1
|
Margalit S, Tulpová Z, Michaeli Y, Zur T, Deek J, Louzoun-Zada S, Nifker G, Grunwald A, Scher Y, Schütz L, Weinhold E, Gnatek Y, Omer D, Dekel B, Friedman E, Ebenstein Y. Optical genome and epigenome mapping of clear cell renal cell carcinoma. NAR Cancer 2025; 7:zcaf008. [PMID: 40061565 PMCID: PMC11886815 DOI: 10.1093/narcan/zcaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
Collapse
Affiliation(s)
- Sapir Margalit
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpová
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Institute of Experimental Botany of the Czech Academy of Sciences, 77900, Olomouc, Czech Republic
| | - Yael Michaeli
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Tahir Detinis Zur
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Jasline Deek
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Sivan Louzoun-Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Gil Nifker
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Assaf Grunwald
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yuval Scher
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Leonie Schütz
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Elmar Weinhold
- Institute of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Yehudit Gnatek
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Dorit Omer
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Benjamin Dekel
- Pediatric Stem Cell Research Institute, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- Pediatric Nephrology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, 52621 Ramat Gan, Israel
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Eitan Friedman
- School of Medicine, Faculty of Medical and Health Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, The Danek Gertner Institute of Human Genetics, Sheba Medical Center, 52621 Ramat Gan, Israel
| | - Yuval Ebenstein
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
2
|
Goto T, Kibe Y, Oishi T, Deguchi S, Motomura K, Mitsuya K, Serizawa M, Nagashima T, Ohshima K, Sugino T, Urakami K, Akiyama Y, Yamaguchi K. Intracranial Hybrid Neurofibroma/Schwannoma Arising From the Olfactory Groove: A Report of an Extremely Rare Case and Review of the Literature. Cureus 2025; 17:e80941. [PMID: 40255822 PMCID: PMC12009511 DOI: 10.7759/cureus.80941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Hybrid nerve sheath tumors (HNSTs) are rare peripheral nerve sheath tumors that combine the features of schwannomas, neurofibromas, and perineuriomas. Intracranial HNSTs are extremely rare. Herein, we report the first case of an intracranial hybrid neurofibroma/schwannoma arising from the olfactory groove. A 62-year-old woman presented with right-sided hemiparesis and a gait disturbance. Magnetic resonance imaging (MRI) revealed a 45×50 mm extra-axial mass in the left anterior cranial fossa, suggestive of a meningioma or schwannoma. The patient underwent bifrontal craniotomy with complete tumor removal. Histopathological and immunohistochemical studies confirmed that the tumor consisted of two components, a neurofibroma and a schwannoma, resulting in the diagnosis of a hybrid neurofibroma/schwannoma. Whole-genome sequencing of tumor DNA revealed somatic mutations in KMT2A and trisomies of chromosomes 5 and 14q. No alterations were observed in NF1, NF2, or chromosome 22, and no germline mutations were identified. These results are not consistent with those of previously reported peripheral HNSTs, suggesting that the molecular biology of intracranial HNSTs may be different from that of peripheral HNSTs. The patient was discharged with no neurological deficits, and no recurrent findings were observed on follow-up MRI after one year. To our knowledge, this is the first reported case of an olfactory groove HNST. We highlight the importance of further studies to elucidate its pathogenesis and genetic underpinnings.
Collapse
Affiliation(s)
- Tomoya Goto
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi, JPN
| | - Yuji Kibe
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi, JPN
| | - Takuma Oishi
- Division of Pathology, Shizuoka Cancer Center Hospital, Nagaizumi, JPN
| | - Shoichi Deguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, JPN
| | - Kazuya Motomura
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi, JPN
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, JPN
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Nagaizumi, JPN
| | - Masakuni Serizawa
- Division of Drug Discovery and Development, Shizuoka Cancer Center Research Institute, Nagaizumi, JPN
| | - Takeshi Nagashima
- Division of Cancer Diagnostics Research, Shizuoka Cancer Center Research Institute, Nagaizumi, JPN
- Division of Oncology, SRL Inc., Tokyo, JPN
| | - Keiichi Ohshima
- Division of Drug Discovery and Development, Shizuoka Cancer Center Research Institute, Nagaizumi, JPN
- Division of Medical Genetics, Shizuoka Cancer Center Research Institute, Nagaizumi, JPN
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Nagaizumi, JPN
| | - Kenichi Urakami
- Division of Cancer Diagnostics Research, Shizuoka Cancer Center Research Institute, Nagaizumi, JPN
| | - Yasuto Akiyama
- Division of Immunotherapy, Shizuoka Cancer Center Research Institute, Nagaizumi, JPN
| | - Ken Yamaguchi
- Office of the President Emeritus, Shizuoka Cancer Center, Nagaizumi, JPN
| |
Collapse
|
3
|
Horvat-Menih I, Khan AS, McLean MA, Duarte J, Serrao E, Ursprung S, Kaggie JD, Gill AB, Priest AN, Crispin-Ortuzar M, Warren AY, Welsh SJ, Mitchell TJ, Stewart GD, Gallagher FA. K-Means Clustering of Hyperpolarised 13C-MRI Identifies Intratumoral Perfusion/Metabolism Mismatch in Renal Cell Carcinoma as the Best Predictor of the Highest Grade. Cancers (Basel) 2025; 17:569. [PMID: 40002163 PMCID: PMC11852806 DOI: 10.3390/cancers17040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
Background: Early and accurate grading of renal cell carcinoma (RCC) improves patient risk stratification and has implications for clinical management and mortality. However, current diagnostic approaches using imaging and renal mass biopsy have limited specificity and may lead to undergrading. Methods: This study explored the use of hyperpolarised [1-13C]pyruvate MRI (HP 13C-MRI) to identify the most aggressive areas within the tumour of patients with clear cell renal cell carcinoma (ccRCC) as a method to guide biopsy targeting and to reduce undergrading. Six patients with ccRCC underwent presurgical HP 13C-MRI and conventional contrast-enhanced MRI. From the imaging data, three k-means clusters were computed by combining the kPL as a marker of metabolic activity, and the 13C-pyruvate signal-to-noise ratio (SNRPyr) as a perfusion surrogate. The combined clusters were compared to those derived from individual parameters and to those derived from the percentage of enhancement on the nephrographic phase (%NG). The diagnostic performance of each cluster was assessed based on its ability to predict the highest histological tumour grade in postsurgical tissue samples. The postsurgical tissue samples underwent immunohistochemical staining for the pyruvate transporter (monocarboxylate transporter 1, MCT1), as well as RNA and whole-exome sequencing. Results: The clustering approach combining SNRPyr and kPL demonstrated the best performance for predicting the highest tumour grade: specificity 85%; sensitivity 64%; positive predictive value 82%; and negative predictive value 68%. Epithelial MCT1 was identified as the major determinant of the HP 13C-MRI signal. The perfusion/metabolism mismatch cluster showed an increased expression of metabolic genes and markers of aggressiveness. Conclusions: This study demonstrates the potential of using HP 13C-MRI-derived metabolic clusters to identify intratumoral variations in tumour grade with high specificity. This work supports the use of metabolic imaging to guide biopsies to the most aggressive tumour regions and could potentially reduce sampling error.
Collapse
Affiliation(s)
- Ines Horvat-Menih
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Alixander S. Khan
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Mary A. McLean
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Joao Duarte
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Eva Serrao
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Joshua D. Kaggie
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| | - Andrew B. Gill
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
- Department of Radiology, Royal Papworth Hospitals NHS Foundation Trust, Cambridge CB2 0AY, UK
| | - Andrew N. Priest
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
- Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | | | - Anne Y. Warren
- Department of Pathology, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Sarah J. Welsh
- Pinto Medical Consultancy, Cart House 2 Copley Hill Business Park, Cambridge CB22 3GN, UK;
| | - Thomas J. Mitchell
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; (T.J.M.); (G.D.S.)
| | - Grant D. Stewart
- Department of Surgery, University of Cambridge, Cambridge CB2 0QQ, UK; (T.J.M.); (G.D.S.)
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge CB2 0QQ, UK; (I.H.-M.); (A.S.K.); (M.A.M.); (J.D.); (E.S.); (S.U.); (J.D.K.); (A.B.G.); (A.N.P.)
| |
Collapse
|
4
|
Lombardi O, Li R, Jabbar F, Evans H, Halim S, Lima JDCC, Browning L, Byrne HM, Choudhry H, Ratcliffe PJ, Mole DR. Conserved patterns of transcriptional dysregulation, heterogeneity, and cell states in clear cell kidney cancer. Cell Rep 2025; 44:115169. [PMID: 39792555 DOI: 10.1016/j.celrep.2024.115169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/13/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
Clear cell kidney cancers are characterized both by conserved oncogenic driver events and by marked intratumor genetic and phenotypic heterogeneity, which help drive tumor progression, metastasis, and resistance to therapy. How these are reflected in transcriptional programs within the cancer and stromal cell components remains an important question with the potential to drive novel therapeutic approaches to treating cancer. To better understand these programs, we perform single-cell transcriptomics on 75 multi-regional biopsies from kidney tumors and normal kidney. We identify conserved patterns of transcriptional dysregulation and their upstream regulators within the tumor and associated vasculature. We describe recurrent subclonal transcriptional consequences of Chr14q loss linked to metastatic potential. We identify prognostically significant conserved patterns of intratumor transcriptional heterogeneity. These reflect co-existing cell states found in both cancer cells and normal kidney cells, indicating that rather than arising from genetic heterogeneity they are a consequence of lineage plasticity.
Collapse
Affiliation(s)
- Olivia Lombardi
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Ran Li
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Faiz Jabbar
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Hannah Evans
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Silvia Halim
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Joanna D C C Lima
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK; Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Headington, Oxford OX3 9DU, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK; Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ, UK
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Center of Innovation in Personalized Medicine, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah 3270, Saudi Arabia
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research, University of Oxford, Old Road Campus, Headington, Oxford OX3 7DQ, UK; The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David R Mole
- NDM Research Building, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK.
| |
Collapse
|
5
|
Dutta D, Sen A, Satagopan JM. Identifying genes associated with disease outcomes using joint sparse canonical correlation analysis-An application in renal clear cell carcinoma. Genet Epidemiol 2024; 48:414-432. [PMID: 38751238 PMCID: PMC11589067 DOI: 10.1002/gepi.22566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 11/27/2024]
Abstract
Somatic changes like copy number aberrations (CNAs) and epigenetic alterations like methylation have pivotal effects on disease outcomes and prognosis in cancer, by regulating gene expressions, that drive critical biological processes. To identify potential biomarkers and molecular targets and understand how they impact disease outcomes, it is important to identify key groups of CNAs, the associated methylation, and the gene expressions they impact, through a joint integrative analysis. Here, we propose a novel analysis pipeline, the joint sparse canonical correlation analysis (jsCCA), an extension of sCCA, to effectively identify an ensemble of CNAs, methylation sites and gene (expression) components in the context of disease endpoints, especially tumor characteristics. Our approach detects potentially orthogonal gene components that are highly correlated with sets of methylation sites which in turn are correlated with sets of CNA sites. It then identifies the genes within these components that are associated with the outcome. Further, we aggregate the effect of each gene expression set on tumor stage by constructing "gene component scores" and test its interaction with traditional risk factors. Analyzing clinical and genomic data on 515 renal clear cell carcinoma (ccRCC) patients from the TCGA-KIRC, we found eight gene components to be associated with methylation sites, regulated by groups of proximally located CNA sites. Association analysis with tumor stage at diagnosis identified a novel association of expression of ASAH1 gene trans-regulated by methylation of several genes including SIX5 and by CNAs in the 10q25 region including TCF7L2. Further analysis to quantify the overall effect of gene sets on tumor stage, revealed that two of the eight gene components have significant interaction with smoking in relation to tumor stage. These gene components represent distinct biological functions including immune function, inflammatory responses, and hypoxia-regulated pathways. Our findings suggest that jsCCA analysis can identify interpretable and important genes, regulatory structures, and clinically consequential pathways. Such methods are warranted for comprehensive analysis of multimodal data especially in cancer genomics.
Collapse
Affiliation(s)
- Diptavo Dutta
- Integrative Tumor Epidemiology Branch, Division of Cancer Epidemiology and GeneticsNational Cancer InstituteRockvilleUSA
| | - Ananda Sen
- Department of BiostatisticsUniversity of MichiganAnn ArborUSA
- Department of Family MedicineUniversity of MichiganAnn ArborUSA
| | - Jaya M. Satagopan
- Department of Biostatistics and EpidemiologyRutgers School of Public HealthPiscatawayUSA
| |
Collapse
|
6
|
Liao C, Hu L, Zhang Q. Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma. Nat Rev Urol 2024; 21:662-675. [PMID: 38698165 DOI: 10.1038/s41585-024-00876-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.
Collapse
Affiliation(s)
- Chengheng Liao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Lianxin Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Qing Zhang
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
7
|
Lu Y, Chen W, Xuan Y, Li X, Wu S, Wang H, Guo T, Wang C, Tian S, Li H, Lai D, Zhao W, Huang X, Zhao X, Wang B, Zhang X, Li H, Huang Y, Ma X. ATF4/NUPR1 axis promotes cancer cell survival and mediates immunosuppression in clear cell renal cell carcinoma. Discov Oncol 2024; 15:607. [PMID: 39480570 PMCID: PMC11528094 DOI: 10.1007/s12672-024-01485-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Cancer cells encounter unavoidable stress during tumor growth. The stress-induced transcription factor, activating transcription factor 4 (ATF4), has been reported to upregulate various adaptive genes involved in salvage pathways to alleviate stress and promote tumor progression. However, this effect is unknown in clear cell renal cell carcinoma (ccRCC). In this study, we found that ATF4 expression was remarkably upregulated in tumor tissues and associated with poor ccRCC outcomes. ATF4 depletion significantly impaired ccRCC cell proliferation, migration, and invasion in vitro and in vivo by inhibiting the AKT/mTOR and epithelial-mesenchymal transition (EMT)-related signaling pathway. RNA sequencing and functional studies identified nuclear protein 1 (NUPR1) as a key downstream target of ATF4 for repressing ferroptosis and promoting ccRCC cell survival. In addition, targeting ATF4 or pharmacological inhibition using NUPR1 inhibitor ZZW115 promoted antitumor immunity in syngeneic graft mouse models, represented by increased infiltration of CD4+ and CD8+ T cells. Furthermore, ZZW115 could improve the response to the PD-1 immune checkpoint blockade. The results demonstrate that the ATF4/NUPR1 signaling axis promotes ccRCC survival and facilitates tumor-mediated immunosuppression, providing a set of potential targets and prognostic indicators for ccRCC patients.
Collapse
Affiliation(s)
- Yongliang Lu
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Weihao Chen
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Yundong Xuan
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Xiubin Li
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Shengpan Wu
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Hanfeng Wang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Tao Guo
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Chenfeng Wang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shuo Tian
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Huaikang Li
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Dong Lai
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Wenlei Zhao
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xing Huang
- People's Liberation Army Postgraduate Medical School, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xupeng Zhao
- School of Medicine, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Baojun Wang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Xu Zhang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China
| | - Hongzhao Li
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Yan Huang
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| | - Xin Ma
- State Key Laboratory of Kidney Diseases, Senior Department of Urology, The Third Medical Center of Chinese PLA General Hospital, Yongding Road 69, Haidian District, Beijing, 100039, China.
| |
Collapse
|
8
|
Vargova D, Kolková Z, Dargaj J, Bris L, Luptak J, Dankova Z, Franova S, Svihra J, Slávik P, Sutovska M. Analysis of HIF-1α expression and genetic polymorphisms in human clear cell renal cell carcinoma. Pathol Oncol Res 2024; 29:1611444. [PMID: 38273861 PMCID: PMC10808674 DOI: 10.3389/pore.2023.1611444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
Introduction: Clear cell renal cell carcinoma (ccRCC) is mostly diagnosed incidentally and has relatively high recurrence rates. Alterations in VHL/HIF and mTOR pathways are commonly present in ccRCC. The present study attempted to identify potential diagnostic markers at the biochemical and molecular level. Methods: In total, 54 subjects (36 patients with ccRCC and 18 cancer-free controls) were enrolled. ELISA was used to measure the levels of HIF-1α in the tumor and healthy kidney tissue. The association between five selected SNPs (rs779805, rs11549465, rs2057482, rs2295080 and rs701848) located in genes of pathologically relevant pathways (VHL/HIF and mTOR) and the risk of ccRCC in the Slovak cohort was studied using real-time PCR. Results: Significant differences in HIF-1α tissue levels were observed between the tumor and healthy kidney tissue (p < 0.001). In the majority (69%) of cases, the levels of HIF-1α were higher in the kidney than in the tumor. Furthermore, the concentration of HIF-1α in the tumor showed a significant positive correlation with CCL3 and IL-1β (p (R2) 0.007 (0.47); p (R2) 0.011 (0.38). No relationship between intratumoral levels of HIF-1α and clinical tumor characteristics was observed. Rs11549465, rs2057482 in the HIF1A gene did not correlate with the expression of HIF-1α either in the tumor or in the normal kidney. None of the selected SNPs has influenced the susceptibility to ccRCC. Conclusion: More research is neccesary to elucidate the role of HIF-1α in the pathogenesis of ccRCC and the association between selected SNPs and susceptibility to this cancer.
Collapse
Affiliation(s)
- Daniela Vargova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Zuzana Kolková
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Dargaj
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Lukas Bris
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Jan Luptak
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Sona Franova
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Svihra
- Department of Urology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Pavol Slávik
- Department of Pathological Anatomy, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and University Hospital Martin, Martin, Slovakia
| | - Martina Sutovska
- Department of Pharmacology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
9
|
Fukagawa A, Hama N, Totoki Y, Nakamura H, Arai Y, Saito-Adachi M, Maeshima A, Matsui Y, Yachida S, Ushiku T, Shibata T. Genomic and epigenomic integrative subtypes of renal cell carcinoma in a Japanese cohort. Nat Commun 2023; 14:8383. [PMID: 38104198 PMCID: PMC10725467 DOI: 10.1038/s41467-023-44159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023] Open
Abstract
Renal cell carcinoma (RCC) comprises several histological types characterised by different genomic and epigenomic aberrations; however, the molecular pathogenesis of each type still requires further exploration. We perform whole-genome sequencing of 128 Japanese RCC cases of different histology to elucidate the significant somatic alterations and mutagenesis processes. We also perform transcriptomic and epigenomic sequencing to identify distinguishing features, including assay for transposase-accessible chromatin sequencing (ATAC-seq) and methyl sequencing. Genomic analysis reveals that the mutational signature differs among the histological types, suggesting that different carcinogenic factors drive each histology. From the ATAC-seq results, master transcription factors are identified for each histology. Furthermore, clear cell RCC is classified into three epi-subtypes, one of which expresses highly immune checkpoint molecules with frequent loss of chromosome 14q. These genomic and epigenomic features may lead to the development of effective therapeutic strategies for RCC.
Collapse
Affiliation(s)
- Akihiko Fukagawa
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Natsuko Hama
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiromi Nakamura
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Yasuhito Arai
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Mihoko Saito-Adachi
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Akiko Maeshima
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshiyuki Matsui
- Department of Urology, National Cancer Center Hospital, Tokyo, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan.
- Laboratory of Molecular Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
10
|
Liu Y, Wu G. The utilization of single-cell sequencing technology in investigating the immune microenvironment of ccRCC. Front Immunol 2023; 14:1276658. [PMID: 38090562 PMCID: PMC10715415 DOI: 10.3389/fimmu.2023.1276658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/18/2023] Open
Abstract
The growth and advancement of ccRCC are strongly associated with the presence of immune infiltration and the tumor microenvironment, comprising tumor cells, immune cells, stromal cells, vascular cells, myeloid-derived cells, and extracellular matrix (ECM). Nevertheless, as a result of the diverse and constantly evolving characteristics of the tumor microenvironment, prior advanced sequencing methods have frequently disregarded specific less prevalent cellular traits at varying intervals, thereby concealing their significance. The advancement and widespread use of single-cell sequencing technology enable us to comprehend the source of individual tumor cells and the characteristics of a greater number of individual cells. This, in turn, minimizes the impact of intercellular heterogeneity and temporal heterogeneity of the same cell on experimental outcomes. This review examines the attributes of the tumor microenvironment in ccRCC and provides an overview of the progress made in single-cell sequencing technology and its particular uses in the current focus of immune infiltration in ccRCC.
Collapse
Affiliation(s)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
Sellner F, Compérat E, Klimpfinger M. Genetic and Epigenetic Characteristics in Isolated Pancreatic Metastases of Clear-Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:16292. [PMID: 38003482 PMCID: PMC10671160 DOI: 10.3390/ijms242216292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/26/2023] Open
Abstract
Isolated pancreatic metastases of renal cell carcinoma (IsPMRCC) are a rare manifestation of metastatic, clear-cell renal cell carcinoma (RCC) in which distant metastases occur exclusively in the pancreas. In addition to the main symptom of the isolated occurrence of pancreatic metastases, the entity surprises with additional clinical peculiarities: (a) the unusually long interval of about 9 years between the primary RCC and the onset of pancreatic metastases; (b) multiple pancreatic metastases occurring in 36% of cases; (c) favourable treatment outcomes with a 75% 5-year survival rate; and (d) volume and growth-rate dependent risk factors generally accepted to be relevant for overall survival in metastatic surgery are insignificant in isPMRCC. The genetic and epigenetic causes of exclusive pancreatic involvement have not yet been investigated and are currently unknown. Conversely, according to the few available data in the literature, the following genetic and epigenetic peculiarities can already be identified as the cause of the protracted course: 1. high genetic stability of the tumour cell clones in both the primary tumour and the pancreatic metastases; 2. a low frequency of copy number variants associated with aggressiveness, such as 9p, 14q and 4q loss; 3. in the chromatin-modifying genes, a decreased rate of PAB1 (3%) and an increased rate of PBRM1 (77%) defects are seen, a profile associated with a favourable course; 4. an increased incidence of KDM5C mutations, which, in common with increased PBRM1 alterations, is also associated with a favourable outcome; and 5. angiogenetic biomarkers are increased in tumour tissue, while inflammatory biomarkers are decreased, which explains the good response to TKI therapy and lack of sensitivity to IT.
Collapse
Affiliation(s)
- Franz Sellner
- Department of General, Visceral and Vascular Surgery, Clinic Favoriten Vienna, Kaiser Franz Josef Hospital, 1100 Vienna, Austria
| | - Eva Compérat
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| | - Martin Klimpfinger
- Clinical Institute of Pathology, Medical University Vienna, 1090 Vienna, Austria
| |
Collapse
|
12
|
Elbeltagy M, Abbassy M. Neurofibromatosis type1, type 2, tuberous sclerosis and Von Hippel-Lindau disease. Childs Nerv Syst 2023; 39:2791-2806. [PMID: 37819506 DOI: 10.1007/s00381-023-06160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023]
Abstract
Neurocutaneous syndromes (also known as phakomatoses) are heterogenous group of disorders that involve derivatives of the neuroectoderm. Each disease has diagnostic and pathognomonic criteria, once identified, thorough clinical examination to the patient and the family members should be done. Magnetic resonance imaging (MRI) is used to study the pathognomonic findings withing the CNS (Evans et al. in Am J Med Genet A 152A:327-332, 2010). This chapter includes the 4 most common syndromes faced by neurosurgeons and neurologists; neurofibromatosis types 1 and 2, tuberous sclerosis and Von Hippel-Lindau disease. Each syndrome has specific genetic anomaly that involves a tumor suppressor gene and the loss of inhibition of specific pathways. The result is a spectrum of cutaneous manifestations and neoplasms.
Collapse
Affiliation(s)
- M Elbeltagy
- Department of Neurosurgery, Cairo University, 1 University Street, Giza Governorate, 12613, Egypt.
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt.
| | - M Abbassy
- Department of Neurosurgery, Children's Cancer Hospital Egypt, Sekat Hadid Al Mahger, Zeinhom, El Sayeda Zeinab, Cairo Governorate, 4260102, Egypt
- Department of Neurosurgery, Alexandria University, 22 El-Gaish Rd, Al Azaritah WA Ash Shatebi, Bab Sharqi, Alexandria Governorate, 5424041, Egypt
| |
Collapse
|
13
|
Kruk L, Mamtimin M, Braun A, Anders HJ, Andrassy J, Gudermann T, Mammadova-Bach E. Inflammatory Networks in Renal Cell Carcinoma. Cancers (Basel) 2023; 15:cancers15082212. [PMID: 37190141 DOI: 10.3390/cancers15082212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer-associated inflammation has been established as a hallmark feature of almost all solid cancers. Tumor-extrinsic and intrinsic signaling pathways regulate the process of cancer-associated inflammation. Tumor-extrinsic inflammation is triggered by many factors, including infection, obesity, autoimmune disorders, and exposure to toxic and radioactive substances. Intrinsic inflammation can be induced by genomic mutation, genome instability and epigenetic remodeling in cancer cells that promote immunosuppressive traits, inducing the recruitment and activation of inflammatory immune cells. In RCC, many cancer cell-intrinsic alterations are assembled, upregulating inflammatory pathways, which enhance chemokine release and neoantigen expression. Furthermore, immune cells activate the endothelium and induce metabolic shifts, thereby amplifying both the paracrine and autocrine inflammatory loops to promote RCC tumor growth and progression. Together with tumor-extrinsic inflammatory factors, tumor-intrinsic signaling pathways trigger a Janus-faced tumor microenvironment, thereby simultaneously promoting or inhibiting tumor growth. For therapeutic success, it is important to understand the pathomechanisms of cancer-associated inflammation, which promote cancer progression. In this review, we describe the molecular mechanisms of cancer-associated inflammation that influence cancer and immune cell functions, thereby increasing tumor malignancy and anti-cancer resistance. We also discuss the potential of anti-inflammatory treatments, which may provide clinical benefits in RCCs and possible avenues for therapy and future research.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Medina Mamtimin
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Joachim Andrassy
- Division of General, Visceral, Vascular and Transplant Surgery, Hospital of LMU, 81377 Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- German Center for Lung Research (DZL), 80336 Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilian-University, 80336 Munich, Germany
- Division of Nephrology, Department of Medicine IV, Hospital of the Ludwig-Maximilian-University, 80336 Munich, Germany
| |
Collapse
|
14
|
Quan Y, Dai J, Zhou S, Zhao L, Jin L, Long Y, Liu S, Hu Y, Liu Y, Zhao J, Ding Z. HIF2α-induced upregulation of RNASET2 promotes triglyceride synthesis and enhances cell migration in clear cell renal cell carcinoma. FEBS Open Bio 2023; 13:638-654. [PMID: 36728187 PMCID: PMC10068329 DOI: 10.1002/2211-5463.13570] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/06/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common malignant subtype of renal cell carcinoma, is characterized by the accumulation of lipid droplets in the cytoplasm. RNASET2 is a protein coding gene with a low expression level in ovarian cancers, but it is overexpressed in poorly differentiated neuroendocrine carcinomas. There is a correlation between RNASET2 upregulation and triglyceride expression levels in human serum but is unknown whether such an association is a factor contributing to lipid accumulation in ccRCC. Herein, we show that RNASET2 expression levels in ccRCC tissues and cell lines are significantly higher than those in both normal adjacent tissues and renal tubular epithelial cells. Furthermore, its upregulation is associated with increases in ccRCC malignancy and declines in patient survival. We also show that an association exists between increases in both cytoplasmic lipid accumulation and HIF-2α transcription factor upregulation, and increases in both RNASET2 and triglyceride expression levels in ccRCC tissues. In addition, DGAT1 and DGAT2, two key enzymes involved in triglyceride synthesis, are highly expressed in ccRCC tissues. By contrast, RNASET2 knockdown inhibited their expression levels and lowered lipid droplet accumulation, as well as suppressing in vitro cell proliferation, cell invasion, and migration. In conclusion, our data suggest HIF2α upregulates RNASET2 transcription in ccRCC cells, which promotes both the synthesis of triglycerides and ccRCC migration. As such, RNASET2 may have the potential as a biomarker or target for the diagnosis and treatment of ccRCC.
Collapse
Affiliation(s)
- Yanmei Quan
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Jun Dai
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Sian Zhou
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Lingyi Zhao
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Lixing Jin
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yijing Long
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Siwei Liu
- Department of Clinical Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yanqin Hu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Yue Liu
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| | - Juping Zhao
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Zhide Ding
- Department of Histology, Embryology, Genetics and Developmental Biology, Shanghai Key Laboratory for Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, China
| |
Collapse
|
15
|
Mierke CT. Physical and biological advances in endothelial cell-based engineered co-culture model systems. Semin Cell Dev Biol 2023; 147:58-69. [PMID: 36732105 DOI: 10.1016/j.semcdb.2023.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Scientific knowledge in the field of cell biology and mechanobiology heavily leans on cell-based in vitro experiments and models that favor the examination and comprehension of certain biological processes and occurrences across a variety of environments. Cell culture assays are an invaluable instrument for a vast spectrum of biomedical and biophysical investigations. The quality of experimental models in terms of simplicity, reproducibility, and combinability with other methods, and in particular the scale at which they depict cell fate in native tissues, is critical to advancing the knowledge of the comprehension of cell-cell and cell-matrix interactions in tissues and organs. Typically, in vitro models are centered on the experimental tinkering of mammalian cells, most often cultured as monolayers on planar, two-dimensional (2D) materials. Notwithstanding the significant advances and numerous findings that have been accomplished with flat biology models, their usefulness for generating further new biological understanding is constrained because the simple 2D setting does not reproduce the physiological response of cells in natural living tissues. In addition, the co-culture systems in a 2D stetting weakly mirror their natural environment of tissues and organs. Significant advances in 3D cell biology and matrix engineering have resulted in the creation and establishment of a new type of cell culture shapes that more accurately represents the in vivo microenvironment and allows cells and their interactions to be analyzed in a biomimetic approach. Contemporary biomedical and biophysical science has novel advances in technology that permit the design of more challenging and resilient in vitro models for tissue engineering, with a particular focus on scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips, which cover the purposes of co-cultures. Even these complex systems must be kept as simplified as possible in order to grasp a particular section of physiology too very precisely. In particular, it is highly appreciated that they bridge the space between conventional animal research and human (patho)physiology. In this review, the recent progress in 3D biomimetic culturation is presented with a special focus on co-cultures, with an emphasis on the technological building blocks and endothelium-based co-culture models in cancer research that are available for the development of more physiologically relevant in vitro models of human tissues under normal and diseased conditions. Through applications and samples of various physiological and disease models, it is possible to identify the frontiers and future engagement issues that will have to be tackled to integrate synthetic biomimetic culture systems far more successfully into biomedical and biophysical investigations.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, Leipzig, Germany.
| |
Collapse
|
16
|
Liu H, Li Y, Xiong J. The Role of Hypoxia-Inducible Factor-1 Alpha in Renal Disease. Molecules 2022; 27:molecules27217318. [PMID: 36364144 PMCID: PMC9657345 DOI: 10.3390/molecules27217318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
Abstract
Partial pressure of oxygen (pO2) in the kidney is maintained at a relatively stable level by a unique and complex functional interplay between renal blood flow, glomerular filtration rate (GFR), oxygen consumption, and arteriovenous oxygen shunting. The vulnerability of this interaction renders the kidney vulnerable to hypoxic injury, leading to different renal diseases. Hypoxia has long been recognized as an important factor in the pathogenesis of acute kidney injury (AKI), especially renal ischemia/reperfusion injury. Accumulating evidence suggests that hypoxia also plays an important role in the pathogenesis and progression of chronic kidney disease (CKD) and CKD-related complications, such as anemia, cardiovascular events, and sarcopenia. In addition, renal cancer is linked to the deregulation of hypoxia pathways. Renal cancer utilizes various molecular pathways to respond and adapt to changes in renal oxygenation. Particularly, hypoxia-inducible factor (HIF) (including HIF-1, 2, 3) has been shown to be activated in renal disease and plays a major role in the protective response to hypoxia. HIF-1 is a heterodimer that is composed of an oxygen-regulated HIF-1α subunit and a constitutively expressed HIF-1β subunit. In renal diseases, the critical characteristic of HIF-1α is protective, but it also has a negative effect, such as in sarcopenia. This review summarizes the mechanisms of HIF-1α regulation in renal disease.
Collapse
Affiliation(s)
| | | | - Jing Xiong
- Correspondence: ; Tel.: +86-027-8572-6713
| |
Collapse
|
17
|
Ohh M, Taber CC, Ferens FG, Tarade D. Hypoxia-inducible factor underlies von Hippel-Lindau disease stigmata. eLife 2022; 11:80774. [PMID: 36040300 PMCID: PMC9427099 DOI: 10.7554/elife.80774] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
von Hippel-Lindau (VHL) disease is a rare hereditary cancer syndrome that causes a predisposition to renal clear-cell carcinoma, hemangioblastoma, pheochromocytoma, and autosomal-recessive familial polycythemia. pVHL is the substrate conferring subunit of an E3 ubiquitin ligase complex that binds to the three hypoxia-inducible factor alpha subunits (HIF1-3α) for polyubiquitylation under conditions of normoxia, targeting them for immediate degradation by the proteasome. Certain mutations in pVHL have been determined to be causative of VHL disease through the disruption of HIFα degradation. However, it remains a focus of investigation and debate whether the disruption of HIFα degradation alone is sufficient to explain the complex genotype-phenotype relationship of VHL disease or whether the other lesser or yet characterized substrates and functions of pVHL impact the development of the VHL disease stigmata; the elucidation of which would have a significant ramification to the direction of research efforts and future management and care of VHL patients and for those manifesting sporadic counterparts of VHL disease. Here, we examine the current literature including the other emergent pseudohypoxic diseases and propose that the VHL disease-phenotypic spectrum could be explained solely by the varied disruption of HIFα signaling upon the loss or mutation in pVHL.
Collapse
Affiliation(s)
- Michael Ohh
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cassandra C Taber
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Fraser G Ferens
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Daniel Tarade
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Tamukong PK, Kuhlmann P, You S, Su S, Wang Y, Yoon S, Gong J, Figlin RA, Janes JL, Freedland SJ, Halabi S, Small EJ, Rini BI, Kim HL. Hypoxia-inducible factor pathway genes predict survival in metastatic clear cell renal cell carcinoma. Urol Oncol 2022; 40:495.e1-495.e10. [DOI: 10.1016/j.urolonc.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
|
19
|
Ravi VM, Will P, Kueckelhaus J, Sun N, Joseph K, Salié H, Vollmer L, Kuliesiute U, von Ehr J, Benotmane JK, Neidert N, Follo M, Scherer F, Goeldner JM, Behringer SP, Franco P, Khiat M, Zhang J, Hofmann UG, Fung C, Ricklefs FL, Lamszus K, Boerries M, Ku M, Beck J, Sankowski R, Schwabenland M, Prinz M, Schüller U, Killmer S, Bengsch B, Walch AK, Delev D, Schnell O, Heiland DH. Spatially resolved multi-omics deciphers bidirectional tumor-host interdependence in glioblastoma. Cancer Cell 2022; 40:639-655.e13. [PMID: 35700707 DOI: 10.1016/j.ccell.2022.05.009] [Citation(s) in RCA: 291] [Impact Index Per Article: 97.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/30/2021] [Accepted: 05/13/2022] [Indexed: 12/11/2022]
Abstract
Glioblastomas are malignant tumors of the central nervous system hallmarked by subclonal diversity and dynamic adaptation amid developmental hierarchies. The source of dynamic reorganization within the spatial context of these tumors remains elusive. Here, we characterized glioblastomas by spatially resolved transcriptomics, metabolomics, and proteomics. By deciphering regionally shared transcriptional programs across patients, we infer that glioblastoma is organized by spatial segregation of lineage states and adapts to inflammatory and/or metabolic stimuli, reminiscent of the reactive transformation in mature astrocytes. Integration of metabolic imaging and imaging mass cytometry uncovered locoregional tumor-host interdependence, resulting in spatially exclusive adaptive transcriptional programs. Inferring copy-number alterations emphasizes a spatially cohesive organization of subclones associated with reactive transcriptional programs, confirming that environmental stress gives rise to selection pressure. A model of glioblastoma stem cells implanted into human and rodent neocortical tissue mimicking various environments confirmed that transcriptional states originate from dynamic adaptation to various environments.
Collapse
Affiliation(s)
- Vidhya M Ravi
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Paulina Will
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jan Kueckelhaus
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kevin Joseph
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Henrike Salié
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center - University of Freiburg, Freiburg, Germany
| | - Lea Vollmer
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ugne Kuliesiute
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; The Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jasmin von Ehr
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jasim K Benotmane
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Nicolas Neidert
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Marie Follo
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Germany
| | - Florian Scherer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine I, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jonathan M Goeldner
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Simon P Behringer
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Pamela Franco
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Mohammed Khiat
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Junyi Zhang
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany
| | - Ulrich G Hofmann
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Neuroelectronic Systems, Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Fung
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franz L Ricklefs
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany; Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Hospital Eppendorf, Hamburg, Germany; Laboratory for Brain Tumor Biology, University Hospital Eppendorf, Hamburg, Germany
| | - Melanie Boerries
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Manching Ku
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, German
| | - Marius Schwabenland
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, German
| | - Marco Prinz
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany; Institute of Neuropathology, Medical Center - University of Freiburg, Freiburg, German; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ulrich Schüller
- Institute of Neuropathology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany; Research Institute Children's Cancer Center, Hamburg, Germany; Department of Pediatric Hematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Saskia Killmer
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center - University of Freiburg, Freiburg, Germany
| | - Bertram Bengsch
- Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, Medical Center - University of Freiburg, Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Axel K Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Delev
- Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany; Department of Neurosurgery, RWTH University of Aachen, Aachen, Germany
| | - Oliver Schnell
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Translational NeuroOncology Research Group, Medical Center - University of Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany; Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany; Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg (CCCF), Medical Center - University of Freiburg, Freiburg, Germany; German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany; Center of Advanced Surgical Tissue Analysis (CAST), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Lim AR, Vincent BG, Weaver AM, Rathmell WK. Sunitinib and Axitinib increase secretion and glycolytic activity of small extracellular vesicles in renal cell carcinoma. Cancer Gene Ther 2022; 29:683-696. [PMID: 34088993 PMCID: PMC8642495 DOI: 10.1038/s41417-021-00345-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) encompass a wide range of vesicles that are released by all cell types. They package protein, nucleic acids, metabolites, and other cargo that can be delivered to recipient cells and affect their phenotypes. However, little is known about how pharmaceutical agents can alter EV secretion, protein and metabolic cargo, and the active biological processes taking place in these vesicles. In this study, we isolated EVs from human renal cell carcinoma (RCC) cells treated with tyrosine kinase inhibitors (TKIs) Sunitinib and Axitinib. We found these TKIs increase the number of large (lEVs) and small extracellular vesicles (sEVs) secreted from RCC cells in a dose-dependent manner. In addition, quantitative proteomics revealed that metabolic proteins are enriched in sEVs secreted from Sunitinib-treated cells. In particular, the glucose transporter GLUT1 was enriched in sEVs purified from TKI-treated cells. These sEVs displayed increased glucose uptake and glycolytic metabolism compared to sEVs released from vehicle-treated cells. Overexpression of GLUT1 in RCC cells augmented GLUT1 levels in sEVs, which subsequently displayed higher glucose uptake and glycolytic activity. Together, these findings suggest that these TKIs alter metabolic cargo and activity in RCC sEVs.
Collapse
Affiliation(s)
- Aaron R Lim
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Benjamin G Vincent
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Hematology and Oncology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alissa M Weaver
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - W Kimryn Rathmell
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
21
|
Kroeger N, Lebacle C, Hein J, Rao PN, Nejati R, Wei S, Burchardt M, Drakaki A, Strother M, Kutikov A, Uzzo R, Pantuck AJ. Pathological and genetic markers improve recurrence prognostication with the University of California Los Angeles Integrated Staging System for patients with clear cell renal cell carcinoma. Eur J Cancer 2022; 168:68-76. [PMID: 35461012 DOI: 10.1016/j.ejca.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/18/2022]
Abstract
PURPOSE To elucidate which patients with clear cell renal cell carcinoma have the highest risk for disease relapse after curative nephrectomy is challenging but is acutely relevant in the era of approved adjuvant therapies. Pathological and genetic markers were used to improve the University of California Los Angeles Integrated Staging System (UISS) for the risk stratification and prognostication of recurrence free survival (RFS). PATIENTS AND METHODS Necrosis, sarcomatoid features, Rhabdoid features, chromosomal loss 9p, combined chromosomal loss 3p14q and microvascular invasion (MVI) were tested in univariable and multivariable analyses for their ability to improve the discriminatory ability of the UISS. RESULTS In the development cohort, during the median follow-up time of 43.4 months (±SD 54.1 months), 50/240 (21%) patients developed disease recurrence. MVI (HR: 2.22; p = 0.013) and the combined loss of chromosome 3p/14q (HR: 2.89; p = 0.004) demonstrated independent association with RFS and were used to improve the assignment to the UISS risk category. In the current UISS high-risk group, only 7/50 (14%) recurrence cases were correctly identified; while in the improved system, 23/50 (45%) were correctly prognosticated. The concordance index meaningfully improved from 0.55 to 0.68 to distinguish patients at intermediate risk versus high risk. Internal validation demonstrated a robust prognostication of RFS. In the external validation cohort, there was no case with disease recurrence in the low-risk group, and the mean RFS times were 13.2 (±1.8) and 8.2 (±0.8) years in the intermediate and high-risk groups, respectively. CONCLUSIONS Adding MVI and combined chromosomal loss3p/14q to the UISS improves the ability to define the patient group with clear cell renal cell carcinomawho are at the highest risk for disease relapse after surgical treatment.
Collapse
Affiliation(s)
- Nils Kroeger
- Institute of Urologic Oncology at the Department of Urology, David Geffen School of Medicine at University of California, Los Angeles, USA; Department of Urology, University of Greifswald, Germany.
| | - Cédric Lebacle
- Institute of Urologic Oncology at the Department of Urology, David Geffen School of Medicine at University of California, Los Angeles, USA; Department of Urology, University Hospital Bicetre, APHP, University Paris-Saclay, Le Kremlin Bicetre, France
| | - Justine Hein
- Department of Urology, Hospital Magdeburg, Germany
| | - P N Rao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, USA
| | - Reza Nejati
- Department of Pathology at the Fox Chase Cancer Center, Philadelphia, USA
| | - Shuanzeng Wei
- Department of Pathology at the Fox Chase Cancer Center, Philadelphia, USA
| | | | - Alexandra Drakaki
- Institute of Urologic Oncology at the Department of Urology, David Geffen School of Medicine at University of California, Los Angeles, USA; Department of Hematology and Oncology, David Geffen School of Medicine at University of California, Los Angeles, USA
| | | | | | - Robert Uzzo
- Department of Urology, Fox Chase Cancer Center, Philadelphia, USA
| | - Allan J Pantuck
- Institute of Urologic Oncology at the Department of Urology, David Geffen School of Medicine at University of California, Los Angeles, USA
| |
Collapse
|
22
|
Lin E, Zhu P, Ye C, Huang M, Liu X, Tian K, Tang Y, Zeng J, Cheng S, Liu J, Liu Y, Yu Y. Integrative Analysis of the Genomic and Immune Microenvironment Characteristics Associated With Clear Cell Renal Cell Carcinoma Progression: Implications for Prognosis and Immunotherapy. Front Immunol 2022; 13:830220. [PMID: 35677048 PMCID: PMC9168804 DOI: 10.3389/fimmu.2022.830220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/28/2022] [Indexed: 02/05/2023] Open
Abstract
Unlike early clear cell renal cell carcinoma (ccRCC), locally advanced and metastatic ccRCC present poor treatment outcomes and prognosis. As immune checkpoint inhibitors have achieved favorable results in the adjuvant treatment of metastatic ccRCC, we aimed to investigate the immunogenomic landscape during ccRCC progression and its potential impact on immunotherapy and prognosis. Using multi-omics and immunotherapy ccRCC datasets, an integrated analysis was performed to identify genomic alterations, immune microenvironment features, and related biological processes during ccRCC progression and evaluate their relevance to immunotherapy response and prognosis. We found that aggressive and metastatic ccRCC had higher proportions of genomic alterations, including SETD2 mutations, Del(14q), Del(9p), and higher immunosuppressive cellular and molecular infiltration levels. Of these, the Del(14q) might mediate immune escape in ccRCC via the VEGFA-VEGFR2 signaling pathway. Furthermore, immune-related pathways associated with ccRCC progression did not affect the immunotherapeutic response to ccRCC. Conversely, cell cycle pathways not only affected ccRCC progression and prognosis, but also were related to ccRCC immunotherapeutic response resistance. Overall, we described the immunogenomic characteristics of ccRCC progression and their correlations with immunotherapeutic response and prognosis, providing new insights into their prediction and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Enyu Lin
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Ping Zhu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Chujin Ye
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - ManLi Huang
- Department of Operating Room, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuechao Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiwen Tian
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Shantou University Medical College, Shantou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Shouyu Cheng
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Niu S, Liu K, Xu Y, Peng C, Yu Y, Huang Q, Wu S, Cui B, Huang Y, Ma X, Zhang X, Wang B. Genomic Landscape of Chinese Clear Cell Renal Cell Carcinoma Patients With Venous Tumor Thrombus Identifies Chromosome 9 and 14 Deletions and Related Immunosuppressive Microenvironment. Front Oncol 2021; 11:646338. [PMID: 34249685 PMCID: PMC8260842 DOI: 10.3389/fonc.2021.646338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 05/18/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) with venous tumor thrombus (VTT) is associated with a poor clinical outcome. Although several studies have examined the genomic features of ccRCC, the genetic profile of VTT along with its matched primary tumor has not been fully elucidated. MATERIALS AND METHODS Samples of VTT tissues and matched primary tumor tissues from ccRCC patients (n = 25), as well as primary tumor tissues from patients without VTT (n = 25) were collected and analyzed using whole-exome sequencing. Four additional ccRCC patients who were unfit for surgery were treated with an anti-programmed death receptor-1 (PD-1) monoclonal antibody (Toripalimab, 240 mg, Q3W, IV). RESULTS By comparing the primary kidney tumors from ccRCC patients with or without VTT, a relatively higher prevalence of BAP1 and KDM5C alterations were found in ccRCC patients with VTT, and these alterations were associated with worse overall survival in the kidney renal clear cell carcinoma (KIRC) database. Based on subclone analysis, VTT was predicted to primarily originate directly from the primary renal mass. A significantly higher prevalence of CELSR2 and TET2 alterations were identified in the VTTs compared with the matched primary tumors. An increased prevalence of DNA damage repair genes, especially those involved in homologous recombination repair and non-homologous end joining, was found in ccRCC patients with VTT. Notably, VTT was characterized by the increase incidence of copy number loss in the whole exome (p < 0.05), particularly in the chromosome 9 and 14 regions. Deletion of chromosome 9 and 14 was associated with worse survival, unfavorable clinical features, and the presence of an immunosuppressive microenvironment, which was characterized by higher infiltration of regulatory T cells, follicular helper T cells, and resting mast cells, but lower counts of resting CD4 memory T cells and CD8 positive T cells. A significantly lower count of CD4+ and CD8+ tumor-infiltrated lymphocytes was identified in the VTT samples comparing with matched primary tumor. Of note, three out of the four ccRCC patients with VTT in our cohort who were treated with the anti-PD-1 therapy exhibited remarkable remission in the renal mass but no notable shrinkage in the VTT mass. CONCLUSION Our study revealed the genetic profile of Chinese ccRCC patients with VTT, and identified multiple features associated with known poor outcomes, including gene alterations and copy number loss. The deletions in chromosomes 9 and 14, and the associated immunosuppressive microenvironment may indicate limited sensitivity to anti-PD-1/PD-L1 monotherapy in VTT.
Collapse
Affiliation(s)
- Shaoxi Niu
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Kan Liu
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Yong Xu
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Cheng Peng
- Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yao Yu
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Shengpan Wu
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Bo Cui
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Yan Huang
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Xin Ma
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Xu Zhang
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| | - Baojun Wang
- Department of Urology, The Third Medical Centre, Chinese PLA (People’s Liberation Army) General Hospital, Beijing, China
| |
Collapse
|
24
|
Kiyozawa D, Kohashi K, Takamatsu D, Yamamoto T, Eto M, Iwasaki T, Motoshita J, Shimokama T, Kinjo M, Oshiro Y, Yonemasu H, Oda Y. Morphological, immunohistochemical, and genomic analyses of papillary renal neoplasm with reverse polarity. Hum Pathol 2021; 112:48-58. [PMID: 33811832 DOI: 10.1016/j.humpath.2021.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 01/27/2023]
Abstract
Papillary renal neoplasm with reverse polarity (PRNRP) is a recently proposed entity of renal tumor. It shows a far better prognosis than papillary renal cell carcinoma (PRCC) and frequently has KRAS missense mutation. In this study, we compared 14 cases of PRNRP and 10 cases of PRCC type 1 (PRCC1) and type 2 (PRCC2) from clinical, morphological, immunohistochemical, and molecular biological perspectives. We subjected all PRNRP and PRCC cases to immunohistochemical analysis. Whole-exome sequencing using next-generation sequencing (NGS) was performed for six cases of PRNRP, three cases of PRCC1, and four cases of PRCC2. A search for KRAS gene mutation in the remaining eight cases of PRNRP was performed by polymerase chain reaction (PCR) sequencing. The results showed that all cases of PRNRP were pT1N0M0, none of which followed a course of recurrence or tumor-related death. Immunohistochemical analysis revealed diffuse staining of CK7, EMA, PAX8, and GATA3 but weak or negative staining of CD10, CD15, and AMACR in PRNRP. By NGS and PCR, KRAS missense mutation was detected in 11 of 14 PRNRP cases, although pathogenic KRAS mutation was not observed in PRCC1 and PRCC2. NGS analysis revealed less tumor mutation burden in PRNRP than in PRCC. PRNRP also showed no specific chromosomal copy number abnormalities, including gains of 7 and 17. In conclusion, we propose that PRNRP is a distinct condition from PRCC.
Collapse
Affiliation(s)
- Daisuke Kiyozawa
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Kenichi Kohashi
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Dai Takamatsu
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takeo Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takeshi Iwasaki
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan; Department of Pathology, JCHO Kyushu Hospital, Kitakyushu, 806-8501, Japan
| | - Junichi Motoshita
- Department of Pathology, JCHO Kyushu Hospital, Kitakyushu, 806-8501, Japan
| | - Tatsuro Shimokama
- Department of Pathology, Steel Memorial Yawata Hospital, Kitakyushu, 805-8508, Japan
| | - Mitsuru Kinjo
- Department of Pathology, Steel Memorial Yawata Hospital, Kitakyushu, 805-8508, Japan
| | - Yumi Oshiro
- Department of Pathology, Matsuyama Red Cross Hospital, Matsuyama, 790-8524, Japan
| | | | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
25
|
Jonasch E, Walker CL, Rathmell WK. Clear cell renal cell carcinoma ontogeny and mechanisms of lethality. Nat Rev Nephrol 2021; 17:245-261. [PMID: 33144689 PMCID: PMC8172121 DOI: 10.1038/s41581-020-00359-2] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
The molecular features that define clear cell renal cell carcinoma (ccRCC) initiation and progression are being increasingly defined. The TRACERx Renal studies and others that have described the interaction between tumour genomics and remodelling of the tumour microenvironment provide important new insights into the molecular drivers underlying ccRCC ontogeny and progression. Our understanding of common genomic and chromosomal copy number abnormalities in ccRCC, including chromosome 3p loss, provides a mechanistic framework with which to organize these abnormalities into those that drive tumour initiation events, those that drive tumour progression and those that confer lethality. Truncal mutations in ccRCC, including those in VHL, SET2, PBRM1 and BAP1, may engender genomic instability and promote defects in DNA repair pathways. The molecular features that arise from these defects enable categorization of ccRCC into clinically and therapeutically relevant subtypes. Consideration of the interaction of these subtypes with the tumour microenvironment reveals that specific mutations seem to modulate immune cell populations in ccRCC tumours. These findings present opportunities for disease prevention, early detection, prognostication and treatment.
Collapse
Affiliation(s)
- Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Cheryl Lyn Walker
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
26
|
Fernandes FG, Silveira HCS, Júnior JNA, da Silveira RA, Zucca LE, Cárcano FM, Sanches AON, Neder L, Scapulatempo-Neto C, Serrano SV, Jonasch E, Reis RM, Evangelista AF. Somatic Copy Number Alterations and Associated Genes in Clear-Cell Renal-Cell Carcinoma in Brazilian Patients. Int J Mol Sci 2021; 22:2265. [PMID: 33668731 PMCID: PMC7956176 DOI: 10.3390/ijms22052265] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
Somatic copy number aberrations (CNAs) have been associated with clear-cell renal carcinoma (ccRCC) pathogenesis and are a potential source of new diagnostic, prognostic and therapeutic biomarkers. Recurrent CNAs include loss of chromosome arms 3p, 14q, 9p, and gains of 5q and 8q. Some of these regional CNAs are suspected of altering gene expression and could influence clinical outcomes. Despite many studies of CNAs in RCC, there are currently no descriptions of genomic copy number alterations in a Brazilian ccRCC cohort. This study was designed to evaluate the chromosomal profile of CNAs in Brazilian ccRCC tumors and explore clinical associations. A total of 92 ccRCC Brazilian patients that underwent nephrectomy at Barretos Cancer Hospital were analyzed for CNAs by array comparative genomic hybridization. Most patients in the cohort had early-stage localized disease. The most significant alterations were loss of 3p (87.3%), 14q (35.8%), 6q (29.3%), 9p (28.6%) and 10q (25.0%), and gains of 5q (59.7%), 7p (29.3%) and 16q (20.6%). Bioinformatics analysis revealed 19 genes mapping to CNA significant regions, including SETD2, BAP1, FLT4, PTEN, FGFR4 and NSD1. Moreover, gain of 5q34-q35.3 (FLT4 and NSD1) and loss of 6q23.2-q23.3 (MYB) and 9p21.3 (MLLT3) had gene expression levels that correlated with TCGA data and was also associated with advanced disease features, such as larger tumors, Fuhrman 3, metastasis at diagnosis and death. The loss of region 14q22.1 which encompasses the NIN gene was associated with poor overall survival. Overall, this study provides the first CNA landscape of Brazilian patients and pinpoints genomic regions and specific genes worthy of more detailed investigations. Our results highlight important genes that are associated with copy number changes involving large chromosomal regions that are potentially related to ccRCC tumorigenesis and disease biology for future clinical investigations.
Collapse
Affiliation(s)
- Flávia Gonçalves Fernandes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
| | | | - João Neif Antonio Júnior
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
| | - Rosana Antunes da Silveira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
| | - Luis Eduardo Zucca
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
| | - Flavio Mavignier Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
- Barretos School of Health Sciences Dr Paulo Prata-FACISB, Barretos 14785-002, Brazil
| | - André Octavio Nicolau Sanches
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
| | - Luciano Neder
- Department of Pathology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (L.N.); (C.S.-N.)
| | | | - Sergio Vicente Serrano
- Department of Medical Oncology, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (J.N.A.J.); (L.E.Z.); (F.M.C.); (A.O.N.S.); (S.V.S.)
- Barretos School of Health Sciences Dr Paulo Prata-FACISB, Barretos 14785-002, Brazil
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
- Life and Health Sci Research Institute (ICVS), Medical School, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Adriane Feijó Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos 14784-400, Brazil; (F.G.F.); (H.C.S.S.); (R.A.d.S.)
| |
Collapse
|
27
|
Li Y, Sun XX, Qian DZ, Dai MS. Molecular Crosstalk Between MYC and HIF in Cancer. Front Cell Dev Biol 2020; 8:590576. [PMID: 33251216 PMCID: PMC7676913 DOI: 10.3389/fcell.2020.590576] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022] Open
Abstract
The transcription factor c-MYC (MYC thereafter) is a global regulator of gene expression. It is overexpressed or deregulated in human cancers of diverse origins and plays a key role in the development of cancers. Hypoxia-inducible factors (HIFs), a central regulator for cells to adapt to low cellular oxygen levels, is also often overexpressed and activated in many human cancers. HIF mediates the primary transcriptional response of a wide range of genes in response to hypoxia. Earlier studies focused on the inhibition of MYC by HIF during hypoxia, when MYC is expressed at physiological level, to help cells survive under low oxygen conditions. Emerging evidence suggests that MYC and HIF also cooperate to promote cancer cell growth and progression. This review will summarize the current understanding of the complex molecular interplay between MYC and HIF.
Collapse
Affiliation(s)
- Yanping Li
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - Xiao-Xin Sun
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States
| | - David Z Qian
- The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| | - Mu-Shui Dai
- Department of Molecular and Medical Genetics, School of Medicine, Portland, OR, United States.,The OHSU Knight Cancer Institute, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
28
|
Wang L, Li Y, Lyu Y, Wen H, Feng C. Association between copy-number alteration of +20q, -14q and -18p and cross-sensitivity to tyrosine kinase inhibitors in clear-cell renal cell carcinoma. Cancer Cell Int 2020; 20:482. [PMID: 33041663 PMCID: PMC7541266 DOI: 10.1186/s12935-020-01585-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/29/2020] [Indexed: 12/30/2022] Open
Abstract
Background We aim to explore association between copy number alteration (CNA) and sensitivity to common tyrosine kinase inhibitors (TKIs) used in clear-cell renal cell carcinoma (ccRCC) treatment. Methods CNA with related sensitivity profiles were extracted from the Genomics of Drug Sensitivity in Cancer (GDSC) dataset and was cross-referenced with common CNA in ccRCC in the Cancer Genome Atlas (TCGA) dataset. Functional annotation was profiled using GSEA and NET-GE. Target genes within cytobands of interest were screened in silico and validated in vitro using proliferation assays in A498 and 786-O ccRCC cells. Results Four TKIs (Sunitinib, Cabozantinib, Axitinib and Sorafenib) that were clinically used in ccRCC were selected. In silico analysis showed gain of 20q (+20q) occurred in ~ 23% of cases and was associated with resistance to all four TKIs; loss of 14q (−14q) occurred in ~ 39% of cases and was associated with resistance to Sunitinib and Sorafenib; loss of 18p (−18p) occurred in ~ 39% of cases and was associated with sensitivity to Sunitinib and Sorafenib. All 3 CNAs were associated with worsened prognosis, respectively. Candidate target genes included of RBL1 on 20q, KLHL33 on 14q and ARHGAP28 on18q. In vitro validation showed RBL1 overexpression induced resistance to Sunitinib and Cabozantinib; KLHL33 silencing induced resistance to Sunitinib; ARHGAP28 silencing induced sensitivity to Cabozantinib. Functional annotation indicated FoxO signaling, hypoxic response and Wnt pathway, and Rho-related cellular adhesion were mechanistically associated with +20q, −14q and −18p, respectively. Conclusion Common CNAs in ccRCC are associated with cancer-intrinsic cross-sensitivity to common TKIs. Further validation and functional analyses are therefore needed.
Collapse
Affiliation(s)
- Liang Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, 300052 People's Republic of China
| | - Yuqing Li
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040 People's Republic of China
| | - Yinfeng Lyu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040 People's Republic of China
| | - Hui Wen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040 People's Republic of China
| | - Chenchen Feng
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, 200040 People's Republic of China
| |
Collapse
|
29
|
The inhibition of tumor protein p53 by microRNA-151a-3p induced cell proliferation, migration and invasion in nasopharyngeal carcinoma. Biosci Rep 2020; 39:220889. [PMID: 31652456 PMCID: PMC6822577 DOI: 10.1042/bsr20191357] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
A close relation between microRNA-151a-3p (miR-151a-3p) and nasopharyngeal carcinoma (NPC) has been reported, however, the molecular mechanism is still unclear. The aim of the present study was to explore the mechanism in the promotion of miR-151a-3p to NPC progression. The levels of miR-151-3p in several NPC cell lines were detected in order to screen an experimental cell line. MiR-151a-3p mimic and inhibitor were constructed and transfected into 5-8F cells and cell proliferation were detected by Cell Counting Kit-8 (CCK-8). The apoptosis rate, cell migration and invasion were determined by flow cytometry, wound healing and Transwell assays. The predicted target was further verified by luciferase reporter assay. Real-time quantification-PCR and Western blot were carried out for mRNA and protein level analysis. Tumor protein p53 was co-transfected to verify the functions of miR-151a-3p. The miR-151a-3p level in NPC tissues was much higher than that in adjacent tissues. After transfecting cells with miR-151a-3p mimic, the cell proliferation and patients' survival rate were much increased, and this was accompanied by the increase in B-cell lymphoma 2 (Bcl-2) and decreases in Bax and cleaved caspase-3 (P<0.01). Moreover, the migration rate and number of invaded cells were also remarkably increased, however, the miR-151a-3p inhibitor had opposite effects on the 5-8F cells. Noticeably, p53 was revealed as a potential target of miR-151a-3p. Co-transfection of P53 could partially reverse the promotive effects of miR-151a-3p on NPC cell progression. Our data indicated that blocking p53 expression and mediated signal pathways contribute to the positive effects of miR-151a-3p on NPC cell proliferation, migration and invasion.
Collapse
|
30
|
Targeting Metabolic Pathways in Kidney Cancer: Rationale and Therapeutic Opportunities. ACTA ACUST UNITED AC 2020; 26:407-418. [PMID: 32947309 DOI: 10.1097/ppo.0000000000000472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in cellular sugar, amino acid and nucleic acid, and lipid metabolism, as well as in mitochondrial function, are a hallmark of renal cell carcinoma (RCC). The activation of oncogenes such as hypoxia-inducible factor and loss of the von Hippel-Lindau function and other tumor suppressors frequently occur early on during tumorigenesis and are the drivers for these changes, collectively known as "metabolic reprogramming," which promotes cellular growth, proliferation, and stress resilience. However, tumor cells can become addicted to reprogrammed metabolism. Here, we review the current knowledge of metabolic addictions in clear cell RCC, the most common form of RCC, and to what extent this has created therapeutic opportunities to interfere with such altered metabolic pathways to selectively target tumor cells. We highlight preclinical and emerging clinical data on novel therapeutics targeting metabolic traits in clear cell RCC to provide a comprehensive overview on current strategies to exploit metabolic reprogramming clinically.
Collapse
|
31
|
HIF-1α and HIF-2α differently regulate tumour development and inflammation of clear cell renal cell carcinoma in mice. Nat Commun 2020; 11:4111. [PMID: 32807776 PMCID: PMC7431415 DOI: 10.1038/s41467-020-17873-3] [Citation(s) in RCA: 175] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Mutational inactivation of VHL is the earliest genetic event in the majority of clear cell renal cell carcinomas (ccRCC), leading to accumulation of the HIF-1α and HIF-2α transcription factors. While correlative studies of human ccRCC and functional studies using human ccRCC cell lines have implicated HIF-1α as an inhibitor and HIF-2α as a promoter of aggressive tumour behaviours, their roles in tumour onset have not been functionally addressed. Herein we show using an autochthonous ccRCC model that Hif1a is essential for tumour formation whereas Hif2a deletion has only minor effects on tumour initiation and growth. Both HIF-1α and HIF-2α are required for the clear cell phenotype. Transcriptomic and proteomic analyses reveal that HIF-1α regulates glycolysis while HIF-2α regulates genes associated with lipoprotein metabolism, ribosome biogenesis and E2F and MYC transcriptional activities. HIF-2α-deficient tumours are characterised by increased antigen presentation, interferon signalling and CD8+ T cell infiltration and activation. Single copy loss of HIF1A or high levels of HIF2A mRNA expression correlate with altered immune microenvironments in human ccRCC. These studies reveal an oncogenic role of HIF-1α in ccRCC initiation and suggest that alterations in the balance of HIF-1α and HIF-2α activities can affect different aspects of ccRCC biology and disease aggressiveness.
Collapse
|
32
|
Chromosome 17p13 deletion is associated with an aggressive tumor phenotype in clear cell renal cell carcinoma. World J Surg Oncol 2020; 18:128. [PMID: 32534597 PMCID: PMC7293794 DOI: 10.1186/s12957-020-01902-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Deletions of 17p13 recurrently occur in renal cell carcinoma (RCC) but their prognostic role seems to be uncertain. Methods To determine prevalence, relationship with tumor phenotype, and patient prognosis, a tissue microarray containing samples from 1809 RCCs was evaluated using dual labeling fluorescence in situ hybridization (FISH) with 17p13 and chromosome 17 centromere probes. Results A 17p13 deletion was found in 72 of 1429 interpretable tumors. The frequency of 17p13 deletions varied greatly between RCC subtypes and was highest in chromophobe RCC (24/72; 33.3%). 17p13 deletions were also found in 35 (3.7%) of 946 clear cell RCC, 9 (4.3%) of 208 papillary RCC, 1 of 121 oncocytomas (0.8%), as well as in several rare cases of comprising 1 of 7 Xp11.2 translocation cancers, 1 of 3 collecting duct carcinomas, and 1 of 20 not otherwise specified (NOS) carcinomas. In clear cell carcinomas, 17p13 deletions revealed a strong and consistent association with higher Fuhrman, ISUP, and Thoenes grade (p < 0.0001 each), and linked to advanced tumor stage (p = 0.0168), large tumor diameter (p = 0.0004), distant metastases (p = 0.0077), cancer-specific survival (p = 0.0391), and recurrence-free survival (p = 0.0072). In multivariate analysis, 17p13 deletions showed in clear cell RCC a dependent prognostic role for established clinical-pathological parameters. Conclusion 17p13 deletions have a dual role in RCC. They are associated with disease progression in clear cell RCC and possibly other subtypes and they are linked to the development of chromophobe RCC—a subtype with a particularly favorable prognosis.
Collapse
|
33
|
Chhabra R, Nanjundan M. Lysophosphatidic acid reverses Temsirolimus-induced changes in lipid droplets and mitochondrial networks in renal cancer cells. PLoS One 2020; 15:e0233887. [PMID: 32492043 PMCID: PMC7269261 DOI: 10.1371/journal.pone.0233887] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/14/2020] [Indexed: 01/05/2023] Open
Abstract
Increased cytoplasmic lipid droplets (LDs) and elevated AKT/mTOR signaling are characteristics of clear cell renal cell carcinoma (ccRCC). Lysophosphatidic acid (LPA), a potent lipid mitogen generated via autotaxin (elevated in ccRCC), can modulate tumor progression but its role in altering chemotherapeutic sensitivity to mTOR inhibitors is unclear and thus is the focus of the studies presented herein. Using malignant (A-498, 769-P and 786-O) and normal immortalized kidney (HK-2) cell lines, we investigated their cellular responsiveness to Temsirolimus (TEMS, mTOR inhibitor) in the absence or presence of LPA by monitoring alterations in AKT/mTOR pathway mediators (via western blotting), LDs (using LipidTOX and real-time PCR to assess transcript changes in modulators of LD biogenesis/turnover), mitochondrial networks (via immunofluorescence staining for TOM20 and TOM70), as well as cellular viability. We identified that TEMS reduced cellular viability in all renal cell lines, with increased sensitivity in the presence of an autophagy inhibitor. TEMS also altered activation of AKT/mTOR pathway mediators, abundance of LDs, and fragmentation of mitochondrial networks. We observed that these effects were antagonized by LPA. In HK-2 cells, LPA markedly increased LD size and abundance, coinciding with phospho-MAPK and phospho-S6 activation, increased diacylglycerol O-acetyltransferase 2 (DGAT2) mRNA (which produces triacylglycerides), and survival. Inhibiting MAPK partially antagonized LPA-induced LD changes. Collectively, we have identified that LPA can reverse the effects of TEMS by increasing LDs in a MAPK-dependent manner; these results suggest that LPA may contribute to the pathogenesis and chemotherapeutic resistance of ccRCC.
Collapse
Affiliation(s)
- Ravneet Chhabra
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
| | - Meera Nanjundan
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
34
|
Liu YJ, Houldsworth J, Emmadi R, Dyer L, Wolff DJ. Assessing Genomic Copy Number Alterations as Best Practice for Renal Cell Neoplasia: An Evidence-Based Review from the Cancer Genomics Consortium Workgroup. Cancer Genet 2020; 244:40-54. [PMID: 32434132 DOI: 10.1016/j.cancergen.2020.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 02/05/2023]
Abstract
Renal cell neoplasia are heterogeneous with diverse histology, genetic alterations, and clinical behavior that are diagnosed mostly on morphologic features. The Renal Cell Neoplasia Workgroup of the Cancer Genomics Consortium systematically evaluated peer-reviewed literature on genomic studies of renal cell carcinoma (RCC), including clear cell RCC, papillary RCC, chromophobe RCC, and the translocation RCC involving TFE3, TFEB and MITF rearrangements, as well as benign oncocytoma, which together comprise about 95% of all renal cell neoplasia. The Workgroup curated recurrent copy number alterations (CNAs), copy-neutral loss-of-heterozygosity (cnLOH), rearrangements, and mutations, found in each subtype and assigned clinical relevance according to established criteria. In clear cell RCC, loss of 3p has a disease-initiating role and most likely also in progression with mutations detected in VHL and other genes mapped to this arm, and loss of 9p and/or 14q has well-substantiated prognostic utility. Gain of chromosomes 7 and 17 are hallmark CNAs of papillary RCC, but patterns of other CNAs as detected by chromosomal microarray analysis (CMA) afford sub-classification into Type 1 and 2 with prognostic value, and for further sub-stratification of Type 2. Inherent chromosome loss in chromophobe RCC as detected by CMA is useful for distinguishing the eosinophilic variant from benign oncocytoma which in contrast exhibits few CNAs or rearranged CCND1, but share mitochondrial DNA mutations. In morphologically atypical RCCs, rearrangement of TFE3 and TFEB should be considered in the differential diagnosis, portending an aggressive RCC subtype. Overall, this evidence-based review provides a validated role for assessment of CNAs in renal cell neoplasia in the clinical setting to assist in renal cell neoplasm diagnosis and sub-classification within subtypes that is integral to the management of patients, from small incidentally found renal masses to larger surgically resected specimens, and simultaneously identify the presence of key alterations portending outcome in malignant RCC subtypes.
Collapse
Affiliation(s)
- Yajuan J Liu
- Departments of Pathology and Laboratory Medicine, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195.
| | - Jane Houldsworth
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, The Mount Sinai Health System, 1 Gustave Levy Place, New York, NY 10029.
| | - Rajyasree Emmadi
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood Street, Chicago, IL 60612
| | - Lisa Dyer
- Department of Pediatrics, Division of Human Genetics, University of Cincinnati, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, MLC 4006, Cincinnati, OH 45229-3039
| | - Daynna J Wolff
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Avenue, MSC 908, Charleston, SC 29425
| |
Collapse
|
35
|
Singla N, Xie Z, Zhang Z, Gao M, Yousuf Q, Onabolu O, McKenzie T, Tcheuyap VT, Ma Y, Choi J, McKay R, Christie A, Torras OR, Bowman IA, Margulis V, Pedrosa I, Przybycin C, Wang T, Kapur P, Rini B, Brugarolas J. Pancreatic tropism of metastatic renal cell carcinoma. JCI Insight 2020; 5:134564. [PMID: 32271170 DOI: 10.1172/jci.insight.134564] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/30/2022] Open
Abstract
Renal cell carcinoma (RCC) is characterized by a particularly broad metastatic swath, and, enigmatically, when the pancreas is a destination, the disease is associated with improved survival. Intrigued by this observation, we sought to characterize the clinical behavior, therapeutic implications, and underlying biology. While pancreatic metastases (PM) are infrequent, we identified 31 patients across 2 institutional cohorts and show that improved survival is independent of established prognostic variables, that these tumors are exquisitely sensitive to antiangiogenic agents and resistant to immune checkpoint inhibitors (ICIs), and that they are characterized by a distinctive biology. Primary tumors of patients with PM exhibited frequent PBRM1 mutations, 3p loss, and 5q amplification, along with a lower frequency of aggressive features such as BAP1 mutations and loss of 9p, 14q, and 4q. Gene expression analyses revealed constrained evolution with remarkable uniformity, reduced effector T cell gene signatures, and increased angiogenesis. Similar findings were observed histopathologically. Thus, RCC metastatic to the pancreas is characterized by indolent biology, heightened angiogenesis, and an uninflamed stroma, likely underlying its good prognosis, sensitivity to antiangiogenic therapies, and refractoriness to ICI. These data suggest that metastatic organotropism may be an indicator of a particular biology with prognostic and treatment implications for patients.
Collapse
Affiliation(s)
- Nirmish Singla
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Department of Urology, and
| | - Zhiqun Xie
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ze Zhang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ming Gao
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
| | | | | | | | | | - Yuanqing Ma
- Kidney Cancer Program, Simmons Comprehensive Cancer Center
| | - Jacob Choi
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Renee McKay
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Department of Internal Medicine
| | - Alana Christie
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Division of Biostatistics, Department of Clinical Sciences, and
| | | | - Isaac A Bowman
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Department of Internal Medicine
| | - Vitaly Margulis
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Department of Urology, and
| | - Ivan Pedrosa
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Department of Urology, and.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Christopher Przybycin
- Department of Pathology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio, USA
| | - Tao Wang
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Brian Rini
- Department of Hematology and Medical Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center.,Department of Internal Medicine
| |
Collapse
|
36
|
Macklin PS, Yamamoto A, Browning L, Hofer M, Adam J, Pugh CW. Recent advances in the biology of tumour hypoxia with relevance to diagnostic practice and tissue-based research. J Pathol 2020; 250:593-611. [PMID: 32086807 DOI: 10.1002/path.5402] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023]
Abstract
In this review article, we examine the importance of low levels of oxygen (hypoxia) in cancer biology. We provide a brief description of how mammalian cells sense oxygen. The hypoxia-inducible factor (HIF) pathway is currently the best characterised oxygen-sensing system, but recent work has revealed that mammals also use an oxygen-sensing system found in plants to regulate the abundance of some proteins and peptides with an amino-terminal cysteine residue. We discuss how the HIF pathway is affected during the growth of solid tumours, which develop in microenvironments with gradients of oxygen availability. We then introduce the concept of 'pseudohypoxia', a state of constitutive, oxygen-independent HIF system activation that occurs due to oncogenic stimulation in a number of specific tumour types that are of immediate relevance to diagnostic histopathologists. We provide an overview of the different methods of quantifying tumour hypoxia, emphasising the importance of pre-analytic factors in interpreting the results of tissue-based studies. Finally, we review recent approaches to targeting hypoxia/HIF system activation for therapeutic benefit, the application of which may require knowledge of which hypoxia signalling components are being utilised by a given tumour. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Philip S Macklin
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Atsushi Yamamoto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lisa Browning
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Monika Hofer
- Department of Neuropathology and Ocular Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Julie Adam
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | |
Collapse
|
37
|
Overall tumor genomic instability: an important predictor of recurrence-free survival in patients with localized clear cell renal cell carcinoma. Cancer Biol Ther 2020; 21:424-431. [PMID: 32116106 DOI: 10.1080/15384047.2020.1721251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Measurement of a tumor's overall genomic instability has gathered recent interest over the identification of specific genomic imbalances, as it may provide a more robust measure of tumor aggressiveness. Here we demonstrate the association of tumor genomic instability in the prediction of disease recurrence in patients with clinically localized clear cell renal cell carcinoma (ccRCC). Genomic copy number analysis was performed using SNP-based microarrays on tumors from 103 ccRCC patients. The number of copy number alterations (CNAs) for each tumor was calculated, and a genomic imbalance threshold (GIT) associated with high stage and high-grade disease was determined. Cox proportional hazards regression analyzes were performed to assess the effect of GIT on recurrence-free survival adjusting for known confounders. In the cohort, copy number losses in chromosome arms 3p, 14q, 6q, 9p, and 1p and gains of 5q and 7p/q were common. CNA burden significantly increased with increasing stage (p < .001) and grade (p < .001). The median CNA burden associated with patients presenting with advanced stage (IV) and high-grade (III/IV) tumors was ≥9, defining the GIT. On regression analysis, GIT was a superior predictor of recurrence (Hazard Ratio 4.44 [CI 1.36-14.48], p = .01) independent of stage, with similar results adjusting for grade. These findings were confirmed using an alternative measure of genomic instability, weighted Genomic Integrity Index. Our data support a key role for genomic instability in ccRCC progression. More importantly, we have identified a GIT (≥ 9 CNAs) that is a superior and independent predictor of disease recurrence in high-risk ccRCC patients.
Collapse
|
38
|
Albadari N, Deng S, Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin Drug Discov 2019; 14:667-682. [PMID: 31070059 DOI: 10.1080/17460441.2019.1613370] [Citation(s) in RCA: 242] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hypoxia is one of the intrinsic features of solid tumors, and it is always associated with aggressive phenotypes, including resistance to radiation and chemotherapy, metastasis, and poor patient prognosis. Hypoxia manifests these unfavorable effects through activation of a family of transcription factors, Hypoxia-inducible factors (HIFs) play a pivotal role in the adaptation of tumor cells to hypoxic and nutrient-deprived conditions by upregulating the transcription of several pro-oncogenic genes. Several advanced human cancers share HIFs activation as a final common pathway. Areas covered: This review highlights the role and regulation of the HIF-1/2 in cancers and alludes on the biological complexity and redundancy of HIF-1/2 regulation. Moreover, this review summarizes recent insights into the therapeutic approaches targeting the HIF-1/2 pathway. Expert opinion: More studies are needed to unravel the extensive complexity of HIFs regulation and to develop more precise anticancer treatments. Inclusion of HIF-1/2 inhibitors to the current chemotherapy regimens has been proven advantageous in numerous reported preclinical studies. The combination therapy ideally should be personalized based on the type of mutations involved in the specific cancers, and it might be better to include two drugs that inhibit HIF-1/2 activity by synergistic molecular mechanisms.
Collapse
Affiliation(s)
- Najah Albadari
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Shanshan Deng
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Wei Li
- a Department of Pharmaceutical Sciences, College of Pharmacy , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
39
|
MERTK mediated novel site Akt phosphorylation alleviates SAV1 suppression. Nat Commun 2019; 10:1515. [PMID: 30944303 PMCID: PMC6447540 DOI: 10.1038/s41467-019-09233-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/27/2019] [Indexed: 12/14/2022] Open
Abstract
Akt plays indispensable roles in cell proliferation, survival and metabolism. Mechanisms underlying posttranslational modification-mediated Akt activation have been extensively studied yet the Akt interactome is less understood. Here, we report that SAV1, a Hippo signaling component, inhibits Akt, a function independent of its role in Hippo signaling. Binding to a proline-tyrosine motif in the Akt-PH domain, SAV1 suppresses Akt activation by blocking Akt’s movement to plasma membrane. We further identify cancer-associated SAV1 mutations with impaired ability to bind Akt, leading to Akt hyperactivation. We also determine that MERTK phosphorylates Akt1-Y26, releasing SAV1 binding and allowing Akt responsiveness to canonical PI-3K pathway activation. This work provides a mechanism underlying MERTK-mediated Akt activation and survival signaling in kidney cancer. Akt activation drives oncogenesis and therapeutic resistance; this mechanism of Akt regulation by MERTK/SAV1 provides yet another complexity in an extensively studied pathway, and may yield prognostic information and therapeutic targets. Hyperactivation of Akt promotes tumorigenesis. Here, the authors show that SAV1, a member of Hippo signalling, interacts with Akt to suppress Akt activity and MERTK-mediated Akt phosphorylation relieves this suppression to facilitate Akt oncogenic activity in clear cell renal carcinomas.
Collapse
|
40
|
Xu XF, Wang YC, Zong L, Wang XL. miR-151-5p modulates APH1a expression to participate in contextual fear memory formation. RNA Biol 2019; 16:282-294. [PMID: 30663934 DOI: 10.1080/15476286.2019.1572435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Long-term memory formation requires gene expression and new protein synthesis. MicroRNAs (miRNAs), a family of small non-coding RNAs that inhibit target gene mRNA expression, are involved in new memory formation. In this study, elevated miR-151-5p (miR-151) levels were found to be responsible for hippocampal contextual fear memory formation. Using a luciferase reporter assay, we demonstrated that miR-151 targets APH1a, a protein that has been identified as a key factor in γ-secretase activity, namely APH1a. Blocking miR-151 can upregulate APH1a protein levels and subsequently impair hippocampal fear memory formation. These results indicate that miR-151 is involved in hippocampal contextual fear memory by inhibiting APH1a protein expression. This work provides novel evidence for the role of miRNAs in memory formation and demonstrates the implication of APH1a protein in miRNA processing in the adult brain.
Collapse
Affiliation(s)
- Xu-Feng Xu
- a Institute of Brain Science and Disease, School of Basic Medicine , Qingdao University , Qingdao , Shandong , People's Republic of China.,b The Royal, Department of Psychiatry, and Department of Cellular and Molecular Medicine , University of Ottawa Institute of Mental Health Research , Ottawa , Canada.,c Department of Cell and Neurobiology , School of Basic Medicine, Shandong University , Jinan , Shandong , People's Republic of China
| | - You-Cui Wang
- a Institute of Brain Science and Disease, School of Basic Medicine , Qingdao University , Qingdao , Shandong , People's Republic of China
| | - Liang Zong
- d BGI-Shenzhen , Shenzhen , People's Republic of China
| | - Xiao-Long Wang
- e Department of Breast Surgery , Qilu hospital, Shandong University , Jinan , Shandong , People's Republic of China
| |
Collapse
|
41
|
Evelönn EA, Landfors M, Haider Z, Köhn L, Ljungberg B, Roos G, Degerman S. DNA methylation associates with survival in non-metastatic clear cell renal cell carcinoma. BMC Cancer 2019; 19:65. [PMID: 30642274 PMCID: PMC6332661 DOI: 10.1186/s12885-019-5291-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common subtype among renal cancer and is associated with poor prognosis if metastasized. Up to one third of patients with local disease at diagnosis will develop metastasis after nephrectomy, and there is a need for new molecular markers to identify patients with high risk of tumor progression. In the present study, we performed genome-wide promoter DNA methylation analysis at diagnosis to identify DNA methylation profiles associated with risk for progress. METHOD Diagnostic tissue samples from 115 ccRCC patients were analysed by Illumina HumanMethylation450K arrays and methylation status of 155,931 promoter associated CpGs were related to genetic aberrations, gene expression and clinicopathological parameters. RESULTS The ccRCC samples separated into two clusters (cluster A/B) based on genome-wide promoter methylation status. The samples in these clusters differed in tumor diameter (p < 0.001), TNM stage (p < 0.001), morphological grade (p < 0.001), and patients outcome (5 year cancer specific survival (pCSS5yr) p < 0.001 and cumulative incidence of progress (pCIP5yr) p < 0.001. An integrated genomic and epigenomic analysis in the ccRCCs, revealed significant correlations between the total number of genetic aberrations and total number of hypermethylated CpGs (R = 0.435, p < 0.001), and predicted mitotic age (R = 0.407, p < 0.001). We identified a promoter methylation classifier (PMC) panel consisting of 172 differently methylated CpGs accompanying progress of disease. Classifying non-metastatic patients using the PMC panel showed that PMC high tumors had a worse prognosis compared with the PMC low tumors (pCIP5yr 38% vs. 8%, p = 0.001), which was confirmed in non-metastatic ccRCCs in the publically available TCGA-KIRC dataset (pCIP5yr 39% vs. 16%, p < 0.001). CONCLUSION DNA methylation analysis at diagnosis in ccRCC has the potential to improve outcome-prediction in non-metastatic patients at diagnosis.
Collapse
Affiliation(s)
- Emma Andersson Evelönn
- Department of Medical Biosciences, Umeå University, NUS, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Mattias Landfors
- Department of Medical Biosciences, Umeå University, NUS, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Zahra Haider
- Department of Medical Biosciences, Umeå University, NUS, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Linda Köhn
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and andrology, Umeå University, Umeå, Sweden
| | - Göran Roos
- Department of Medical Biosciences, Umeå University, NUS, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| | - Sofie Degerman
- Department of Medical Biosciences, Umeå University, NUS, Blg 6M, 2nd floor, SE-90185 Umeå, Sweden
| |
Collapse
|
42
|
Histological (Sub)Classifications and Their Prognostic Impact in Renal Cell Carcinoma. Urol Oncol 2019. [DOI: 10.1007/978-3-319-42623-5_60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
43
|
Ramazzotti D, Lal A, Wang B, Batzoglou S, Sidow A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat Commun 2018; 9:4453. [PMID: 30367051 PMCID: PMC6203719 DOI: 10.1038/s41467-018-06921-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/27/2018] [Indexed: 01/10/2023] Open
Abstract
Outcomes for cancer patients vary greatly even within the same tumor type, and characterization of molecular subtypes of cancer holds important promise for improving prognosis and personalized treatment. This promise has motivated recent efforts to produce large amounts of multidimensional genomic (multi-omic) data, but current algorithms still face challenges in the integrated analysis of such data. Here we present Cancer Integration via Multikernel Learning (CIMLR), a new cancer subtyping method that integrates multi-omic data to reveal molecular subtypes of cancer. We apply CIMLR to multi-omic data from 36 cancer types and show significant improvements in both computational efficiency and ability to extract biologically meaningful cancer subtypes. The discovered subtypes exhibit significant differences in patient survival for 27 of 36 cancer types. Our analysis reveals integrated patterns of gene expression, methylation, point mutations, and copy number changes in multiple cancers and highlights patterns specifically associated with poor patient outcomes.
Collapse
Affiliation(s)
- Daniele Ramazzotti
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.,Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Avantika Lal
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Bo Wang
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA
| | - Serafim Batzoglou
- Department of Computer Science, Stanford University, Stanford, CA, 94305, USA.,Illumina Mission Bay, 499 Illinois Street, Suite 210, San Francisco, CA, 94158-250, USA
| | - Arend Sidow
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA. .,Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
44
|
Wehn PM, Rizzi JP, Dixon DD, Grina JA, Schlachter ST, Wang B, Xu R, Yang H, Du X, Han G, Wang K, Cao Z, Cheng T, Czerwinski RM, Goggin BS, Huang H, Halfmann MM, Maddie MA, Morton EL, Olive SR, Tan H, Xie S, Wong T, Josey JA, Wallace EM. Design and Activity of Specific Hypoxia-Inducible Factor-2α (HIF-2α) Inhibitors for the Treatment of Clear Cell Renal Cell Carcinoma: Discovery of Clinical Candidate (S)-3-((2,2-Difluoro-1-hydroxy-7-(methylsulfonyl)-2,3-dihydro-1H-inden-4-yl)oxy)-5-fluorobenzonitrile (PT2385). J Med Chem 2018; 61:9691-9721. [DOI: 10.1021/acs.jmedchem.8b01196] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paul M. Wehn
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - James P. Rizzi
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Darryl D. Dixon
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Jonas A. Grina
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Stephen T. Schlachter
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Bin Wang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Rui Xu
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Hanbiao Yang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Xinlin Du
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Guangzhou Han
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Keshi Wang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Zhaodan Cao
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Tzuling Cheng
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Robert M. Czerwinski
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Barry S. Goggin
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Heli Huang
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Megan M. Halfmann
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Melissa A. Maddie
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Emily L. Morton
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Sarah R. Olive
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Huiling Tan
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Shanhai Xie
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Tai Wong
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - John A. Josey
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| | - Eli M. Wallace
- Peloton Therapeutics, Inc., 2330 Inwood Road, Suite 226, Dallas, Texas 75235, United States
| |
Collapse
|
45
|
Shelar S, Shim EH, Brinkley GJ, Kundu A, Carobbio F, Poston T, Tan J, Parekh V, Benson D, Crossman DK, Buckhaults PJ, Rakheja D, Kirkman R, Sato Y, Ogawa S, Dutta S, Velu SE, Emberley E, Pan A, Chen J, Huang T, Absher D, Becker A, Kunick C, Sudarshan S. Biochemical and Epigenetic Insights into L-2-Hydroxyglutarate, a Potential Therapeutic Target in Renal Cancer. Clin Cancer Res 2018; 24:6433-6446. [PMID: 30108105 DOI: 10.1158/1078-0432.ccr-18-1727] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/09/2018] [Accepted: 08/08/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Elevation of L-2-hydroxylgutarate (L-2-HG) in renal cell carcinoma (RCC) is due in part to reduced expression of L-2-HG dehydrogenase (L2HGDH). However, the contribution of L-2-HG to renal carcinogenesis and insight into the biochemistry and targets of this small molecule remains to be elucidated. EXPERIMENTAL DESIGN Genetic and pharmacologic approaches to modulate L-2-HG levels were assessed for effects on in vitro and in vivo phenotypes. Metabolomics was used to dissect the biochemical mechanisms that promote L-2-HG accumulation in RCC cells. Transcriptomic analysis was utilized to identify relevant targets of L-2-HG. Finally, bioinformatic and metabolomic analyses were used to assess the L-2-HG/L2HGDH axis as a function of patient outcome and cancer progression. RESULTS L2HGDH suppresses both in vitro cell migration and in vivo tumor growth and these effects are mediated by L2HGDH's catalytic activity. Biochemical studies indicate that glutamine is the predominant carbon source for L-2-HG via the activity of malate dehydrogenase 2 (MDH2). Inhibition of the glutamine-MDH2 axis suppresses in vitro phenotypes in an L-2-HG-dependent manner. Moreover, in vivo growth of RCC cells with basal elevation of L-2-HG is suppressed by glutaminase inhibition. Transcriptomic and functional analyses demonstrate that the histone demethylase KDM6A is a target of L-2-HG in RCC. Finally, increased L-2-HG levels, L2HGDH copy loss, and lower L2HGDH expression are associated with tumor progression and/or worsened prognosis in patients with RCC. CONCLUSIONS Collectively, our studies provide biochemical and mechanistic insight into the biology of this small molecule and provide new opportunities for treating L-2-HG-driven kidney cancers.
Collapse
Affiliation(s)
- Sandeep Shelar
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Eun-Hee Shim
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Garrett J Brinkley
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anirban Kundu
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Francesca Carobbio
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Tyler Poston
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jubilee Tan
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Vishwas Parekh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel Benson
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Phillip J Buckhaults
- South Carolina College of Pharmacy, University of South Carolina, Columbia, South Calorina
| | - Dinesh Rakheja
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Richard Kirkman
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yusuke Sato
- Graduate School of Medicine, University of Tokyo, Japan
| | - Seishi Ogawa
- Graduate School of Medicine, University of Tokyo, Japan
| | - Shilpa Dutta
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sadanandan E Velu
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Alison Pan
- Calithera Biosciences, South San Francisco, California
| | - Jason Chen
- Calithera Biosciences, South San Francisco, California
| | - Tony Huang
- Calithera Biosciences, South San Francisco, California
| | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama
| | - Anja Becker
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Conrad Kunick
- Institut für Medizinische und Pharmazeutische Chemie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sunil Sudarshan
- Department of Urology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
46
|
Wang G, Zhang DM, Zhuang HY, Yin C, Liu J, Wang ZC, Cai LC, Ren MH, Xu WH, Zhang C. Roles of Loss of Chromosome 14q Allele in the Prognosis of Renal Cell Carcinoma with C-reactive Protein Abnormity. Chin Med J (Engl) 2018; 130:2176-2182. [PMID: 28875953 PMCID: PMC5598329 DOI: 10.4103/0366-6999.213962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background: Renal cell carcinoma (RCC) is frequently associated with paraneoplastic inflammatory syndrome (PIS). This study aimed at exploring the connections between the survival rate and specific gene alterations and the potential mechanism. Methods: We retrospectively studied 69 surgical RCC cases from August 2014 to February 2016, including 18 cases of clear cell RCC (ccRCC) demonstrating elevated pretreatment serum C-reactive protein (CRP, Group A). Twelve of the 18 cases were symptomized with febrile episode. We also selected 49 cases of ccRCC with normal pretreatment CRP (Group B). Using 22 microsatellite markers, we compared the incidence of loss of heterozygosity (LOH) between Group A and Group B. All statistical tests are two-sided. Results: The 3p LOH was common in both Group A (89%) and Group B (92%). The frequency of 14q LOH in Group A (16 of 18) was higher than Group B (4 of 49, χ2 = 40.97 P < 0.0001). The 3p and 14q LOH were the characteristics of ccRCC with elevated acute phase reactants, including PIS, regardless of the presence of metastasis. On the contrary, 14q LOH was a rare genomic alternation in advanced-staged ccRCC without PIS. The overall survival of patients with elevated CRP (33.3%) was lower than its counterparts (6.1%, hazard ratio=1.852, P < 0.0001) in Kaplan-Meier curve. Conclusions: The results imply that the disruption of a 14q gene(s) might result in not only the inflammatory manifestations in the tumor host but also the poor survival rate as well. The isolation of the gene(s) on 14q might be a vital goal in the treatment of PIS-associated RCC.
Collapse
Affiliation(s)
- Gang Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Da-Ming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001; Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hai-Ying Zhuang
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chao Yin
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Zi-Chun Wang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Li-Cheng Cai
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Ming-Hua Ren
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Wan-Hai Xu
- Department of Urology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Cheng Zhang
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
47
|
Abstract
Renal cell carcinoma (RCC) is a heterogenous group of tumors, >70% of which belong to the category of clear cell carcinoma. In recent years, crucial advances have been made in our understanding of the molecular and metabolic basis of clear cell carcinoma. This tumor manifests significant alterations in the cellular metabolism, so that the tumor cells preferentially induce the hypoxia response pathway using aerobic glycolysis, rather than the normal oxidative phosphorylation for energy. Most of the clear cell carcinomas (sporadic as well as familial) have mutations and deletions in the VHL gene located at 3p (p3.25). Normally, pVHL plays a crucial role in the proteasomal degradation of hypoxia-inducible factors (HIF)1 and HIF2. Lack of a functioning pVHL owing to genetic alterations results in stabilization and accumulation of these factors, which promotes cell growth, cell proliferation, and angiogenesis, contributing to a neoplastic phenotype. Several other genes normally located adjacent to VHL (BAP1, SETD2, PBRM1) may also be lost. These are tumor suppressor genes whose loss not only plays a role in carcinogenesis but may also influence the clinical course of these neoplasms. In addition, interaction among a variety of other genes located at several different chromosomes may also play a role in the genesis and progression of clear cell carcinoma.
Collapse
|
48
|
Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, O'Brien T, Lopez JI, Watkins TBK, Nicol D, Stares M, Challacombe B, Hazell S, Chandra A, Mitchell TJ, Au L, Eichler-Jonsson C, Jabbar F, Soultati A, Chowdhury S, Rudman S, Lynch J, Fernando A, Stamp G, Nye E, Stewart A, Xing W, Smith JC, Escudero M, Huffman A, Matthews N, Elgar G, Phillimore B, Costa M, Begum S, Ward S, Salm M, Boeing S, Fisher R, Spain L, Navas C, Grönroos E, Hobor S, Sharma S, Aurangzeb I, Lall S, Polson A, Varia M, Horsfield C, Fotiadis N, Pickering L, Schwarz RF, Silva B, Herrero J, Luscombe NM, Jamal-Hanjani M, Rosenthal R, Birkbak NJ, Wilson GA, Pipek O, Ribli D, Krzystanek M, Csabai I, Szallasi Z, Gore M, McGranahan N, Van Loo P, Campbell P, Larkin J, Swanton C. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 2018; 173:595-610.e11. [PMID: 29656894 PMCID: PMC5938372 DOI: 10.1016/j.cell.2018.03.043] [Citation(s) in RCA: 452] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/12/2018] [Accepted: 03/19/2018] [Indexed: 02/07/2023]
Abstract
The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance.
Collapse
Affiliation(s)
- Samra Turajlic
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Hang Xu
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Kevin Litchfield
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Rowan
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Stuart Horswell
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Tim Chambers
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Tim O'Brien
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Jose I Lopez
- Department of Pathology, Cruces University Hospital, Biocruces Institute, University of the Basque Country, Barakaldo, Spain
| | - Thomas B K Watkins
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - David Nicol
- Department of Urology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Mark Stares
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Ben Challacombe
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Steve Hazell
- Department of Pathology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Ashish Chandra
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Thomas J Mitchell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Department of Surgery, Addenbrooke's Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Lewis Au
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Claudia Eichler-Jonsson
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Faiz Jabbar
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Aspasia Soultati
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Simon Chowdhury
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Sarah Rudman
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Joanna Lynch
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Archana Fernando
- Urology Centre, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Gordon Stamp
- Experimental Histopathology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Aengus Stewart
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Wei Xing
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Jonathan C Smith
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Mickael Escudero
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Adam Huffman
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Nik Matthews
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Greg Elgar
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Ben Phillimore
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Marta Costa
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Sharmin Begum
- Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK
| | - Sophia Ward
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Advanced Sequencing Facility, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Max Salm
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Stefan Boeing
- Department of Bioinformatics and Biostatistics, the Francis Crick Institute, London NW1 1AT, UK
| | - Rosalie Fisher
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Lavinia Spain
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Carolina Navas
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Eva Grönroos
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sebastijan Hobor
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sarkhara Sharma
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Ismaeel Aurangzeb
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Sharanpreet Lall
- Department of Medical Oncology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 9RT, UK
| | - Alexander Polson
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Mary Varia
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Catherine Horsfield
- Department of Pathology, Guy's and St. Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Nicos Fotiadis
- Department of Radiology, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Lisa Pickering
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Roland F Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Bruno Silva
- Department of Scientific Computing, the Francis Crick Institute, London NW1 1AT, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Nick M Luscombe
- Bioinformatics and Computational Biology Laboratory, the Francis Crick Institute, London NW1 1AT, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Rachel Rosenthal
- Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, London WC1E 6DD, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Nicolai J Birkbak
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Gareth A Wilson
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Orsolya Pipek
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dezso Ribli
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Marcin Krzystanek
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby 2800, Denmark
| | - Istvan Csabai
- Department of Physics of Complex Systems, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltan Szallasi
- Department of Bio and Health Informatics, Technical University of Denmark, Kgs Lyngby 2800, Denmark; Computational Health Informatics Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin Gore
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK
| | - Peter Van Loo
- Cancer Genomics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Department of Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Peter Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - James Larkin
- Renal and Skin Units, the Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK.
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, the Francis Crick Institute, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence London, University College London Cancer Institute, London WC1E 6DD, UK; Department of Medical Oncology, University College London Hospitals, London NW1 2BU, UK.
| |
Collapse
|
49
|
Kluzek K, Srebniak MI, Majer W, Ida A, Milecki T, Huminska K, van der Helm RM, Silesian A, Wrzesinski TM, Wojciechowicz J, Beverloo BH, Kwias Z, Bluyssen HAR, Wesoly J. Genetic characterization of Polish ccRCC patients: somatic mutation analysis of PBRM1, BAP1 and KDMC5, genomic SNP array analysis in tumor biopsy and preliminary results of chromosome aberrations analysis in plasma cell free DNA. Oncotarget 2018; 8:28558-28574. [PMID: 28212566 PMCID: PMC5438672 DOI: 10.18632/oncotarget.15331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/10/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Mutation analysis and cytogenetic testing in clear cell renal cell carcinoma (ccRCC) is not yet implemented in a routine diagnostics of ccRCC. MATERIAL AND METHODS We characterized the chromosomal alterations in 83 ccRCC tumors from Polish patients using whole genome SNP genotyping assay. Moreover, the utility of next generation sequencing of cell free DNA (cfDNA) in patients plasma as a potential tool for non-invasive cytogenetic analysis was tested. Additionally, tumor specific somatic mutations in PBRM1, BAP1 and KDM5C were determined. RESULTS We confirmed a correlation between deletions at 9p and higher tumor size, and deletion of chromosome 20 and the survival time. In Fuhrman grade 1, only aberrations of 3p and 8p deletion, gain of 5q and 13q and gains of chromosome 7 and 16 were present. The number of aberrations increased with Fuhrman grade, all chromosomes displayed cytogenetic changes in G3 and G4. ccRCC specific chromosome aberrations were observed in cfDNA, although discrepancies were found between cfDNA and tumor samples. In total 12 common and 94 rare variants were detected in PBRM1, BAP1 and KDM5C, with four potentially pathogenic variants. We observed markedly lower mutation load in PBRM1. CONCLUSIONS Cytogenetic analysis of cfDNA may allow more accurate diagnosis of tumor aberrations and therefore the correlation between the chromosome aberrations in cfDNA and clinical outcome should be studied in larger cohorts. The functional studies on in BAP1, KDM5C, PBRM1 mutations in large, independent sample set would be necessary for the assessment of their prognostic and diagnostic potential.
Collapse
Affiliation(s)
- Katarzyna Kluzek
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Malgorzata I Srebniak
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Weronika Majer
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Agnieszka Ida
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, 61-285 Poznan, Poland
| | - Tomasz Milecki
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, 61-285 Poznan, Poland
| | - Kinga Huminska
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland.,Genomic Laboratory, DNA Research Center, 61-612 Poznan, Poland
| | - Robert M van der Helm
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Adrian Silesian
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Tomasz M Wrzesinski
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | | | - Berna H Beverloo
- Department of Clinical Genetics, Erasmus Medical Center, 3015 CN Rotterdam, The Netherlands
| | - Zbigniew Kwias
- Department of Urology and Urological Oncology, Poznan University of Medical Sciences, 61-285 Poznan, Poland
| | - Hans A R Bluyssen
- Department of Human Molecular Genetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| | - Joanna Wesoly
- Laboratory of High Throughput Technologies, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland
| |
Collapse
|
50
|
Notch1 pathway-mediated microRNA-151-5p promotes gastric cancer progression. Oncotarget 2018; 7:38036-38051. [PMID: 27191259 PMCID: PMC5122370 DOI: 10.18632/oncotarget.9342] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 04/29/2016] [Indexed: 12/20/2022] Open
Abstract
Gastric carcinoma is the third leading cause of lethal cancer worldwide. Previous studies showed that Notch1 receptor intracellular domain (N1IC), the activated form of Notch1 receptor, promotes gastric cancer progression. It has been demonstrated that a significant cross-talk interplays between Notch pathways and microRNAs (miRNAs) in controlling tumorigenesis. This study identified an intronic microRNA-151 (miR-151), which consists of two mature miRNAs, miR-151-3p and miR-151-5p, as a Notch1 receptor-induced miRNA in gastric cancer cells. Activation of Notch1 pathway enhanced expressions of miR-151 and its host gene, focal adhesion kinase (FAK), in gastric cancer cells. The levels of miR-151 in gastric cancer samples were higher than those of adjacent non-tumor samples. Activated Notch1 pathway induced CBF1-dependent FAK promoter activity. The ectopic expression of miR-151 promoted growth and progression of SC-M1 gastric cancer cells including cell viability and colony formation, migration, and invasion abilities. Activated Notch1 pathway could augment progression of gastric cancer cells through miR-151-5p and FAK. The mRNA levels of pluripotency genes, Nanog and SOX-2, tumorsphere formation ability, tumor growth, and lung metastasis of SC-M1 cells were elevated by activated Notch1 pathway through miR-151-5p. Furthermore, miR-151-5p could target 3′-untranslated region (3′-UTR) of p53 mRNA and down-regulate p53 level in SC-M1 cells. Mechanistically, Notch1/miR-151-5p axis contributed to progression of SC-M1 cells through down-regulation of p53 which in turn repressed FAK promoter activity. Taken together, these results suggest that Notch1 pathway and miR-151-5p interplay with p53 in a reciprocal regulation loop in controlling gastric carcinogenesis.
Collapse
|