1
|
Altiparmak-Ulbegi G, Hasbal-Celikok G, Aksoy-Sagirli P. AKT1 and CTNNB1 mutations as drivers of paclitaxel resistance in breast cancer cells. Oncol Lett 2025; 30:324. [PMID: 40370645 PMCID: PMC12076040 DOI: 10.3892/ol.2025.15070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/26/2025] [Indexed: 05/16/2025] Open
Abstract
Breast cancer (BC) is the most prevalent cancer type in the world, with increasing incidence rates. Drug resistance is a notable factor that limits the effectiveness of BC therapy. Paclitaxel (PTX), a chemotherapeutic agent belonging to the taxane class, is commonly used in BC; however, its efficacy is often compromised by drug resistance, which is primarily attributed to genetic alterations. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and wingless-type MMTV integration site family/β-catenin signaling pathways are involved in essential cellular processes, such as proliferation, apoptosis and maintenance of homeostasis. Dysregulated activation of these pathways is strongly associated with carcinogenesis and drug resistance. In the present study, the potential effects of AKT1 (E17K/E49K/L52R) and catenin β-1 (CTNNB1; S33P/T41A/S45F) mutations on PTX resistance in BC were investigated in vitro using site-directed mutagenesis, transient transfection, MTS assay and western blot analyses. The results of the present study indicated that AKT1-E17K/E49K and CTNNB1-S45F/T41A mutations induced PTX resistance compared with AKT1-wild-type (WT) and CTNNB1-WT in MCF-7 cells, respectively. In MDA-MB-231 cells, all three AKT1 mutations (E17K/E49K/L52R) triggered PTX resistance compared with AKT1-WT, while none of the CTNNB1 mutations exhibited such an effect. In conclusion, AKT1 mutations may serve as a biomarker for PTX resistance in both estrogen receptor (ER)(+)/progesterone receptor (PR)(+)/HER2(-) and triple negative BC, while CTNNB1 mutations may be a potential biomarker for PTX resistance in ER(+)/PR(+)/HER2(-) BC.
Collapse
Affiliation(s)
| | - Gozde Hasbal-Celikok
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye
| | - Pinar Aksoy-Sagirli
- Department of Biochemistry, Faculty of Pharmacy, Istanbul University, 34116 Istanbul, Türkiye
| |
Collapse
|
2
|
Sekimoto Matsuyama LSA, Harle V, Offord V, Droop A, Rabbie R, Garg M, Vázquez-Cruz ME, Robles-Espinoza CD, Turner G, Fraser D, de Oliveira EA, de Carvalho DG, Jorge NAN, Boroni M, Possik PA, Adams DJ, Maria-Engler SS. Knockout of SIN3B modulates transcriptional programs and cell survival in cutaneous melanoma. Pharmacol Res 2025:107785. [PMID: 40393534 DOI: 10.1016/j.phrs.2025.107785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 05/16/2025] [Accepted: 05/17/2025] [Indexed: 05/22/2025]
Abstract
SIN3 is a critical component of the histone deacetylase complex. Utilizing whole transcriptome data from melanoma patient samples we reveal that elevated levels of SIN3B are associated with poor survival outcomes with in vitro studies showing increased SIN3B expression in BRAF-mutant metastatic melanoma cell lines. The generation of isogenic SIN3B knockout cell lines indicated that SIN3B disruption led to a decrease in pathways associated with tumor invasion, migration, and cell-cell interactions. Moreover, pooled genome-wide CRISPR/Cas9 screens highlighted POLE4 and STK11 as crucial for the fitness and survival of SIN3B-knockout melanoma cells suggesting a role for these genes in epistasis with SIN3B. In summary, our findings suggest that SIN3B plays a pivotal role in modulating the behavior of melanoma cells, with implications for tumor growth and response to therapy.
Collapse
Affiliation(s)
- Larissa Satiko Alcantara Sekimoto Matsuyama
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Victoria Harle
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Alastair Droop
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Roy Rabbie
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Manik Garg
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Martha Estefania Vázquez-Cruz
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Nacional Autonoma de Mexico, Santiago de Queretaro, Mexico
| | - Carla Daniela Robles-Espinoza
- Laboratorio Internacional de Investigacion sobre el Genoma Humano, Universidad Nacional Autonoma de Mexico, Santiago de Queretaro, Mexico
| | - Gemma Turner
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - David Fraser
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Erica Aparecida de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil; Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
| | | | | | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Patricia A Possik
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom; Division of Basic and Experimental Research, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Silvya Stuchi Maria-Engler
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Sasi N, Preetha D, Iyyappan S, Selvamurugan N. Circular RNAs: Emerging regulators of signaling pathways in epithelial-mesenchymal transition and angiogenesis during breast cancer progression. Semin Oncol 2025; 52:152340. [PMID: 40220369 DOI: 10.1016/j.seminoncol.2025.152340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
Circular RNAs (circRNAs) have emerged as important regulators of gene expression and cellular activities, and abnormalities in circRNAs in breast cancer have been linked to important biological processes like epithelial-mesenchymal transition (EMT) and angiogenesis, both essential for tumor metastasis. EMT facilitates the transition of epithelial cancer cells into a mesenchymal phenotype, enhancing their invasive and migratory capabilities, while angiogenesis promotes tumor progression by forming new blood vessels. CircRNAs also interact with microRNAs to regulate signaling pathways such as TGF-β, Wnt/-catenin, and VEGF. Besides EMT and angiogenesis, studies have identified that circRNAs affect metabolic reprogramming, chemoresistance, tumor microenvironment remodeling, and immunological evasion. Thus, circRNAs play a multifaceted role in the development of breast cancer. They hold potential as non-invasive biomarkers and therapeutic targets due to their high stability, resistance to exonuclease degradation, abundance in body fluids, and diverse expression patterns across different tissues. This review summarizes and critically assesses existing understanding of the functional roles and molecular processes of circRNAs in controlling EMT and angiogenesis during breast cancer progression.
Collapse
Affiliation(s)
- Nivruthi Sasi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Dilipkumar Preetha
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Saranya Iyyappan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Tamil Nadu, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Tamil Nadu, India.
| |
Collapse
|
4
|
Ryspayeva D, Seyhan AA, MacDonald WJ, Purcell C, Roady TJ, Ghandali M, Verovkina N, El-Deiry WS, Taylor MS, Graff SL. Signaling pathway dysregulation in breast cancer. Oncotarget 2025; 16:168-201. [PMID: 40080721 PMCID: PMC11906143 DOI: 10.18632/oncotarget.28701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/03/2025] [Indexed: 03/15/2025] Open
Abstract
This article provides a comprehensive analysis of the signaling pathways implicated in breast cancer (BC), the most prevalent malignancy among women and a leading cause of cancer-related mortality globally. Special emphasis is placed on the structural dynamics of protein complexes that are integral to the regulation of these signaling cascades. Dysregulation of cellular signaling is a fundamental aspect of BC pathophysiology, with both upstream and downstream signaling cascade activation contributing to cellular process aberrations that not only drive tumor growth, but also contribute to resistance against current treatments. The review explores alterations within these pathways across different BC subtypes and highlights potential therapeutic strategies targeting these pathways. Additionally, the influence of specific mutations on therapeutic decision-making is examined, underscoring their relevance to particular BC subtypes. The article also discusses both approved therapeutic modalities and ongoing clinical trials targeting disrupted signaling pathways. However, further investigation is necessary to fully elucidate the underlying mechanisms and optimize personalized treatment approaches.
Collapse
Affiliation(s)
- Dinara Ryspayeva
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Tyler J. Roady
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
| | - Maryam Ghandali
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Nataliia Verovkina
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, RI 02903, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| | - Martin S. Taylor
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, RI 02903, USA
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Pathobiology Graduate Program, Brown University, RI 02903, USA
- Brown Center on the Biology of Aging, Brown University, RI 02903, USA
| | - Stephanie L. Graff
- Legorreta Cancer Center at Brown University, RI 02903, USA
- Department of Medicine, Hematology/Oncology Division, Lifespan Health System and Brown University, RI 02903, USA
| |
Collapse
|
5
|
Van Keymeulen A. Mechanisms of Regulation of Cell Fate in Breast Development and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:167-184. [PMID: 39821026 DOI: 10.1007/978-3-031-70875-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
This chapter focuses on the mechanisms of regulation of cell fate in breast development, occurring mainly after birth, as well as in breast cancer. First, we will review how the microenvironment of the breast, as well as external cues, plays a crucial role in mammary gland cell specification and will describe how it has been shown to reprogram non-mammary cells into mammary epithelial cells. Then we will focus on the transcription factors and master regulators which have been established to be determinant for basal (BC) and luminal cell (LC) identity, and will describe the experiments of ectopic expression or loss of function of these transcription factors which demonstrated that they were crucial for cell fate. We will also discuss how master regulators are involved in the fate choice of LCs between estrogen receptor (ER)-positive cells and ER- cells, which will give rise to alveolar cells upon pregnancy and lactation. We will describe how oncogene expression induces reprogramming and change of fate of mammary epithelial cells before tumor appearance, which could be an essential step in tumorigenesis. Finally, we will describe the involvement of master regulators of mammary epithelial cells in breast cancer.
Collapse
Affiliation(s)
- Alexandra Van Keymeulen
- Laboratory of Stem Cells and Cancer (LSCC), Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
6
|
Ingthorsson S, Traustadottir GA, Gudjonsson T. Breast Morphogenesis: From Normal Development to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:29-44. [PMID: 39821019 DOI: 10.1007/978-3-031-70875-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The human breast gland is composed of branching epithelial ducts that culminate in milk-producing units known as terminal duct lobular units (TDLUs). The epithelial compartment comprises an inner layer of luminal epithelial cells (LEP) and an outer layer of contractile myoepithelial cells (MEP). Both LEP and MEP arise from a common stem cell population. The epithelial compartment undergoes dynamic branching morphogenesis and remodelling, which expands the surface area for milk production. The epithelial remodelling that starts at the onset of menarche is largely under hormonal control, first and foremost by estrogen and progesterone from ovaries, the production of which is stimulated by pituitary-derived hormones. Menopause leads to a significant decline in estrogen and progesterone levels, resulting in involution and senescence of the breast epithelium. The branching morphogenesis involves developmental events such as epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET). EMT and MET confer plasticity to the epithelial compartment enabling the migration of epithelial cells through the stroma and restoration of the epithelial phenotype. In the normal breast, the stroma, including the basement membrane (BM), collagen-rich extracellular matrix, and various stromal cells, supports the correct histoarchitecture of the glandular tree. However, in cancer, the stroma can acquire tumour-promoting properties and is referred to as the tumour microenvironment. This chapter will explore the developmental processes including branching morphogenesis in the normal breast gland and discuss the lineage relationship between LEPS and MEPs and their interactions with the surrounding stroma in the normal and neoplastic breast gland. Finally, we will review various in vitro and in vivo models employed in mammary gland research.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Faculty of Nursing and Midwifery, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Gunnhildur Asta Traustadottir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
- Department of Laboratory Hematology, Landspitali University Hospital, Reykjavik, Iceland.
| |
Collapse
|
7
|
Sethi S. Defining the Molecular Intricacies of Human Papillomavirus-Associated Tonsillar Carcinoma. Cancer Control 2025; 32:10732748241310932. [PMID: 40331509 PMCID: PMC12062609 DOI: 10.1177/10732748241310932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 05/08/2025] Open
Abstract
BackgroundThe past decade has shown a sharp incline in the human papillomavirus (HPV) infection associated oropharyngeal carcinoma cases, especially in men younger than 60 years old. Tonsils are one of the key sites, within the oropharyngeal region, which shows malignant changes due to HPV infection, and there is very limited literature to understand the specific dynamics in the tonsillar areas.ObjectiveThis critical review was undertaken to explore and unravel the bio-molecular interactions and the role of specific proteins associated with HPV infection induced tumorigenesis for the tonsils.DesignA systematic search of the literature was performed utilising keywords and MeSH terms related to HPV and tonsillar carcinoma in PubMed, Scopus, Embase, and Web of Science without restrictions on dates until July 2023. All studies that reported on molecular biomarkers or genes/genetic proteins in the context of HPV associated tonsillar carcinoma were included in the study.ResultsPreliminary searches revealed a total of 2734 studies of which 23 satisfied the final inclusion criteria and were included. More than 25 proteins and biomarkers were identified, and their role in the malignant process was extracted and compiled. This review also presents a short excerpt on each of the molecules identified to provide a better understanding of the pathogenesis.ConclusionGiven the rapidly increasing number of cases, there is an urgent need for more focused research on virally induced tonsillar cancers, to develop a better understanding, and for clarity of management and treatment.
Collapse
Affiliation(s)
- Sneha Sethi
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
8
|
Fujita M, Demizu Y. Advances in the development of Wnt/β-catenin signaling inhibitors. RSC Med Chem 2024:d4md00749b. [PMID: 39691403 PMCID: PMC11647577 DOI: 10.1039/d4md00749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/01/2024] [Indexed: 12/19/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a critical role in various biological processes, including cell proliferation, differentiation, and tissue homeostasis. Aberrant activation of this pathway is strongly associated with the development of various cancers, including colorectal, pancreatic, and gastric cancers, making it a promising therapeutic target. In recent years, inhibitors targeting different components of the Wnt/β-catenin pathway, including small molecules, peptides, and nucleic acid-based therapies, have been developed to suppress cancer cell growth. These inhibitors work by disrupting key interactions within the pathway, thereby preventing tumor progression. Antibody-based therapies have also emerged as potential strategies to block ligand-receptor interactions within this pathway. Despite these advancements, challenges such as the complexity of the pathway and toxicity concerns remain. Innovative approaches, including allosteric inhibitors, proteolysis-targeting chimeras (PROTACs), and peptide-based inhibitors, offer new opportunities to address these challenges. This review provides an overview of the latest progress in the development of Wnt/β-catenin pathway inhibitors and explores future directions in cancer therapy.
Collapse
Affiliation(s)
- Minami Fujita
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
| | - Yosuke Demizu
- Division of Organic Chemistry, National Institute of Health Sciences 3-25-26, Tonomachi Kawasaki Kanagawa 210-9501 Japan
- Graduate School of Medical Life Science, Yokohama City University 1-7-29 Yokohama Kanagawa 230-0045 Japan
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Division of Pharmaceutical Science of Okayama University 1-1-1 Tsushimanaka Kita Okayama 700-8530 Japan
| |
Collapse
|
9
|
Liu Y, Zou Y, Ye Y, Chen Y. Advances in the Understanding of the Pathogenesis of Triple-Negative Breast Cancer. Cancer Med 2024; 13:e70410. [PMID: 39558881 PMCID: PMC11574469 DOI: 10.1002/cam4.70410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a heterogeneous disease characterized by high aggressiveness, high malignancy, and poor prognosis compared to other breast cancer subtypes. OBJECTIVE This review aims to explore recent advances in understanding TNBC and to provide new insights and potential references for clinical treatment. METHODS We examined current literature on TNBC to analyze molecular subtypes, genetic mutations, signaling pathways, mechanisms of drug resistance, and emerging therapies. RESULTS Findings highlight key aspects of TNBC's molecular subtypes, relevant mutations, and pathways, alongside emerging treatments that target drug resistance mechanisms. CONCLUSION These insights into TNBC pathogenesis may help guide future therapeutic strategies and improve clinical outcomes for patients with TNBC.
Collapse
Affiliation(s)
- Yuhan Liu
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yuhan Zou
- School of Clinical MedicineShandong Second Medical UniversityWeifangChina
| | - Yangli Ye
- College of Life Sciences and TechnologyShandong Second Medical UniversityWeifangChina
| | - Yong Chen
- Key Laboratory of Immune Microenvironment and Inflammatory Disease Research in Universities of Shandong Province, School of Basic Medical SciencesShandong Second Medical UniversityWeifangChina
| |
Collapse
|
10
|
Downs E, Gulbahce HE. "Lobular lesions of the breast: From the classic to the variants". Semin Diagn Pathol 2024; 41:258-271. [PMID: 39510943 DOI: 10.1053/j.semdp.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/03/2024] [Indexed: 11/15/2024]
Abstract
The aim of this review is to provide the surgical pathologist an overview of lobular lesions, from in situ to invasive carcinoma and the variants, by discussing the epidemiology, clinical characteristics, morphology, immunohistochemistry, known molecular data as well as the treatment recommendations. The recognition of histologic variants of both in situ and invasive lobular carcinoma has expanded the differential diagnosis. Awareness of these different entities is important as treatment recommendations continue to evolve.
Collapse
Affiliation(s)
- Erinn Downs
- Mayo Clinic Arizona Scottsdale, AZ, United States.
| | | |
Collapse
|
11
|
Samant C, Kale R, Pai KSR, Nandakumar K, Bhonde M. Role of Wnt/β-catenin pathway in cancer drug resistance: Insights into molecular aspects of major solid tumors. Biochem Biophys Res Commun 2024; 729:150348. [PMID: 38986260 DOI: 10.1016/j.bbrc.2024.150348] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Adaptive resistance to conventional and targeted therapies remains one of the major obstacles in the effective management of cancer. Aberrant activation of key signaling mechanisms plays a pivotal role in modulating resistance to drugs. An evolutionarily conserved Wnt/β-catenin pathway is one of the signaling cascades which regulate resistance to drugs. Elevated Wnt signaling confers resistance to anticancer therapies, either through direct activation of its target genes or via indirect mechanisms and crosstalk over other signaling pathways. Involvement of the Wnt/β-catenin pathway in cancer hallmarks like inhibition of apoptosis, promotion of invasion and metastasis and cancer stem cell maintenance makes this pathway a potential target to exploit for addressing drug resistance. Accumulating evidences suggest a critical role of Wnt/β-catenin pathway in imparting resistance across multiple cancers including PDAC, NSCLC, TNBC, etc. Here we present a comprehensive assessment of how Wnt/β-catenin pathway mediates cancer drug resistance in majority of the solid tumors. We take a deep dive into the Wnt/β-catenin signaling-mediated modulation of cellular and downstream molecular mechanisms and their impact on cancer resistance.
Collapse
Affiliation(s)
- Charudatt Samant
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India.
| | - Ramesh Kale
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Mandar Bhonde
- Department of Pharmacology, Novel Drug Discovery and Development (NDDD), Lupin Limited, Survey No. 46A/47A, Village Nande, Taluka Mulshi, Pune, 412115, Maharashtra, India
| |
Collapse
|
12
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
13
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
14
|
Cserni G. Invasive lobular carcinoma of the breast: we diagnose it, but do we know what it is? Pathologica 2024; 116:273-284. [PMID: 39748709 DOI: 10.32074/1591-951x-1043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 01/04/2025] Open
Abstract
Invasive lobular carcinoma of the breast is the most common special type breast cancer. It has been defined using morphological features, has a characteristic immunophenotype associated with the loss of E-cadherin mediated intercellular adhesion, and the background of this immunohistochemistry and morphology is generally a biallelic genetic alteration of the CDH-1 gene coding E-cadherin. However, the morphology may often deviate from the classical, and immunohistochemistry may also deviate from the typical, and then the diagnosis of invasive lobular carcinoma becomes less straight forward. Eventually, the definitions of this histological type, although similar, are not identical and this may also give ground to occasional different interpretations. This review summarizes different approaches to invasive lobular carcinomas and the deviations from what is considered normal.
Collapse
Affiliation(s)
- Gábor Cserni
- Department of Pathology, Bács-Kiskun County Teaching Hospital, Kecskemét, Hungary
- Department of Pathology, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
15
|
Nilkhet S, Vongthip W, Lertpatipanpong P, Prasansuklab A, Tencomnao T, Chuchawankul S, Baek SJ. Ergosterol inhibits the proliferation of breast cancer cells by suppressing AKT/GSK-3beta/beta-catenin pathway. Sci Rep 2024; 14:19664. [PMID: 39179606 PMCID: PMC11344128 DOI: 10.1038/s41598-024-70516-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Breast cancer is a prevalent malignancy affecting women globally, necessitating effective treatment strategies. This study explores the potential of ergosterol, a bioactive compound found in edible mushrooms, as a candidate for breast cancer treatment. Breast cancer cell lines (MCF-7 and MDA-MB-231) were treated with ergosterol, revealing its ability to inhibit cell viability, induce cell cycle arrest, and suppress spheroid formation. Mechanistically, ergosterol demonstrated significant inhibitory effects on the Wnt/beta-catenin signaling pathway, a critical regulator of cancer progression, by attenuating beta-catenin translocation in the nucleus. This suppression was attributed to the inhibition of AKT/GSK-3beta phosphorylation, leading to decreased beta-catenin stability and activity. Additionally, ergosterol treatment impacted protein synthesis and ubiquitination, potentially contributing to its anti-cancer effects. Moreover, the study revealed alterations in metabolic pathways upon ergosterol treatment, indicating its influence on metabolic processes critical for cancer development. This research sheds light on the multifaceted mechanisms through which ergosterol exerts anti-tumor effects, mainly focusing on Wnt/beta-catenin pathway modulation and metabolic pathway disruption. These findings provide valuable insights into the potential of ergosterol as a therapeutic candidate for breast cancer treatment, warranting further investigation and clinical application.
Collapse
Affiliation(s)
- Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Wudtipong Vongthip
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Pattawika Lertpatipanpong
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Anchalee Prasansuklab
- College of Public Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tewin Tencomnao
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Immunomodulation of Natural Products Research Unit, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Seung Joon Baek
- Laboratory of Signal Transduction, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
16
|
Song P, Gao Z, Bao Y, Chen L, Huang Y, Liu Y, Dong Q, Wei X. Wnt/β-catenin signaling pathway in carcinogenesis and cancer therapy. J Hematol Oncol 2024; 17:46. [PMID: 38886806 PMCID: PMC11184729 DOI: 10.1186/s13045-024-01563-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The Wnt/β-catenin signaling pathway plays a crucial role in various physiological processes, encompassing development, tissue homeostasis, and cell proliferation. Under normal physiological conditions, the Wnt/β-catenin signaling pathway is meticulously regulated. However, aberrant activation of this pathway and downstream target genes can occur due to mutations in key components of the Wnt/β-catenin pathway, epigenetic modifications, and crosstalk with other signaling pathways. Consequently, these dysregulations contribute significantly to tumor initiation and progression. Therapies targeting the Wnt/β-catenin signaling transduction have exhibited promising prospects and potential for tumor treatment. An increasing number of medications targeting this pathway are continuously being developed and validated. This comprehensive review aims to summarize the latest advances in our understanding of the role played by the Wnt/β-catenin signaling pathway in carcinogenesis and targeted therapy, providing valuable insights into acknowledging current opportunities and challenges associated with targeting this signaling pathway in cancer research and treatment.
Collapse
Affiliation(s)
- Pan Song
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Zirui Gao
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yige Bao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China
| | - Li Chen
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuhe Huang
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yanyan Liu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, 610041, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
17
|
Kasoha M, Findeklee S, Nigdelis MP, Schmidt G, Solomayer EF, Haj Hamoud B. Retrospective Evaluation of Bone Turnover Markers in Serum for the Prediction of Metastases Development in Breast Cancer Patients: A Cohort Study. Biomedicines 2024; 12:1201. [PMID: 38927408 PMCID: PMC11201037 DOI: 10.3390/biomedicines12061201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Serum bone turnover markers might play a role in the prediction of the development of bone metastases in breast cancer (BC) patients. We conducted a retrospective cohort study to address the association of serum bone turnover markers with oncologic outcomes. METHODS We included 80 women with BC, who were operated on at the Department of Gynecology, Obstetrics and Reproductive Medicine, Homburg/Saar, Germany. Serum samples were obtained prior to surgery and were used for estimation of the concentration of tumor and bone turnover markers using enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA). RESULTS At baseline, pyridinoline cross-linked carboxy-terminal telopeptide of type-1 collagen (ICTP) concentrations were higher in nodal positive vs. negative tumors (Mann-Whitney test p = 0.04). After a median follow-up of 79.4 months, 17 patients developed metastases, with 9 demonstrating, among other organs, osseous metastases. ICTP demonstrated the best area under the curve in the predection of osseous metastases in our cohort (AUC = 0.740, DeLong Test p = 0.005). Univariable Cox proportional hazard models failed to demonstrate significant associations between serum bone turnover markers and oncologic outcomes (progression-free survival, overall survival). CONCLUSIONS Serum bone turnover markers (e.g., ICTP) were able to predict the development of osseous metastases but were not associated with oncologic outcomes. Further investigation and validation are required for the use of such markers in clinical practice.
Collapse
Affiliation(s)
- Mariz Kasoha
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, D-66421 Homburg, Germany; (S.F.); (M.P.N.); (G.S.); (E.-F.S.); (B.H.H.)
| | - Sebastian Findeklee
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, D-66421 Homburg, Germany; (S.F.); (M.P.N.); (G.S.); (E.-F.S.); (B.H.H.)
- Medizinische Versorgungszentrum, Göttingen, Kasseler Landstraße 25a, D-37081 Göttingen, Germany
| | - Meletios P. Nigdelis
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, D-66421 Homburg, Germany; (S.F.); (M.P.N.); (G.S.); (E.-F.S.); (B.H.H.)
| | - Gilda Schmidt
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, D-66421 Homburg, Germany; (S.F.); (M.P.N.); (G.S.); (E.-F.S.); (B.H.H.)
| | - Erich-Franz Solomayer
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, D-66421 Homburg, Germany; (S.F.); (M.P.N.); (G.S.); (E.-F.S.); (B.H.H.)
| | - Bashar Haj Hamoud
- Department of Gynecology, Obstetrics and Reproductive Medicine, University Medical School of Saarland, D-66421 Homburg, Germany; (S.F.); (M.P.N.); (G.S.); (E.-F.S.); (B.H.H.)
| |
Collapse
|
18
|
Hoover E, Ruggiero OM, Swingler RN, Day ES. FZD7-Targeted Nanoparticles to Enhance Doxorubicin Treatment of Triple-Negative Breast Cancer. ACS OMEGA 2024; 9:14323-14335. [PMID: 38559981 PMCID: PMC10976388 DOI: 10.1021/acsomega.3c10275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy agent commonly used to treat triple-negative breast cancer (TNBC), but it has insufficient efficacy against the disease and considerable toxicity due to its off-target delivery. To improve the specificity of DOX for TNBC, we encapsulated it in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) coated with antibodies against Frizzled7 (FZD7), a receptor that is overexpressed on TNBC cells and which is a key activator of the Wnt signaling pathway. In vitro studies show that DOX encapsulation does not hinder its ability to localize to the nucleus in human TNBC cell cultures and that DOX delivered via NPs induces apoptosis and DNA damage via H2A.X phosphorylation to the same degree as freely delivered DOX. FZD7-targeted NPs delivering DOX caused significantly greater inhibition of metabolic activity and led to a smaller cell population following treatment when compared to freely delivered DOX or DOX-loaded NPs coated only with poly(ethylene glycol) (PEG). The FZD7 antibodies additionally provided significant levels of Wnt pathway inhibition, as demonstrated by an increase in β-catenin phosphorylation, indicative of β-catenin destruction and downregulation. These results show that FZD7-targeted platforms have great promise for improving the therapeutic window of otherwise toxic chemotherapies like DOX in TNBC and other cancers that display the overexpression of FZD7 receptors.
Collapse
Affiliation(s)
- Elise
C. Hoover
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Olivia M. Ruggiero
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Rachel N. Swingler
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
| | - Emily S. Day
- Department
of Biomedical Engineering, University of
Delaware, Newark, Delaware 19713, United States
- Department
of Materials Science and Engineering, University
of Delaware, Newark, Delaware 19716, United States
- Helen
F. Graham Cancer Center and Research Institute, Newark, Delaware 19713, United States
| |
Collapse
|
19
|
Zhong W, Jian Y, Zhang C, Li Y, Yuan Z, Xiong Z, Huang W, Ouyang Y, Chen X, Song L, Liu P, Wang X. SHC4 orchestrates β-catenin pathway-mediated metastasis in triple-negative breast cancer by promoting Src kinase autophosphorylation. Cancer Lett 2024; 582:216516. [PMID: 38052369 DOI: 10.1016/j.canlet.2023.216516] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive and metastatic, and has the poorest prognosis among all breast cancer subtypes. Activated β-catenin is enriched in TNBC and involved in Wnt signaling-independent metastasis. However, the underlying mechanisms of β-catenin activation in TNBC remain unknown. Here, we found that SHC4 was upregulated in TNBC and high SHC4 expression was significantly correlated with poor outcomes. Overexpression of SHC4 promoted TNBC aggressiveness in vitro and facilitated TNBC metastasis in vivo. Mechanistically, SHC4 interacted with Src and maintained its autophosphorylated activation, which activated β-catenin independent of Wnt signaling, and finally upregulated the transcription and expression of its downstream genes CD44 and MMP7. Furthermore, we determined that the PxPPxPxxxPxxP sequence on CH2 domain of SHC4 was critical for SHC4-Src binding and Src kinase activation. Overall, our results revealed the mechanism of β-catenin activation independent of Wnt signaling in TNBC, which was driven by SHC4-induced Src autophosphorylation, suggesting that SHC4 might be a potential prognostic marker and therapeutic target in TNBC.
Collapse
Affiliation(s)
- Wenjing Zhong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Breast Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yunting Jian
- Department of Pathology, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Chao Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Breast Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Yue Li
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhongyu Yuan
- Department of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhenchong Xiong
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Breast Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Weiling Huang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Breast Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Ying Ouyang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangfu Chen
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Libing Song
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xi Wang
- Department of Experimental Research, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Breast Surgery, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China.
| |
Collapse
|
20
|
Sammarco A, Beffagna G, Sacchetto R, Vettori A, Bonsembiante F, Scarin G, Gelain ME, Cavicchioli L, Ferro S, Geroni C, Lombardi P, Zappulli V. Antitumor Effect of Berberine Analogs in a Canine Mammary Tumor Cell Line and in Zebrafish Reporters via Wnt/β-Catenin and Hippo Pathways. Biomedicines 2023; 11:3317. [PMID: 38137538 PMCID: PMC10741123 DOI: 10.3390/biomedicines11123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The heterogeneous nature of human breast cancer (HBC) can still lead to therapy inefficacy and high lethality, and new therapeutics as well as new spontaneous animal models are needed to benefit translational HBC research. Dogs are primarily investigated since they spontaneously develop tumors that share many features with human cancers. In recent years, different natural phytochemicals including berberine, a plant alkaloid, have been reported to have antiproliferative activity in vitro in human cancers and rodent animal models. In this study, we report the antiproliferative activity and mechanism of action of berberine, its active metabolite berberrubine, and eight analogs, on a canine mammary carcinoma cell line and in transgenic zebrafish models. We demonstrate both in vitro and in vivo the significant effects of specific analogs on cell viability via the induction of apoptosis, also identifying their role in inhibiting the Wnt/β-catenin pathway and activating the Hippo signals with a downstream reduction in CTGF expression. In particular, the berberine analogs NAX035 and NAX057 show the highest therapeutic efficacy, deserving further analyses to elucidate their mechanism of action more in detail, and in vivo studies on spontaneous neoplastic diseases are needed, aiming at improving veterinary treatments of cancer as well as translational cancer research.
Collapse
Affiliation(s)
- Alessandro Sammarco
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Urology, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Giorgia Beffagna
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy
| | - Roberta Sacchetto
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Andrea Vettori
- Department of Biotechnology, University of Verona, 37134 Verona, Italy;
| | - Federico Bonsembiante
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
- Department of Animal Medicine, Production and Health, University of Padua, 35020 Legnaro, Italy
| | - Giulia Scarin
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Maria Elena Gelain
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| | - Cristina Geroni
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Paolo Lombardi
- Naxospharma Srl, 20026 Novate Milanese, Italy; (C.G.); (P.L.)
| | - Valentina Zappulli
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy; (A.S.); (G.B.); (R.S.); (F.B.); (G.S.); (M.E.G.); (L.C.); (S.F.)
| |
Collapse
|
21
|
Wu L, Ding W, Wang X, Li X, Yang J. Interference KRT17 reverses doxorubicin resistance in triple-negative breast cancer cells by Wnt/β-catenin signaling pathway. Genes Genomics 2023; 45:1329-1338. [PMID: 37634232 PMCID: PMC10504156 DOI: 10.1007/s13258-023-01437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and is easily resistant to drugs due to the lack of hormone receptors. Research on the resistance mechanisms in TNBC is particularly important. Keratin 17 (KRT17) is highly expressed in TNBC. Anthracycline doxorubicin (Dox) is a commonly used chemotherapeutic drug for early stage triple-negative breast cancer. OBJECTIVE This study investigated the role of KRT17 in TNBC-Dox resistance. METHODS Immuno-histochemical staining, qPCR, western blotting (WB), and immunofluorescence were used to detect the expression of KRT17 in TNBC-Dox-resistant patients and in TNBC-Dox-resistant MDA-MB-468 and MDA-MB-231. the effect of KRT17 on the proliferation and migration in KRT17 knockdown of TNBC-Dox-resistant cells was determined by the CCK8, clone formation, transwell invasion and wound healing assays were used to determine. RESULTS KRT17 was highly expressed in the TNBC-Dox-resistant cells. Knockdown of KRT17 significantly reduced the IC50s of TNBC-Dox-resistant and parental strains and also reduced the proliferation and invasion abilities of TNBC-Dox-resistant cell lines. KRT17 regulated the Wnt/β-catenin signaling pathway. The inhibitory effect of KRT17 knockdown on the proliferation and migration of TNBC-Dox-resistant cells was reversed by an activator of the Wnt signaling pathway. CONCLUSION KRT17 can inhibit the Wnt/β-catenin signaling pathway, thereby reducing the proliferation and invasion ability of TNBC-Dox-resistant cells.
Collapse
Affiliation(s)
- Liqiong Wu
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Wenshuang Ding
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Xiaopai Wang
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Xiubo Li
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China
| | - Jing Yang
- Department of Pathology, Guangzhou First People's Hospital, 51080, Guangzhou, R.P. China.
- The Second Affiliated Hospital of South, China University of Technology, 51080, Guangzhou, R.P. China.
| |
Collapse
|
22
|
Feng X, Ge J, Fu H, Miao L, Zhao F, Wang J, Sun Y, Li Y, Li Y. Discovery of small molecule β-catenin suppressors that enhance immunotherapy. Bioorg Chem 2023; 139:106754. [PMID: 37536216 DOI: 10.1016/j.bioorg.2023.106754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
Small molecules directly downregulating β-catenin could potentially offer a more effective therapeutic approach for combating against cancer stem cells, as compared to targeting the downstream components of the Wnt/β-catenin pathway. The challenge, however, lies in the fact that very few β-catenin suppressors have proven clinically effective, leaving a significant gap in medical solutions. Given that E-cadherin has a natural affinity for β-catenin, it stands to reason that agents designed to increase E-cadherin expression might provide an alternative method of regulating β-catenin levels. In this study, we report our discovery of DSS-C12 and DSS-B8, specific ester-based drugs derived from Dan-Shen-Su (DSS) extracted from the herb Salvia miltiorrhiza. Remarkably, these compounds display a potent ability to downregulate β-catenin, while also improving overall survival in post-surgery mice. Additionally, when these drugs are used in combination with PD-L1 checkpoint blockade, they stimulate enhanced systemic immune responses leading to significant suppression of primary tumor growth. In-depth mechanistic studies revealed that DSS-B8 functions as a vitamin D receptor agonist without inducing hypercalcemic effects. Collectively, our findings indicate that DSS-derived small molecules have considerable potential as clinically viable therapeutic strategies for β-catenin deactivation.
Collapse
Affiliation(s)
- Xuchen Feng
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Feng Zhao
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jingyu Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yunfei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
23
|
Rodgers SJ, Mitchell CA, Ooms LM. The mechanisms of class 1A PI3K and Wnt/β-catenin coupled signaling in breast cancer. Biochem Soc Trans 2023; 51:1459-1472. [PMID: 37471270 PMCID: PMC10586779 DOI: 10.1042/bst20220866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/08/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
The class IA PI3K signaling pathway is activated by growth factor stimulation and regulates a signaling cascade that promotes diverse events including cell growth, proliferation, migration and metabolism. PI3K signaling is one of the most commonly hyperactivated pathways in breast cancer, leading to increased tumor growth and progression. PI3K hyperactivation occurs via a number of genetic and epigenetic mechanisms including mutation or amplification of PIK3CA, the gene encoding the p110α subunit of PI3Kα, as well as via dysregulation of the upstream growth factor receptors or downstream signaling effectors. Over the past decade, extensive efforts to develop therapeutics that suppress oncogenic PI3K signaling have been undertaken. Although FDA-approved PI3K inhibitors are now emerging, their clinical success remains limited due to adverse effects and negative feedback mechanisms which contribute to their reduced efficacy. There is an emerging body of evidence demonstrating crosstalk between the PI3K and Wnt/β-catenin pathways in breast cancer. However, PI3K exhibits opposing effects on Wnt/β-catenin signaling in distinct tumor subsets, whereby PI3K promotes Wnt/β-catenin activation in ER+ cancers, but paradoxically suppresses this pathway in ER- breast cancers. This review discusses the molecular mechanisms for PI3K-Wnt crosstalk in breast cancer, and how Wnt-targeted therapies have the potential to contribute to treatment regimens for breast cancers with PI3K dysregulation.
Collapse
Affiliation(s)
- Samuel J. Rodgers
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Christina A. Mitchell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lisa M. Ooms
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
24
|
Alsaab HO. Pathological role of long non-coding (lnc) RNA in the regulation of Wnt/β-catenin signaling pathway during epithelial-mesenchymal transition (EMT). Pathol Res Pract 2023; 248:154566. [PMID: 37285735 DOI: 10.1016/j.prp.2023.154566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023]
Abstract
The term "epithelial-mesenchymal transition" (EMT) describes a biological process wherein epithelial cells acquire mesenchymal cell characteristics. This process enables the metastatic cells to migrate and invasion. Recent studies have established the connections between the EMT process and Wnt/β-catenin signaling in cancer. Key cellular functions such as differentiation, proliferation, migration, genetic stability, apoptosis, and stem cell renewal are modulated via Wnt/ β-catenin signaling pathway. Up-regulation of this evolutionarily conserved signal pathway leads to EMT. On the other hand, recent investigations have indicated that non-coding RNAs including microRNAs (miRNAs) and long non-coding RNA (lncRNAs) are involved in regulating of Wnt/β-catenin pathway. A high level of lncRNAs mainly has a positive correlation with EMT. However, lncRNA down-regulation has been observed in promoting EMT. It seems that depending on the specific targets, up-or down-regulation of lncRNAs can stimulate EMT by activating the Wnt/ β-catenin pathway. The evaluation of interactions between lncRNAs and the Wnt/ β-catenin signaling pathway in the regulation of EMT during metastasis can be fascinating. Herein, for the first time, the crucial role of lncRNAs-mediated regulation of the Wnt/ β-catenin signaling pathway in the EMT process of human tumors has been summarized.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia.
| |
Collapse
|
25
|
Seitz J, Bilsland A, Puget C, Baasner I, Klopfleisch R, Stein T. SFRP1 Expression is Inversely Associated With Metastasis Formation in Canine Mammary Tumours. J Mammary Gland Biol Neoplasia 2023; 28:15. [PMID: 37402051 DOI: 10.1007/s10911-023-09543-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/22/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Canine mammary tumours (CMTs) are the most frequent tumours in intact female dogs and show strong similarities with human breast cancer. In contrast to the human disease there are no standardised diagnostic or prognostic biomarkers available to guide treatment. We recently identified a prognostic 18-gene RNA signature that could stratify human breast cancer patients into groups with significantly different risk of distant metastasis formation. Here, we assessed whether expression patterns of these RNAs were also associated with canine tumour progression. METHOD A sequential forward feature selection process was performed on a previously published microarray dataset of 27 CMTs with and without lymph node (LN) metastases to identify RNAs with significantly differential expression to identify prognostic genes within the 18-gene signature. Using an independent set of 33 newly identified archival CMTs, we compared expression of the identified prognostic subset on RNA and protein basis using RT-qPCR and immunohistochemistry on FFPE-tissue sections. RESULTS While the 18-gene signature as a whole did not have any prognostic power, a subset of three RNAs: Col13a1, Spock2, and Sfrp1, together completely separated CMTs with and without LN metastasis in the microarray set. However, in the new independent set assessed by RT-qPCR, only the Wnt-antagonist Sfrp1 showed significantly increased mRNA abundance in CMTs without LN metastases on its own (p = 0.013) in logistic regression analysis. This correlated with stronger SFRP1 protein staining intensity of the myoepithelium and/or stroma (p < 0.001). SFRP1 staining, as well as β-catenin membrane staining, was significantly associated with negative LN status (p = 0.010 and 0.014 respectively). However, SFRP1 did not correlate with β-catenin membrane staining (p = 0.14). CONCLUSION The study identified SFRP1 as a potential biomarker for metastasis formation in CMTs, but lack of SFRP1 was not associated with reduced membrane-localisation of β-catenin in CMTs.
Collapse
Affiliation(s)
- Judith Seitz
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Alan Bilsland
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, College of MVLS, University of Glasgow, Glasgow, UK
| | - Chloé Puget
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Ian Baasner
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Torsten Stein
- Institute of Veterinary Biochemistry, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
26
|
Ter Steege EJ, Doornbos LW, Haughton PD, van Diest PJ, Hilkens J, Derksen PWB, Bakker ERM. R-spondin-3 promotes proliferation and invasion of breast cancer cells independently of Wnt signaling. Cancer Lett 2023; 568:216301. [PMID: 37406727 DOI: 10.1016/j.canlet.2023.216301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
We recently identified R-spondin-3 (RSPO3) as a novel driver of breast cancer associating with reduced patient survival, expanding its clinical value as potential therapeutic target that had been recognized mostly for colorectal cancer so far. (Pre)clinical studies exploring RSPO3 targeting in colorectal cancer approach this indirectly with Wnt inhibitors, or directly with anti-RSPO3 antibodies. Here, we address the clinical relevance of RSPO3 in breast cancer and provide insight in the oncogenic activities of RSPO3. Utilizing the RSPO3 breast cancer mouse model, we show that RSPO3 drives the aberrant expansion of luminal progenitor cells expressing cancer stem cell marker CD61, inducing proliferative, poorly differentiated and invasive tumors. Complementary studies with tumor organoids and human breast cancer cell lines demonstrate that RSPO3 consistently promotes the proliferation and invasion of breast cancer cells. Importantly, RSPO3 exerts these oncogenic effects independently of Wnt signaling, rejecting the therapeutic value of Wnt inhibitors in RSPO3-driven breast cancer. Instead, direct RSPO3 targeting effectively inhibited RSPO3-driven growth of breast cancer cells. Conclusively, our data indicate that RSPO3 exerts unfavorable oncogenic effects in breast cancer, enhancing proliferation and malignancy in a Wnt-independent fashion, proposing RSPO3 itself as a valuable therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Eline J Ter Steege
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Loes W Doornbos
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter D Haughton
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John Hilkens
- Department of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Elvira R M Bakker
- Department of Pathology, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| |
Collapse
|
27
|
Saadawy SF, Raafat N, Samy WM, Raafat A, Talaat A. Role of Circ-ITCH Gene Polymorphisms and Its Expression in Breast Cancer Susceptibility and Prognosis. Diagnostics (Basel) 2023; 13:2033. [PMID: 37370928 DOI: 10.3390/diagnostics13122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION/OBJECTIVE Breast cancer (BC) is the first leading cause of cancer-related mortality in females worldwide. We have investigated the correlation between circ-ITCH gene polymorphisms, circ-ITCH expression, and their effect on β-catenin levels and BC development. METHODS Participants included 62 BC and 62 controls matched in terms of age. The circ-ITCH polymorphisms rs10485505 and rs4911154 were genotyped using whole blood samples. In addition, mRNA expression analysis of circ-ITCH was performed on BC tissues. The β-catenin levels in serum samples were measured using ELISA. RESULTS The qRT-PCR results demonstrated that circ-ITCH was significantly downregulated in BC compared to normal healthy tissues. The genotype distribution of rs10485505 and rs4911154 were significantly associated with BC risk. For rs10485505, genotype CT and TT were significantly associated with an increased BC risk. In contrast, there was a significant association between rs4911154, genotypes GA and AA, and an increased BC risk. Regarding the rs10485505 genotype, carriers of the T allele frequently have a poor prognosis compared to carriers of the CC genotype. Serum β-catenin in the BC patients' group was significantly higher than in the control group. The relative expression levels of circ-ITCH were remarkably decreased in the BC samples of patients carrying the A allele at rs4911154 compared to patients with a GG genotype. Conversely, β-catenin protein levels were increased in patients carrying the A allele, while rs10485505 genotype carriers of the CT and TT genotypes showed downregulation of circ-ITCH expression fold compared to the CC genotype. Contrarily, β-catenin levels markedly increased in TT and CT genotypes compared with the CC genotype. CONCLUSIONS Our research showed that the rs10485505 polymorphism (T allele) and the rs4911154 polymorphism (A allele) are associated with the risk and prognosis of BC. This finding may be due to the effect on the level of circ-ITCH mRNA expression in BC tissues as well as the level of β-catenin in BC patients.
Collapse
Affiliation(s)
- Sara F Saadawy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Nermin Raafat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Walaa M Samy
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Ahmed Raafat
- General Surgery Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| | - Aliaa Talaat
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig 44523, Egypt
| |
Collapse
|
28
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
29
|
Kaiser A, Eiselt G, Bechler J, Huber O, Schmidt M. WNT3a Signaling Inhibits Aromatase Expression in Breast Adipose Fibroblasts-A Possible Mechanism Supporting the Loss of Estrogen Responsiveness of Triple-Negative Breast Cancers. Int J Mol Sci 2023; 24:ijms24054654. [PMID: 36902090 PMCID: PMC10003471 DOI: 10.3390/ijms24054654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Estrogen-dependent breast cancers rely on a constant supply of estrogens and expression of estrogen receptors. Local biosynthesis, by aromatase in breast adipose fibroblasts (BAFs), is their most important source for estrogens. Triple-negative breast cancers (TNBC) rely on other growth-promoting signals, including those from the Wnt pathway. In this study, we explored the hypothesis that Wnt signaling alters the proliferation of BAFs, and is involved in regulation of aromatase expression in BAFs. Conditioned medium (CM) from TNBC cells and WNT3a consistently increased BAF growth, and reduced aromatase activity up to 90%, by suppression of the aromatase promoter I.3/II region. Database searches identified three putative Wnt-responsive elements (WREs) in the aromatase promoter I.3/II. In luciferase reporter gene assays, promoter I.3/II activity was inhibited by overexpression of full-length T-cell factor (TCF)-4 in 3T3-L1 preadipocytes, which served as a model for BAFs. Full-length lymphoid enhancer-binding factor (LEF)-1 increased the transcriptional activity. However, TCF-4 binding to WRE1 in the aromatase promoter, was lost after WNT3a stimulation in immunoprecipitation-based in vitro DNA-binding assays, and in chromatin immunoprecipitation (ChIP). In vitro DNA-binding assays, ChIP, and Western blotting revealed a WNT3a-dependent switch of nuclear LEF-1 isoforms towards a truncated variant, whereas β-catenin levels remained unchanged. This LEF-1 variant revealed dominant negative properties, and most likely recruited enzymes involved in heterochromatin formation. In addition, WNT3a induced the replacement of TCF-4 by the truncated LEF-1 variant, on WRE1 of the aromatase promoter I.3/II. The mechanism described here may be responsible for the loss of aromatase expression predominantly associated with TNBC. Tumors with (strong) expression of Wnt ligands actively suppress aromatase expression in BAFs. Consequently a reduced estrogen supply could favor the growth of estrogen-independent tumor cells, which consequently would make estrogen receptors dispensable. In summary, canonical Wnt signaling within (cancerous) breast tissue may be a major factor controlling local estrogen synthesis and action.
Collapse
Affiliation(s)
- Alexander Kaiser
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany
| | - Gabriele Eiselt
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany
| | - Joachim Bechler
- Department of Gynecology and Obstetrics, Robert-Koch-Hospital, 99510 Apolda, Germany
| | - Otmar Huber
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany
| | - Martin Schmidt
- Institute for Biochemistry II, Jena University Hospital, Friedrich Schiller University, 07743 Jena, Germany
- Correspondence: ; Tel.: +49-3641-939-6420
| |
Collapse
|
30
|
Banerjee M, Devi Rajeswari V. Inhibition of WNT signaling by conjugated microRNA nano-carriers: A new therapeutic approach for treating triple-negative breast cancer a perspective review. Crit Rev Oncol Hematol 2023; 182:103901. [PMID: 36584723 DOI: 10.1016/j.critrevonc.2022.103901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
Triple-Negative Breast Cancer is the most aggressive form and accounts the 15%-25% of all breast cancer. Receptors are absent in triple-negative breast cancer, which makes them unresponsive to the current hormonal therapies. The patients with TNBC are left with the option of cytotoxic chemotherapy. The Wnt pathways are connected to cancer, and when activated, they result in mammary hyperplasia and tumors. The tumor suppressor microRNAs can block tumor cell proliferation, invasion, and migration, lead to cancer cell death, and are also known to down-regulate the WNT signaling. Nanoparticles with microRNA have been seen to be more effective when compared with their single release. In this review, we have tried to understand how Wnt signaling plays a crucial role in TNBC, EMT, metastasis, anti-drug resistance, and regulation of Wnt by microRNA. The role of nano-carriers in delivering micro-RNA. The clinical biomarkers, including the present state-of-the-art, involve novel pathways of Wnt.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Sciences, School of Bioscience and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
31
|
Edamana S, Login FH, Riishede A, Dam VS, Tramm T, Nejsum LN. The cell polarity protein Scribble is downregulated by the water channel aquaporin-5 in breast cancer cells. Am J Physiol Cell Physiol 2023; 324:C307-C319. [PMID: 36468842 DOI: 10.1152/ajpcell.00311.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast carcinomas originate from cells in the terminal duct-lobular unit. Carcinomas are associated with increased cell proliferation and migration, altered cellular adhesion, as well as loss of epithelial polarity. In breast cancer, aberrant and high levels of aquaporin-5 (AQP5) are associated with increased metastasis, poor prognosis, and cancer recurrence. AQP5 increases the proliferation and migration of cancer cells, and ectopic expression of AQP5 in normal epithelial cells reduces cell-cell adhesion and increases cell detachment and dissemination from migrating cell sheets, the latter via AQP5-mediated activation of the Ras pathway. Here, we investigated if AQP5 also affects cellular polarity by examining the relationship between the essential polarity protein Scribble and AQP5. In tissue samples from invasive lobular and ductal carcinomas, the majority of cells with high AQP5 expression displayed low Scribble levels, indicating an inverse relationship. Probing for interactions via a Glutathione S-transferase pull-down experiment revealed that AQP5 and Scribble interacted. Moreover, overexpression of AQP5 in the breast cancer cell line MCF7 reduced both size and circularity of three-dimensional (3-D) spheroids and induced cell detachment and dissemination from migrating cell sheets. In addition, Scribble levels were reduced. An AQP5 mutant cell line, which cannot activate Ras (AQP5S156A) signaling, displayed unchanged spheroid size and circularity and an intermediate level of Scribble, indicating that the effect of AQP5 on Scribble is, at least in part, dependent on AQP5-mediated activation of Ras. Thus, our results suggest that high AQP5 expression negatively regulates the essential polarity protein Scribble and thus, can affect cellular polarity in breast cancer.
Collapse
Affiliation(s)
- Sarannya Edamana
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frédéric H Login
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andreas Riishede
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S Dam
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Trine Tramm
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Lene N Nejsum
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
An Overview of Epithelial-to-Mesenchymal Transition and Mesenchymal-to-Epithelial Transition in Canine Tumors: How Far Have We Come? Vet Sci 2022; 10:vetsci10010019. [PMID: 36669020 PMCID: PMC9865109 DOI: 10.3390/vetsci10010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Historically, pre-clinical and clinical studies in human medicine have provided new insights, pushing forward the contemporary knowledge. The new results represented a motivation for investigators in specific fields of veterinary medicine, who addressed the same research topics from different perspectives in studies based on experimental and spontaneous animal disease models. The study of different pheno-genotypic contexts contributes to the confirmation of translational models of pathologic mechanisms. This review provides an overview of EMT and MET processes in both human and canine species. While human medicine rapidly advances, having a large amount of information available, veterinary medicine is not at the same level. This situation should provide motivation for the veterinary medicine research field, to apply the knowledge on humans to research in pets. By merging the knowledge of these two disciplines, better and faster results can be achieved, thus improving human and canine health.
Collapse
|
33
|
Chou YJ, Lin CC, Hsu YC, Syu JL, Tseng LM, Chiu JH, Lo JF, Lin CH, Fu SL. Andrographolide suppresses the malignancy of triple-negative breast cancer by reducing THOC1-promoted cancer stem cell characteristics. Biochem Pharmacol 2022; 206:115327. [PMID: 36330949 DOI: 10.1016/j.bcp.2022.115327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancers (TNBCs) are difficult to cure and currently lack of effective treatment strategies. Cancer stem cells (CSCs) are highly associated with the poor clinical outcome of TNBCs. Thoc1 is a core component of the THO complex (THOC) that regulates the elongation, processing and nuclear export of mRNA. The function of thoc1 in TNBC and whether Thoc1 serves as a drug target are poorly understood. In this study, we demonstrated that thoc1 expression is elevated in TNBC cell lines and human TNBC patient tissues. Knockdown of thoc1 decreased cancer stem cell populations, reduced mammosphere formation, impaired THOC function, and downregulated the expression of stemness-related proteins. Moreover, the thoc1-knockdown 4T1 cells showed less lung metastasis in an orthotopic breast cancer mouse model. Overexpression of Thoc1 promoted TNBC malignancy and the mRNA export of stemness-related genes. Furthermore, treatment of TNBC cells with the natural compound andrographolide reduced the expression of Thoc1 expression, impaired homeostasis of THOC, suppressed CSC properties, and delayed tumor growth in a 4T1-implanted orthotopic mouse model. Andrographolide also reduced the activity of NF-κB, an upstream transcriptional regulator of Thoc1. Notably, thoc1 overexpression attenuates andrographolide-suppressed cellular proliferation. Altogether, our results demonstrate that THOC1 promotes cancer stem cell characteristics of TNBC, and andrographolide is a potential natural compound for eliminating CSCs of TNBCs by downregulating the NF-κB-thoc1 axis.
Collapse
Affiliation(s)
- Yi-Ju Chou
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11221, Taiwan
| | - Ching-Cheng Lin
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ya-Chi Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Jia-Ling Syu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ling-Ming Tseng
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jen-Hwey Chiu
- Comprehensive Breast Health Center, Department of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shu-Ling Fu
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University and Academia Sinica, Taipei 11221, Taiwan; Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
34
|
EGF-conjugated bio-safe luteolin gold nanoparticles induce cellular toxicity and cell death mediated by site-specific rapid uptake in human triple negative breast cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
ter Steege EJ, Boer M, Timmer NC, Ammerlaan CME, Song J, Derksen PWB, Hilkens J, Bakker ERM. R-spondin-3 is an oncogenic driver of poorly differentiated invasive breast cancer. J Pathol 2022; 258:289-299. [PMID: 36106661 PMCID: PMC9825844 DOI: 10.1002/path.5999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/28/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
R-spondins (RSPOs) are influential signaling molecules that promote the Wnt/β-catenin pathway and self-renewal of stem cells. Currently, RSPOs are emerging as clinically relevant oncogenes, being linked to cancer development in multiple organs. Although this has instigated the rapid development and testing of therapeutic antibodies targeting RSPOs, functional evidence that RSPO causally drives cancer has focused primarily on the intestinal tract. Here, we assess the oncogenic capacity of RSPO in breast cancer in a direct fashion by generating and characterizing a novel mouse model with conditional Rspo3 expression in the mammary gland. We also address the prevalence of RSPO gene alterations in breast cancer patients. We found that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number amplifications, which are associated with lack of steroid hormone receptor expression and reduced patient survival. Foremost, we demonstrate the causal oncogenic capacity of RSPO3 in the breast, as conditional Rspo3 overexpression consistently drives the development of mammary adenocarcinomas in our novel Rspo3 breast cancer model. RSPO3-driven mammary tumors typically show poor differentiation, areas of epithelial-to-mesenchymal transition, and metastatic potential. Given the reported interplay in the Wnt/β-catenin pathway, we comparatively analyzed RSPO3-driven mouse mammary tumors versus classical WNT1-driven analogues. This revealed that RSPO3-driven tumors are distinct, as the poorly differentiated tumor morphology and metastatic potential were observed in RSPO3-driven tumorigenesis exclusively, further substantiated by differentiating gene expression profiles. Co-expression of Rspo3 and Wnt1 transduced mammary tumors with a mixed phenotype harboring morphological features characteristic of both transgenes. In summary, we report that a quarter of breast cancer patients harbor RSPO2/RSPO3 copy number gains, and these patients have a worse prognosis, whilst providing in vivo evidence that RSPO3 drives poorly differentiated invasive breast cancer in mice. Herewith, we establish RSPO3 as a driver of breast cancer with clinical relevance, proposing RSPO3 as a novel candidate target for therapy in breast cancer. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Eline J ter Steege
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mandy Boer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Nikki C Timmer
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Carola ME Ammerlaan
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ji‐Ying Song
- Department of Experimental Animal PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - John Hilkens
- Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Elvira RM Bakker
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands,Department of Molecular GeneticsThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
36
|
Ajkunic A, Skenderi F, Shaker N, Akhtar S, Lamovec J, Gatalica Z, Vranic S. Acinic cell carcinoma of the breast: A comprehensive review. Breast 2022; 66:208-216. [PMID: 36332545 PMCID: PMC9636467 DOI: 10.1016/j.breast.2022.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Acinic cell carcinoma of the breast is a rare special subtype of breast cancer in the category of salivary gland-type tumors. It is morphologically similar to acinic cell carcinomas of salivary glands and pancreas and has a triple-negative phenotype (estrogen receptor-negative, progesterone receptor-negative, and Her-2/neu negative). Its molecular genomic features are more similar to triple-negative breast cancer of no special type than to its salivary gland counterpart. However, the clinical course of the mammary acinic cell carcinoma appears to be less aggressive than the usual triple-negative breast carcinomas. This review comprehensively summarizes the current literature on the clinicopathologic, immunohistochemical, and molecular features of this rare and distinct subtype of breast cancer.
Collapse
Affiliation(s)
- Azra Ajkunic
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Faruk Skenderi
- Sarajevo School of Science and Technology, Sarajevo, Bosnia and Herzegovina
| | - Nada Shaker
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Janez Lamovec
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Zoran Gatalica
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, Doha, Qatar,Corresponding author. College of Medicine, QU Health, Qatar University, 2713, Doha, Qatar.
| |
Collapse
|
37
|
Proteomics-Based Identification of Dysregulated Proteins in Breast Cancer. Proteomes 2022; 10:proteomes10040035. [PMID: 36278695 PMCID: PMC9590004 DOI: 10.3390/proteomes10040035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
Immunohistochemistry (IHC) is still widely used as a morphology-based assay for in situ analysis of target proteins as specific tumor antigens. However, as a very heterogeneous collection of neoplastic diseases, breast cancer (BC) requires an accurate identification and characterization of larger panels of candidate biomarkers, beyond ER, PR, and HER2 proteins, for diagnosis and personalized treatment, without the limited availability of antibodies that are required to identify specific proteins. Top-down, middle-down, and bottom-up mass spectrometry (MS)-based proteomics approaches complement traditional histopathological tissue analysis to examine expression, modification, and interaction of hundreds to thousands of proteins simultaneously. In this review, we discuss the proteomics-based identification of dysregulated proteins in BC that are essential for the following issues: discovery and validation of new biomarkers by analysis of solid and liquid/non-invasive biopsies, cell lines, organoids and xenograft models; identification of panels of biomarkers for early detection and accurate discrimination between cancer, benign and normal tissues; identification of subtype-specific and stage-specific protein expression profiles in BC grading and measurement of disease progression; characterization of new subtypes of BC; characterization and quantitation of post-translational modifications (PTMs) and aberrant protein-protein interactions (PPI) involved in tumor development; characterization of the global remodeling of BC tissue homeostasis, diagnosis and prognostic information; and deciphering of molecular functions, biological processes and mechanisms through which the dysregulated proteins cause tumor initiation, invasion, and treatment resistance.
Collapse
|
38
|
Hua Z, Han Y, Liu K, Yang H, Zhou C, Chen F, Nie S, Li M, Yu Q, Wei Y, Wu CCN, Wang X. Antitumor effect and mechanism of FZD7 polypeptide vaccine. Front Oncol 2022; 12:925495. [PMID: 36276155 PMCID: PMC9579692 DOI: 10.3389/fonc.2022.925495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The resistant cells that proliferate after radiotherapy and chemotherapy are primarily tumor stem cells with high stem marker expression, and their presence is the primary cause of tumor dispersion. The Wnt signaling receptor Frizzled family receptor 7 (FZD7) is linked to the maintenance of stem cell features as well as cancer progression. Frizzled-7 (FZD7), a key receptor for Wnt/-catenin signaling, is overexpressed in TNBC, suggesting that it could be a viable target for cancer therapy. We employed bioinformatics to find the best-scoring peptide, chemically synthesized FZD7 epitope antigen, and binding toll-like receptor 7 agonists (T7). Under GMP conditions, peptides for vaccines were produced and purified (>95%). In vivo and vitro tests were used to assess tumor cell inhibition. In vitro, the FZD7-T7 vaccination can boost the maturity of BMDC cells considerably. In mice, the FZD7 - T7 vaccine elicited the greatest immunological response. Significant tumor development inhibition was seen in BALB/c mice treated with FZD7 - T7 in prevention experiments (P < 0.01). Multiple cytokines that promote cellular immune responses, such as interferon (IFN)-γ (P < 0.05), interleukin (IL)-12 (P < 0.05), and IL-2 (P < 0.01), were shown to be considerably elevated in mice inoculated with FZD7- T7. Furthermore, we evaluated safety concerns in terms of vaccine composition to aid in the creation of successful next-generation vaccines. In conclusion, the FZD7-T7 vaccine can activate the immune response in vivo and in vitro, and play a role in tumor suppression. Our findings reveal a unique tumor-suppressive role for the FZD7 peptide in TNBC.
Collapse
Affiliation(s)
- Zhongke Hua
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yu Han
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Kan Liu
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Hua Yang
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Cai Zhou
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Fengyi Chen
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Shenglan Nie
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Mengqing Li
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Qinyao Yu
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Yunpeng Wei
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Christina C. N. Wu
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
- *Correspondence: Xiaomei Wang, ; Christina C. N. Wu,
| | - Xiaomei Wang
- International Cancer Center, Shenzhen Key Lab of Synthetic Biology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Xiaomei Wang, ; Christina C. N. Wu,
| |
Collapse
|
39
|
Masciullo V, Susini T, Corrado G, Stepanova M, Baroni A, Renda I, Castiglione F, Minimo C, Bellacosa A, Chiofalo B, Vizza E, Scambia G. Nuclear Expression of β-Catenin Is Associated with Improved Outcomes in Endometrial Cancer. Diagnostics (Basel) 2022; 12:diagnostics12102401. [PMID: 36292090 PMCID: PMC9600744 DOI: 10.3390/diagnostics12102401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/25/2022] Open
Abstract
Beta-catenin is involved in intercellular adhesion and participates in the Wnt signaling pathway. This study evaluated the expression pattern and prognostic value of β-catenin in a series of endometrial carcinoma patients. Immunohistochemical analyses were used to assess the expression and subcellular localization of β-catenin from tissue sections of 74 patients with endometrial carcinoma. No correlation was found between beta-catenin expression and clinicopathological parameters. Patients expressing nuclear β-catenin (n = 13; 16%) showed a more favorable prognosis than patients expressing membranous β-catenin; the 5-year disease-related survival rate was 100% for cases expressing nuclear β-catenin, compared with 73.8% (SE 0.08) of cases expressing membranous β-catenin (p = 0.04). Although statistical significance was not reached (p = 0.15), cases expressing nuclear β-catenin showed a 5-year disease-free survival rate of 90.9% (SE 0.08) compared with 67.4% (SE 0.08) of cases expressing membranous β-catenin. Univariate Cox analysis revealed that membranous β-catenin expression was found to be associated with a relative risk of death of 33.9 (p = 0.04). The stage of disease (p = 0.0006), histology (p = 0.003), and grading (p = 0.008) were also significantly correlated with disease-free survival according to univariate Cox analyses. Determining β-catenin expression and localization patterns may predict survival in patients with endometrial cancer and, therefore, should be considered a potential prognostic marker of disease.
Collapse
Affiliation(s)
- Valeria Masciullo
- Division of Gynecologic Surgery, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Tommaso Susini
- Department of Obstetrics and Gynecology, University of Florence, 50121 Florence, Italy
| | - Giacomo Corrado
- Division of Gynecologic Oncology, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Marina Stepanova
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Alessandro Baroni
- Division of Gynecologic Surgery, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Irene Renda
- Department of Pathology, University of Florence, 50121 Florence, Italy
| | | | - Corrado Minimo
- Department of Pathology and Laboratory Medicine, Albert Einstein Medical Center, Philadelphia, PA 19111, USA
| | - Alfonso Bellacosa
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Benito Chiofalo
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy
- Correspondence: ; Tel.: +39-06-5266-2433
| | - Enrico Vizza
- Gynecologic Oncology Unit, Department of Experimental Clinical Oncology, IRCCS Regina Elena National Cancer Institute, 00128 Rome, Italy
| | - Giovanni Scambia
- Division of Gynecologic Oncology, Department of Woman, Child and Public Health, Fondazione Policlinico Universitario A. Gemelli—IRCCS, Catholic University of Sacred Heart, 00168 Rome, Italy
| |
Collapse
|
40
|
CDK14 inhibition reduces mammary stem cell activity and suppresses triple negative breast cancer progression. Cell Rep 2022; 40:111331. [PMID: 36103813 DOI: 10.1016/j.celrep.2022.111331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/09/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
The Wnt/β-catenin signaling pathway plays an important role in regulating mammary organogenesis and oncogenesis. However, therapeutic methods targeting the Wnt pathway against breast cancer have been limited. To address this challenge, we investigate the function of cyclin-dependent kinase 14 (CDK14), a member of the Wnt signaling pathway, in mammary development and breast cancer progression. We show that CDK14 is expressed in the mammary basal layer and elevated in triple negative breast cancer (TNBC). CDK14 knockdown reduces the colony-formation ability and regeneration capacity of mammary basal cells and inhibits the progression of murine MMTV-Wnt-1 basal-like mammary tumor. CDK14 knockdown or pharmacological inhibition by FMF-04-159-2 suppresses the progression and metastasis of TNBC. Mechanistically, CDK14 inhibition inhibits mammary regeneration and TNBC progression by attenuating Wnt/β-catenin signaling. These findings highlight the significance of CDK14 in mammary development and TNBC progression, shedding light on CDK14 as a promising therapeutic target for TNBC.
Collapse
|
41
|
Asmamaw MD, Shi XJ, Zhang LR, Liu HM. A comprehensive review of SHP2 and its role in cancer. Cell Oncol 2022; 45:729-753. [PMID: 36066752 DOI: 10.1007/s13402-022-00698-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) is a non-receptor protein tyrosine phosphatase ubiquitously expressed mainly in the cytoplasm of several tissues. SHP2 modulates diverse cell signaling events that control metabolism, cell growth, differentiation, cell migration, transcription and oncogenic transformation. It interacts with diverse molecules in the cell, and regulates key signaling events including RAS/ERK, PI3K/AKT, JAK/STAT and PD-1 pathways downstream of several receptor tyrosine kinases (RTKs) upon stimulation by growth factors and cytokines. SHP2 acts as both a phosphatase and a scaffold, and plays prominently oncogenic functions but can be tumor suppressor in a context-dependent manner. It typically acts as a positive regulator of RTKs signaling with some inhibitory functions reported as well. SHP2 expression and activity is regulated by such factors as allosteric autoinhibition, microRNAs, ubiquitination and SUMOylation. Dysregulation of SHP2 expression or activity causes many developmental diseases, and hematological and solid tumors. Moreover, upregulated SHP2 expression or activity also decreases sensitivity of cancer cells to anticancer drugs. SHP2 is now considered as a compelling anticancer drug target and several classes of SHP2 inhibitors with different mode of action are developed with some already in clinical trial phases. Moreover, novel SHP2 substrates and functions are rapidly growing both in cell and cancer. In view of this, we comprehensively and thoroughly reviewed literatures about SHP2 regulatory mechanisms, substrates and binding partners, biological functions, roles in human cancers, and different classes of small molecule inhibitors target this oncoprotein in cancer.
Collapse
Affiliation(s)
- Moges Dessale Asmamaw
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China
| | - Xiao-Jing Shi
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, 450052, People's Republic of China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory for Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan Province, 450001, People's Republic of China.
| | - Hong-Min Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan Province, China. .,Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Zhengzhou, Henan Province, 450001, People's Republic of China.
| |
Collapse
|
42
|
Dolezal D, Zhang X, Harigopal M. Increased Expression of LEF1 and β-Catenin in Invasive Micropapillary Carcinoma of the Breast is Associated With Lymphovascular Invasion and Lymph Node Metastasis. Appl Immunohistochem Mol Morphol 2022; 30:557-565. [PMID: 35960138 DOI: 10.1097/pai.0000000000001052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/09/2022] [Indexed: 11/26/2022]
Abstract
Invasive micropapillary breast carcinoma (IMPC) is a rare breast cancer subtype characterized by small tumor cell clusters with loss of stromal attachment, an inside-out growth appearance, and lymphotropism. IMPC is associated with high incidence of lymphovascular invasion (LVI) and lymph node metastasis. Activated Wnt signaling has been implicated in the metastasis of other aggressive breast tumors, including triple-negative and basal-like carcinomas. In this study, we tested whether activated Wnt signaling could be detected in IMPC. Upon ligand binding, the central mediator of the Wnt pathway, β-catenin, accumulates in the cytosol and translocates to the nucleus where it forms a complex with lymphoid enhancer-binding factor 1 (LEF1) to regulate transcription. We performed immunostaining for β-catenin and LEF1 on a well-annotated cohort of 40 breast tumors and nodal metastases displaying micropapillary histopathology. Strong nuclear accumulation of β-catenin was not observed, however a dim cytosolic and/or nuclear accumulation of β-catenin was sometimes seen in IMPC and this expression pattern was significantly associated with nodal metastasis. β-catenin expression correlated with the upregulation of LEF1 in IMPC. LEF1 expression was detected in 26 of 40 (65%) cases and was specifically enriched at the invasive front of the tumor and in tumor clusters undergoing LVI. Detection of LEF1 expression in the primary tumor was associated with an increased rate of LVI, lymph node metastasis, and disease relapse. LEF1 and β-catenin expression levels were significantly higher in metastases compared with primary tumors. In summary, this study demonstrates an association between the upregulation of β-catenin/LEF1 and the metastasis of IMPC.
Collapse
Affiliation(s)
- Darin Dolezal
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA 06510
| | | | | |
Collapse
|
43
|
Yam C, Abuhadra N, Sun R, Adrada BE, Ding QQ, White JB, Ravenberg EE, Clayborn AR, Valero V, Tripathy D, Damodaran S, Arun BK, Litton JK, Ueno NT, Murthy RK, Lim B, Baez L, Li X, Buzdar AU, Hortobagyi GN, Thompson AM, Mittendorf EA, Rauch GM, Candelaria RP, Huo L, Moulder SL, Chang JT. Molecular Characterization and Prospective Evaluation of Pathologic Response and Outcomes with Neoadjuvant Therapy in Metaplastic Triple-Negative Breast Cancer. Clin Cancer Res 2022; 28:2878-2889. [PMID: 35507014 PMCID: PMC9250637 DOI: 10.1158/1078-0432.ccr-21-3100] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/28/2022] [Accepted: 04/29/2022] [Indexed: 01/03/2023]
Abstract
PURPOSE Metaplastic breast cancer (MpBC) is a rare subtype of breast cancer that is commonly triple-negative and poorly responsive to neoadjuvant therapy in retrospective studies. EXPERIMENTAL DESIGN To better define clinical outcomes and correlates of response, we analyzed the rate of pathologic complete response (pCR) to neoadjuvant therapy, survival outcomes, and genomic and transcriptomic profiles of the pretreatment tumors in a prospective clinical trial (NCT02276443). A total of 211 patients with triple-negative breast cancer (TNBC), including 39 with MpBC, received doxorubicin-cyclophosphamide-based neoadjuvant therapy. RESULTS Although not meeting the threshold for statistical significance, patients with MpBCs were less likely to experience a pCR (23% vs. 40%; P = 0.07), had shorter event-free survival (29.4 vs. 32.2 months, P = 0.15), metastasis-free survival (30.3 vs. 32.4 months, P = 0.22); and overall survival (32.6 vs. 34.3 months, P = 0.21). This heterogeneity is mirrored in the molecular profiling. Mutations in PI3KCA (23% vs. 9%, P = 0.07) and its pathway (41% vs. 18%, P = 0.02) were frequently observed and enriched in MpBCs. The gene expression profiles of each histologically defined subtype were distinguishable and characterized by distinctive gene signatures. Among nonmetaplastic (non-Mp) TNBCs, 10% possessed a metaplastic-like gene expression signature and had pCR rates and survival outcomes similar to MpBC. CONCLUSIONS Further investigations will determine if metaplastic-like tumors should be treated more similarly to MpBC in the clinic. The 23% pCR rate in this study suggests that patients with MpBC should be considered for NAT. To improve this rate, a pathway analysis predicted enrichment of histone deacetylase (HDAC) and RTK/MAPK pathways in MpBC, which may serve as new targetable vulnerabilities.
Collapse
Affiliation(s)
- Clinton Yam
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nour Abuhadra
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ryan Sun
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beatriz E. Adrada
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing-Qing Ding
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason B. White
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elizabeth E. Ravenberg
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alyson R. Clayborn
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vicente Valero
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senthilkumar Damodaran
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Banu K. Arun
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer K. Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naoto T. Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rashmi K. Murthy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bora Lim
- Department of Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Luis Baez
- PROncology (Private Practice), University of Puerto Rico. San Juan, Puerto Rico
| | - Xiaoxian Li
- Department of Pathology & Laboratory Medicine, Winship Cancer Institute - Emory University Hospital, Atlanta, GA, USA
| | - Aman U. Buzdar
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alistair M. Thompson
- Division of Surgical Oncology, Section of Breast Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Elizabeth A. Mittendorf
- Division of Breast Surgery, Department of Surgery, Brigham and Women’s Hospital, Boston, MD, USA.,Breast Oncology Program, Dana-Farber/Brigham and Women’s Cancer Center, Boston, MA, USA
| | - Gaiane M. Rauch
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rosalind P. Candelaria
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lei Huo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stacy L. Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey T. Chang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, TX, USA
| |
Collapse
|
44
|
Abreu de Oliveira WA, El Laithy Y, Bruna A, Annibali D, Lluis F. Wnt Signaling in the Breast: From Development to Disease. Front Cell Dev Biol 2022; 10:884467. [PMID: 35663403 PMCID: PMC9157790 DOI: 10.3389/fcell.2022.884467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The Wnt cascade is a primordial developmental signaling pathway that plays a myriad of essential functions throughout development and adult homeostasis in virtually all animal species. Aberrant Wnt activity is implicated in embryonic and tissue morphogenesis defects, and several diseases, most notably cancer. The role of Wnt signaling in mammary gland development and breast cancer initiation, maintenance, and progression is far from being completely understood and is rather shrouded in controversy. In this review, we dissect the fundamental role of Wnt signaling in mammary gland development and adult homeostasis and explore how defects in its tightly regulated and intricated molecular network are interlinked with cancer, with a focus on the breast.
Collapse
Affiliation(s)
- Willy Antoni Abreu de Oliveira
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| | - Youssef El Laithy
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Alejandra Bruna
- Centre for Paediatric Oncology Experimental Medicine, Centre for Cancer Evolution, Molecular Pathology Division, London, United Kingdom
| | - Daniela Annibali
- Department of Oncology, Gynecological Oncology Laboratory, Leuven Cancer Institute (LKI), KU Leuven, Leuven, Belgium
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
- *Correspondence: Willy Antoni Abreu de Oliveira, ; Frederic Lluis,
| |
Collapse
|
45
|
Comprehensive characterization of pre- and post-treatment samples of breast cancer reveal potential mechanisms of chemotherapy resistance. NPJ Breast Cancer 2022; 8:60. [PMID: 35523804 PMCID: PMC9076915 DOI: 10.1038/s41523-022-00428-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/12/2022] [Indexed: 12/23/2022] Open
Abstract
When locally advanced breast cancer is treated with neoadjuvant chemotherapy, the recurrence risk is significantly higher if no complete pathologic response is achieved. Identification of the underlying resistance mechanisms is essential to select treatments with maximal efficacy and minimal toxicity. Here we employed gene expression profiles derived from 317 HER2-negative treatment-naïve breast cancer biopsies of patients who underwent neoadjuvant chemotherapy, deep whole exome, and RNA-sequencing profiles of 22 matched pre- and post-treatment tumors, and treatment outcome data to identify biomarkers of response and resistance mechanisms. Molecular profiling of treatment-naïve breast cancer samples revealed that expression levels of proliferation, immune response, and extracellular matrix (ECM) organization combined predict response to chemotherapy. Triple negative patients with high proliferation, high immune response and low ECM expression had a significantly better treatment response and survival benefit (HR 0.29, 95% CI 0.10–0.85; p = 0.02), while in ER+ patients the opposite was seen (HR 4.73, 95% CI 1.51–14.8; p = 0.008). The characterization of paired pre-and post-treatment samples revealed that aberrations of known cancer genes were either only present in the pre-treatment sample (CDKN1B) or in the post-treatment sample (TP53, APC, CTNNB1). Proliferation-associated genes were frequently down-regulated in post-treatment ER+ tumors, but not in triple negative tumors. Genes involved in ECM were upregulated in the majority of post-chemotherapy samples. Genomic and transcriptomic differences between pre- and post-chemotherapy samples are common and may reveal potential mechanisms of therapy resistance. Our results show a wide range of distinct, but related mechanisms, with a prominent role for proliferation- and ECM-related genes.
Collapse
|
46
|
Chaudhuri A, Kumar DN, Dehari D, Singh S, Kumar P, Bolla PK, Kumar D, Agrawal AK. Emergence of Nanotechnology as a Powerful Cavalry against Triple-Negative Breast Cancer (TNBC). Pharmaceuticals (Basel) 2022; 15:542. [PMID: 35631368 PMCID: PMC9143332 DOI: 10.3390/ph15050542] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is considered one of the un-manageable types of breast cancer, involving devoid of estrogen, progesterone, and human epidermal growth factor receptor 2 (HER 2) receptors. Due to their ability of recurrence and metastasis, the management of TNBC remains a mainstay challenge, despite the advancements in cancer therapies. Conventional chemotherapy remains the only treatment regimen against TNBC and suffers several limitations such as low bioavailability, systemic toxicity, less targetability, and multi-drug resistance. Although various targeted therapies have been introduced to manage the hardship of TNBC, they still experience certain limitations associated with the survival benefits. The current research thus aimed at developing and improving the strategies for effective therapy against TNBC. Such strategies involved the emergence of nanoparticles. Nanoparticles are designated as nanocavalries, loaded with various agents (drugs, genes, etc.) to battle the progression and metastasis of TNBC along with overcoming the limitations experienced by conventional chemotherapy and targeted therapy. This article documents the treatment regimens of TNBC along with their efficacy towards different subtypes of TNBC, and the various nanotechnologies employed to increase the therapeutic outcome of FDA-approved drug regimens.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Deepa Dehari
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Sanjay Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
- Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Pradeep Kumar
- Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA;
| | - Dinesh Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi 221005, India; (A.C.); (D.N.K.); (D.D.); (S.S.); (D.K.)
| |
Collapse
|
47
|
The Expression of Signaling Genes in Breast Cancer Cells. BIOLOGY 2022; 11:biology11040555. [PMID: 35453754 PMCID: PMC9025738 DOI: 10.3390/biology11040555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary The aim of the study was to investigate the effect of a drug for cancer—paclitaxel—on the expression of genes encoding the signaling factors in breast cancer cells outside organisms. The tested cells were harvested from the mammary glands of 36 women with breast cancer. The microarray technology —the carrier with applied DNA samples—was employed for the identification of gene expression. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cell by increasing the expression of the genes encoding signaling proteins. This is the molecule of intercellular communication. The analysis of the results suggests that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with higher cytotoxicity and this had a negative effect on the tested tumor cells. Abstract The aim of the study was to investigate the effect of paclitaxel on the expression of genes encoding signaling factors in breast cancer cells in in vitro conditions after incubation with the said chemotherapeutic. The tested cells were harvested from the mammary glands of 36 patients with early breast cancer. The microarray technology was employed for the identification of gene expression. For this purpose, mRNA isolated from tumor cells was used. A significant effect of paclitaxel on the genome of breast cancer cells was confirmed. Paclitaxel changed the functions of cancer cells by increasing the expression of most genes encoding signaling proteins and receptors. The analysis of the results suggested that this cytostatic agent produces a beneficial therapeutic effect at a lower dose (60 ng/mL). In contrast, a high dose of paclitaxel (300 ng/mL) was associated with a high cytotoxicity.
Collapse
|
48
|
Yurchenko AA, Pop OT, Ighilahriz M, Padioleau I, Rajabi F, Sharpe HJ, Poulalhon N, Dreno B, Khammari A, Delord M, Alberti A, Soufir N, Battistella M, Mourah S, Bouquet F, Savina A, Besse A, Mendez-Lopez M, Grange F, Monestier S, Mortier L, Meyer N, Dutriaux C, Robert C, Saiag P, Herms F, Lambert J, de Sauvage FJ, Dumaz N, Flatz L, Basset-Seguin N, Nikolaev SI. Frequency and Genomic Aspects of Intrinsic Resistance to Vismodegib in Locally Advanced Basal Cell Carcinoma. Clin Cancer Res 2022; 28:1422-1432. [PMID: 35078858 PMCID: PMC9365352 DOI: 10.1158/1078-0432.ccr-21-3764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Vismodegib is approved for the treatment of locally advanced basal cell carcinoma (laBCC), but some cases demonstrate intrinsic resistance (IR) to the drug. We sought to assess the frequency of IR to vismodegib in laBCC and its underlying genomic mechanisms. EXPERIMENTAL DESIGN Response to vismodegib was evaluated in a cohort of 148 laBCC patients. Comprehensive genomic and transcriptomic profiling was performed in a subset of five intrinsically resistant BCC (IR-BCC). RESULTS We identified that IR-BCC represents 6.1% of laBCC in the studied cohort. Prior treatment with chemotherapy was associated with IR. Genetic events that were previously associated with acquired resistance (AR) in BCC or medulloblastoma were observed in three out of five IR-BCC. However, IR-BCCs were distinct by highly rearranged polyploid genomes. Functional analyses identified hyperactivation of the HIPPO-YAP and WNT pathways at RNA and protein levels in IR-BCC. In vitro assay on the BCC cell line further confirmed that YAP1 overexpression increases the cell proliferation rate. CONCLUSIONS IR to vismodegib is a rare event in laBCC. IR-BCCs frequently harbor resistance mutations in the Hh pathway, but also are characterized by hyperactivation of the HIPPO-YAP and WNT pathways.
Collapse
Affiliation(s)
- Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Oltin T. Pop
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Ismael Padioleau
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Fatemeh Rajabi
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | | - Nicolas Poulalhon
- Service de dermatologie, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Brigitte Dreno
- Department of Dermato-Oncology, CHU Nantes, Nantes Université, CIC 1413, Inserm UMR 1302/EMR6001 INCIT, F-44000 Nantes, France
| | - Amir Khammari
- Department of Dermato-Oncology, CHU Nantes, Nantes Université, CIC 1413, Inserm UMR 1302/EMR6001 INCIT, F-44000 Nantes, France
| | - Marc Delord
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Department of Population Health Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | | | - Maxime Battistella
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service d'anatomie pathologique, Hôpital Saint-Louis, Claude Vellefaux, Paris, France
| | - Samia Mourah
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Département de Génomique des Tumeurs Solides, Hôpital Saint-Louis, Claude Vellefaux, Paris, France
| | | | | | - Andrej Besse
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Max Mendez-Lopez
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Florent Grange
- Service de dermatologie, CHU Reims, Rue du general Koenig, Reims, France
- Service de Dermatologie, centre hospitalier de Valence, Valence, France
| | | | - Laurent Mortier
- Service de dermatologie, CHU Lille, Clin Dermato Hop Huriez, Rue Michel Polonovski, Lille, France
| | - Nicolas Meyer
- Service de dermatologie, Institut Univeristaire du Cancer et CHU de Toulouse, Hôpital Larrey, Toulouse, France
| | | | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Medical Oncology, Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, APHP, and EA 4340 “Biomarkers in Cancerology and Hemato-oncology,” UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Florian Herms
- Service de dermatologie, Hôpital Saint-Louis, Paris, France
| | - Jerome Lambert
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, Paris, France
| | | | | | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Nicole Basset-Seguin
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service de dermatologie, Hôpital Saint-Louis, Paris, France
| | - Sergey I. Nikolaev
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
49
|
Heynen GJJE, Lisek K, Vogel R, Wulf-Goldenberg A, Alcaniz J, Montaudon E, Marangoni E, Birchmeier W. Targeting SHP2 phosphatase in breast cancer overcomes RTK-mediated resistance to PI3K inhibitors. Breast Cancer Res 2022; 24:23. [PMID: 35365185 PMCID: PMC8974145 DOI: 10.1186/s13058-022-01521-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background PI3K signaling is frequently activated in breast cancer and is targeted by PI3K inhibitors. However, resistance of tumor cells to PI3K inhibition, often mediated by activated receptor tyrosine kinases, is commonly observed and reduces the potency of PI3K inhibitors. Therefore, new treatment strategies to overcome resistance to PI3K inhibitors are urgently needed to boost their efficacy. The phosphatase SHP2, which plays a crucial role in mediating signal transduction between receptor tyrosine kinases and both the PI3K and MAPK pathways, is a potential target for combination treatment. Methods We tested combinations of PI3K and SHP2 inhibitors in several experimental breast cancer models that are resistant to PI3K inhibition. Using cell culturing, biochemical and genetic approaches, we evaluated tumor cell proliferation and signaling output in cells treated with PI3K and SHP2 inhibitors. Results Combination treatment with PI3K and SHP2 inhibitors counteracted both acquired and intrinsic breast cancer cell resistance to PI3K inhibition that is mediated by activated receptor tyrosine kinases. Dual PI3K and SHP2 inhibition blocked proliferation and led to sustained inactivation of PI3K and MAPK signaling, where resistant cells rapidly re-activated these pathways upon PI3K inhibitor monotreatment. In addition, we demonstrate that overexpression of SHP2 induced resistance to PI3K inhibition, and that SHP2 was frequently activated during the development of PI3K inhibitor resistance after prolonged treatment of sensitive cells. Conclusions Our results highlight the importance of SHP2 as a player in resistance to PI3K inhibitors. Combination treatment with PI3K and SHP2 inhibitors could pave the way for significant improvements in therapies for breast cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01521-3.
Collapse
Affiliation(s)
- Guus J J E Heynen
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| | - Kamil Lisek
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Regina Vogel
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Annika Wulf-Goldenberg
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Joshua Alcaniz
- Experimental and Pharmacological Oncology (EPO), Campus Berlin-Buch, Building 82, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Elodie Montaudon
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Elisabetta Marangoni
- Preclinical Investigation Laboratory, Institut Curie, 20 Rue d'Ulm, 75248, Paris, France
| | - Walter Birchmeier
- Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Campus Berlin-Buch, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| |
Collapse
|
50
|
Kombiyil S, Sivasithamparam ND. In Vitro Anti-cancer Effect of Crataegus oxyacantha Berry Extract on Hormone Receptor Positive and Triple Negative Breast Cancers via Regulation of Canonical Wnt Signaling Pathway. Appl Biochem Biotechnol 2022; 195:2687-2708. [PMID: 35262883 DOI: 10.1007/s12010-021-03724-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/08/2021] [Indexed: 11/29/2022]
Abstract
Breast cancer treatment strategy depends mainly on the receptor status. Our aim was to identify a herbal preparation, effective against breast cancer, irrespective of hormone sensitivity, and to understand its molecular mechanism. The rich antioxidant composition of hawthorn (Crataegus oxyacantha) makes it a promising anti-cancer drug candidate. Polyphenol-rich methanolic extract of C. oxyacantha berry (M.Co) was found to be cytotoxic on hormone receptor positive (MCF-7) and triple negative (MDA-MB-231) breast cancer cell lines, at a dose (75 μg/ml) safe on normal cells. It could effectively inhibit tumor cell proliferation and arrest cell cycle at G1/S transition in both cell lines. Molecular targets were selected from different levels of canonical Wnt signaling pathway (such as autocrine and antagonistic ligands, receptor, effector, cytoplasmic components, downstream targets, and pathway antagonist), since they are frequently found dysregulated in all breast cancers and their aberrant activation is associated with cancer stem cell expansion. M.Co could significantly downregulate the expression of Wnt pathway agonists and upregulate that of Wnt antagonists at transcriptional and translational levels, in both cell lines. To conclude, C. oxyacantha berry extract is effective against breast cancer irrespective of its hormone dependency, and cancer growth inhibition at stem cell level can be expected.
Collapse
Affiliation(s)
- Salini Kombiyil
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, 600025, India
| | | |
Collapse
|