1
|
Burkert N, Roy S, Häusler M, Wuttke D, Müller S, Wiemer J, Hollmann H, Oldrati M, Ramirez-Franco J, Benkert J, Fauler M, Duda J, Goaillard JM, Pötschke C, Münchmeyer M, Parlato R, Liss B. Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra. Commun Biol 2023; 6:1146. [PMID: 37950046 PMCID: PMC10638391 DOI: 10.1038/s42003-023-05441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.
Collapse
Affiliation(s)
- Nicole Burkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Shoumik Roy
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
| | - Max Häusler
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | | | - Sonja Müller
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Wiemer
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Helene Hollmann
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Marvin Oldrati
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jorge Ramirez-Franco
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Julia Benkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Christina Pötschke
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Moritz Münchmeyer
- Wolution GmbH & Co. KG, 82152, Munich, Germany
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rosanna Parlato
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167, Mannheim, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
- Linacre College & New College, Oxford University, OX1 2JD, Oxford, UK.
| |
Collapse
|
2
|
Riley-Gillis B, Tsaih SW, King E, Wollenhaupt S, Reeb J, Peck AR, Wackman K, Lemke A, Rui H, Dezso Z, Flister MJ. Machine learning reveals genetic modifiers of the immune microenvironment of cancer. iScience 2023; 26:107576. [PMID: 37664640 PMCID: PMC10470213 DOI: 10.1016/j.isci.2023.107576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/01/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Heritability in the immune tumor microenvironment (iTME) has been widely observed yet remains largely uncharacterized. Here, we developed a machine learning approach to map iTME modifiers within loci from genome-wide association studies (GWASs) for breast cancer (BrCa) incidence. A random forest model was trained on a positive set of immune-oncology (I-O) targets, and then used to assign I-O target probability scores to 1,362 candidate genes in linkage disequilibrium with 155 BrCa GWAS loci. Cluster analysis of the most probable candidates revealed two subfamilies of genes related to effector functions and adaptive immune responses, suggesting that iTME modifiers impact multiple aspects of anticancer immunity. Two of the top ranking BrCa candidates, LSP1 and TLR1, were orthogonally validated as iTME modifiers using BrCa patient biopsies and comparative mapping studies, respectively. Collectively, these data demonstrate a robust and flexible framework for functionally fine-mapping GWAS risk loci to identify translatable therapeutic targets.
Collapse
Affiliation(s)
- Bridget Riley-Gillis
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Shirng-Wern Tsaih
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Emily King
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Amy R. Peck
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kelsey Wackman
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Angela Lemke
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zoltan Dezso
- Genomics Research Center, AbbVie Bay Area, 1000 Gateway Boulevard, South San Francisco, CA 94080, USA
| | - Michael J. Flister
- Genomics Research Center, AbbVie Inc, 1 North Waukegan Road, North Chicago, IL 60064, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
3
|
Yi M, Zhan T, Peck AR, Hooke JA, Kovatich AJ, Shriver CD, Hu H, Sun Y, Rui H, Chervoneva I. Selection of optimal quantile protein biomarkers based on cell-level immunohistochemistry data. BMC Bioinformatics 2023; 24:298. [PMID: 37481512 PMCID: PMC10363294 DOI: 10.1186/s12859-023-05408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/10/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Protein biomarkers of cancer progression and response to therapy are increasingly important for improving personalized medicine. Advanced quantitative pathology platforms enable measurement of protein expression in tissues at the single-cell level. However, this rich quantitative cell-by-cell biomarker information is most often not exploited. Instead, it is reduced to a single mean across the cells of interest or converted into a simple proportion of binary biomarker-positive or -negative cells. RESULTS We investigated the utility of retaining all quantitative information at the single-cell level by considering the values of the quantile function (inverse of the cumulative distribution function) estimated from a sample of cell signal intensity levels in a tumor tissue. An algorithm was developed for selecting optimal cutoffs for dichotomizing cell signal intensity distribution quantiles as predictors of continuous, categorical or survival outcomes. The proposed algorithm was used to select optimal quantile biomarkers of breast cancer progression based on cancer cells' cell signal intensity levels of nuclear protein Ki-67, Proliferating cell nuclear antigen, Programmed cell death 1 ligand 2, and Progesterone receptor. The performance of the resulting optimal quantile biomarkers was validated and compared to the standard cancer compartment mean signal intensity markers using an independent external validation cohort. For Ki-67, the optimal quantile biomarker was also compared to established biomarkers based on percentages of Ki67-positive cells. For proteins significantly associated with PFS in the external validation cohort, the optimal quantile biomarkers yielded either larger or similar effect size (hazard ratio for progression-free survival) as compared to cancer compartment mean signal intensity biomarkers. CONCLUSION The optimal quantile protein biomarkers yield generally improved prognostic value as compared to the standard protein expression markers. The proposed methodology has a broad application to single-cell data from genomics, transcriptomics, proteomics, or metabolomics studies at the single cell level.
Collapse
Affiliation(s)
- Misung Yi
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Tingting Zhan
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jeffrey A Hooke
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Albert J Kovatich
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Craig D Shriver
- John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
McBrearty N, Cho C, Chen J, Zahedi F, Peck AR, Radaelli E, Assenmacher CA, Pavlak C, Devine A, Yu P, Lu Z, Zhang H, Li J, Pitarresi JR, Astsaturov I, Cukierman E, Rustgi AK, Stanger BZ, Rui H, Fuchs SY. Tumor-Suppressive and Immune-Stimulating Roles of Cholesterol 25-hydroxylase in Pancreatic Cancer Cells. Mol Cancer Res 2023; 21:228-239. [PMID: 36378658 PMCID: PMC9992122 DOI: 10.1158/1541-7786.mcr-22-0602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Cholesterol dependence is an essential characteristic of pancreatic ductal adenocarcinoma (PDAC). Cholesterol 25-hydroxylase (CH25H) catalyzes monooxygenation of cholesterol into 25-hydroxycholesterol, which is implicated in inhibiting cholesterol biosynthesis and in cholesterol depletion. Here, we show that, within PDAC cells, accumulation of cholesterol was facilitated by the loss of CH25H. Methylation of the CH25H gene and decreased levels of CH25H expression occurred in human pancreatic cancers and was associated with poor prognosis. Knockout of Ch25h in mice accelerated progression of Kras-driven pancreatic intraepithelial neoplasia. Conversely, restoration of CH25H expression in human and mouse PDAC cells decreased their viability under conditions of cholesterol deficit, and decelerated tumor growth in immune competent hosts. Mechanistically, the loss of CH25H promoted autophagy resulting in downregulation of MHC-I and decreased CD8+ T-cell tumor infiltration. Re-expression of CH25H in PDAC cells combined with immune checkpoint inhibitors notably inhibited tumor growth. We discuss additional benefits that PDAC cells might gain from inactivation of CH25H and the potential translational importance of these findings for therapeutic approaches to PDAC. IMPLICATIONS Loss of CH25H by pancreatic cancer cells may stimulate tumor progression and interfere with immunotherapies.
Collapse
Affiliation(s)
- Noreen McBrearty
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Cho
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyun Chen
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Farima Zahedi
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy R. Peck
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Clarice Pavlak
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anne Devine
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pengfei Yu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Lu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongru Zhang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason R. Pitarresi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Igor Astsaturov
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19104, USA
| | - Edna Cukierman
- Marvin and Concetta Greenberg Pancreatic Cancer Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19104, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ben Z. Stanger
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine and Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Chervoneva I, Peck AR, Sun Y, Yi M, Udhane SS, Langenheim JF, Girondo MA, Jorns JM, Chaudhary LN, Kamaraju S, Bergom C, Flister MJ, Hooke JA, Kovatich AJ, Shriver CD, Hu H, Palazzo JP, Bibbo M, Hyslop T, Nevalainen MT, Pestell RG, Fuchs SY, Mitchell EP, Rui H. High PD-L2 Predicts Early Recurrence of ER-Positive Breast Cancer. JCO Precis Oncol 2023; 7:e2100498. [PMID: 36652667 PMCID: PMC9928763 DOI: 10.1200/po.21.00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/26/2022] [Accepted: 12/08/2022] [Indexed: 01/20/2023] Open
Abstract
PURPOSE T-cell-mediated cytotoxicity is suppressed when programmed cell death-1 (PD-1) is bound by PD-1 ligand-1 (PD-L1) or PD-L2. Although PD-1 inhibitors have been approved for triple-negative breast cancer, the lower response rates of 25%-30% in estrogen receptor-positive (ER+) breast cancer will require markers to identify likely responders. The focus of this study was to evaluate whether PD-L2, which has higher affinity than PD-L1 for PD-1, is a predictor of early recurrence in ER+ breast cancer. METHODS PD-L2 protein levels in cancer cells and stromal cells of therapy-naive, localized or locoregional ER+ breast cancers were measured retrospectively by quantitative immunofluorescence histocytometry and correlated with progression-free survival (PFS) in the main study cohort (n = 684) and in an independent validation cohort (n = 273). All patients subsequently received standard-of-care adjuvant therapy without immune checkpoint inhibitors. RESULTS Univariate analysis of the main cohort revealed that high PD-L2 expression in cancer cells was associated with shorter PFS (hazard ratio [HR], 1.8; 95% CI, 1.3 to 2.6; P = .001), which was validated in an independent cohort (HR, 2.3; 95% CI, 1.1 to 4.8; P = .026) and remained independently predictive after multivariable adjustment for common clinicopathological variables (HR, 2.0; 95% CI, 1.4 to 2.9; P < .001). Subanalysis of the ER+ breast cancer patients treated with adjuvant chemotherapy (n = 197) revealed that high PD-L2 levels in cancer cells associated with short PFS in univariate (HR, 2.5; 95% CI, 1.4 to 4.4; P = .003) and multivariable analyses (HR, 3.4; 95% CI, 1.9 to 6.2; P < .001). CONCLUSION Up to one third of treatment-naive ER+ breast tumors expressed high PD-L2 levels, which independently predicted poor clinical outcome, with evidence of further elevated risk of progression in patients who received adjuvant chemotherapy. Collectively, these data warrant studies to gain a deeper understanding of PD-L2 in the progression of ER+ breast cancer and may provide rationale for immune checkpoint blockade for this patient group.
Collapse
Affiliation(s)
- Inna Chervoneva
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA
| | - Amy R. Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | - Misung Yi
- Division of Biostatistics, Thomas Jefferson University, Philadelphia, PA
| | - Sameer S. Udhane
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | | | | | - Julie M. Jorns
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Sailaja Kamaraju
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Carmen Bergom
- Department Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI
| | | | - Jeffrey A. Hooke
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Albert J. Kovatich
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Craig D. Shriver
- John P. Murtha Cancer Center, Uniformed Services University, Bethesda, MD
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA
| | - Juan P. Palazzo
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Marluce Bibbo
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA
| | - Terry Hyslop
- Center for Health Equity, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | | | - Richard G. Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Doylestown, PA
- The Wistar Cancer Center, Philadelphia, PA
| | - Serge Y. Fuchs
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA
| | - Edith P. Mitchell
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
6
|
Chin LK, Li H, Choi JH, Iwamoto Y, Oh J, Min J, Beak SK, Yoo D, Castro CM, Lee D, Im H. Hydrogel Stamping for Rapid, Multiplexed, Point-of-Care Immunostaining of Cells and Tissues. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27613-27622. [PMID: 35671240 DOI: 10.1021/acsami.2c05071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the era of precision oncology, multicolor fluorescence imaging has become a core technology for multiplexed molecular analysis of cellular and tissue specimens. However, conventional solution-based staining is labor-intensive and time-consuming and requires considerable expertise to yield optimal results, which creates difficulties for employing this technology in resource-limited settings. Here, we report a new immunostaining method based on hydrogel stamping, which is simple, fast, easy to use, and reproducible. We showed that a hydrophilic hydrogel stamp could effectively transfer fluorescent antibodies to targets and withdraw an excess solution when the reaction is completed, obviating the need for extra washing. This unique property allows for quality immunostaining in 5 min for cells using one-eighth of antibody consumption compared to the conventional solution-based method. Furthermore, we implemented fluorescence quenching and immunocycling with hydrogel staining for multiplexed analysis of 9 protein markers at a single cell level. Finally, we applied the immunocycling method to human breast cancer tissue samples and showed quality immunostaining over a large area (∼2 cm2) in 30 min for molecular subtyping of breast cancer. The hydrogel immunostaining could open new opportunities for rapid, automated, and multiplexed profiling in compact point-of-care systems for molecular cancer diagnosis.
Collapse
Affiliation(s)
- Lip Ket Chin
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department of Electrical Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Huiyan Li
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph N1G2W1, Canada
| | - Jae-Hyeok Choi
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Juhyun Oh
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Jouha Min
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Suk Kyung Beak
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Dahyeon Yoo
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Cesar M Castro
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Cancer Center, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Dongyoung Lee
- Noul Co. Limited, Gyeonggi-do, Yongin 16942, Republic of Korea
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge Street, CPZN 5206, Boston, Massachusetts 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| |
Collapse
|
7
|
Ali S, Hamam D, Liu X, Lebrun JJ. Terminal differentiation and anti-tumorigenic effects of prolactin in breast cancer. Front Endocrinol (Lausanne) 2022; 13:993570. [PMID: 36157462 PMCID: PMC9499354 DOI: 10.3389/fendo.2022.993570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer is a major disease affecting women worldwide. A woman has 1 in 8 lifetime risk of developing breast cancer, and morbidity and mortality due to this disease are expected to continue to rise globally. Breast cancer remains a challenging disease due to its heterogeneity, propensity for recurrence and metastasis to distant vital organs including bones, lungs, liver and brain ultimately leading to patient death. Despite the development of various therapeutic strategies to treat breast cancer, still there are no effective treatments once metastasis has occurred. Loss of differentiation and increased cellular plasticity and stemness are being recognized molecularly and clinically as major derivers of heterogeneity, tumor evolution, relapse, metastasis, and therapeutic failure. In solid tumors, breast cancer is one of the leading cancer types in which tumor differentiation state has long been known to influence cancer behavior. Reprograming and/or restoring differentiation of cancer cells has been proposed to provide a viable approach to reverse the cancer through differentiation and terminal maturation. The hormone prolactin (PRL) is known to play a critical role in mammary gland lobuloalveolar development/remodeling and the terminal differentiation of the mammary epithelial cells promoting milk proteins gene expression and lactation. Here, we will highlight recent discoveries supporting an anti-tumorigenic role for PRL in breast cancer as a "pro/forward-differentiation" pathway restricting plasticity, stemness and tumorigenesis.
Collapse
|
8
|
Yen YT, Chien M, Wu PY, Ho CC, Ho CT, Huang KCY, Chiang SF, Chao KSC, Chen WTL, Hung SC. Protein phosphatase 2A inactivation induces microsatellite instability, neoantigen production and immune response. Nat Commun 2021; 12:7297. [PMID: 34911954 PMCID: PMC8674339 DOI: 10.1038/s41467-021-27620-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022] Open
Abstract
Microsatellite-instable (MSI), a predictive biomarker for immune checkpoint blockade (ICB) response, is caused by mismatch repair deficiency (MMRd) that occurs through genetic or epigenetic silencing of MMR genes. Here, we report a mechanism of MMRd and demonstrate that protein phosphatase 2A (PP2A) deletion or inactivation converts cold microsatellite-stable (MSS) into MSI tumours through two orthogonal pathways: (i) by increasing retinoblastoma protein phosphorylation that leads to E2F and DNMT3A/3B expression with subsequent DNA methylation, and (ii) by increasing histone deacetylase (HDAC)2 phosphorylation that subsequently decreases H3K9ac levels and histone acetylation, which induces epigenetic silencing of MLH1. In mouse models of MSS and MSI colorectal cancers, triple-negative breast cancer and pancreatic cancer, PP2A inhibition triggers neoantigen production, cytotoxic T cell infiltration and ICB sensitization. Human cancer cell lines and tissue array effectively confirm these signaling pathways. These data indicate the dual involvement of PP2A inactivation in silencing MLH1 and inducing MSI.
Collapse
Affiliation(s)
- Yu-Ting Yen
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - May Chien
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Pei-Yi Wu
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chi-Chang Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Chun-Te Ho
- grid.254145.30000 0001 0083 6092Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402 Taiwan
| | - Kevin Chih-Yang Huang
- grid.254145.30000 0001 0083 6092Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan
| | - Shu-Fen Chiang
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC ,grid.454740.6Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055 Taiwan
| | - K. S. Clifford Chao
- grid.254145.30000 0001 0083 6092Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, Taiwan 40402 ROC
| | - William Tzu-Liang Chen
- grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402 Taiwan ,grid.254145.30000 0001 0083 6092Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302 Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, China Medical University, Taichung, 40402, Taiwan. .,Integrative Stem Cell Center, China Medical University Hospital, Taichung, 40402, Taiwan. .,Department of Orthopaedics, China Medical University Hospital, Taichung, 40402, Taiwan.
| |
Collapse
|
9
|
Chen K, Jiao X, Ashton A, Di Rocco A, Pestell TG, Sun Y, Zhao J, Casimiro MC, Li Z, Lisanti MP, McCue PA, Shen D, Achilefu S, Rui H, Pestell RG. The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis 2020; 9:83. [PMID: 32948740 PMCID: PMC7501870 DOI: 10.1038/s41389-020-00266-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/22/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
The essential G1-cyclin, CCND1, is a collaborative nuclear oncogene that is frequently overexpressed in cancer. D-type cyclins bind and activate CDK4 and CDK6 thereby contributing to G1–S cell-cycle progression. In addition to the nucleus, herein cyclin D1 was also located in the cytoplasmic membrane. In contrast with the nuclear-localized form of cyclin D1 (cyclin D1NL), the cytoplasmic membrane-localized form of cyclin D1 (cyclin D1MEM) induced transwell migration and the velocity of cellular migration. The cyclin D1MEM was sufficient to induce G1–S cell-cycle progression, cellular proliferation, and colony formation. The cyclin D1MEM was sufficient to induce phosphorylation of the serine threonine kinase Akt (Ser473) and augmented extranuclear localized 17β-estradiol dendrimer conjugate (EDC)-mediated phosphorylation of Akt (Ser473). These studies suggest distinct subcellular compartments of cell cycle proteins may convey distinct functions.
Collapse
Affiliation(s)
- Ke Chen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Anthony Ashton
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Timothy G Pestell
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jun Zhao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA.,Dept of Science and Math, Abraham Baldwin Agricultural college, Tifton, GA, 31794, Georgia
| | - Zhiping Li
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA
| | - Michael P Lisanti
- Biomedical Research Centre (BRC), Translational Medicine, School of Environment and Life Sciences, University of Salford, Manchester, United Kingdom
| | - Peter A McCue
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Duanwen Shen
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA
| | - Samuel Achilefu
- Departments of Biomedical Engineering, Washington University, St. Louis, MO, 63110, USA.,Departments of Radiology, Washington University, St. Louis, MO, 63110, USA.,Departments of Biochemistry & Molecular Biophysics, Washington University, St. Louis, MO, 63110, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, 19096, USA. .,The Wistar Cancer Center, Wistar Institute, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Cho C, Mukherjee R, Peck AR, Sun Y, McBrearty N, Katlinski KV, Gui J, Govindaraju PK, Puré E, Rui H, Fuchs SY. Cancer-associated fibroblasts downregulate type I interferon receptor to stimulate intratumoral stromagenesis. Oncogene 2020; 39:6129-6137. [PMID: 32807917 PMCID: PMC7502515 DOI: 10.1038/s41388-020-01424-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/30/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Activation of cancer-associated fibroblasts (CAFs) and ensuing desmoplasia play an important role in the growth and progression of solid tumors. Here we demonstrate that, within colon and pancreatic ductal adenocarcinoma tumors, efficient stromagenesis relies on downregulation of the IFNAR1 chain of the type I interferon (IFN1) receptor. Expression of the fibroblast activation protein (FAP) and accumulation of the extracellular matrix (ECM) was notably impaired in tumors grown in the Ifnar1S526A (SA) knock-in mice, which are deficient in IFNAR1 downregulation. Primary fibroblasts from these mice exhibited elevated levels of Smad7, a negative regulator of the transforming growth factor-β (TGFβ) pathway. Knockdown of Smad7 alleviated deficient ECM production in SA fibroblasts in response to TGFβ. Analysis of human colorectal cancers revealed an inverse correlation between IFNAR1 and FAP levels. Whereas growth of tumors in SA mice was stimulated by co-injection of wild type but not SA fibroblasts, genetic ablation of IFNAR1 in fibroblasts also accelerated tumor growth. We discuss how inactivation of IFNAR1 in CAFs acts to stimulate stromagenesis and tumor growth.
Collapse
Affiliation(s)
- Christina Cho
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Riddhita Mukherjee
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Noreen McBrearty
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kanstantsin V Katlinski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jun Gui
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Priya K Govindaraju
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Odnokoz O, Yu P, Peck AR, Sun Y, Kovatich AJ, Hooke JA, Hu H, Mitchell EP, Rui H, Fuchs SY. Malignant cell-specific pro-tumorigenic role of type I interferon receptor in breast cancers. Cancer Biol Ther 2020; 21:629-636. [PMID: 32378445 DOI: 10.1080/15384047.2020.1750297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Within the microenvironment of solid tumors, stress associated with deficit of nutrients and oxygen as well as tumor-derived factors triggers the phosphorylation-dependent degradation of the IFNAR1 chain of type I interferon (IFN1) receptor and ensuing suppression of the IFN1 pathway. Here we sought to examine the importance of these events in malignant mammary cells. Expression of non-degradable IFNAR1S526A mutant in mouse mammary adenocarcinoma cells stimulated the IFN1 pathway yet did not affect growth of these cells in vitro or ability to form subcutaneous tumors in the syngeneic mice. Remarkably, these cells exhibited a notably accelerated growth when transplanted orthotopically into mammary glands. Importantly, in human patients with either ER+ or ER- breast cancers, high levels of IFNAR1 were associated with poor prognosis. We discuss the putative mechanisms underlying the pro-tumorigenic role of IFNAR1 in malignant breast cells.
Collapse
Affiliation(s)
- Olena Odnokoz
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Pengfei Yu
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin , Milwaukee, WI, USA
| | - Yunguang Sun
- Department of Pathology, Medical College of Wisconsin , Milwaukee, WI, USA
| | - Albert J Kovatich
- John P. Murtha Cancer Center Research Program, Uniformed Services University and Walter Reed National Military Medical Center , Bethesda, MD, USA
| | - Jeffrey A Hooke
- John P. Murtha Cancer Center Research Program, Uniformed Services University and Walter Reed National Military Medical Center , Bethesda, MD, USA
| | - Hai Hu
- Chan Soon-Shiong Institute of Molecular Medicine , Windber, PA, USA
| | - Edith P Mitchell
- Department of Medical Oncology, Thomas Jefferson University , Philadelphia, PA, USA
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin , Milwaukee, WI, USA
| | - Serge Y Fuchs
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania , Philadelphia, PA, USA
| |
Collapse
|
12
|
Brieu N, Gavriel CG, Nearchou IP, Harrison DJ, Schmidt G, Caie PD. Automated tumour budding quantification by machine learning augments TNM staging in muscle-invasive bladder cancer prognosis. Sci Rep 2019; 9:5174. [PMID: 30914794 PMCID: PMC6435679 DOI: 10.1038/s41598-019-41595-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Tumour budding has been described as an independent prognostic feature in several tumour types. We report for the first time the relationship between tumour budding and survival evaluated in patients with muscle invasive bladder cancer. A machine learning-based methodology was applied to accurately quantify tumour buds across immunofluorescence labelled whole slide images from 100 muscle invasive bladder cancer patients. Furthermore, tumour budding was found to be correlated to TNM (p = 0.00089) and pT (p = 0.0078) staging. A novel classification and regression tree model was constructed to stratify all stage II, III, and IV patients into three new staging criteria based on disease specific survival. For the stratification of non-metastatic patients into high or low risk of disease specific death, our decision tree model reported that tumour budding was the most significant feature (HR = 2.59, p = 0.0091), and no clinical feature was utilised to categorise these patients. Our findings demonstrate that tumour budding, quantified using automated image analysis provides prognostic value for muscle invasive bladder cancer patients and a better model fit than TNM staging.
Collapse
Affiliation(s)
- Nicolas Brieu
- Definiens AG, Bernhard-Wicki-Straße 5, 80636, München, Germany
| | - Christos G Gavriel
- School of Medicine, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9TF, UK
| | - Ines P Nearchou
- School of Medicine, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9TF, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9TF, UK
| | - Günter Schmidt
- Definiens AG, Bernhard-Wicki-Straße 5, 80636, München, Germany
| | - Peter D Caie
- School of Medicine, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9TF, UK.
| |
Collapse
|
13
|
Control of CCND1 ubiquitylation by the catalytic SAGA subunit USP22 is essential for cell cycle progression through G1 in cancer cells. Proc Natl Acad Sci U S A 2018; 115:E9298-E9307. [PMID: 30224477 PMCID: PMC6176615 DOI: 10.1073/pnas.1807704115] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Overexpression of the deubiquitylase ubiquitin-specific peptidase 22 (USP22) is a marker of aggressive cancer phenotypes like metastasis, therapy resistance, and poor survival. Functionally, this overexpression of USP22 actively contributes to tumorigenesis, as USP22 depletion blocks cancer cell cycle progression in vitro, and inhibits tumor progression in animal models of lung, breast, bladder, ovarian, and liver cancer, among others. Current models suggest that USP22 mediates these biological effects via its role in epigenetic regulation as a subunit of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional cofactor complex. Challenging the dogma, we report here a nontranscriptional role for USP22 via a direct effect on the core cell cycle machinery: that is, the deubiquitylation of the G1 cyclin D1 (CCND1). Deubiquitylation by USP22 protects CCND1 from proteasome-mediated degradation and occurs separately from the canonical phosphorylation/ubiquitylation mechanism previously shown to regulate CCND1 stability. We demonstrate that control of CCND1 is a key mechanism by which USP22 mediates its known role in cell cycle progression. Finally, USP22 and CCND1 levels correlate in patient lung and colorectal cancer samples and our preclinical studies indicate that targeting USP22 in combination with CDK inhibitors may offer an approach for treating cancer patients whose tumors exhibit elevated CCND1.
Collapse
|
14
|
Flister MJ, Bergom C. Genetic Modifiers of the Breast Tumor Microenvironment. Trends Cancer 2018; 4:429-444. [PMID: 29860987 DOI: 10.1016/j.trecan.2018.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Multiple nonmalignant cell types in the tumor microenvironment (TME) impact breast cancer risk, metastasis, and response to therapy, yet most heritable mechanisms that influence TME cell function and breast cancer outcomes are largely unknown. Breast cancer risk is ∼30% heritable and >170 genetic loci have been associated with breast cancer traits. However, the majority of candidate genes have poorly defined mechanistic roles in breast cancer biology. Research indicates that breast cancer risk modifiers directly impact cancer cells, yet it is equally plausible that some modifier alleles impact the nonmalignant TME. The objective of this review is to examine the list of current breast cancer candidate genes that may modify breast cancer risk and outcome through the TME.
Collapse
Affiliation(s)
- Michael J Flister
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Carmen Bergom
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Blake Z, Marks DK, Gartrell RD, Hart T, Horton P, Cheng SK, Taback B, Horst BA, Saenger YM. Complete intracranial response to talimogene laherparepvec (T-Vec), pembrolizumab and whole brain radiotherapy in a patient with melanoma brain metastases refractory to dual checkpoint-inhibition. J Immunother Cancer 2018; 6:25. [PMID: 29622046 PMCID: PMC5887256 DOI: 10.1186/s40425-018-0338-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/19/2018] [Indexed: 12/18/2022] Open
Abstract
Background Immunotherapy, in particular checkpoint blockade, has changed the clinical landscape of metastatic melanoma. Nonetheless, the majority of patients will either be primary refractory or progress over follow up. Management of patients progressing on first-line immunotherapy remains challenging. Expanded treatment options with combination immunotherapy has demonstrated efficacy in patients previously unresponsive to single agent or alternative combination therapy. Case presentation We describe the case of a patient with diffusely metastatic melanoma, including brain metastases, who, despite being treated with stereotactic radiosurgery and dual CTLA-4/PD-1 blockade (ipilimumab/nivolumab), developed systemic disease progression and innumerable brain metastases. This patient achieved a complete CNS response and partial systemic response with standard whole brain radiation therapy (WBRT) combined with Talimogene laherparepvec (T-Vec) and pembrolizumab. Conclusion Patients who do not respond to one immunotherapy combination may respond during treatment with an alternate combination, even in the presence of multiple brain metastases. Biomarkers are needed to assist clinicians in evidence based clinical decision making after progression on first line immunotherapy to determine whether response can be achieved with second line immunotherapy.
Collapse
Affiliation(s)
- Zoë Blake
- Columbia University Medical Center, Hematology/Oncology, 650 West 168th Street, New York, NY, 10032, USA
| | - Douglas K Marks
- NewYork-Prebsyterian/Columbia, Hematology/Oncology, 177 Fort Washington Avenue, New York, NY, 10032, USA
| | - Robyn D Gartrell
- Columbia University Medical Center, Hematology/Oncology, 650 West 168th Street, New York, NY, 10032, USA
| | - Thomas Hart
- Columbia University Medical Center, Hematology/Oncology, 650 West 168th Street, New York, NY, 10032, USA
| | - Patti Horton
- NewYork-Prebsyterian/Columbia, Hematology/Oncology, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Simon K Cheng
- NewYork-Prebsyterian/Columbia, Radiation Oncology, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Bret Taback
- NewYork-Prebsyterian/Columbia, Surgery, 161 Fort Washington Ave, New York, NY, 10032, USA
| | - Basil A Horst
- NewYork-Prebsyterian/Columbia, Dermatopathology, 630 W 168th Street, New York, NY, 10032, USA
| | - Yvonne M Saenger
- NewYork-Prebsyterian/Columbia, Hematology/Oncology, 161 Fort Washington Ave, New York, NY, 10032, USA.
| |
Collapse
|
16
|
Jiao X, Velasco-Velázquez MA, Wang M, Li Z, Rui H, Peck AR, Korkola JE, Chen X, Xu S, DuHadaway JB, Guerrero-Rodriguez S, Addya S, Sicoli D, Mu Z, Zhang G, Stucky A, Zhang X, Cristofanilli M, Fatatis A, Gray JW, Zhong JF, Prendergast GC, Pestell RG. CCR5 Governs DNA Damage Repair and Breast Cancer Stem Cell Expansion. Cancer Res 2018; 78:1657-1671. [PMID: 29358169 PMCID: PMC6331183 DOI: 10.1158/0008-5472.can-17-0915] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/13/2017] [Accepted: 01/03/2018] [Indexed: 01/01/2023]
Abstract
The functional significance of the chemokine receptor CCR5 in human breast cancer epithelial cells is poorly understood. Here, we report that CCR5 expression in human breast cancer correlates with poor outcome. CCR5+ breast cancer epithelial cells formed mammospheres and initiated tumors with >60-fold greater efficiency in mice. Reintroduction of CCR5 expression into CCR5-negative breast cancer cells promoted tumor metastases and induced DNA repair gene expression and activity. CCR5 antagonists Maraviroc and Vicriviroc dramatically enhanced cell killing mediated by DNA-damaging chemotherapeutic agents. Single-cell analysis revealed CCR5 governs PI3K/Akt, ribosomal biogenesis, and cell survival signaling. As CCR5 augments DNA repair and is reexpressed selectively on cancerous, but not normal breast epithelial cells, CCR5 inhibitors may enhance the tumor-specific activities of DNA damage response-based treatments, allowing a dose reduction of standard chemotherapy and radiation.Significance: This study offers a preclinical rationale to reposition CCR5 inhibitors to improve the treatment of breast cancer, based on their ability to enhance the tumor-specific activities of DNA-damaging chemotherapies administered in that disease. Cancer Res; 78(7); 1657-71. ©2018 AACR.
Collapse
Affiliation(s)
- Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | | | - Min Wang
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania
| | - Zhiping Li
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James E Korkola
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Xuelian Chen
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Shaohua Xu
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Sandra Guerrero-Rodriguez
- Graduate Program in Biochemical Sciences, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sankar Addya
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Daniela Sicoli
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zhaomei Mu
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Gang Zhang
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Andres Stucky
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Xi Zhang
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | - Massimo Cristofanilli
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Alessandro Fatatis
- Department of Pharmacology & Physiology, Drexel University, Philadelphia, Pennsylvania
| | - Joe W Gray
- OHSU Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon
| | - Jiang F Zhong
- Division of Biomedical Sciences, and Periodontology, Diagnostic Sciences & Dental Hygiene, School of Dentistry, University of Southern California, Los Angeles, California
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Doylestown, Pennsylvania.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
17
|
Gartrell RD, Marks DK, Hart TD, Li G, Davari DR, Wu A, Blake Z, Lu Y, Askin KN, Monod A, Esancy CL, Stack EC, Jia DT, Armenta PM, Fu Y, Izaki D, Taback B, Rabadan R, Kaufman HL, Drake CG, Horst BA, Saenger YM. Quantitative Analysis of Immune Infiltrates in Primary Melanoma. Cancer Immunol Res 2018; 6:481-493. [PMID: 29467127 DOI: 10.1158/2326-6066.cir-17-0360] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 11/06/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
Novel methods to analyze the tumor microenvironment (TME) are urgently needed to stratify melanoma patients for adjuvant immunotherapy. Tumor-infiltrating lymphocyte (TIL) analysis, by conventional pathologic methods, is predictive but is insufficiently precise for clinical application. Quantitative multiplex immunofluorescence (qmIF) allows for evaluation of the TME using multiparameter phenotyping, tissue segmentation, and quantitative spatial analysis (qSA). Given that CD3+CD8+ cytotoxic lymphocytes (CTLs) promote antitumor immunity, whereas CD68+ macrophages impair immunity, we hypothesized that quantification and spatial analysis of macrophages and CTLs would correlate with clinical outcome. We applied qmIF to 104 primary stage II to III melanoma tumors and found that CTLs were closer in proximity to activated (CD68+HLA-DR+) macrophages than nonactivated (CD68+HLA-DR-) macrophages (P < 0.0001). CTLs were further in proximity from proliferating SOX10+ melanoma cells than nonproliferating ones (P < 0.0001). In 64 patients with known cause of death, we found that high CTL and low macrophage density in the stroma (P = 0.0038 and P = 0.0006, respectively) correlated with disease-specific survival (DSS), but the correlation was less significant for CTL and macrophage density in the tumor (P = 0.0147 and P = 0.0426, respectively). DSS correlation was strongest for stromal HLA-DR+ CTLs (P = 0.0005). CTL distance to HLA-DR- macrophages associated with poor DSS (P = 0.0016), whereas distance to Ki67- tumor cells associated inversely with DSS (P = 0.0006). A low CTL/macrophage ratio in the stroma conferred a hazard ratio (HR) of 3.719 for death from melanoma and correlated with shortened overall survival (OS) in the complete 104 patient cohort by Cox analysis (P = 0.009) and merits further development as a biomarker for clinical application. Cancer Immunol Res; 6(4); 481-93. ©2018 AACR.
Collapse
Affiliation(s)
- Robyn D Gartrell
- Departments of Pediatrics, Pediatric Hematology/Oncology and Medicine, Hematology/Oncology, Columbia University Medical Center/New York Presbyterian, New York, New York
| | - Douglas K Marks
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center/New York Presbyterian, New York, New York
| | - Thomas D Hart
- Columbia University, Columbia College, New York, New York
| | - Gen Li
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | | | - Alan Wu
- Mailman School of Public Health, Columbia University, New York, New York
| | - Zoë Blake
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center/New York Presbyterian, New York, New York
| | - Yan Lu
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center/New York Presbyterian, New York, New York
| | | | - Anthea Monod
- Department of Systems Biology, Columbia University, New York, New York
| | - Camden L Esancy
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center/New York Presbyterian, New York, New York
| | | | - Dan Tong Jia
- Columbia University, College of Physician and Surgeons, New York, New York
| | - Paul M Armenta
- Columbia University, College of Physician and Surgeons, New York, New York
| | - Yichun Fu
- Columbia University, College of Physician and Surgeons, New York, New York
| | - Daisuke Izaki
- Columbia University, Columbia College, New York, New York
| | - Bret Taback
- Department of Surgery, Columbia University Medical Center/New York Presbyterian, New York, New York
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, New York
| | - Howard L Kaufman
- Department of Surgery, Rutgers Cancer Institute, New York, New York
| | - Charles G Drake
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center/New York Presbyterian, New York, New York
| | - Basil A Horst
- Department of Dermatopathology, Columbia University Medical Center, New York, New York
| | - Yvonne M Saenger
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center/New York Presbyterian, New York, New York.
| |
Collapse
|
18
|
Damodaran S, Damaschke N, Gawdzik J, Yang B, Shi C, Allen GO, Huang W, Denu J, Jarrard D. Dysregulation of Sirtuin 2 (SIRT2) and histone H3K18 acetylation pathways associates with adverse prostate cancer outcomes. BMC Cancer 2017; 17:874. [PMID: 29262808 PMCID: PMC5738829 DOI: 10.1186/s12885-017-3853-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 12/15/2022] Open
Abstract
Background Histones undergo extensive post-translational modifications and this epigenetic regulation plays an important role in modulating transcriptional programs capable of driving cancer progression. Acetylation of histone H3K18, associated with gene activation, is enhanced by P300 and opposed by the deacetylase Sirtuin2 (SIRT2). As these enzymes represent an important target for cancer therapy, we sought to determine whether the underlying genes are altered during prostate cancer (PCa) progression. Methods Tissue microarrays generated from 71 radical prostatectomy patients were initially immunostained for H3K18Ac, P300 and SIRT2. Protein levels were quantified using VECTRA automation and correlated with clinicopathologic parameters. The Cancer Genome Atlas (TGCA, n = 499) and Gene Expression Omnibus (n = 504) databases were queried for expression, genomic and clinical data. Statistics were performed using SPSSv23. Results Nuclear histone H3K18Ac staining increases in primary cancer (p = 0.05) and further in metastases (p < 0.01) compared to benign on tissue arrays. P300 protein expression increases in cancer (p = 0.04) and metastases (p < 0.001). A progressive decrease in nuclear SIRT2 staining occurs comparing benign to cancer or metastases (p = 0.04 and p = 0.03 respectively). Decreased SIRT2 correlates with higher grade cancer (p = 0.02). Time to Prostate Specific Antigen (PSA) recurrence is shorter in patients exhibiting high compared to low H3K18Ac expression (350 vs. 1542 days respectively, P = 0.03). In GEO, SIRT2 mRNA levels are lower in primary and metastatic tumors (p = 0.01 and 0.001, respectively). TGCA analysis demonstrates SIRT2 deletion in 6% and increasing clinical stage, positive margins and lower PSA recurrence-free survival in patients with SIRT2 loss/deletion (p = 0.01, 0.04 and 0.04 respectively). In this dataset, a correlation between decreasing SIRT2 and increasing P300 mRNA expression occurs in tumor samples (R = −0.46). Conclusions In multiple datasets, decreases in SIRT2 expression portend worse clinicopathologic outcomes. Alterations in SIRT2-H3K18Ac suggest altered P300 activity and identify a subset of tumors that could benefit from histone deacetylation inhibition. Electronic supplementary material The online version of this article (10.1186/s12885-017-3853-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shivashankar Damodaran
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Nathan Damaschke
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Joseph Gawdzik
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Bing Yang
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Cedric Shi
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Glenn O Allen
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Wei Huang
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - John Denu
- Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, 53705, USA.,Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI, 53706, USA.,Wisconsin Institute for Discovery and the Morgridge Institute for Research, University of Wisconsin, Madison, WI, 53715, USA
| | - David Jarrard
- Department of Urology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA. .,Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI, 53705, USA. .,Molecular and Environmental Toxicology Program, University of Wisconsin, Madison, WI, 53706, USA. .,John P. Livesey Chair in Urologic Oncology, Associate Director Translational Research, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, 7037 WIMR, 1111, Highland, Avenue Madison WI, 53705, USA.
| |
Collapse
|
19
|
Pestell TG, Jiao X, Kumar M, Peck AR, Prisco M, Deng S, Li Z, Ertel A, Casimiro MC, Ju X, Di Rocco A, Di Sante G, Katiyar S, Shupp A, Lisanti MP, Jain P, Wu K, Rui H, Hooper DC, Yu Z, Goldman AR, Speicher DW, Laury-Kleintop L, Pestell RG. Stromal cyclin D1 promotes heterotypic immune signaling and breast cancer growth. Oncotarget 2017; 8:81754-81775. [PMID: 29137220 PMCID: PMC5669846 DOI: 10.18632/oncotarget.19953] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/09/2017] [Indexed: 12/28/2022] Open
Abstract
The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.
Collapse
Affiliation(s)
- Timothy G Pestell
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Xuanmao Jiao
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Mukesh Kumar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Amy R Peck
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marco Prisco
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Shengqiong Deng
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiping Li
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Adam Ertel
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Mathew C Casimiro
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Xiaoming Ju
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Agnese Di Rocco
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Gabriele Di Sante
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA
| | - Sanjay Katiyar
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Alison Shupp
- Departments of Cancer Biology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Michael P Lisanti
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre, University of Salford, Salford, Greater Manchester, England, UK
| | - Pooja Jain
- Department of Microbiology and Immunology, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hallgeir Rui
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Douglas C Hooper
- Department of Microbiology, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA, USA
| | - Zuoren Yu
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Aaron R Goldman
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - David W Speicher
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | | | - Richard G Pestell
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Pennsylvania Biotechnology Center, Wynnewood, PA, USA.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
20
|
Sorting Nexin 9 facilitates podocin endocytosis in the injured podocyte. Sci Rep 2017; 7:43921. [PMID: 28266622 PMCID: PMC5339724 DOI: 10.1038/srep43921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 02/01/2017] [Indexed: 12/18/2022] Open
Abstract
The irreversibility of glomerulosclerotic changes depends on the degree of podocyte injury. We have previously demonstrated the endocytic translocation of podocin to the subcellular area in severely injured podocytes and found that this process is the primary disease trigger. Here we identified the protein sorting nexin 9 (SNX9) as a novel facilitator of podocin endocytosis in a yeast two-hybrid analysis. SNX9 is involved in clathrin-mediated endocytosis, actin rearrangement and vesicle transport regulation. Our results revealed and confirmed that SNX9 interacts with podocin exclusively through the Bin–Amphiphysin–Rvs (BAR) domain of SNX9. Immunofluorescence staining revealed the expression of SNX9 in response to podocyte adriamycin-induced injury both in vitro and in vivo. Finally, an analysis of human glomerular disease biopsy samples demonstrated strong SNX9 expression and co-localization with podocin in samples representative of severe podocyte injury, such as IgA nephropathy with poor prognosis, membranous nephropathy and focal segmental glomerulosclerosis. In conclusion, we identified SNX9 as a facilitator of podocin endocytosis in severe podocyte injury and demonstrated the expression of SNX9 in the podocytes of both nephropathy model mice and human patients with irreversible glomerular disease.
Collapse
|