1
|
Chen JQ, Wu XJ, Wu XX, Geng BD, Zhou D, Wen J, Chan SCL, Jin C, Xu JW, Lu JH, Ge G. Protective effect of aqueous extract of Reineckea carnea (Andrews) Kunth against cigarette smoke-induced chronic obstructive pulmonary disease in mice and its impact on gut microbiota. Fitoterapia 2025; 184:106600. [PMID: 40339613 DOI: 10.1016/j.fitote.2025.106600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/09/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Reineckea carnea (Andrews) Kunth (RCK) is known for its anti-inflammatory and antioxidant effects. But, its effects and underlying mechanisms on chronic obstructive pulmonary disease (COPD) are not well understood. This study aimed to evaluate the effects of RCK on COPD and to elucidate the mechanisms by which it modulates gut microbiota. A COPD mouse model was established through exposure to cigarette smoke (CS). Mice were then treated with oral administration of RCK aqueous extract. The anti-inflammatory effects and efficacy of RCK aqueous extract on COPD, as well as changes in microbiota composition, were evaluated. RCK aqueous extract ameliorated gut dysbiosis in CS-induced COPD mice by increasing the abundance of beneficial bacterial phyla and reducing the proliferation of pathogenic bacteria. Importantly, RCK treatment inhibited the expression of inflammatory mediators, such as IL-6, IL-8, and TNF-α at both mRNA levels and protein levels, attenuated oxidative stress in vivo in mice, and suppressed CS-induced activation of the NF-κB signaling pathway, thereby attenuating lung inflammation and restoring lung tissue structure. In conclusion, the beneficial effects of RCK aqueous extract on CS-induced COPD may be attributed to its anti-inflammatory and antioxidant properties as well as its ability to modulate gut microbial composition.
Collapse
Affiliation(s)
- Jiu-Qiong Chen
- Center for Tissue Engineering and Stem Cell Research,Guizhou Medical University, China; School of Pharmacy, Guizhou Medical University, China
| | - Xi-Jun Wu
- Jinyang Hospital Affiliated to Guizhou Medical University&The Second People's Hospital of Guiyang, China
| | - Xu-Xian Wu
- Center for Tissue Engineering and Stem Cell Research,Guizhou Medical University, China
| | - Bill D Geng
- School of Natural Science, University of Texas at Austin, Austin, TX 78712, USA
| | - Dan Zhou
- Center for Tissue Engineering and Stem Cell Research,Guizhou Medical University, China
| | - Jun Wen
- Department of Pharmacology, Xiamen Medical College, China
| | - Sze Chun Leo Chan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, The Life Science Institute, National University of Singapore, Singapore, Singapore
| | - Cen Jin
- Center for Tissue Engineering and Stem Cell Research,Guizhou Medical University, China
| | - Jian-Wei Xu
- Center for Tissue Engineering and Stem Cell Research,Guizhou Medical University, China; School of Pharmacy, Guizhou Medical University, China.
| | - Jun-Hou Lu
- Center for Tissue Engineering and Stem Cell Research,Guizhou Medical University, China.
| | - Guo Ge
- Department of Human Anatomy, School of Basic Medicine, Guizhou Medical University, China; Key Laboratory of Molecular Biology of Guizhou Medical University, China.
| |
Collapse
|
2
|
Liu G, Hsu AC, Geirnaert S, Cong C, Nair PM, Shen S, Marshall JE, Haw TJ, Fricker M, Philp AM, Hansbro NG, Pavlidis S, Guo Y, Burgess JK, Castellano L, Ieni A, Caramori G, Oliver BGG, Chung KF, Adcock IM, Knight DA, Polverino F, Bracke K, Wark PA, Hansbro PM. Vitronectin regulates lung tissue remodeling and emphysema in chronic obstructive pulmonary disease. Mol Ther 2025; 33:917-932. [PMID: 39838644 PMCID: PMC11897773 DOI: 10.1016/j.ymthe.2025.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/21/2024] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
Vitronectin (VTN) is an important extracellular matrix protein in tissue remodeling, but its role in chronic obstructive pulmonary disease (COPD) is unknown. We show that VTN regulates tissue remodeling through urokinase plasminogen activator (uPA) signaling pathway in COPD. In human COPD airways and bronchoepithelial cells and the airways of mice with cigarette smoke (CS)-induced experimental COPD, VTN protein was not changed, but downstream uPA signaling was altered (increased plasminogen activator inhibitor-1) that induced collagen and airway remodeling. In the parenchyma, VTN levels were decreased, uPA signaling pathway differentially altered and collagen reduced in lung fibroblasts from human and lung parenchyma in experimental COPD. Vtn inhibition with siRNA in mouse fibroblasts altered uPA signaling increased matrix metalloproteinase-12, and reduced collagen, whereas over-expression restored collagen production after CS extract challenge. Vtn-/- and Vtn small interfering RNA-treated mice had exaggerated inflammation, emphysema, and impaired lung function compared with controls with CS-induced COPD. Restoration of VTN in the parenchyma may be a therapeutic option for emphysema and COPD.
Collapse
Affiliation(s)
- Gang Liu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia.
| | - Alan C Hsu
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Silke Geirnaert
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Christine Cong
- Pulmonary and Critical Care Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Prema M Nair
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Sj Shen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Tatt Jhong Haw
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Michael Fricker
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia; St Vincent's Medical School, University of New South Wale Medicine, University of New South Wale, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - Stelios Pavlidis
- The Airway Disease Section, Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, the Netherlands
| | | | - Antonio Ieni
- Department of Pathology, University of Messina, Messina, Italy
| | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, Parma PR, Italy
| | - Brain G G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - K Fan Chung
- The Airway Disease Section, Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Ian M Adcock
- Data Science Institute, National Heart & Lung Institute, Imperial College London, London, UK
| | - Darryl A Knight
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Research and Academic Affairs, Providence Health Care Research Institute, Vancouver, BC, Canada; Departemnt of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia, Faculty of Medicine, Vancouver, BC, Canada
| | - Francesca Polverino
- Pulmonary and Critical Care Division, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Ken Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Immune Health, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia; Centre for Inflammation, Centenary Institute and University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
3
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
4
|
Liu G, Haw TJ, Starkey MR, Philp AM, Pavlidis S, Nalkurthi C, Nair PM, Gomez HM, Hanish I, Hsu AC, Hortle E, Pickles S, Rojas-Quintero J, Estepar RSJ, Marshall JE, Kim RY, Collison AM, Mattes J, Idrees S, Faiz A, Hansbro NG, Fukui R, Murakami Y, Cheng HS, Tan NS, Chotirmall SH, Horvat JC, Foster PS, Oliver BG, Polverino F, Ieni A, Monaco F, Caramori G, Sohal SS, Bracke KR, Wark PA, Adcock IM, Miyake K, Sin DD, Hansbro PM. TLR7 promotes smoke-induced experimental lung damage through the activity of mast cell tryptase. Nat Commun 2023; 14:7349. [PMID: 37963864 PMCID: PMC10646046 DOI: 10.1038/s41467-023-42913-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Toll-like receptor 7 (TLR7) is known for eliciting immunity against single-stranded RNA viruses, and is increased in both human and cigarette smoke (CS)-induced, experimental chronic obstructive pulmonary disease (COPD). Here we show that the severity of CS-induced emphysema and COPD is reduced in TLR7-deficient mice, while inhalation of imiquimod, a TLR7-agonist, induces emphysema without CS exposure. This imiquimod-induced emphysema is reduced in mice deficient in mast cell protease-6, or when wild-type mice are treated with the mast cell stabilizer, cromolyn. Furthermore, therapeutic treatment with anti-TLR7 monoclonal antibody suppresses CS-induced emphysema, experimental COPD and accumulation of pulmonary mast cells in mice. Lastly, TLR7 mRNA is increased in pre-existing datasets from patients with COPD, while TLR7+ mast cells are increased in COPD lungs and associated with severity of COPD. Our results thus support roles for TLR7 in mediating emphysema and COPD through mast cell activity, and may implicate TLR7 as a potential therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Tatt Jhong Haw
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- Depatrment of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Ashleigh M Philp
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, UK
| | - Christina Nalkurthi
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Prema M Nair
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Henry M Gomez
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Irwan Hanish
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Alan Cy Hsu
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Elinor Hortle
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Sophie Pickles
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | | | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Jacqueline E Marshall
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Richard Y Kim
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Adam M Collison
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Joerg Mattes
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Sobia Idrees
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Alen Faiz
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia
| | - Ryutaro Fukui
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Yusuke Murakami
- Faculty of Pharmacy, Department of Pharmaceutical Sciences, Musashino University, Nishitokyo-shi, Tokyo, Japan
| | - Hong Sheng Cheng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Jay C Horvat
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Paul S Foster
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Brian Gg Oliver
- Woolcock Institute of Medical Research, University of Sydney & School of Life Sciences, University of Technology, Sydney, Australia
| | | | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, Università di Messina, Messina, Italy
| | - Francesco Monaco
- Thoracic Surgery, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento BIOMORF and Dipartimento di Medicina e Chirurgia, Universities of Messina and Parma, Messina, Italy
| | - Sukhwinder S Sohal
- Respiratory Translational Research Group, Department of Laboratory Medicine, School of Health Sciences, University of Tasmania, Launceston, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Peter A Wark
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia
| | - Ian M Adcock
- School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Healthcare clinical campus, UNSW, Sydney, Australia
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Shirokanedai, Minatoku, Tokyo, Japan
| | - Don D Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital & Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, and Faculty of Science, University of Technology Sydney, Camperdown, New South Wales, Australia.
- Immune Healthy &/or Grow Up Well, Hunter Medical Research Institute & University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
5
|
Colarusso C, Terlizzi M, Falanga A, Stathopoulos G, De Lucia L, Hansbro PM, Pinto A, Sorrentino R. Absent in melanoma 2 (AIM2) positive profile identifies a poor prognosis of lung adenocarcinoma patients. Int Immunopharmacol 2023; 124:110990. [PMID: 37857119 DOI: 10.1016/j.intimp.2023.110990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/21/2023]
Abstract
The absent in melanoma 2 (AIM2) inflammasome has been demonstrated as involved in tumor growth. In this study we used human samples of lung adenocarcinoma (LUAD) patients, taking advantage of a mouse model of smoking cessation. Human samples were stratified according to the smoking status, high-risk factor for this type of tumor. Both public transcriptomic and human samples obtained by a clinical trial proved that AIM2 was upregulated either in terms of mRNA or protein, respectively, in the tumor mass according to the TNM stage, but it did not relate to the smoking status, age and sex. The upregulation of AIM2 was correlated to an immunosuppressive environment according to resting/non-active dendritic cells (DCs) and T regulatory cells, as demonstrated in both human samples and by means of an experimental model of smoking mice. Computational analysis showed that AIM2 upregulation was correlated to both an inflammasome profile, responsible for the poor prognosis of non-smoker and smoker LUAD patients, and to a non-inflammasome profile for former smoker. In conclusion, our study demonstrated that AIM2 is involved in lung carcinogenesis either in a canonical and non-canonical manner due to an immunosuppressive microenvironment associated to a dismal prognosis of LUAD patients.
Collapse
Affiliation(s)
| | | | - Anna Falanga
- Department of Pharmacy, University of Salerno, Italy
| | - Georgious Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | | | - Phillip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney (UTS), School of Life Sciences, Faculty of Science, Sydney, NSW 2007, Australia
| | - Aldo Pinto
- Department of Pharmacy, University of Salerno, Italy
| | | |
Collapse
|
6
|
Vanders RL, Gomez HM, Hsu AC, Daly K, Wark PAB, Horvat JC, Hansbro PM. Inflammatory and antiviral responses to influenza A virus infection are dysregulated in pregnant mice with allergic airway disease. Am J Physiol Lung Cell Mol Physiol 2023; 325:L385-L398. [PMID: 37463835 DOI: 10.1152/ajplung.00232.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/20/2023] Open
Abstract
Influenza A virus (IAV) infections are increased during pregnancy especially with asthma as a comorbidity, leading to asthma exacerbations, secondary bacterial infections, intensive care unit admissions, and mortality. We aimed to define the processes involved in increased susceptibility and severity of IAV infections during pregnancy, especially with asthma. We sensitized mice to house dust mite (HDM), induced pregnancy, and challenged with HDM to induce allergic airway disease (AAD). At midpregnancy, we induced IAV infection. We assessed viral titers, airway inflammation, lung antiviral responses, mucus hypersecretion, and airway hyperresponsiveness (AHR). During early IAV infection, pregnant mice with AAD had increased mRNA expression of the inflammatory markers Il13 and IL17 and reduced mRNA expression of the neutrophil chemoattractant marker Kc. These mice had increased mucous hyperplasia and increased AHR. miR155, miR574, miR223, and miR1187 were also reduced during early infection, as was mRNA expression of the antiviral β-defensins, Bd1, Bd2, and Spd and IFNs, Ifnα, Ifnβ, and Ifnλ. During late infection, Il17 was still increased as was eosinophil infiltration in the lungs. mRNA expression of Kc was reduced, as was neutrophil infiltration and mRNA expression of the antiviral markers Ifnβ, Ifnλ, and Ifnγ and Ip10, Tlr3, Tlr9, Pkr, and Mx1. Mucous hyperplasia was still significantly increased as was AHR. Early phase IAV infection in pregnancy with asthma heightens underlying inflammatory asthmatic phenotype and reduces antiviral responses.NEW & NOTEWORTHY Influenza A virus (IAV) infection during pregnancy with asthma is a major health concern leading to increased morbidity for both mother and baby. Using murine models, we show that IAV infection in pregnancy with allergic airway disease is associated with impaired global antiviral and antimicrobial responses, increased lung inflammation, mucus hypersecretion, and airway hyperresponsiveness (AHR). Targeting specific β-defensins or microRNAs (miRNAs) may prove useful in future treatments for IAV infection during pregnancy.
Collapse
Affiliation(s)
- Rebecca L Vanders
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Henry M Gomez
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Katie Daly
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, New South Wales, Australia
- Vaccines, Infection, Viruses and Asthma Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Faculty of Science, School of Life Sciences, Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Jung AL, Han M, Griss K, Bertrams W, Nell C, Greulich T, Klemmer A, Pott H, Heider D, Vogelmeier CF, Hippenstiel S, Suttorp N, Schmeck B. Novel protein biomarkers for pneumonia and acute exacerbations in COPD: a pilot study. Front Med (Lausanne) 2023; 10:1180746. [PMID: 37342494 PMCID: PMC10277477 DOI: 10.3389/fmed.2023.1180746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Introduction Community-acquired pneumonia (CAP) and acute exacerbations of chronic obstructive pulmonary disease (AECOPD) result in high morbidity, mortality, and socio-economic burden. The usage of easily accessible biomarkers informing on disease entity, severity, prognosis, and pathophysiological endotypes is limited in clinical practice. Here, we have analyzed selected plasma markers for their value in differential diagnosis and severity grading in a clinical cohort. Methods A pilot cohort of hospitalized patients suffering from CAP (n = 27), AECOPD (n = 10), and healthy subjects (n = 22) were characterized clinically. Clinical scores (PSI, CURB, CRB65, GOLD I-IV, and GOLD ABCD) were obtained, and interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-2-receptor (IL-2R), lipopolysaccharide-binding protein (LBP), resistin, thrombospondin-1 (TSP-1), lactotransferrin (LTF), neutrophil gelatinase-associated lipocalin (NGAL), neutrophil-elastase-2 (ELA2), hepatocyte growth factor (HGF), soluble Fas (sFas), as well as TNF-related apoptosis-inducing ligand (TRAIL) were measured in plasma. Results In CAP patients and healthy volunteers, we found significantly different levels of ELA2, HGF, IL-2R, IL-6, IL-8, LBP, resistin, LTF, and TRAIL. The panel of LBP, sFas, and TRAIL could discriminate between uncomplicated and severe CAP. AECOPD patients showed significantly different levels of LTF and TRAIL compared to healthy subjects. Ensemble feature selection revealed that CAP and AECOPD can be discriminated by IL-6, resistin, together with IL-2R. These factors even allow the differentiation between COPD patients suffering from an exacerbation or pneumonia. Discussion Taken together, we identified immune mediators in patient plasma that provide information on differential diagnosis and disease severity and can therefore serve as biomarkers. Further studies are required for validation in bigger cohorts.
Collapse
Affiliation(s)
- Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
| | - Maria Han
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Medizinische Klinik m.S. Hämatologie und Onkologie, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Kathrin Griss
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Christoph Nell
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Andreas Klemmer
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Hendrik Pott
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Dominik Heider
- Department of Mathematics and Computer Science, Philipps-University Marburg, Marburg, Germany
- Center for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Marburg, Germany
| | - Claus F. Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
| | - Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Core Facility Flow Cytometry – Bacterial Vesicles, Philipps-University Marburg, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Marburg, Philipps-University Marburg, German Center for Lung Research (DZL), Marburg, Germany
- Center for Synthetic Microbiology (Synmikro), Philipps-University Marburg, Marburg, Germany
- Member of the German Center of Infectious Disease Research, Marburg, Germany
| |
Collapse
|
8
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, et alVitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Show More Authors] [Citation(s) in RCA: 167] [Impact Index Per Article: 83.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
9
|
Agraval H, Crue T, Schaunaman N, Numata M, Day BJ, Chu HW. Electronic Cigarette Exposure Increases the Severity of Influenza a Virus Infection via TRAIL Dysregulation in Human Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24054295. [PMID: 36901724 PMCID: PMC10002047 DOI: 10.3390/ijms24054295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-β and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Taylor Crue
- School of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Niccolette Schaunaman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Correspondence: ; Tel.: +1-303-398-1689
| |
Collapse
|
10
|
Duan R, Niu H, Dong F, Yu T, Li X, Wu H, Zhang Y, Yang T. Short-term exposure to fine particulate matter and genome-wide DNA methylation in chronic obstructive pulmonary disease: A panel study conducted in Beijing, China. Front Public Health 2023; 10:1069685. [PMID: 36684947 PMCID: PMC9850166 DOI: 10.3389/fpubh.2022.1069685] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Background Fine particulate matter (PM2.5) is a crucial risk factor for chronic obstructive pulmonary disease (COPD). However, the mechanisms whereby PM2.5 contribute to COPD risk have not been fully elucidated. Accumulating evidence suggests that epigenetics, including DNA methylation, play an important role in this process; however, the association between PM2.5 exposure and genome-wide DNA methylation in patients with COPD has not been studied. Objective To evaluate the association of personal exposure to PM2.5 and genome-wide DNA methylation changes in the peripheral blood of patients with COPD. Methods A panel study was conducted in Beijing, China. We repeatedly measured and collected personal PM2.5 data for 72 h. Genome-wide DNA-methylation of peripheral blood was analyzed using the Illumina Infinium Human Methylation BeadChip (850 k). A linear-mixed effect model was used to identify the differentially methylated probe (DMP) associated with PM2.5. Finally, we performed a functional enrichment analysis of the DMPs that were significantly associated with PM2.5. Results A total of 24 COPD patients were enrolled and 48 repeated DNA methylation measurements were associated in this study. When the false discovery rate was < 0.05, 19 DMPs were significantly associated with PM2.5 and were annotated to corresponding genes. Functional enrichment analysis of these genes showed that they were related to the response to toxic substances, regulation of tumor necrosis factor superfamily cytokine production, regulation of photosensitivity 3-kinase signaling, and other pathways. Conclusion This study provided evidence for a significant relationship between personal PM2.5 exposure and DNA methylation in patients with COPD. Our research also revealed a new biological pathway explaining the adverse effects of PM2.5 exposure on COPD risk.
Collapse
Affiliation(s)
- Ruirui Duan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Hongtao Niu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Fen Dong
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Tao Yu
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuexin Li
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Hanna Wu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Yushi Zhang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ting Yang
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Tu X, Gomez HM, Kim RY, Brown AC, de Jong E, Galvao I, Faiz A, Bosco A, Horvat JC, Hansbro P, Donovan C. Airway and parenchyma transcriptomics in a house dust mite model of experimental asthma. Respir Res 2023; 24:32. [PMID: 36698141 PMCID: PMC9878882 DOI: 10.1186/s12931-022-02298-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/15/2022] [Indexed: 01/26/2023] Open
Abstract
Lung transcriptomics studies in asthma have provided valuable information in the whole lung context, however, deciphering the individual contributions of the airway and parenchyma in disease pathogenesis may expedite the development of novel targeted treatment strategies. In this study, we performed transcriptomics on the airway and parenchyma using a house dust mite (HDM)-induced model of experimental asthma that replicates key features of the human disease. HDM exposure increased the expression of 3,255 genes, of which 212 were uniquely increased in the airways, 856 uniquely increased in the parenchyma, and 2187 commonly increased in both compartments. Further interrogation of these genes using a combination of network and transcription factor enrichment analyses identified several transcription factors that regulate airway and/or parenchymal gene expression, including transcription factor EC (TFEC), transcription factor PU.1 (SPI1), H2.0-like homeobox (HLX), metal response element binding transcription factor-1 (MTF1) and E74-like factor 4 (ets domain transcription factor, ELF4) involved in controlling innate immune responses. We next assessed the effects of inhibiting lung SPI1 responses using commercially available DB1976 and DB2313 on key disease outcomes. We found that both compounds had no protective effects on airway inflammation, however DB2313 (8 mg/kg) decreased mucus secreting cell number, and both DB2313 (1 mg/kg) and DB1976 (2.5 mg/kg and 1 mg/kg) reduced small airway collagen deposition. Significantly, both compounds decreased airway hyperresponsiveness. This study demonstrates that SPI1 is important in HDM-induced experimental asthma and that its pharmacological inhibition reduces HDM-induced airway collagen deposition and hyperresponsiveness.
Collapse
Affiliation(s)
- Xiaofan Tu
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Henry M. Gomez
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Richard Y. Kim
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Alexandra C. Brown
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Emma de Jong
- Centre for Health Research, Telethon Kids Institute, The University of Western Australia, Nedlands, WA Australia
| | - Izabela Galvao
- grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Alen Faiz
- grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| | - Anthony Bosco
- grid.134563.60000 0001 2168 186XAsthma and Airway Disease Research Center, University of Arizona, Arizona, USA
| | - Jay C. Horvat
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia
| | - Philip Hansbro
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Chantal Donovan
- grid.266842.c0000 0000 8831 109XPriority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW Australia ,grid.117476.20000 0004 1936 7611Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW Australia
| |
Collapse
|
12
|
Li S, Huang Q, Zhou D, He B. PRKCD as a potential therapeutic target for chronic obstructive pulmonary disease. Int Immunopharmacol 2022; 113:109374. [PMID: 36279664 DOI: 10.1016/j.intimp.2022.109374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/09/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
13
|
Tazi N, Semlali A, Loubaki L, Alamri A, Rouabhia M. Cannabis smoke condensate induces human gingival epithelial cell damage through apoptosis, autophagy, and oxidative stress. Arch Oral Biol 2022; 141:105498. [PMID: 35810494 DOI: 10.1016/j.archoralbio.2022.105498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES This study aims to investigate the effects of cannabis smoke condensate (CSC) on the adhesion, growth, and signaling pathways of human gingival epithelial cells. DESIGN The effects of CSC on cell shape and adhesion, and viability were evaluated after 30 min, 60 min, 2 h, and 24 h of exposure using microscopic observation, cell metabolic activity, and lactate dehydrogenase activity assays. The effects of CSC on cell apoptosis, necrosis, autophagy, and oxidative stress were determined through flow cytometry, while apoptotic and autophagic gene expression were identified via an RT2-PCR array. Phosphorylated signaling pathway proteins were measured using flow cytometry. RESULTS CSC deregulated gingival epithelial cell shape and adhesion, decreased cell viability, and increased lactate dehydrogenase release. Its toxic effects included apoptosis, autophagy, and oxidative stress. Moreover, it modulated seven specific apoptotic and six autophagic genes. Furthermore, it decreased phosphorylation in signaling proteins, such as STAT5, ERK12, P38, and nuclear factor κB. CONCLUSIONS CSC has notable adverse effects on gingival epithelial cells. This finding indicates that cannabis smoke could impair gingival epithelial cell innate immune function, leading to gingivitis and periodontitis. Oral health professionals may need to document observed modifications in the oral cavity of patients who smoke cannabis and consider these potential changes during clinical care.
Collapse
Affiliation(s)
- Neftaha Tazi
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada
| | - Lionel Loubaki
- Medical Affairs and Innovation, Héma-Québec, 1070 Avenue des Sciences-de-la-Vie, Québec, Canada
| | - Abdullah Alamri
- Genome Research Chair, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, Canada.
| |
Collapse
|
14
|
TRAIL protects the immature lung from hyperoxic injury. Cell Death Dis 2022; 13:614. [PMID: 35840556 PMCID: PMC9287454 DOI: 10.1038/s41419-022-05072-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
The hyperoxia-induced pro-inflammatory response and tissue damage constitute pivotal steps leading to bronchopulmonary dysplasia (BPD) in the immature lung. The pro-inflammatory cytokines are considered attractive candidates for a directed intervention but the complex interplay between inflammatory and developmental signaling pathways requires a comprehensive evaluation before introduction into clinical trials as studied here for the death inducing ligand TRAIL. At birth and during prolonged exposure to oxygen and mechanical ventilation, levels of TRAIL were lower in tracheal aspirates of preterm infants <29 weeks of gestation which developed moderate/severe BPD. These findings were reproduced in the newborn mouse model of hyperoxic injury. The loss of TRAIL was associated with increased inflammation, apoptosis induction and more pronounced lung structural simplification after hyperoxia exposure for 7 days while activation of NFκB signaling during exposure to hyperoxia was abrogated. Pretreatment with recombinant TRAIL rescued the developmental distortions in precision cut lung slices of both wildtype and TRAIL-/- mice exposed to hyperoxia. Of importance, TRAIL preserved alveolar type II cells, mesenchymal progenitor cells and vascular endothelial cells. In the situation of TRAIL depletion, our data ascribe oxygen toxicity a more injurious impact on structural lung development. These data are not surprising taking into account the diverse functions of TRAIL and its stimulatory effects on NFκB signaling as central driver of survival and development. TRAIL exerts a protective role in the immature lung as observed for the death inducing ligand TNF-α before.
Collapse
|
15
|
Qin J, Wang H, Lyu Z, Liao Y, Zeng N, Wang K, Zhou Y, Zeng Z, Liao Z, Cao Y, He J, Wang T, Wen F. Elevated soluble death receptor 5 can predict poor prognosis in patients with acute respiratory distress syndrome. Expert Rev Respir Med 2022; 16:823-832. [PMID: 35822538 DOI: 10.1080/17476348.2022.2100351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND : The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5), participate in pulmonary cell apoptosis. This study aimed to investigate the clinical value of soluble DR5 and TRAIL for prognosis assessment in acute respiratory distress syndrome (ARDS). RESEARCH DESIGN AND METHODS : Serum and bronchoalveolar lavage fluid (BALF) samples were collected from ARDS patients and controls. Patients were followed-up until death or discharge. Soluble DR5, TRAIL, TNF-α, soluble receptor for advanced glycation end-products (sRAGE), and albumin levels were measured using the Magnetic Luminex or enzyme-linked immunosorbent assays. Data were analyzed according to their distribution and statistical purpose. RESULTS : Serum and BALF DR5 levels were elevated in patients with ARDS; TRAIL elevation and reduction was observed in BALF and serum, respectively. Serum DR5 was higher in non-survivors compared to survivors. Serum DR5 was positively correlated with serum TNF-α and critical illness scores and negatively correlated with serum TRAIL. Serum and BALF DR5 was positively correlated with the alveolar epithelial cell damage (sRAGE) and lung fluid leakage indicators. Serum DR5 exhibited potential for predicting mortality in patients with ARDS. CONCLUSIONS : Serum soluble DR5 elevation, a valuable prognosis predictor in ARDS, may be associated with alveolar epithelial cell apoptosis.
Collapse
Affiliation(s)
- Jiangyue Qin
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Hao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Zhuoyao Lyu
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Yue Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Ni Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Ke Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Yongfang Zhou
- Department of Critical Care Medicine, West China Hospital of Sichuan University, China
| | - Zijian Zeng
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Zenglin Liao
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Yufang Cao
- Department of Critical Care Medicine, Haikou Municipal People's Hospital and Central South University Xiangya School of Medicine Affiliated Haikou Hospital, China
| | - Junyun He
- Department of Respiratory Medicine, Hospital of Chengdu Office of People's Government of Tibetan autonomous Region, China
| | - Tao Wang
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| | - Fuqiang Wen
- Division of Pulmonary Diseases, State Key Laboratory of Biotherapy of China and Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University. Guoxuexiang 37, Chengdu, Sichuan 610041, China
| |
Collapse
|
16
|
Wang GQ, Gu Y, Wang C, Wang F, Hsu ACY. A Game of Infection - Song of Respiratory Viruses and Interferons. Front Cell Infect Microbiol 2022; 12:937460. [PMID: 35846766 PMCID: PMC9277140 DOI: 10.3389/fcimb.2022.937460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
Humanity has experienced four major pandemics since the twentieth century, with the 1918 Spanish flu, the 2002 severe acute respiratory syndrome (SARS), the 2009 swine flu, and the 2019 coronavirus disease (COVID)-19 pandemics having the most important impact in human health. The 1918 Spanish flu caused unprecedented catastrophes in the recorded human history, with an estimated death toll between 50 - 100 million. While the 2002 SARS and 2009 swine flu pandemics caused approximately 780 and 280,000 deaths, respectively, the current COVID-19 pandemic has resulted in > 6 million deaths globally at the time of writing. COVID-19, instigated by the SARS - coronavirus-2 (SARS-CoV-2), causes unprecedented challenges in all facets of our lives, and never before brought scientists of all fields together to focus on this singular topic. While for the past 50 years research have been heavily focused on viruses themselves, we now understand that the host immune responses are just as important in determining the pathogenesis and outcomes of infection. Research in innate immune mechanisms is crucial in understanding all aspects of host antiviral programmes and the mechanisms underpinning virus-host interactions, which can be translated to the development of effective therapeutic avenues. This review summarizes what is known and what remains to be explored in the innate immune responses to influenza viruses and SARS-CoVs, and virus-host interactions in driving disease pathogenesis. This hopefully will encourage discussions and research on the unanswered questions, new paradigms, and antiviral strategies against these emerging infectious pathogens before the next pandemic occurs.
Collapse
Affiliation(s)
- Guo Qiang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yinuo Gu
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chao Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Fang Wang
- Department of Pathogeny Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Alan Chen-Yu Hsu
- Signature Research Program in Emerging Infectious Diseases, Duke – National University of Singapore (NUS) Graduate Medical School, Singapore, Singapore
- School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia
- Viruses, Infections/Immunity, Vaccines and Asthma, Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
17
|
Tu X, Kim RY, Brown AC, de Jong E, Jones-Freeman B, Ali MK, Gomez HM, Budden KF, Starkey MR, Cameron GJM, Loering S, Nguyen DH, Nair PM, Haw TJ, Alemao CA, Faiz A, Tay HL, Wark PAB, Knight DA, Foster PS, Bosco A, Horvat JC, Hansbro PM, Donovan C. Airway and parenchymal transcriptomics in a novel model of asthma and COPD overlap. J Allergy Clin Immunol 2022; 150:817-829.e6. [PMID: 35643377 DOI: 10.1016/j.jaci.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/29/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.
Collapse
Affiliation(s)
- Xiaofan Tu
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Richard Y Kim
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Alexandra C Brown
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Emma de Jong
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Bernadette Jones-Freeman
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Md Khadem Ali
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Henry M Gomez
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Kurtis F Budden
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Malcolm R Starkey
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Guy J M Cameron
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Svenja Loering
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Duc H Nguyen
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Prema Mono Nair
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Tatt Jhong Haw
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Charlotte A Alemao
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Alen Faiz
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia
| | - Hock L Tay
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Peter A B Wark
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Darryl A Knight
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Providence Health Care Research Institute, Vancouver, British Columbia, Canada
| | - Paul S Foster
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Anthony Bosco
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Australia
| | - Jay C Horvat
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Philip M Hansbro
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, Australia.
| | - Chantal Donovan
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia; Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, Australia.
| |
Collapse
|
18
|
Donovan C, Kim RY, Galvao I, Jarnicki AG, Brown AC, Jones-Freeman B, Gomez HM, Wadhwa R, Hortle E, Jayaraman R, Khan H, Pickles S, Sahu P, Chimankar V, Tu X, Ali MK, Mayall JR, Nguyen DH, Budden KF, Kumar V, Schroder K, Robertson AA, Cooper MA, Wark PA, Oliver BG, Horvat JC, Hansbro PM. Aim2 suppresses cigarette smoke-induced neutrophil recruitment, neutrophil caspase-1 activation and anti-Ly6G-mediated neutrophil depletion. Immunol Cell Biol 2022; 100:235-249. [PMID: 35175629 PMCID: PMC9545917 DOI: 10.1111/imcb.12537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
Increased inflammasome responses are strongly implicated in inflammatory diseases; however, their specific roles are incompletely understood. Therefore, we sought to examine the roles of nucleotide‐binding oligomerization domain–like receptor (NLR) family, pyrin domain–containing 3 (NLRP3) and absent in melanoma‐2 (AIM2) inflammasomes in cigarette smoke–induced inflammation in a model of experimental chronic obstructive pulmonary disease (COPD). We targeted NLRP3 with the inhibitor MCC950 given prophylactically or therapeutically and examined Aim2−/− mice in cigarette smoke–induced experimental COPD. MCC950 treatment had minimal effects on disease development and/or progression. Aim2−/− mice had increased airway neutrophils with decreased caspase‐1 levels, independent of changes in lung neutrophil chemokines. Suppressing neutrophils with anti‐Ly6G in experimental COPD in wild‐type mice reduced neutrophils in bone marrow, blood and lung. By contrast, anti‐Ly6G treatment in Aim2−/− mice with experimental COPD had no effect on neutrophils in bone marrow, partially reduced neutrophils in the blood and had no effect on neutrophils or neutrophil caspase‐1 levels in the lungs. These findings identify that following cigarette smoke exposure, Aim2 is important for anti‐Ly6G–mediated depletion of neutrophils, suppression of neutrophil recruitment and mediates activation of caspase‐1 in neutrophils.
Collapse
Affiliation(s)
- Chantal Donovan
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Richard Y Kim
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Izabela Galvao
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, Lung Health Research Centre, University of Melbourne, Parkville, VIC, Australia
| | - Alexandra C Brown
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Bernadette Jones-Freeman
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Henry M Gomez
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Ridhima Wadhwa
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Elinor Hortle
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Ranjith Jayaraman
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Haroon Khan
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia
| | - Sophie Pickles
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Priyanka Sahu
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Vrushali Chimankar
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Xiaofan Tu
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Md Khadem Ali
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Duc H Nguyen
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kurtis F Budden
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Vinod Kumar
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Avril Ab Robertson
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Peter Ab Wark
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney and School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Jay C Horvat
- Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, Australia.,Priority Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
19
|
Uwagboe I, Adcock IM, Lo Bello F, Caramori G, Mumby S. New drugs under development for COPD. Minerva Med 2022; 113:471-496. [PMID: 35142480 DOI: 10.23736/s0026-4806.22.08024-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The characteristic features of chronic obstructive pulmonary disease (COPD) include inflammation and remodelling of the lower airways and lung parenchyma together with activation of inflammatory and immune processes. Due to the increasing habit of cigarette smoking worldwide COPD prevalence is increasing globally. Current therapies are unable to prevent COPD progression in many patients or target many of its hallmark characteristics which may reflect the lack of adequate biomarkers to detect the heterogeneous clinical and molecular nature of COPD. In this chapter we review recent molecular data that may indicate novel pathways that underpin COPD subphenotypes and indicate potential improvements in the classes of drugs currently used to treat COPD. We also highlight the evidence for new drugs or approaches to treat COPD identified using molecular and other approaches including kinase inhibitors, cytokine- and chemokine-directed biologicals and small molecules, antioxidants and redox signalling pathway inhibitors, inhaled anti-infectious agents and senolytics. It is important to consider the phenotypes/molecular endotypes of COPD patients together with specific outcome measures to target new therapies to particular COPD subtypes. This will require greater understanding of COPD molecular pathologies and a focus on biomarkers of predicting disease subsets and responder/non-responder populations.
Collapse
Affiliation(s)
- Isabel Uwagboe
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK -
| | - Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
20
|
Latt KZ, Heymann J, Jessee JH, Rosenberg AZ, Berthier CC, Arazi A, Eddy S, Yoshida T, Zhao Y, Chen V, Nelson GW, Cam M, Kumar P, Mehta M, Kelly MC, Kretzler M, Ray PE, Moxey-Mims M, Gorman GH, Lechner BL, Regunathan-Shenk R, Raj DS, Susztak K, Winkler CA, Kopp JB. Urine Single-Cell RNA Sequencing in Focal Segmental Glomerulosclerosis Reveals Inflammatory Signatures. Kidney Int Rep 2022; 7:289-304. [PMID: 35155868 PMCID: PMC8821042 DOI: 10.1016/j.ekir.2021.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Individuals with focal segmental glomerular sclerosis (FSGS) typically undergo kidney biopsy only once, which limits the ability to characterize kidney cell gene expression over time. METHODS We used single-cell RNA sequencing (scRNA-seq) to explore disease-related molecular signatures in urine cells from subjects with FSGS. We collected 17 urine samples from 12 FSGS subjects and captured these as 23 urine cell samples. The inflammatory signatures from renal epithelial and immune cells were evaluated in bulk gene expression data sets of FSGS and minimal change disease (MCD) (The Nephrotic Syndrome Study Network [NEPTUNE] study) and an immune single-cell data set from lupus nephritis (Accelerating Medicines Partnership). RESULTS We identified immune cells, predominantly monocytes, and renal epithelial cells in the urine. Further analysis revealed 2 monocyte subtypes consistent with M1 and M2 monocytes. Shed podocytes in the urine had high expression of marker genes for epithelial-to-mesenchymal transition (EMT). We selected the 16 most highly expressed genes from urine immune cells and 10 most highly expressed EMT genes from urine podocytes as immune signatures and EMT signatures, respectively. Using kidney biopsy transcriptomic data from NEPTUNE, we found that urine cell immune signature and EMT signature genes were more highly expressed in FSGS biopsies compared with MCD biopsies. CONCLUSION The identification of monocyte subsets and podocyte expression signatures in the urine samples of subjects with FSGS suggests that urine cell profiling might serve as a diagnostic and prognostic tool in nephrotic syndrome. Furthermore, this approach may aid in the development of novel biomarkers and identifying personalized therapies targeting particular molecular pathways in immune cells and podocytes.
Collapse
Affiliation(s)
- Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jurgen Heymann
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph H. Jessee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Avi Z. Rosenberg
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Arnon Arazi
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Teruhiko Yoshida
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yongmei Zhao
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Vicky Chen
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - George W. Nelson
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Margaret Cam
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
| | - Parimal Kumar
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Monika Mehta
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
| | - Michael C. Kelly
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
| | - The Nephrotic Syndrome Study Network (NEPTUNE)
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - The Accelerating Medicines Partnership in Rheumatoid Arthritis and Systemic Lupus Erythematosus (AMP RA/SLE) Consortium
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Division of Nephrology, Department of Internal Medicine, Michigan Medicine, Ann Arbor, Michigan, USA
- The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
- Advanced Biomedical and Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., National Cancer Institute, Frederick, Maryland, USA
- Center for Cancer Research Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, USA
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Patricio E. Ray
- Department of Pediatrics, Child Health Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Marva Moxey-Mims
- Division of Nephrology, Children’s National Hospital, Washington, District of Columbia, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Gregory H. Gorman
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
| | - Brent L. Lechner
- Section on Pediatric Nephrology, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
- Department of Pediatrics, Uniformed Services University, Bethesda, Maryland, USA
| | - Renu Regunathan-Shenk
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Dominic S. Raj
- Division of Kidney Disease and Hypertension, The George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Katalin Susztak
- Department of Medicine, Renal Electrolyte and Hypertension Division, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cheryl A. Winkler
- Basic Research Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Jeffrey B. Kopp
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Kim RY, Sunkara KP, Bracke KR, Jarnicki AG, Donovan C, Hsu AC, Ieni A, Beckett EL, Galvão I, Wijnant S, Ricciardolo FL, Di Stefano A, Haw TJ, Liu G, Ferguson AL, Palendira U, Wark PA, Conickx G, Mestdagh P, Brusselle GG, Caramori G, Foster PS, Horvat JC, Hansbro PM. A microRNA-21-mediated SATB1/S100A9/NF-κB axis promotes chronic obstructive pulmonary disease pathogenesis. Sci Transl Med 2021; 13:eaav7223. [PMID: 34818056 DOI: 10.1126/scitranslmed.aav7223] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Richard Y Kim
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Krishna P Sunkara
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia.,Graduate School of Health, Discipline of Pharmacy, University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Intensive Care Unit, John Hunter Hospital, Newcastle, New South Wales 2308, Australia
| | - Ken R Bracke
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Andrew G Jarnicki
- Department of Biochemistry and Pharmacology, University of Melbourne, Victoria 3010, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age "Gaetano Barresi", Section of Anatomic Pathology, University of Messina, Messina 98100, Italy
| | - Emma L Beckett
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Izabela Galvão
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Sara Wijnant
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Fabio Lm Ricciardolo
- Rare Lung Disease Unit, Department of Clinical and Biological Sciences, University of Torino, San Luigi Gonzaga University Hospital Orbassano, Torino 10043, Italy
| | - Antonino Di Stefano
- Istituti Clinici Scientifici Maugeri, IRCCS, SpA Società Benefit, Divisione di Pneumologia e Laboratorio di Citoimmunopatologia dell'Apparato Cardio Respiratorio, Veruno, Novara 28100, Italy
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Gang Liu
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Angela L Ferguson
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia.,Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2006, Australia
| | - Umamainthan Palendira
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Griet Conickx
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium.,Ablynx N.V., a Sanofi company, Ghent 9052, Belgium
| | - Pieter Mestdagh
- Center for Medical Genetics and Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium
| | - Guy G Brusselle
- Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent 9000, Belgium
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina 98100, Italy
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales 2007, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, New South Wales 2308, Australia
| |
Collapse
|
22
|
Latt KZ, Heymann J, Yoshida T, Kopp JB. Glomerular Kidney Diseases in the Single-Cell Era. Front Med (Lausanne) 2021; 8:761996. [PMID: 34778322 PMCID: PMC8585743 DOI: 10.3389/fmed.2021.761996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022] Open
Abstract
Recent advances in single-cell technology have enabled investigation of genomic profiles and molecular crosstalk among individual cells obtained from tissues and biofluids at unprecedented resolution. Glomerular diseases, either primary or secondary to systemic diseases, often manifest elements of inflammation and of innate and adaptive immune responses. Application of single-cell methods have revealed cellular signatures of inflammation, cellular injury, and fibrosis. From these signatures, potential therapeutic targets can be inferred and in theory, this approach might facilitate identification of precision therapeutics for these diseases. Single-cell analyses of urine samples and skin lesions from patients with lupus nephritis and of urine samples from patients with diabetic nephropathy and focal segmental glomerulosclerosis have presented potential novel approaches for the diagnosis and monitoring of disease activity. These single-cell approaches, in contrast to kidney biopsy, are non-invasive and could be repeated multiple times as needed.
Collapse
Affiliation(s)
- Khun Zaw Latt
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | | | | | | |
Collapse
|
23
|
Skerrett-Byrne DA, Bromfield EG, Murray HC, Jamaluddin MFB, Jarnicki AG, Fricker M, Essilfie AT, Jones B, Haw TJ, Hampsey D, Anderson AL, Nixon B, Scott RJ, Wark PAB, Dun MD, Hansbro PM. Time-resolved proteomic profiling of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Respirology 2021; 26:960-973. [PMID: 34224176 DOI: 10.1111/resp.14111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/01/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Chronic obstructive pulmonary disease (COPD) is the third leading cause of illness and death worldwide. Current treatments aim to control symptoms with none able to reverse disease or stop its progression. We explored the major molecular changes in COPD pathogenesis. METHODS We employed quantitative label-based proteomics to map the changes in the lung tissue proteome of cigarette smoke-induced experimental COPD that is induced over 8 weeks and progresses over 12 weeks. RESULTS Quantification of 7324 proteins enabled the tracking of changes to the proteome. Alterations in protein expression profiles occurred in the induction phase, with 18 and 16 protein changes at 4- and 6-week time points, compared to age-matched controls, respectively. Strikingly, 269 proteins had altered expression after 8 weeks when the hallmark pathological features of human COPD emerge, but this dropped to 27 changes at 12 weeks with disease progression. Differentially expressed proteins were validated using other mouse and human COPD bronchial biopsy samples. Major changes in RNA biosynthesis (heterogeneous nuclear ribonucleoproteins C1/C2 [HNRNPC] and RNA-binding protein Musashi homologue 2 [MSI2]) and modulators of inflammatory responses (S100A1) were notable. Mitochondrial dysfunction and changes in oxidative stress proteins also occurred. CONCLUSION We provide a detailed proteomic profile, identifying proteins associated with the pathogenesis and disease progression of COPD establishing a platform to develop effective new treatment strategies.
Collapse
Affiliation(s)
- David A Skerrett-Byrne
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Elizabeth G Bromfield
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Heather C Murray
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - M Fairuz B Jamaluddin
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Ama T Essilfie
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,Queensland Institute of Medical Research, Herston, Queensland, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt J Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Daniel Hampsey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Amanda L Anderson
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Brett Nixon
- Pregnancy and Reproduction Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Rodney J Scott
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia
| | - Matthew D Dun
- University of Newcastle, Callaghan, New South Wales, Australia.,Cancer Research Program, Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, New South Wales, Australia.,University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Lu Z, Van Eeckhoutte HP, Liu G, Nair PM, Jones B, Gillis CM, Nalkurthi BC, Verhamme F, Buyle-Huybrecht T, Vandenabeele P, Berghe TV, Brusselle GG, Horvat JC, Murphy JM, Wark PA, Bracke KR, Fricker M, Hansbro PM. Necroptosis Signalling Promotes Inflammation, Airway Remodelling and Emphysema in COPD. Am J Respir Crit Care Med 2021; 204:667-681. [PMID: 34133911 DOI: 10.1164/rccm.202009-3442oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Necroptosis, mediated by RIPK3 and MLKL, is a form of regulated necrosis that can drive tissue inflammation and destruction, however its contribution to COPD pathogenesis is poorly understood. OBJECTIVES To determine the role of necroptosis in COPD. METHODS Levels of RIPK3, MLKL and activated phospho-MLKL were measured in lung tissues of COPD patients and non-COPD controls. Necroptosis-related mRNA and proteins and cell death were examined in the lungs and pulmonary macrophages of mice with cigarette smoke (CS)-induced experimental COPD. The responses of Ripk3- and Mlkl-deficient (-/-) mice to CS exposure were compared to wild-type mice. Combined inhibition of apoptosis (pan-caspase inhibitor qVD-OPh) and necroptosis (Mlkl-/- mice) was assessed. MEASUREMENTS AND MAIN RESULTS Protein levels of MLKL and pMLKL but not RIPK3 were increased in lung tissues of COPD patients compared to never smokers or smoker non-COPD controls. Necroptosis-related mRNA and protein levels were increased in lung tissue and macrophages in CS-exposed mice/experimental COPD. Ripk3 or Mlkl deletion prevented airway inflammation in response to acute CS-exposure. Ripk3 deficiency reduced airway inflammation and remodelling and development of emphysematous pathology following chronic CS-exposure. Mlkl deletion and qVD-OPh treatment reduced chronic CS-induced airway inflammation, but only Mlkl deletion prevented airway remodelling and emphysema. Ripk3 or Mlkl deletion and qVD-OPh treatment reduced CS-induced lung cell death. CONCLUSIONS Necroptosis is induced by CS exposure and increased in COPD patient lungs and experimental COPD. Inhibiting necroptosis attenuates CS-induced airway inflammation, airway remodelling and emphysema. Targeted inhibition of necroptosis is a potential therapeutic strategy in COPD.
Collapse
Affiliation(s)
- Zhe Lu
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centre for Healthy Lungs, New Lambton, New South Wales, Australia
| | | | - Gang Liu
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centre for Healthy Lungs, New Lambton, New South Wales, Australia.,University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | - Prema M Nair
- University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centres for Healthy Lungs and GrowUpWell, New Lambton, New South Wales, Australia.,The University of Newcastle Faculty of Health and Medicine, 64834, School of Biomedical Sciences and Pharmacy, Callaghan, New South Wales, Australia
| | - Bernadette Jones
- The University of Newcastle, 5982, Centre for Asthma & Respiratory Disease, Callaghan, New South Wales, Australia
| | - Caitlin M Gillis
- University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia.,Ghent University, 26656, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Gent, Belgium.,Ghent University, 26656, Methusalem program CEDAR-IC, Gent, Belgium
| | - B Christina Nalkurthi
- University of Technology Sydney Faculty of Science, 170529, Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
| | | | - Tamariche Buyle-Huybrecht
- University Hospital Ghent, 60200, Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Gent, Belgium
| | - Peter Vandenabeele
- University Hospital Ghent, 60200, Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Gent, Belgium
| | - Tom Vanden Berghe
- Ghent University, 26656, VIB Center for Inflammation Research, Department for Biomedical Molecular Biology, Gent, Belgium.,University of Antwerp, 26660, Department Biomedical Sciences, Antwerpen, Belgium
| | - Guy G Brusselle
- University Hospital Ghent, 60200, Respiratory Medicine, Gent, Belgium
| | - Jay C Horvat
- Hunter Medical Research Institute, Vaccines, Immunity, Viruses and Asthma Group, Newcastle, New South Wales, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 5388, Department of Medical Biology University of Melbourne , Melbourne, Victoria, Australia
| | - Peter A Wark
- The University of Newcastle, 5982, Centre for Asthma & Respiratory Disease, Callaghan, New South Wales, Australia.,The University of Newcastle Hunter Medical Research Institute, 454568, Vaccines, Infection, Viruses & Asthma, New Lambton, New South Wales, Australia
| | - Ken R Bracke
- University Hospital Ghent, 60200, Respiratory Medicine, Gent, Belgium
| | - Michael Fricker
- The University of Newcastle Hunter Medical Research Institute, 454568, Priority Research Centres for Healthy Lungs & Grow Up Well, New Lambton, New South Wales, Australia
| | - Philip M Hansbro
- University of Technology Sydney, 1994, Sydney, New South Wales, Australia;
| |
Collapse
|
25
|
A monoclonal antibody to Siglec-8 suppresses non-allergic airway inflammation and inhibits IgE-independent mast cell activation. Mucosal Immunol 2021; 14:366-376. [PMID: 32814824 PMCID: PMC7946634 DOI: 10.1038/s41385-020-00336-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
In addition to their well characterized role in mediating IgE-dependent allergic diseases, aberrant accumulation and activation of mast cells (MCs) is associated with many non-allergic inflammatory diseases, whereby their activation is likely triggered by non-IgE stimuli (e.g., IL-33). Siglec-8 is an inhibitory receptor expressed on MCs and eosinophils that has been shown to inhibit IgE-mediated MC responses and reduce allergic inflammation upon ligation with a monoclonal antibody (mAb). Herein, we evaluated the effects of an anti-Siglec-8 mAb (anti-S8) in non-allergic disease models of experimental cigarette-smoke-induced chronic obstructive pulmonary disease and bleomycin-induced lung injury in Siglec-8 transgenic mice. Therapeutic treatment with anti-S8 inhibited MC activation and reduced recruitment of immune cells, airway inflammation, and lung fibrosis. Similarly, using a model of MC-dependent, IL-33-induced inflammation, anti-S8 treatment suppressed neutrophil influx, and cytokine production through MC inhibition. Transcriptomic profiling of MCs further demonstrated anti-S8-mediated downregulation of MC signaling pathways induced by IL-33, including TNF signaling via NF-κB. Collectively, these findings demonstrate that ligating Siglec-8 with an antibody reduces non-allergic inflammation and inhibits IgE-independent MC activation, supporting the evaluation of an anti-Siglec-8 mAb as a therapeutic approach in both allergic and non-allergic inflammatory diseases in which MCs play a role.
Collapse
|
26
|
Zaigham S, Dencker M, Karlsson MK, Thorsson O, Wollmer P. Lung function is associated with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) levels in school-aged children. Respir Med 2020; 176:106235. [PMID: 33249302 DOI: 10.1016/j.rmed.2020.106235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. A complex relationship exists between TRAIL and the lung where both elevated TRAIL and TRAIL deficiency are associated with lung impairment. In neonatal mice, TRAIL is thought to translate respiratory infections into chronic lung disease but the association between TRAIL and lung function in childhood has not been assessed. AIM To assess the cross-sectional relationship between TRAIL levels and lung function in school-aged children. METHODS The study cohort consisted of 170 school-aged children attending four schools in Malmö, Sweden. Lung volumes, impulse oscillometry (IOS) and serum TRAIL were measured for all children. Linear regression was used to assess changes in lung function per 1-SD increase in TRAIL. General linear models were used to assess mean lung function by tertiles (T) of TRAIL. RESULTS Mean age was 9.9 years (±0.6). A 1-SD increase in TRAIL was associated with lower values of FEV1 and FEV1/VC (change in FEV1 (L) and FEV1/VC ratio: -0.047, p-value 0.002, and -0.011, p-value 0.020, respectively) and higher values of lung resistance (change in R5 and R20 (kPa/(L/s)): 0.035, p-value <0.001 and 0.027, p-value 0.004, respectively). These associations remained significant after excluding children with pre-existing lung disease. Higher TRAIL levels were associated with more negative values for X5 in general linear models (Mean X5 (kPa/(L/s)) in T1 (low TRAIL): -0.193 vs T3 (high TRAIL): -0.216, p-value 0.026). CONCLUSIONS High TRAIL levels are significantly associated with markers of pulmonary airflow obstruction in school-aged children.
Collapse
Affiliation(s)
- Suneela Zaigham
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.
| | - Magnus Dencker
- Department of Translational Medicine, Clinical Physiology and Nuclear Medicine, Skåne University Hospital (SUS), Malmö, Sweden.
| | - Magnus K Karlsson
- Department of Orthopedics and Clinical Sciences Malmö, Lund University, Skåne University Hospital (SUS), Malmö, Sweden.
| | - Ola Thorsson
- Department of Translational Medicine, Clinical Physiology and Nuclear Medicine, Skåne University Hospital (SUS), Malmö, Sweden.
| | - Per Wollmer
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; Department of Translational Medicine, Clinical Physiology and Nuclear Medicine, Skåne University Hospital (SUS), Malmö, Sweden.
| |
Collapse
|
27
|
Jones-Freeman B, Starkey MR. Bronchioalveolar stem cells in lung repair, regeneration and disease. J Pathol 2020; 252:219-226. [PMID: 32737996 DOI: 10.1002/path.5527] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 12/17/2022]
Abstract
Bronchioalveolar stem cells (BASCs) are a lung resident stem cell population located at bronchioalveolar duct junctions that contribute to the maintenance of bronchiolar club cells and alveolar epithelial cells of the distal lung. Their transformed counterparts are considered to be likely progenitors of lung adenocarcinomas, which has been a major area of research in relation to BASCs. A critical limitation in addressing the function of BASCs in vivo has been the lack of a unique BASC marker, which has prevented specific targeting of BASCs in animal models of respiratory conditions. Recently, there have been several studies describing genetically modified mice that allow in vivo quantification, tracing, and functional analysis of BASCs to address this long-standing issue. These cutting-edge experimental tools will likely have significant implications for future experimental studies involving BASCs and the elucidation of their role in various lung diseases. To date, this has been largely explored in models of lung injury including naphthalene-induced airway injury, bleomycin-induced alveolar injury, hyperoxia-induced models of bronchopulmonary dysplasia, and influenza virus infection. These novel experimental mouse tools will facilitate the assessment of the impact of BASC loss on additional respiratory conditions including infection-induced severe asthma and chronic obstructive pulmonary disease, as well as respiratory bacterial infections, both in early life and adulthood. These future studies may shed light on the potential broad applicability of targeting BASCs for a diverse range of respiratory conditions during lung development and in promoting effective regeneration and repair of the lung in respiratory diseases. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Bernadette Jones-Freeman
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia
| |
Collapse
|
28
|
Lo Bello F, Hansbro PM, Donovan C, Coppolino I, Mumby S, Adcock IM, Caramori G. New drugs under development for COPD. Expert Opin Emerg Drugs 2020; 25:419-431. [DOI: 10.1080/14728214.2020.1819982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Federica Lo Bello
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Philip M. Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Centre for Inflammation, Centenary Institute, Sydney, Australia
- Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and the University of Newcastle, Newcastle, NSW, Australia
| | - Irene Coppolino
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Ian M. Adcock
- Airways Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e Delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| |
Collapse
|
29
|
Shukla SD, Walters EH, Simpson JL, Keely S, Wark PA, O'Toole RF, Hansbro PM. Hypoxia‐inducible factor and bacterial infections in chronic obstructive pulmonary disease. Respirology 2019; 25:53-63. [DOI: 10.1111/resp.13722] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/25/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Shakti D. Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - E. Haydn Walters
- School of Medicine, College of Health and MedicineUniversity of Tasmania Hobart TAS Australia
| | - Jodie L. Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Simon Keely
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
| | - Peter A.B. Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Respiratory and Sleep Medicine, Priority Research Centre for Healthy LungsUniversity of Newcastle Newcastle NSW Australia
| | - Ronan F. O'Toole
- School of Molecular Sciences, College of Science, Health and EngineeringLa Trobe University Melbourne VIC Australia
| | - Philip M. Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and MedicineUniversity of Newcastle Newcastle NSW Australia
- Priority Research Centre for Healthy Lungs, Hunter Medical Research InstituteUniversity of Newcastle Newcastle NSW Australia
- Centenary Institute and School of Life Sciences, Faculty of Science, University of Technology Sydney Sydney NSW Australia
| |
Collapse
|
30
|
Nair PM, Starkey MR, Haw TJ, Liu G, Collison AM, Mattes J, Wark PA, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Enhancing tristetraprolin activity reduces the severity of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Clin Transl Immunology 2019; 8:e01084. [PMID: 31921419 PMCID: PMC6946917 DOI: 10.1002/cti2.1084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a progressive disease that causes significant mortality and morbidity worldwide and is primarily caused by the inhalation of cigarette smoke (CS). Lack of effective treatments for COPD means there is an urgent need to identify new therapeutic strategies for the underlying mechanisms of pathogenesis. Tristetraprolin (TTP) encoded by the Zfp36 gene is an anti-inflammatory protein that induces mRNA decay, especially of transcripts encoding inflammatory cytokines, including those implicated in COPD. METHODS Here, we identify a novel protective role for TTP in CS-induced experimental COPD using Zfp36aa/aa mice, a genetically modified mouse strain in which endogenous TTP cannot be phosphorylated, rendering it constitutively active as an mRNA-destabilising factor. TTP wild-type (Zfp36 +/+) and Zfp36aa/aa active C57BL/6J mice were exposed to CS for four days or eight weeks, and the impact on acute inflammatory responses or chronic features of COPD, respectively, was assessed. RESULTS After four days of CS exposure, Zfp36aa/aa mice had reduced numbers of airway neutrophils and lymphocytes and mRNA expression levels of cytokines compared to wild-type controls. After eight weeks, Zfp36aa/aa mice had reduced pulmonary inflammation, airway remodelling and emphysema-like alveolar enlargement, and lung function was improved. We then used pharmacological treatments in vivo (protein phosphatase 2A activator, AAL(S), and the proteasome inhibitor, bortezomib) to promote the activation and stabilisation of TTP and show that hallmark features of CS-induced experimental COPD were ameliorated. CONCLUSION Collectively, our study provides the first evidence for the therapeutic potential of inducing TTP as a treatment for COPD.
Collapse
Affiliation(s)
- Prema M Nair
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Malcolm R Starkey
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Tatt Jhong Haw
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Gang Liu
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Adam M Collison
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | - Joerg Mattes
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | - Peter A. Wark
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | | | - Nikki M Verrills
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Andrew R Clark
- Institute of Inflammation and AgeingCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alaina J Ammit
- Woolcock Emphysema CentreWoolcock Institute of Medical ResearchUniversity of SydneyNSWAustralia
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Philip M Hansbro
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
- Centenary InstituteCentre for InflammationUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
31
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
32
|
Liu G, Cooley MA, Jarnicki AG, Borghuis T, Nair PM, Tjin G, Hsu AC, Haw TJ, Fricker M, Harrison CL, Jones B, Hansbro NG, Wark PA, Horvat JC, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Fibulin-1c regulates transforming growth factor-β activation in pulmonary tissue fibrosis. JCI Insight 2019; 5:124529. [PMID: 31343988 DOI: 10.1172/jci.insight.124529] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue remodeling/fibrosis is a major feature of all fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). It is underpinned by accumulating extracellular matrix (ECM) proteins. Fibulin-1c (Fbln1c) is a matricellular ECM protein associated with lung fibrosis in both humans and mice, and stabilizes collagen formation. Here we discovered that Fbln1c was increased in the lung tissues of IPF patients and experimental bleomycin-induced pulmonary fibrosis. Fbln1c-deficient (-/-) mice had reduced pulmonary remodeling/fibrosis and improved lung function after bleomycin challenge. Fbln1c interacted with fibronectin, periostin and tenascin-c in collagen deposits following bleomycin challenge. In a novel mechanism of fibrosis Fbln1c bound to latent transforming growth factor (TGF)-β binding protein-1 (LTBP1) to induce TGF-β activation, and mediated downstream Smad3 phosphorylation/signaling. This process increased myofibroblast numbers and collagen deposition. Fbln1 and LTBP1 co-localized in lung tissues from IPF patients. Thus, Fbln1c may be a novel driver of TGF-β-induced fibrosis involving LTBP1 and may be an upstream therapeutic target.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Marion A Cooley
- Department of Oral Biology and Diagnostic Sciences, Augusta University, Augusta, Georgia, USA
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Theo Borghuis
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Gavin Tjin
- Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Celeste L Harrison
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pathology and Medical Biology, Groningen, Netherlands.,Woolcock Institute of Medical Research, Discipline of Pharmacology, the University of Sydney, Sydney, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and the University of Newcastle, Newcastle, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia.,Centenary Institute, Sydney, New South Wales, Australia
| |
Collapse
|
33
|
Starkey MR, Plank MW, Casolari P, Papi A, Pavlidis S, Guo Y, Cameron GJM, Haw TJ, Tam A, Obiedat M, Donovan C, Hansbro NG, Nguyen DH, Nair PM, Kim RY, Horvat JC, Kaiko GE, Durum SK, Wark PA, Sin DD, Caramori G, Adcock IM, Foster PS, Hansbro PM. IL-22 and its receptors are increased in human and experimental COPD and contribute to pathogenesis. Eur Respir J 2019; 54:1800174. [PMID: 31196943 PMCID: PMC8132110 DOI: 10.1183/13993003.00174-2018] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/19/2019] [Indexed: 12/24/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death globally. The lack of effective treatments results from an incomplete understanding of the underlying mechanisms driving COPD pathogenesis.Interleukin (IL)-22 has been implicated in airway inflammation and is increased in COPD patients. However, its roles in the pathogenesis of COPD is poorly understood. Here, we investigated the role of IL-22 in human COPD and in cigarette smoke (CS)-induced experimental COPD.IL-22 and IL-22 receptor mRNA expression and protein levels were increased in COPD patients compared to healthy smoking or non-smoking controls. IL-22 and IL-22 receptor levels were increased in the lungs of mice with experimental COPD compared to controls and the cellular source of IL-22 included CD4+ T-helper cells, γδ T-cells, natural killer T-cells and group 3 innate lymphoid cells. CS-induced pulmonary neutrophils were reduced in IL-22-deficient (Il22 -/-) mice. CS-induced airway remodelling and emphysema-like alveolar enlargement did not occur in Il22 -/- mice. Il22 -/- mice had improved lung function in terms of airway resistance, total lung capacity, inspiratory capacity, forced vital capacity and compliance.These data highlight important roles for IL-22 and its receptors in human COPD and CS-induced experimental COPD.
Collapse
Affiliation(s)
- Malcolm R Starkey
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Maximilian W Plank
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Paolo Casolari
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Alberto Papi
- Interdepartmental Study Center for Inflammatory and Smoke-related Airway Diseases (CEMICEF), Cardiorespiratory and Internal Medicine Section, University of Ferrara, Ferrara, Italy
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Yike Guo
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Guy J M Cameron
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Tatt Jhong Haw
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Anthony Tam
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ma'en Obiedat
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Chantal Donovan
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Nicole G Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| | - Duc H Nguyen
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Prema Mono Nair
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Richard Y Kim
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Jay C Horvat
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Gerard E Kaiko
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Scott K Durum
- Laboratory of Immunoregulation, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Peter A Wark
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Don D Sin
- The University of British Columbia Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, BC, Canada
- Respiratory Division, Dept of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gaetano Caramori
- UOC di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul S Foster
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
| | - Philip M Hansbro
- Priority Research Centres GrowUpWell and Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, Australia
- Centre for inflammation, Centenary Institute, Sydney, Australia
- School of Life Sciences, University of Technology, Ultimo, Australia
| |
Collapse
|
34
|
Lin L, Hou G, Han D, Kang J, Wang Q. Ursolic Acid Protected Lung of Rats From Damage Induced by Cigarette Smoke Extract. Front Pharmacol 2019; 10:700. [PMID: 31281258 PMCID: PMC6595172 DOI: 10.3389/fphar.2019.00700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background: We found previously that ursolic acid (UA) administration could alleviate cigarette smoke-induced emphysema in rats partly through the unfolded protein response (UPR) PERK-CHOP and Nrf2 pathways, thus alleviating endoplasmic reticulum stress (ERS)-associated oxidative stress and cell apoptosis. We hypothesized that other UPR pathways may play similar roles in cigarette smoke extract (CSE)-induced emphysema. So, we sought to investigate the dynamic changes and effects of UPR and the downstream apoptotic pathways. Further, we investigated whether UA could alleviate CSE-induced emphysema and airway remodelling in rats, whether and when it exerts its effects through UPR pathways as well as Smads pathways. Methods: One hundred eight Sprague Dawley (SD) rats were randomly divided into three groups: Sham group, CSE group, and UA group, and each group was further divided into three subgroups, administered CSE (vehicle) for 2, 3, or 4 weeks; each subgroup had 12 rats. We examined pathological changes, analyzed the three UPR signaling pathways and subsequent ERS, intrinsic and extrinsic apoptotic pathway indicators, as well as activation of Smad2,3 molecules in rat lungs. Results: Exposure to CSE for 3 or 4 weeks could apparently induce emphysema and airway remodeling in rats, including gross and microscopic changes, alteration of mean alveolar number (MAN), mean linear intercept (MLI), and mean airway thickness in lung tissue sections. UA intervention could significantly alleviate CSE-induced emphysema and airway remodeling in rats. UA exerted its effects through ameliorating apoptosis by down regulating UPR signalling pathways and subsequent apoptosis pathways, as well as, downregulating p-Smad2 and p-Smad3 molecules. Conclusions: UA attenuated CSE-induced emphysema and airway remodeling, exerting its effects partly through regulation of three UPR pathways, amelioration downstream apoptotic pathways, and alleviating activation of Smad2 and Smad3.
Collapse
Affiliation(s)
- Li Lin
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Gang Hou
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Dan Han
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Jian Kang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
35
|
Caramori G, Ruggeri P, Mumby S, Ieni A, Lo Bello F, Chimankar V, Donovan C, Andò F, Nucera F, Coppolino I, Tuccari G, Hansbro PM, Adcock IM. Molecular links between COPD and lung cancer: new targets for drug discovery? Expert Opin Ther Targets 2019; 23:539-553. [DOI: 10.1080/14728222.2019.1615884] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Gaetano Caramori
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Paolo Ruggeri
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Sharon Mumby
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Federica Lo Bello
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Vrushali Chimankar
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
| | - Filippo Andò
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Francesco Nucera
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Irene Coppolino
- Unità Operativa Complessa di Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, Messina, Italy
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, Australia
- Faculty of Science, Ultimo, and Centenary Institute, Centre for Inflammation, University of Technology Sydney, Sydney, Australia
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
36
|
Collison AM, Li J, de Siqueira AP, Lv X, Toop HD, Morris JC, Starkey MR, Hansbro PM, Zhang J, Mattes J. TRAIL signals through the ubiquitin ligase MID1 to promote pulmonary fibrosis. BMC Pulm Med 2019; 19:31. [PMID: 30732588 PMCID: PMC6367767 DOI: 10.1186/s12890-019-0786-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) has previously been demonstrated to play a pro-inflammatory role in allergic airways disease and COPD through the upregulation of the E3 ubiquitin ligase MID1 and the subsequent deactivation of protein phosphatase 2A (PP2A). METHODS Biopsies were taken from eight IPF patients presenting to the Second Affiliated Hospital of Jilin University, China between January 2013 and February 2014 with control samples obtained from resected lung cancers. Serum TRAIL, MID1 protein and PP2A activity in biopsies, and patients' lung function were measured. Wild type and TRAIL deficient Tnfsf10-/- BALB/c mice were administered bleomycin to induce fibrosis and some groups were treated with the FTY720 analogue AAL(s) to activate PP2A. Mouse fibroblasts were treated with recombinant TRAIL and fibrotic responses were assessed. RESULTS TRAIL in serum and MID1 protein levels in biopsies from IPF patients were increased compared to controls. MID1 levels were inversely associated while PP2A activity levels correlated with DLco. Tnfsf10-/- and mice treated with the PP2A activator AAL(s) were largely protected against bleomycin-induced reductions in lung function and fibrotic changes. Addition of recombinant TRAIL to mouse fibroblasts in-vitro increased collagen production which was reversed by PP2A activation with AAL(s). CONCLUSION TRAIL signalling through MID1 deactivates PP2A and promotes fibrosis with corresponding lung function decline. This may provide novel therapeutic targets for IPF.
Collapse
Affiliation(s)
- Adam M. Collison
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Junyao Li
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041 People’s Republic of China
| | - Ana Pereira de Siqueira
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041 People’s Republic of China
| | - Hamish D. Toop
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Jonathan C. Morris
- School of Chemistry, University of New South Wales, Sydney, New South Wales Australia
| | - Malcolm R. Starkey
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Jilin University, Changchun, Jilin, 130041 People’s Republic of China
| | - Joerg Mattes
- Experimental and Translational Respiratory Medicine Group, Level 2 East, Hunter Medical Research Institute, School of Medicine and Public Health, Faculty of Health, University of Newcastle, Callaghan, NSW 2308 Australia
- Priority Research Centre GrowUpWell, The University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia
- Paediatric Respiratory & Sleep Medicine Department, Newcastle Children’s Hospital, Kaleidoscope, Newcastle, Australia
| |
Collapse
|
37
|
Ajala O, Zhang Y, Gupta A, Bon J, Sciurba F, Chandra D. Decreased serum TRAIL is associated with increased mortality in smokers with comorbid emphysema and coronary artery disease. Respir Med 2018; 145:21-27. [PMID: 30509711 DOI: 10.1016/j.rmed.2018.10.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/12/2018] [Accepted: 10/18/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Smokers are highly susceptible to lung and cardiovascular disease that can reduce their survival. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a protein in the circulation that may suppress vascular and pulmonary inflammation. Therefore, we hypothesized that diminished circulating TRAIL levels would be associated with poor survival in smokers with lung and cardiovascular disease. METHODS Serum TRAIL level was measured by immunoassay in 474 smokers. Coronary atherosclerosis was assessed by coronary artery calcium scoring along with emphysema, lung function, and survival. RESULTS The 474 smokers were 65.7 ± 6.3 years old and 52.2% male with 55.3 ± 31.5 pack-years of tobacco-exposure. 83 of them died during 3588.2 person-years of follow up. At baseline, lower TRAIL level was associated with more coronary artery calcium (OR = 1.2 per SD, 95%CI 1.1-1.5, p = 0.02), and with history of myocardial infarction (OR = 2.3 per SD, 95%CI 1.2-4.5, p = 0.02), angina (OR = 1.6 per SD, 95%CI 1.1-2.6, p = 0.03), and angioplasty (OR = 1.8 per SD, 95%CI 1.0-3.1, p = 0.04) in models adjusted for cardiovascular risk-factors, FEV1, and emphysema. Also, lower TRAIL level was associated with emphysema severity independent of demographics and tobacco exposure (β = 0.11 sq. root units, 95% CI 0.01-0.22, p = 0.03). Further, TRAIL level was lowest in smokers with comorbid emphysema and coronary artery calcification rather than either condition alone. Finally, lower TRAIL level was independently associated with increased mortality in smokers particularly in those with comorbid emphysema and coronary artery calcification (HR = 1.38, 95% CI 1.01-1.90). CONCLUSIONS TRAIL level is reduced in smokers with comorbid emphysema and coronary artery disease, and is associated with reduced survival.
Collapse
Affiliation(s)
- Oluremi Ajala
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yingze Zhang
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aman Gupta
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jessica Bon
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Frank Sciurba
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Divay Chandra
- Emphysema COPD Research Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
38
|
Donovan C, Starkey MR, Kim RY, Rana BMJ, Barlow JL, Jones B, Haw TJ, Mono Nair P, Budden K, Cameron GJM, Horvat JC, Wark PA, Foster PS, McKenzie ANJ, Hansbro PM. Roles for T/B lymphocytes and ILC2s in experimental chronic obstructive pulmonary disease. J Leukoc Biol 2018; 105:143-150. [PMID: 30260499 PMCID: PMC6487813 DOI: 10.1002/jlb.3ab0518-178r] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 12/21/2022] Open
Abstract
Pulmonary inflammation in chronic obstructive pulmonary disease (COPD) is characterized by both innate and adaptive immune responses; however, their specific roles in the pathogenesis of COPD are unclear. Therefore, we investigated the roles of T and B lymphocytes and group 2 innate lymphoid cells (ILC2s) in airway inflammation and remodelling, and lung function in an experimental model of COPD using mice that specifically lack these cells (Rag1−/− and Rorafl/flIl7rCre [ILC2‐deficient] mice). Wild‐type (WT) C57BL/6 mice, Rag1−/−, and Rorafl/flIl7rCre mice were exposed to cigarette smoke (CS; 12 cigarettes twice a day, 5 days a week) for up to 12 weeks, and airway inflammation, airway remodelling (collagen deposition and alveolar enlargement), and lung function were assessed. WT, Rag1−/−, and ILC2‐deficient mice exposed to CS had similar levels of airway inflammation and impaired lung function. CS exposure increased small airway collagen deposition in WT mice. Rag1−/− normal air‐ and CS‐exposed mice had significantly increased collagen deposition compared to similarly exposed WT mice, which was associated with increases in IL‐33, IL‐13, and ILC2 numbers. CS‐exposed Rorafl/flIl7rCre mice were protected from emphysema, but had increased IL‐33/IL‐13 expression and collagen deposition compared to WT CS‐exposed mice. T/B lymphocytes and ILC2s play roles in airway collagen deposition/fibrosis, but not inflammation, in experimental COPD.
Collapse
Affiliation(s)
- Chantal Donovan
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Malcolm R Starkey
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Richard Y Kim
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Batika M J Rana
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Jillian L Barlow
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Bernadette Jones
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Tatt Jhong Haw
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Prema Mono Nair
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Kurtis Budden
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Guy J M Cameron
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew N J McKenzie
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Philip M Hansbro
- Priority Research Centres for Healthy Lungs and GrowUpWell, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,The Centenary Institute and the School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Braithwaite AT, Marriott HM, Lawrie A. Divergent Roles for TRAIL in Lung Diseases. Front Med (Lausanne) 2018; 5:212. [PMID: 30101145 PMCID: PMC6072839 DOI: 10.3389/fmed.2018.00212] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
The tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) is a widely expressed cytokine that can bind five different receptors. TRAIL has been of particular interest for its proposed ability to selectively induce apoptosis in tumour cells. However, it has also been found to regulate a wide variety of non-canonical cellular effects including survival, migration and proliferation via kinase signalling pathways. Lung diseases represent a wide range of conditions affecting multiple tissues. TRAIL has been implicated in several biological processes underlying lung diseases, including angiogenesis, inflammation, and immune regulation. For example, TRAIL is detrimental in pulmonary arterial hypertension—it is upregulated in patient serum and lungs, and drives the underlying proliferative pulmonary vascular remodelling in rodent models. However, TRAIL protects against pulmonary fibrosis in mice models—by inducing apoptosis of neutrophils—and reduced serum TRAIL is found in patients. Conversely, in the airways TRAIL positively regulates inflammation and immune response. In COPD patients and asthmatic patients challenged with antigen, TRAIL and its death receptors are upregulated in serum and airways. Furthermore, TRAIL-deleted mouse models have reduced airway inflammation and remodelling. In the context of respiratory infections, TRAIL assists in immune response, e.g., via T-cell toxicity in influenza infection, and neutrophil killing in S. pneumoniae infection. In this mini-review, we examine the functions of TRAIL and highlight the diverse roles TRAIL has in diseases affecting the lung. Disentangling the facets of TRAIL signalling in lung diseases could help in understanding their pathogenic processes and targeting novel treatments.
Collapse
Affiliation(s)
- Adam T Braithwaite
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| | - Allan Lawrie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Medical School, Sheffield, United Kingdom
| |
Collapse
|
40
|
Nair PM, Starkey MR, Haw TJ, Ruscher R, Liu G, Maradana MR, Thomas R, O'Sullivan BJ, Hansbro PM. RelB-Deficient Dendritic Cells Promote the Development of Spontaneous Allergic Airway Inflammation. Am J Respir Cell Mol Biol 2018; 58:352-365. [PMID: 28960101 DOI: 10.1165/rcmb.2017-0242oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RelB is a member of the NF-κB family, which is essential for dendritic cell (DC) function and maturation. However, the contribution of RelB to the development of allergic airway inflammation (AAI) is unknown. Here, we identify a pivotal role for RelB in the development of spontaneous AAI that is independent of exogenous allergen exposure. We assessed AAI in two strains of RelB-deficient (RelB-/-) mice: one with a targeted deletion and one expressing a major histocompatibility complex transgene. To determine the importance of RelB in DCs, RelB-sufficient DCs (RelB+/+ or RelB-/-) were adoptively transferred into RelB-/- mice. Both strains had increased pulmonary inflammation compared with their respective wild-type (RelB+/+) and heterozygous (RelB+/-) controls. RelB-/- mice also had increased inflammatory cell influx into the airways, levels of chemokines (CCL2/3/4/5/11/17 and CXCL9/10/13) and T-helper cell type 2-associated cytokines (IL-4/5) in lung tissues, serum IgE, and airway remodeling (mucus-secreting cell numbers, collagen deposition, and epithelial thickening). Transfer of RelB+/- CD11c+ DCs into RelB-/- mice decreased pulmonary inflammation, with reductions in lung chemokines, T-helper cell type 2-associated cytokines (IL-4/5/13/25/33 and thymic stromal lymphopoietin), serum IgE, type 2 innate lymphoid cells, myeloid DCs, γδ T cells, lung Vβ13+ T cells, mucus-secreting cells, airway collagen deposition, and epithelial thickening. These data indicate that RelB deficiency may be a key pathway underlying AAI, and that DC-encoded RelB is sufficient to restore control of this inflammation.
Collapse
Affiliation(s)
- Prema M Nair
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Malcolm R Starkey
- 1 Priority Research Centre for Healthy Lungs and.,3 Priority Research Centre GrowUpWell, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Tatt Jhong Haw
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Roland Ruscher
- 4 Department of Laboratory Medicine and Pathology, and.,5 Center for Immunology, University of Minnesota, Minneapolis, Minnesota; and.,6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Gang Liu
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Muralidhara R Maradana
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Ranjeny Thomas
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Brendan J O'Sullivan
- 6 Diamantina Institute, Translational Research Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Philip M Hansbro
- 1 Priority Research Centre for Healthy Lungs and.,2 School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
41
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
42
|
Camlin NJ, Jarnicki AG, Vanders RL, Walters KA, Hansbro PM, McLaughlin EA, Holt JE. Grandmaternal smoke exposure reduces female fertility in a murine model, with great-grandmaternal smoke exposure unlikely to have an effect. Hum Reprod 2018; 32:1270-1281. [PMID: 28402417 DOI: 10.1093/humrep/dex073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/28/2017] [Indexed: 01/22/2023] Open
Abstract
STUDY QUESTION What effect does multigenerational (F2) and transgenerational (F3) cigarette smoke exposure have on female fertility in mice? SUMMARY ANSWER Cigarette smoking has a multigenerational effect on female fertility. WHAT IS KNOWN ALREADY It has been well established that cigarette smoking decreases female fertility. Furthermore, a growing body of evidence suggests that smoking during pregnancy decreases the fertility of daughters and increases cancer and asthma incidence in grandchildren and great-grandchildren. STUDY DESIGN, SIZE, DURATION Six-week-old C57BL/6 female mice were exposed nasally to cigarette smoke or room air (controls) for 5 weeks prior to being housed with males. Females continued to be exposed to smoke throughout pregnancy and lactation until pups were weaned. A subset of F1 female pups born to these smoke and non-smoke exposed females were bred to create the F2 grandmaternal exposed generation (multigenerational). Finally, a subset of F2 females were bred to create the F3 great-grandmaternal exposed generation (transgenerational). The reproductive health of F2 and F3 females was examined at 8 weeks and 9 months. PARTICIPANTS/MATERIALS, SETTING, METHODS Ovarian and oocyte quality was examined in smoke exposed and control animals. A small-scale fertility trial was performed before ovarian changes were examined using ovarian histology and immunofluorescence and/or immunoblotting analysis of markers of apoptosis (TUNEL) and proliferation (proliferating cell nuclear antigen (PCNA) and anti-Mullerian hormone (AMH)). Oocyte quality was examined using immunocytochemistry to analyze the metaphase II spindle and ploidy status. Parthenogenetic activation of oocytes was used to investigate meiosis II timing and preimplantation embryo development. Finally, diestrus hormone serum levels (FSH and LH) were quantified. MAIN RESULTS AND THE ROLE OF CHANCE F2 smoke exposed females had no detectable change in ovarian follicle quality at 8 weeks, although by 9 months ovarian somatic cell proliferation was reduced (P = 0.0197) compared with non-smoke exposed control. Further investigation revealed changes between control and smoke exposed F2 oocyte quality, including altered meiosis II timing at 8 weeks (P = 0.0337) and decreased spindle pole to pole length at 9 months (P = 0.0109). However, no change in preimplantation embryo development was observed following parthenogenetic activation. The most noticeable effect of cigarette smoke exposure was related to the subfertility of F2 females; F2 smoke exposed females displayed significantly increased time to conception (P = 0.0042) and significantly increased lag time between pregnancies (P = 0.0274) compared with non-smoke exposed F2 females. Conversely, F3 smoke exposed females displayed negligible oocyte and follicle changes up to 9 months of age, and normal preimplantation embryo development. LARGE SCALE DATA None. LIMITATIONS, REASONS FOR CAUTION This study focused solely on a mouse model of cigarette smoke exposure to simulate human exposure. WIDER IMPLICATIONS OF THE FINDINGS Our results demonstrate that grandmaternal cigarette smoke exposure reduces female fertility in mice, highlighting the clinical need to promote cessation of cigarette smoking in pregnant women. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Australian Research Council, National Health and Medical Research Council, Hunter Medical Research Institute, Newcastle Permanent Building Society Charitable Trust, and the University of Newcastle Priory Research Centers in Chemical Biology, Healthy Lungs and Grow Up Well. The authors declare no conflict of interest.
Collapse
Affiliation(s)
- N J Camlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - A G Jarnicki
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan, NSW 2308, Australia
| | - R L Vanders
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan, NSW 2308, Australia
| | - K A Walters
- School of Women's & Children's Health, University of New South Wales, Sydney, NSW2052, Australia
| | - P M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Healthy Lungs, University of Newcastle, Callaghan, NSW 2308, Australia
| | - E A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - J E Holt
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
43
|
Hypertension predicts a poor prognosis in patients with esophageal squamous cell carcinoma. Oncotarget 2018; 9:14068-14076. [PMID: 29581827 PMCID: PMC5865653 DOI: 10.18632/oncotarget.23774] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022] Open
Abstract
Background We investigated the relationship between the preoperative hypertension and prognosis of esophageal squamous cell cancer (ESCC) patients who had underwent esophagectomy. Results We detected 52% patients with hypertension, including 317 patients with newly diagnosed hypertension and 194 patients with history of hypertension. Compared with patients of normal blood pressure, all patients with hypertension and newly diagnosed hypertension were observed to have worse overall and ESCC-specific survival outcome (p < 0.05). After adjusted in multivariate Cox regression analysis, hypertension (HR: 1.343, 95% CI: 1.064, 1.695; HR: 1.315, 95% CI: 1.039, 1.664) and newly diagnosed hypertension (HR: 1.414, 95% CI: 1.095, 1.826; HR: 1.420, 95% CI: 1.098, 1.836) were inversely associated with overall and ESCC-specific survival outcome, respectively. While no association was found between history of hypertension and overall or ESCC-specific survival outcome (HR: 1.229, 95% CI: 0.892, 1.694; HR: 1.132, 95% CI: 0.812, 1.578). Conclusions Hypertension was an independent risk factor and resulted in inferior prognosis for ESCC patients who had underwent esophagectomy. Methods A total of 982 ESCC patients who had underwent esophagectomy from August 2010 to December 2015 were enrolled in our study with a follow up of 6 years. The Kaplan-Meier method and log-rank test were respectively used to calculate and compare survival rate, and Cox proportional hazards regression model was applied to identify independent prognostic factors.
Collapse
|
44
|
Fricker M, Goggins BJ, Mateer S, Jones B, Kim RY, Gellatly SL, Jarnicki AG, Powell N, Oliver BG, Radford-Smith G, Talley NJ, Walker MM, Keely S, Hansbro PM. Chronic cigarette smoke exposure induces systemic hypoxia that drives intestinal dysfunction. JCI Insight 2018; 3:94040. [PMID: 29415878 PMCID: PMC5821186 DOI: 10.1172/jci.insight.94040] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 01/10/2018] [Indexed: 01/05/2023] Open
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract (GIT). Cigarette smoke (CS) exposure and chronic obstructive pulmonary disease (COPD) are risk factors for CD, although the mechanisms involved are poorly understood. We employed a mouse model of CS-induced experimental COPD and clinical studies to examine these mechanisms. Concurrent with the development of pulmonary pathology and impaired gas exchange, CS-exposed mice developed CD-associated pathology in the colon and ileum, including gut mucosal tissue hypoxia, HIF-2 stabilization, inflammation, increased microvasculature, epithelial cell turnover, and decreased intestinal barrier function. Subsequent smoking cessation reduced GIT pathology, particularly in the ileum. Dimethyloxaloylglycine, a pan-prolyl hydroxylase inhibitor, ameliorated CS-induced GIT pathology independently of pulmonary pathology. Prior smoke exposure exacerbated intestinal pathology in 2,4,6-trinitrobenzenesulfonic acid-induced (TNBS-induced) colitis. Circulating vascular endothelial growth factor, a marker of systemic hypoxia, correlated with CS exposure and CD in mice and humans. Increased mucosal vascularisation was evident in ileum biopsies from CD patients who smoke compared with nonsmokers, supporting our preclinical data. We provide strong evidence that chronic CS exposure and, for the first time to our knowledge, associated impaired gas exchange cause systemic and intestinal ischemia, driving angiogenesis and GIT epithelial barrier dysfunction, resulting in increased risk and severity of CD.
Collapse
Affiliation(s)
- Michael Fricker
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bridie J. Goggins
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Sean Mateer
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Richard Y. Kim
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Shaan L. Gellatly
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Andrew G. Jarnicki
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Nicholas Powell
- Faculty of Translational Medicine, Guy’s and St. Thomas’ and King’s College London Comprehensive Biomedical Research Centre, Great Maze Pond, London, United Kingdom
| | - Brian G. Oliver
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, New South Wales, Australia
- School of Life Sciences, The University of Technology, Sydney, New South Wales, Australia
| | - Graham Radford-Smith
- Royal Brisbane and Women’s Hospital, Brisbane, School of Medicine, University of Queensland, and
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nicholas J. Talley
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| | - Marjorie M. Walker
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| | - Simon Keely
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| | - Philip M. Hansbro
- Priority research Centre for Healthy Lungs, University of Newcastle and
- Hunter Medical Research Institute, Newcastle, New South Wales, Australia
- Priority Research Centre for Digestive Health and Neurogastroenterology, University of Newcastle, New South Wales, Australia
| |
Collapse
|
45
|
Haw TJ, Starkey MR, Pavlidis S, Fricker M, Arthurs AL, Nair PM, Liu G, Hanish I, Kim RY, Foster PS, Horvat JC, Adcock IM, Hansbro PM. Toll-like receptor 2 and 4 have opposing roles in the pathogenesis of cigarette smoke-induced chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2018; 314:L298-L317. [PMID: 29025711 PMCID: PMC5866502 DOI: 10.1152/ajplung.00154.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/08/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of morbidity and death and imposes major socioeconomic burdens globally. It is a progressive and disabling condition that severely impairs breathing and lung function. There is a lack of effective treatments for COPD, which is a direct consequence of the poor understanding of the underlying mechanisms involved in driving the pathogenesis of the disease. Toll-like receptor (TLR)2 and TLR4 are implicated in chronic respiratory diseases, including COPD, asthma and pulmonary fibrosis. However, their roles in the pathogenesis of COPD are controversial and conflicting evidence exists. In the current study, we investigated the role of TLR2 and TLR4 using a model of cigarette smoke (CS)-induced experimental COPD that recapitulates the hallmark features of human disease. TLR2, TLR4, and associated coreceptor mRNA expression was increased in the airways in both experimental and human COPD. Compared with wild-type (WT) mice, CS-induced pulmonary inflammation was unaltered in TLR2-deficient ( Tlr2-/-) and TLR4-deficient ( Tlr4-/-) mice. CS-induced airway fibrosis, characterized by increased collagen deposition around small airways, was not altered in Tlr2-/- mice but was attenuated in Tlr4-/- mice compared with CS-exposed WT controls. However, Tlr2-/- mice had increased CS-induced emphysema-like alveolar enlargement, apoptosis, and impaired lung function, while these features were reduced in Tlr4-/- mice compared with CS-exposed WT controls. Taken together, these data highlight the complex roles of TLRs in the pathogenesis of COPD and suggest that activation of TLR2 and/or inhibition of TLR4 may be novel therapeutic strategies for the treatment of COPD.
Collapse
Affiliation(s)
- Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
- Priority Research Centre for Grow Up Well, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Stelios Pavlidis
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London , London , United Kingdom
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Anya L Arthurs
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Irwan Hanish
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor , Malaysia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| | - Ian M Adcock
- The Airways Disease Section, National Heart and Lung Institute, Imperial College London , London , United Kingdom
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, School of Biomedical Sciences and Pharmacy, Hunter Medical Research Institute and University of Newcastle, Callaghan, New South Wales , Australia
| |
Collapse
|
46
|
Liu G, Cooley MA, Nair PM, Donovan C, Hsu AC, Jarnicki AG, Haw TJ, Hansbro NG, Ge Q, Brown AC, Tay H, Foster PS, Wark PA, Horvat JC, Bourke JE, Grainge CL, Argraves WS, Oliver BG, Knight DA, Burgess JK, Hansbro PM. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 2017; 243:510-523. [PMID: 28862768 DOI: 10.1002/path.4979] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 01/08/2023]
Abstract
Asthma is a chronic inflammatory disease of the airways. It is characterized by allergic airway inflammation, airway remodelling, and airway hyperresponsiveness (AHR). Asthma patients, in particular those with chronic or severe asthma, have airway remodelling that is associated with the accumulation of extracellular matrix (ECM) proteins, such as collagens. Fibulin-1 (Fbln1) is an important ECM protein that stabilizes collagen and other ECM proteins. The level of Fbln1c, one of the four Fbln1 variants, which predominates in both humans and mice, is increased in the serum and airways fluids in asthma but its function is unclear. We show that the level of Fbln1c was increased in the lungs of mice with house dust mite (HDM)-induced chronic allergic airway disease (AAD). Genetic deletion of Fbln1c and therapeutic inhibition of Fbln1c in mice with chronic AAD reduced airway collagen deposition, and protected against AHR. Fbln1c-deficient (Fbln1c-/- ) mice had reduced mucin (MUC) 5 AC levels, but not MUC5B levels, in the airways as compared with wild-type (WT) mice. Fbln1c interacted with fibronectin and periostin that was linked to collagen deposition around the small airways. Fbln1c-/- mice with AAD also had reduced numbers of α-smooth muscle actin-positive cells around the airways and reduced airway contractility as compared with WT mice. After HDM challenge, these mice also had fewer airway inflammatory cells, reduced interleukin (IL)-5, IL-13, IL-33, tumour necrosis factor (TNF) and CXCL1 levels in the lungs, and reduced IL-5, IL-33 and TNF levels in lung-draining lymph nodes. Therapeutic targeting of Fbln1c reduced the numbers of GATA3-positive Th2 cells in the lymph nodes and lungs after chronic HDM challenge. Treatment also reduced the secretion of IL-5 and IL-13 from co-cultured dendritic cells and T cells restimulated with HDM extract. Human epithelial cells cultured with Fbln1c peptide produced more CXCL1 mRNA than medium-treated controls. Our data show that Fbln1c may be a therapeutic target in chronic asthma. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Marion A Cooley
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Prema M Nair
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Alan C Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Andrew G Jarnicki
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria, Australia
| | - Tatt Jhong Haw
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Qi Ge
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia
| | - Alexandra C Brown
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Hock Tay
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia.,Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Department of Pharmacology, Monash University, Parkville, Victoria, Australia
| | - Chris L Grainge
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - W Scott Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Janette K Burgess
- Woolcock Institute of Medical Research, Discipline of Pharmacology, University of Sydney, Sydney, New South Wales, Australia.,University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Groningen Research Institute of Asthma and COPD, Groningen, The Netherlands
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
47
|
Nair PM, Starkey MR, Haw TJ, Liu G, Horvat JC, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Targeting PP2A and proteasome activity ameliorates features of allergic airway disease in mice. Allergy 2017; 72:1891-1903. [PMID: 28543283 DOI: 10.1111/all.13212] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma is an allergic airway disease (AAD) caused by aberrant immune responses to allergens. Protein phosphatase-2A (PP2A) is an abundant serine/threonine phosphatase with anti-inflammatory activity. The ubiquitin proteasome system (UPS) controls many cellular processes, including the initiation of inflammatory responses by protein degradation. We assessed whether enhancing PP2A activity with fingolimod (FTY720) or 2-amino-4-(4-(heptyloxy) phenyl)-2-methylbutan-1-ol (AAL(S) ), or inhibiting proteasome activity with bortezomib (BORT), could suppress experimental AAD. METHODS Acute AAD was induced in C57BL/6 mice by intraperitoneal sensitization with ovalbumin (OVA) in combination with intranasal (i.n) exposure to OVA. Chronic AAD was induced in mice with prolonged i.n exposure to crude house dust mite (HDM) extract. Mice were treated with vehicle, FTY720, AAL(S) , BORT or AAL(S) +BORT and hallmark features of AAD assessed. RESULTS AAL(S) reduced the severity of acute AAD by suppressing tissue eosinophils and inflammation, mucus-secreting cell (MSC) numbers, type 2-associated cytokines (interleukin (IL)-33, thymic stromal lymphopoietin, IL-5 and IL-13), serum immunoglobulin (Ig)E and airway hyper-responsiveness (AHR). FTY720 only suppressed tissue inflammation and IgE. BORT reduced bronchoalveolar lavage fluid (BALF) and tissue eosinophils and inflammation, IL-5, IL-13 and AHR. Combined treatment with AAL(S) +BORT had complementary effects and suppressed BALF and tissue eosinophils and inflammation, MSC numbers, reduced the production of type 2 cytokines and AHR. AAL(S) , BORT and AAL(S) +BORT also reduced airway remodelling in chronic AAD. CONCLUSION These findings highlight the potential of combination therapies that enhance PP2A and inhibit proteasome activity as novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- P. M. Nair
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - M. R. Starkey
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - T. J. Haw
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - G. Liu
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Horvat
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - J. C. Morris
- School of Chemistry; University of New South Wales; Sydney NSW Australia
| | - N. M. Verrills
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| | - A. R. Clark
- Institute of Inflammation and Ageing; College of Medical and Dental Sciences; University of Birmingham; Birmingham UK
| | - A. J. Ammit
- Woolcock Emphysema Centre; Woolcock Institute of Medical Research; University of Sydney; Sydney NSW Australia
- Faculty of Science; School of Life Sciences; University of Technology Sydney; Sydney NSW Australia
| | - P. M. Hansbro
- Priority Research Centres for Healthy Lungs; Grow up Well and Cancer Research, Innovation and Translation; University of Newcastle & Hunter Medical Research Institute; New Lambton Heights NSW Australia
- Faculty of Health and Medicine; School of Biomedical Sciences and Pharmacy; University of Newcastle; Callaghan NSW Australia
| |
Collapse
|
48
|
Chotirmall SH, Gellatly SL, Budden KF, Mac Aogain M, Shukla SD, Wood DLA, Hugenholtz P, Pethe K, Hansbro PM. Microbiomes in respiratory health and disease: An Asia-Pacific perspective. Respirology 2017; 22:240-250. [PMID: 28102970 DOI: 10.1111/resp.12971] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/30/2016] [Accepted: 11/17/2016] [Indexed: 02/06/2023]
Abstract
There is currently enormous interest in studying the role of the microbiome in health and disease. Microbiome's role is increasingly being applied to respiratory diseases, in particular COPD, asthma, cystic fibrosis and bronchiectasis. The changes in respiratory microbiomes that occur in these diseases and how they are modified by environmental challenges such as cigarette smoke, air pollution and infection are being elucidated. There is also emerging evidence that gut microbiomes play a role in lung diseases through the modulation of systemic immune responses and can be modified by diet and antibiotic treatment. There are issues that are particular to the Asia-Pacific region involving diet and prevalence of specific respiratory diseases. Each of these issues is further complicated by the effects of ageing. The challenges now are to elucidate the cause and effect relationships between changes in microbiomes and respiratory diseases and how to translate these into new treatments and clinical care. Here we review the current understanding and progression in these areas.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - Micheál Mac Aogain
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, University of Newcastle and Hunter Medical Research Institute, Newcastle, New South Wales, Australia
| |
Collapse
|
49
|
Huff RD, Hsu ACY, Nichol KS, Jones B, Knight DA, Wark PAB, Hansbro PM, Hirota JA. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells. PLoS One 2017; 12:e0184260. [PMID: 28863172 PMCID: PMC5580912 DOI: 10.1371/journal.pone.0184260] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/20/2017] [Indexed: 12/20/2022] Open
Abstract
Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Ryan D Huff
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alan C-Y Hsu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Kristy S Nichol
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Bernadette Jones
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter A B Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Jeremy A Hirota
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Firestone Institute for Respiratory Health - Division of Respirology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
50
|
Cai Z, Liu J, Bian H, Cai J, Jin Q, Han J. Fluoxetine, an Antidepressant Drug, Inhibited Cigarette Smoke-Induced Pulmonary Inflammation and Apoptosis in Rats. Inflammation 2017; 40:1375-1381. [PMID: 28477248 DOI: 10.1007/s10753-017-0580-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was designed to evaluate the anti-inflammatory effect of fluoxetine (Flu) against cigarette smoke (CS)-induced chronic obstructive pulmonary disease (COPD) in rats. Forty male Sprague-Dawley (SD) rats were randomly assigned to five groups: control group, CS group, dexamethasone (2 mg/kg) group, and flu (2 mg/kg). H&E staining demonstrated that Flu inhibited CS-induced pathological injury. In addition, Flu could restore the levels of superoxide dismutase (SOD) and malondialdehyde (MDA) in serum. Flu also inhibited the levels of cytokines including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Furthermore, flu significantly inhibited the protein levels of TLR/NF-κB and apoptosis pathway in CS-induced rats. Our findings suggested that flu might effectively ameliorate the progression of COPD via inflammation and apoptosis pathway in rats.
Collapse
Affiliation(s)
- Zhiyong Cai
- Newborn department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu Province, 224000, China
| | - Jindi Liu
- Nursing department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu Province, 224000, China
| | - Hongliang Bian
- Newborn department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu Province, 224000, China.
| | - Jinlan Cai
- Newborn department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu Province, 224000, China
| | - Qing Jin
- Newborn department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu Province, 224000, China
| | - Jijing Han
- Newborn department, Yancheng Maternity and Child Health Care Hospital, Yancheng, Jiangsu Province, 224000, China
| |
Collapse
|