoid X Receptors/genetics
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Hong Luo
- Department of Hematology, The First Hospital of Qiqihar, Heilongjiang, Qiqihar, 161005, China
| | - Suo Zhang
- Department of Hematology, The First Hospital of Qiqihar, Heilongjiang, Qiqihar, 161005, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xing-Hua Chen
- Beijing High Trust Diagnostics Co., Ltd., Beijing, 100176, China
| | - Yan-Chun Li
- Beijing High Trust Diagnostics Co., Ltd., Beijing, 100176, China
| | - Yuan Sun
- Beijing High Trust Diagnostics Co., Ltd., Beijing, 100176, China
| | - Li-Feng Liu
- Department of Hematology, The First Hospital of Qiqihar, Heilongjiang, Qiqihar, 161005, China
| | - Hui-Yang Yu
- Department of Hematology, The First Hospital of Qiqihar, Heilongjiang, Qiqihar, 161005, China.
| | - Hong-Hu Zhu
- Department of Hematology& Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
25
|
Sridharan S, Robeson M, Bastihalli-Tukaramrao D, Howard CM, Subramaniyan B, Tilley AMC, Tiwari AK, Raman D. Targeting of the Eukaryotic Translation Initiation Factor 4A Against Breast Cancer Stemness. Front Oncol 2019; 9:1311. [PMID: 31867270 PMCID: PMC6909344 DOI: 10.3389/fonc.2019.01311] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer stem cells (BCSCs) are intrinsically chemoresistant and capable of self-renewal. Following chemotherapy, patients can develop minimal residual disease due to BCSCs which can repopulate into a relapsed tumor. Therefore, it is imperative to co-target BCSCs along with the bulk tumor cells to achieve therapeutic success and prevent recurrence. So, it is vital to identify actionable molecular targets against both BCSCs and bulk tumor cells. Previous findings from our lab and others have demonstrated that inhibition of the emerging drug target eIF4A with Rocaglamide A (RocA) was efficacious against triple-negative breast cancer cells (TNBC). RocA specifically targets the pool of eIF4A bound to the oncogenic mRNAs that requires its helicase activity for their translation. This property enables specific targeting of tumor cells. The efficacy of RocA against BCSCs is unknown. In this study, we postulated that eIF4A could be a vulnerable node in BCSCs. In order to test this, we generated a paclitaxel-resistant TNBC cell line which demonstrated an elevated level of eIF4A along with increased levels of cancer stemness markers (ALDH activity and CD44), pluripotency transcription factors (SOX2, OCT4, and NANOG) and drug transporters (ABCB1, ABCG2, and ABCC1). Furthermore, genetic ablation of eIF4A resulted in reduced expression of ALDH1A1, pluripotency transcription factors and drug transporters. This pointed out that eIF4A is likely associated with selected set of proteins that are critical to BCSCs, and hence targeting eIF4A may eliminate BCSCs. Therefore, we isolated BCSCs from two TNBC cell lines: MDA-Bone-Un and SUM-159PT. Following RocA treatment, the self-renewal ability of the BCSCs was significantly reduced as determined by the efficiency of the formation of primary and secondary mammospheres. This was accompanied by a reduction in the levels of NANOG, OCT4, and drug transporters. Exposure to RocA also induced cell death of the BCSCs as evaluated by DRAQ7 and cell viability assays. RocA treatment induced apoptosis with increased levels of cleaved caspase-3. Overall, we identified that RocA is effective in targeting BCSCs, and eIF4A is an actionable molecular target in both BCSCs and bulk tumor cells. Therefore, anti-eIF4A inhibitors could potentially be combined synergistically with existing chemo-, radio- and/or immunotherapies.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Megan Robeson
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Diwakar Bastihalli-Tukaramrao
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Boopathi Subramaniyan
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Augustus M. C. Tilley
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Amit K. Tiwari
- Department of Pharmacology & Experimental Therapeutics, University of Toledo Health Science Campus, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo Health Science Campus, Toledo, OH, United States
- *Correspondence: Dayanidhi Raman
| |
Collapse
|
26
|
Rau RE, Loh ML. Using genomics to define pediatric blood cancers and inform practice. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2018; 2018:286-300. [PMID: 30504323 PMCID: PMC6245969 DOI: 10.1182/asheducation-2018.1.286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Over the past decade, there has been exponential growth in the number of genome sequencing studies performed across a spectrum of human diseases as sequencing technologies and analytic pipelines improve and costs decline. Pediatric hematologic malignancies have been no exception, with a multitude of next generation sequencing studies conducted on large cohorts of patients in recent years. These efforts have defined the mutational landscape of a number of leukemia subtypes and also identified germ-line genetic variants biologically and clinically relevant to pediatric leukemias. The findings have deepened our understanding of the biology of many childhood leukemias. Additionally, a number of recent discoveries may positively impact the care of pediatric leukemia patients through refinement of risk stratification, identification of targetable genetic lesions, and determination of risk for therapy-related toxicity. Although incredibly promising, many questions remain, including the biologic significance of identified genetic lesions and their clinical implications in the context of contemporary therapy. Importantly, the identification of germ-line mutations and variants with possible implications for members of the patient's family raises challenging ethical questions. Here, we review emerging genomic data germane to pediatric hematologic malignancies.
Collapse
Affiliation(s)
- Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine, Houston, TX; and
| | - Mignon L. Loh
- Department of Pediatrics, Benioff Children’s Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA
| |
Collapse
|
27
|
Coccaro N, Zagaria A, Orsini P, Anelli L, Tota G, Casieri P, Impera L, Minervini A, Minervini CF, Cumbo C, Parciante E, Mestice A, Delia M, Brunetti C, Specchia G, Albano F. RARA and RARG gene downregulation associated with EZH2 mutation in acute promyelocytic-like morphology leukemia. Hum Pathol 2018; 80:82-86. [PMID: 29530751 DOI: 10.1016/j.humpath.2018.02.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 12/17/2022]
Abstract
Most acute promyelocytic leukemia (APL) patients express PML-RARA fusion; in rare cases, RARA is rearranged with partner genes other than PML. To date, only 2 patients presenting features similar to APL showing the RARG gene rearrangement have been described. We report an acute myeloid leukemia patient with morphology resembling APL without involvement of the RARA gene. Molecular and fluorescent in situ hybridization analyses excluded PML-RARA fusion and variant rearrangements involving RARA and RARG loci. Targeted next-generation sequencing showed EZH2- D185H mutation. As this mutation involved the region of interaction with DNA methyltransferases, we speculate an epigenetic alteration of genes involved in the APL-like phenotype. Expression analysis by droplet digital polymerase chain reaction revealed downregulation of the RARA and RARG genes. We hypothesize a novel mechanism of EZH2 function alteration, which may be responsible for an acute myeloid leukemia with APL-like phenotype featuring dysregulation of the RARA and RARG genes.
Collapse
Affiliation(s)
- Nicoletta Coccaro
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Antonella Zagaria
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Paola Orsini
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Luisa Anelli
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Giuseppina Tota
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Paola Casieri
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Luciana Impera
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Angela Minervini
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Crescenzio F Minervini
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Cosimo Cumbo
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Elisa Parciante
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Anna Mestice
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Mario Delia
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Claudia Brunetti
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Giorgina Specchia
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Francesco Albano
- Hematology Section, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy.
| |
Collapse
|
28
|
Osumi T, Tsujimoto SI, Tamura M, Uchiyama M, Nakabayashi K, Okamura K, Yoshida M, Tomizawa D, Watanabe A, Takahashi H, Hori T, Yamamoto S, Hamamoto K, Migita M, Ogata-Kawata H, Uchiyama T, Kizawa H, Ueno-Yokohata H, Shirai R, Seki M, Ohki K, Takita J, Inukai T, Ogawa S, Kitamura T, Matsumoto K, Hata K, Kiyokawa N, Goyama S, Kato M. Recurrent RARB Translocations in Acute Promyelocytic Leukemia Lacking RARA Translocation. Cancer Res 2018; 78:4452-4458. [PMID: 29921692 DOI: 10.1158/0008-5472.can-18-0840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/17/2018] [Accepted: 06/14/2018] [Indexed: 11/16/2022]
Abstract
Translocations of retinoic acid receptor-α (RARA), typically PML-RARA, are a genetic hallmark of acute promyelocytic leukemia (APL). However, because a small fraction of APL lack translocations of RARA, we focused here on APL cases without RARA translocation to elucidate the molecular etiology of RARA-negative APL. We performed whole-genome sequencing, PCR, and FISH for five APL cases without RARA translocations. Four of five RARA-negative APL cases had translocations involving retinoic acid receptor-β (RARB) translocations, and TBL1XR1-RARB was identified as an in-frame fusion in three cases; one case had an RARB rearrangement detected by FISH, although the partner gene could not be identified. When transduced in cell lines, TBL1XR1-RARB homodimerized and diminished transcriptional activity for the retinoic acid receptor pathway in a dominant-negative manner. TBL1XR1-RARB enhanced the replating capacity of mouse bone marrow cells and inhibited myeloid maturation of human cord blood cells as PML-RARA did. However, the response of APL with RARB translocation to retinoids was attenuated compared with that of PML-RARA, an observation in line with the clinical resistance of RARB-positive APL to ATRA. Our results demonstrate that the majority of RARA-negative APL have RARB translocations, thereby forming a novel, distinct subgroup of APL. TBL1XR1-RARB as an oncogenic protein exerts effects similar to those of PML-RARA, underpinning the importance of retinoic acid pathway alterations in the pathogenesis of APL.Significance: These findings report a novel and distinct genetic subtype of acute promyelocytic leukemia (APL) by illustrating that the majority of APL without RARA translocations harbor RARB translocations. Cancer Res; 78(16); 4452-8. ©2018 AACR.
Collapse
Affiliation(s)
- Tomoo Osumi
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Shin-Ichi Tsujimoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Moe Tamura
- Division of Cellular Therapy, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Meri Uchiyama
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kohji Okamura
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masanori Yoshida
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Daisuke Tomizawa
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Akihiro Watanabe
- Department of Pediatrics, Niigata Cancer Center Hospital, Niigata, Japan
| | | | - Tsukasa Hori
- Department of Pediatrics, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shohei Yamamoto
- Department of Pediatrics, Showa University Fujigaoka Hospital, Yokohama, Japan
| | - Kazuko Hamamoto
- Department of Pediatrics, Hiroshima Red Cross Hospital & Atomic-Bomb Survivors Hospital, Hiroshima, Japan
| | - Masahiro Migita
- Department of Pediatrics, Japanese Red Cross Kumamoto Hospital, Kumamoto, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toru Uchiyama
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroe Kizawa
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Hitomi Ueno-Yokohata
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ryota Shirai
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Yokohama City University, Yokohama, Japan
| | - Masafumi Seki
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Kentaro Ohki
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Junko Takita
- Department of Pediatrics, The University of Tokyo, Tokyo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, University of Yamanashi, Chuo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kimikazu Matsumoto
- Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Nobutaka Kiyokawa
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Susumu Goyama
- Division of Cellular Therapy, the Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Motohiro Kato
- Department of Pediatric Hematology and Oncology Research, National Research Institute for Child Health and Development, Tokyo, Japan. .,Children's Cancer Center, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
29
|
Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 2017; 7:11018-32. [PMID: 26783961 PMCID: PMC4905455 DOI: 10.18632/oncotarget.6920] [Citation(s) in RCA: 434] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kaori Tanaka
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan.,Department of Surgical Oncology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takuji Tanaka
- Division of Pathology, Gifu Municipal Hospital, Gifu, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
30
|
Tosato V, West N, Zrimec J, Nikitin DV, Del Sal G, Marano R, Breitenbach M, Bruschi CV. Bridge-Induced Translocation between NUP145 and TOP2 Yeast Genes Models the Genetic Fusion between the Human Orthologs Associated With Acute Myeloid Leukemia. Front Oncol 2017; 7:231. [PMID: 29034209 PMCID: PMC5626878 DOI: 10.3389/fonc.2017.00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 01/03/2023] Open
Abstract
In mammalian organisms liquid tumors such as acute myeloid leukemia (AML) are related to spontaneous chromosomal translocations ensuing in gene fusions. We previously developed a system named bridge-induced translocation (BIT) that allows linking together two different chromosomes exploiting the strong endogenous homologous recombination system of the yeast Saccharomyces cerevisiae. The BIT system generates a heterogeneous population of cells with different aneuploidies and severe aberrant phenotypes reminiscent of a cancerogenic transformation. In this work, thanks to a complex pop-out methodology of the marker used for the selection of translocants, we succeeded by BIT technology to precisely reproduce in yeast the peculiar chromosome translocation that has been associated with AML, characterized by the fusion between the human genes NUP98 and TOP2B. To shed light on the origin of the DNA fragility within NUP98, an extensive analysis of the curvature, bending, thermostability, and B-Z transition aptitude of the breakpoint region of NUP98 and of its yeast ortholog NUP145 has been performed. On this basis, a DNA cassette carrying homologous tails to the two genes was amplified by PCR and allowed the targeted fusion between NUP145 and TOP2, leading to reproduce the chimeric transcript in a diploid strain of S. cerevisiae. The resulting translocated yeast obtained through BIT appears characterized by abnormal spherical bodies of nearly 500 nm of diameter, absence of external membrane and defined cytoplasmic localization. Since Nup98 is a well-known regulator of the post-transcriptional modification of P53 target genes, and P53 mutations are occasionally reported in AML, this translocant yeast strain can be used as a model to test the constitutive expression of human P53. Although the abnormal phenotype of the translocant yeast was never rescued by its expression, an exogenous P53 was recognized to confer increased vitality to the translocants, in spite of its usual and well-documented toxicity to wild-type yeast strains. These results obtained in yeast could provide new grounds for the interpretation of past observations made in leukemic patients indicating a possible involvement of P53 in cell transformation toward AML.
Collapse
Affiliation(s)
- Valentina Tosato
- Ulisse Biomed S.r.l., AREA Science Park, Trieste, Italy.,Faculty of Health Sciences, University of Primorska, Izola, Slovenia.,Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy
| | - Nicole West
- Clinical Pathology, Hospital Maggiore, Trieste, Italy
| | - Jan Zrimec
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Dmitri V Nikitin
- Biology Faculty, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Roberto Marano
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Michael Breitenbach
- Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| | - Carlo V Bruschi
- Yeast Molecular Genetics, ICGEB, AREA Science Park, Trieste, Italy.,Genetics Division, Department of Cell Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
31
|
Ha JS, Do YR, Ki CS, Lee C, Kim DH, Lee W, Ryoo NH, Jeon DS. Identification of a novel PML-RARG fusion in acute promyelocytic leukemia. Leukemia 2017; 31:1992-1995. [PMID: 28555082 DOI: 10.1038/leu.2017.167] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
MESH Headings
- Antineoplastic Agents/therapeutic use
- Female
- Humans
- Immunophenotyping
- In Situ Hybridization, Fluorescence
- Karyotyping
- Leukemia, Promyelocytic, Acute/drug therapy
- Leukemia, Promyelocytic, Acute/genetics
- Leukemia, Promyelocytic, Acute/immunology
- Leukemia, Promyelocytic, Acute/pathology
- Middle Aged
- Oncogene Proteins, Fusion/genetics
- Promyelocytic Leukemia Protein/genetics
- Receptors, Retinoic Acid/genetics
- Tretinoin/therapeutic use
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- J-S Ha
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Y R Do
- Division of Hemato-Oncology, Department of Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - C-S Ki
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - C Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - D-H Kim
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - W Lee
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - N-H Ryoo
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - D-S Jeon
- Department of Laboratory Medicine, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
32
|
Pascual-Garcia P, Debo B, Aleman JR, Talamas JA, Lan Y, Nguyen NH, Won KJ, Capelson M. Metazoan Nuclear Pores Provide a Scaffold for Poised Genes and Mediate Induced Enhancer-Promoter Contacts. Mol Cell 2017; 66:63-76.e6. [PMID: 28366641 DOI: 10.1016/j.molcel.2017.02.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/19/2017] [Accepted: 02/17/2017] [Indexed: 01/09/2023]
Abstract
Nuclear pore complex components (Nups) have been implicated in transcriptional regulation, yet what regulatory steps are controlled by metazoan Nups remains unclear. We identified the presence of multiple Nups at promoters, enhancers, and insulators in the Drosophila genome. In line with this binding, we uncovered a functional role for Nup98 in mediating enhancer-promoter looping at ecdysone-inducible genes. These genes were found to be stably associated with nuclear pores before and after activation. Although changing levels of Nup98 disrupted enhancer-promoter contacts, it did not affect ongoing transcription but instead compromised subsequent transcriptional activation or transcriptional memory. In support of the enhancer-looping role, we found Nup98 to gain and retain physical interactions with architectural proteins upon stimulation with ecdysone. Together, our data identify Nups as a class of architectural proteins for enhancers and supports a model in which animal genomes use the nuclear pore as an organizing scaffold for inducible poised genes.
Collapse
Affiliation(s)
- Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Debo
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer R Aleman
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Talamas
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nha H Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung J Won
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
33
|
Fahrenkrog B, Martinelli V, Nilles N, Fruhmann G, Chatel G, Juge S, Sauder U, Di Giacomo D, Mecucci C, Schwaller J. Expression of Leukemia-Associated Nup98 Fusion Proteins Generates an Aberrant Nuclear Envelope Phenotype. PLoS One 2016; 11:e0152321. [PMID: 27031510 PMCID: PMC4816316 DOI: 10.1371/journal.pone.0152321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 03/11/2016] [Indexed: 01/15/2023] Open
Abstract
Chromosomal translocations involving the nucleoporin NUP98 have been described in several hematopoietic malignancies, in particular acute myeloid leukemia (AML). In the resulting chimeric proteins, Nup98's N-terminal region is fused to the C-terminal region of about 30 different partners, including homeodomain (HD) transcription factors. While transcriptional targets of distinct Nup98 chimeras related to immortalization are relatively well described, little is known about other potential cellular effects of these fusion proteins. By comparing the sub-nuclear localization of a large number of Nup98 fusions with HD and non-HD partners throughout the cell cycle we found that while all Nup98 chimeras were nuclear during interphase, only Nup98-HD fusion proteins exhibited a characteristic speckled appearance. During mitosis, only Nup98-HD fusions were concentrated on chromosomes. Despite the difference in localization, all tested Nup98 chimera provoked morphological alterations in the nuclear envelope (NE), in particular affecting the nuclear lamina and the lamina-associated polypeptide 2α (LAP2α). Importantly, such aberrations were not only observed in transiently transfected HeLa cells but also in mouse bone marrow cells immortalized by Nup98 fusions and in cells derived from leukemia patients harboring Nup98 fusions. Our findings unravel Nup98 fusion-associated NE alterations that may contribute to leukemogenesis.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Cycle
- DNA-Binding Proteins/analysis
- DNA-Binding Proteins/metabolism
- HeLa Cells
- Homeodomain Proteins/analysis
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Membrane Proteins/analysis
- Membrane Proteins/metabolism
- Mice
- Mitosis
- Nuclear Envelope/genetics
- Nuclear Envelope/metabolism
- Nuclear Envelope/pathology
- Nuclear Pore Complex Proteins/analysis
- Nuclear Pore Complex Proteins/genetics
- Nuclear Pore Complex Proteins/metabolism
- Oncogene Proteins, Fusion/analysis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Phenotype
- Translocation, Genetic
Collapse
Affiliation(s)
- Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
- * E-mail: (BF); (JS)
| | - Valérie Martinelli
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Nadine Nilles
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Gernot Fruhmann
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
| | - Guillaume Chatel
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| | - Sabine Juge
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
| | - Ursula Sauder
- Biozentrum, Microscopy Center, University of Basel, Basel, Switzerland
| | - Danika Di Giacomo
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Cristina Mecucci
- Hematology and Bone Marrow Transplantation Unit, University of Perugia, Perugia, Italy
| | - Jürg Schwaller
- Department of Biomedicine, University Children’s Hospital Basel, Basel, Switzerland
- * E-mail: (BF); (JS)
| |
Collapse
|
34
|
Xu T, Zhong L, Gan LG, Xiao CL, Shan ZL, Yang R, Song H, Li L, Liu BZ. Effects of LG268 on Cell Proliferation and Apoptosis of NB4 Cells. Int J Med Sci 2016; 13:517-23. [PMID: 27429588 PMCID: PMC4946122 DOI: 10.7150/ijms.15507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/12/2016] [Indexed: 12/28/2022] Open
Abstract
AIMS To investigate the effect of LG100268 (LG268) on cell proliferation and apoptosis in NB4 cells. METHODS NB4 cells were treated with LG268 for 24 h or 48 h. The effect of LG268 on cell proliferation was assessed by the CCK-8 assay and colony-forming assay. Apoptosis and cell cycle were evaluated by flow cytometry. The protein expression levels of Survivin, PARP, c-Myc, cyclin D1, ERK, p-ERK, p38 MAPK, and p- p38 MAPK were detected by western blot. RESULTS We found that LG268 inhibited the proliferation of NB4 cells in a dose-dependent manner. Flow cytometry analysis showed that LG268 accelerated apoptosis in NB4 cells in a time- dependent manner and that LG268 treatment led to cell cycle arrest at G0/G1 phase. Moreover, LG268 significantly decreased the protein levels of Survivin, c-Myc, and cyclinD1. Cleaved PARP was observed in the LG268 treatment group but not in the control group. In addition, LG268 increased the phosphorylation level of p38 MAPK and decreased the phosphorylation level of ERK. CONCLUSIONS LG268 inhibited cell proliferation and promoted cell apoptosis in NB4 cells.
Collapse
Affiliation(s)
- Ting Xu
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liang Zhong
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liu-Gen Gan
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Chun-Lan Xiao
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Zhi-Ling Shan
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Yang
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Hao Song
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Liu Li
- 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Bei-Zhong Liu
- 1. Central Laboratory of Yong-chuan Hospital, Chongqing Medical University, Chongqing, 402160, China; 2. Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
35
|
Xu X, Chai S, Wang P, Zhang C, Yang Y, Yang Y, Wang K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett 2015; 369:50-7. [PMID: 26319899 DOI: 10.1016/j.canlet.2015.08.018] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/03/2023]
Abstract
Aldehyde dehydrogenases (ALDHs), as essential regulators of aldehyde metabolism in the human body, protect organisms from damage induced by active aldehydes. Given their roles in different cancer types, ALDHs have been evaluated as potential prognostic markers of cancer. ALDHs exhibit high activity in cancer stem cells (CSCs) and may serve as markers of CSCs. Moreover, studies indicated that ALDHs and their regulated retinoic acid, reactive oxygen species and reactive aldehydes metabolism were strongly related with various properties of CSCs. Besides, recent research evidences have demonstrated the transcriptional and post-translational regulation of ALDH expression and activation in CSCs. Thus, this review focuses on the function and regulation of ALDHs in CSCs, particularly ALDH1A1 and ALDH1A3.
Collapse
Affiliation(s)
- Xia Xu
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Shoujie Chai
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Pingli Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chenchen Zhang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yiming Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Ying Yang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Kai Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|