1
|
Katsuragi SY, Sakano Y, Ohta I, Kato H, Ishikawa R, Watanabe H, Miyazaki R, Yoshimura K, Yamada H, Sakai Y, Inoue Y, Takanashi Y, Sekihara K, Funai K, Otsuki Y, Kawasaki H, Shinmura K. Diagnostic Utility of Podoplanin Immunohistochemistry Combined with the NanoSuit-Correlative Light and Electron Microscopy Method for Thoracic Malignant Tumors. Diagnostics (Basel) 2025; 15:1298. [PMID: 40428290 PMCID: PMC12109644 DOI: 10.3390/diagnostics15101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 05/12/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Differentiating thoracic malignant tumors, such as epithelioid malignant pleural mesothelioma (EMPM) and non-small-cell lung carcinoma (NSCLC), primarily comprising lung adenocarcinoma (LAC) and lung squamous cell carcinoma (LSCC), remains a challenge in routine pathological diagnosis. This study aimed to evaluate whether podoplanin (PDPN) immunohistochemistry combined with scanning electron microscopy (SEM) using the NanoSuit-correlative light and electron microscopy (CLEM) methods could serve as a reliable tool for distinguishing these thoracic malignancies. Methods/Results: Initially, PDPN expression was assessed by immunohistochemical analysis in 11 EMPM, 100 LAC, and 23 LSCC cases. PDPN positivity was predominantly observed in the cell membrane and was significantly more frequent in EMPM (100%) than in LAC (2%; p < 0.0001) or LSCC (43.5%; p = 0.0018). Subsequently, field emission-SEM (FE-SEM) observations of PDPN-positive sites on immunohistochemical slides, conducted using the NanoSuit-CLEM method, revealed distinctive ultrastructural features. EMPM exhibited densely packed, elongated microvilli, whereas such structures were absent in LAC and LSCC. Furthermore, analysis of thick-cut sections (20 μm) demonstrated extensive microvilli coverage characteristic of EMPM. Conclusions: These findings suggest that the combined approach of PDPN immunohistochemistry and FE-SEM observation of PDPN-positive sites, using the NanoSuit-CLEM method, constitutes an effective diagnostic strategy for enhancing the accuracy of distinguishing EMPM from NSCLCs.
Collapse
Affiliation(s)
- Shin-ya Katsuragi
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| | - Yuri Sakano
- NanoSuit Research Laboratory, Division of Preeminent Bioimaging Research, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Isao Ohta
- Advanced Research Facilities and Services, Division of Preeminent Research Supports, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Hisami Kato
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| | - Rei Ishikawa
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Ryosuke Miyazaki
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| | - Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| | - Yusuke Inoue
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Yusuke Takanashi
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Keigo Sekihara
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Kazuhito Funai
- Department of Surgery 1, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (Y.T.); (K.S.); (K.F.)
| | - Yoshiro Otsuki
- Department of Pathology, Seirei Hamamatsu General Hospital, Hamamatsu 430-8558, Japan;
| | - Hideya Kawasaki
- NanoSuit Research Laboratory, Division of Preeminent Bioimaging Research, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan;
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan; (S.-y.K.); (H.K.); (R.I.); (H.W.); (R.M.); (K.Y.); (H.Y.); (Y.S.)
| |
Collapse
|
2
|
Li D, Andaloori L, Crowe M, Lin S, Hong J, Zaidi N, Ho M. Development of CAR-T Therapies and Personalized Vaccines for the Treatment of Cholangiocarcinoma: Current Progress, Mechanisms of Action, and Challenges. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:453-469. [PMID: 39675505 PMCID: PMC11983698 DOI: 10.1016/j.ajpath.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy with an increasing prevalence, a high mortality rate, poor overall survival, and limited responsiveness to conventional chemoradiotherapy. Targeted therapies addressing specific gene mutations have expanded treatment options for some patient populations. The introduction of chimeric antigen receptor-modified T-cell (CAR-T) immunotherapy and personalized vaccines have opened up a new avenue for managing various cancers. Considerable efforts have been dedicated to preclinical research and ongoing clinical trials of immunotherapeutic approaches including CAR-T therapy, vaccines, and antibody-based therapies such as antibody drug conjugates. However, the potential of CAR-T therapy and vaccines in treating advanced unresectable/metastatic cholangiocarcinoma remains largely unexplored. This article offers an overview of the current landscape of antibody-based immunotherapy, particularly CAR-T therapy and vaccines in the context of cholangiocarcinoma treatment. It outlines a framework for selecting CAR-T and vaccine targets and delves into the biology of promising targetable antigens, as well as potential future therapeutic targets.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalitya Andaloori
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Crowe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
3
|
Adel I, Mahmoud HA, Khater AI, Hafez FS. Diagnostic value of glypican-1; a new marker differentiating pulmonary squamous cell carcinoma from adenocarcinoma: immunohistochemical study on Egyptian series. Clin Exp Med 2025; 25:35. [PMID: 39797955 PMCID: PMC11724789 DOI: 10.1007/s10238-024-01551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC). This retrospective study included a total of 68 cases, of which 36 were diagnosed as SCC and 32 as adenocarcinoma (ADC). Furthermore, glypican-1 expression was compared with the expressions of p63, thyroid transcription factor-1 (TTF-1), and napsin A. All cases of SCC except one showed positive immunostaining to glypican-1; 35/36 (97.2%) cases, and predominantly scored 3 + . While only 5 cases of ADC showed positive immunostaining to glypican-1, having a score of 1 + or 2 + . The difference between glypican-1 expression of the two tumor types was highly significant (p value < 0.001). The sensitivity, specificity, and overall accuracy of glypican-1 expression for differentiating lung SCC from ADC were 97.2%, 84.4%, and 91.2%, respectively. The sensitivity of glypican-1 is more than p63 in the diagnosis of lung SCC. Glypican-1 can be added as a new diagnostic marker to help in the accurate discrimination between poorly differentiated lung SCC and solid predominant adenocarcinoma cases.
Collapse
Affiliation(s)
- Iman Adel
- Oncologic Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Heba A Mahmoud
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira Ismail Khater
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Fatma S Hafez
- Pathology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
4
|
Li M, Wang Y, Lin X, Yang H, Zhang X, Bai Y, Li X, Zhang L, Cheng F, Cao C, Zhou Q. Evaluation of antitumor potential of an anti-glypican-1 monoclonal antibody in preclinical lung cancer models reveals a distinct mechanism of action. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:600-626. [PMID: 38966167 PMCID: PMC11220310 DOI: 10.37349/etat.2024.00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/26/2024] [Indexed: 07/06/2024] Open
Abstract
Aim The main objective of this study was to investigate the antitumor effect of a mouse anti-human glypican-1 (GPC1) monoclonal antibody (mAb) on non-small cell lung carcinoma (NSCLC) and associated molecular mechanisms. Methods The anti-proliferative and anti-migratory activities of anti-GPC1 mAb were examined in A549 and H460 NSCLC cells and LL97A lung fibroblasts. The inhibitory effect of anti-GPC1 mAb on tumor growth was evaluated in an orthotopic lung tumor model. Results The in vitro study showed that anti-GPC1 mAb profoundly inhibited the anchorage-independent growth of A549 and H460 NSCLC cells and exhibited relatively high cytotoxic activities towards LL97A lung fibroblasts, A549/LL97A and H460/LL97A coculture spheroids. Moreover, anti-GPC1 mAb significantly decreased the expression of phospho-Src (p-Src; Tyr416), p-Akt (Ser473) and β-catenin in the co-cultured LL97A lung fibroblasts, and the expression of phospho-mitogen-activated protein kinase kinase (p-MEK; Ser217/221) and phospho-90 kDa ribosomal s6 kinase (p-p90RSK; Ser380) in co-cultured A549 cells. When anti-GPC1 mAb was administered to tumor-bearing mice, the inhibitory effect of anti-GPC1 mAb on the orthotopic lung tumor growth was not statistically significant. Nonetheless, results of Western blot analysis showed significant decrease in the phosphorylation of fibroblast growth factor receptor 1 (FGFR1) at Tyr766, Src at Tyr416, extracellular signal-regulated kinase (ERK) at Thr202/Tyr204, 90 kDa ribosomal S6 kinase (RSK) at Ser380, glycogen synthase kinases 3α (GSK3α) at Ser21 and GSK3β at Ser9 in tumor tissues. These data implicate that anti-GPC1 mAb treatment impairs the interaction between tumor cells and tumor associated fibroblasts by attenuating the paracrine FGFR signal transduction. Conclusions The relatively potent cytotoxicity of anti-GPC1 mAb in lung fibroblasts and its potential inhibitory effect on the paracrine FGFR signal transduction warrant further studies on the combined use of this mAb with targeted therapeutics to improve therapeutic outcomes in lung cancer.
Collapse
Affiliation(s)
- Minghua Li
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yanhong Wang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaoyang Lin
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Haiqiang Yang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Xiaolin Zhang
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Yun Bai
- MegaNano Biotech Inc., Tampa, FL 33612, USA
| | - Xiankun Li
- Zhengzhou Molecular Diagnosis Engineering Technology Research Center, Zhengzhou 450001, Henan Province, China
| | - Lulu Zhang
- Zhengzhou Molecular Diagnosis Engineering Technology Research Center, Zhengzhou 450001, Henan Province, China
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Chuanhai Cao
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Qingyu Zhou
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Parra-Medina R, Castañeda-González JP, Chaves-Cabezas V, Alzate JP, Chaves JJ. Diagnostic performance of immunohistochemistry markers for malignant pleural mesothelioma diagnosis and subtypes. A systematic review and meta-analysis. Pathol Res Pract 2024; 257:155276. [PMID: 38603842 DOI: 10.1016/j.prp.2024.155276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) poses diagnostic challenges due to its resemblance to benign pleural pathologies and different histological subtypes. Several immunohistochemistry markers have been employed to aid in accurate diagnosis. METHODS The present systematic review and meta-analysis aimed to assess the diagnostic performance of various immunohistochemistry markers in malignant pleural mesothelioma diagnosis and its histological subtypes. Following the PRISMA guidelines, we systematically searched the literature for articles on using different immunohistochemical markers in MPM and its histological subtypes. EMBASE, LILACS, MEDLINE, and Virtual Health Library were searched for studies published up to August 2023. We used the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) criteria to assess the quality of the included articles. Meta-analyses were performed to determine prevalence using a random-effects model. RESULTS 103 studies met the inclusion criteria, comprising a diverse range of immunohistochemistry markers. EMA and desmin-loss exhibited high sensitivity (96% and 92%, respectively) in distinguishing malignant pleural mesothelioma from benign pleural pathologies. Specificity was notably high for both BAP1-loss and survivin expression at 100%. Subtype-specific analyses demonstrated that EMA and HEG1 were sensitive markers for epithelioid mesothelioma, while GLUT1 showed high sensitivity for sarcomatoid mesothelioma. In cases comparing epithelioid mesothelioma and lung adenocarcinoma, CAM5.2 and calretinin displayed high sensitivity, while WT1 and BAP1-loss demonstrated exceptional specificity for malignant epithelioid mesothelioma. In the case of sarcomatoid mesothelioma and sarcomatoid lung carcinoma, GATA3 exhibited the most heightened sensitivity, while GATA3 and D2-40 displayed the best specificity for sarcomatoid malignant mesothelioma diagnosis. CONCLUSION Immunohistochemistry markers are essential in accurately diagnosing malignant pleural mesothelioma and its histological subtypes. This systematic review and meta-analysis provide a comprehensive insight into the diagnostic performance of these markers, facilitating their potential clinical utility in the discrimination of malignant pleural mesothelioma from other pleural pathologies and the differentiation of malignant pleural mesothelioma subtypes.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Pathology, Instituto Nacional de Cancerología, Bogotá.
| | - Juan Pablo Castañeda-González
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia; Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.
| | - Viviana Chaves-Cabezas
- Department of Pathology, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.
| | - Juan Pablo Alzate
- Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Bogotá, Colombia.
| | - Juan José Chaves
- Department of Medicine, Norwalk Hospital, Yale School of Medicine, Norwalk, CT, United States.
| |
Collapse
|
6
|
Nakagiri T, Amatya VJ, Kushitani K, Kambara T, Aoe K, Endo I, Miyata Y, Okada M, Takeshima Y. SPARC Is a Novel Positive Immunohistochemical Marker of Epithelioid Mesothelioma to Differentiate It From Lung Adenocarcinoma and/or Squamous Cell Carcinoma. Am J Surg Pathol 2024; 48:140-149. [PMID: 37899530 DOI: 10.1097/pas.0000000000002147] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Epithelioid mesothelioma with a solid histologic pattern (solid epithelioid mesothelioma) is difficult to distinguish from a poorly differentiated squamous cell lung carcinoma and/or solid lung adenocarcinoma. Thus, immunohistochemical markers are essential for diagnosis; however, the sensitivity and specificity of pre-existing mesothelial markers are suboptimal, particularly for differentiation from squamous cell carcinoma. Using a cancer-dependency map, we analyzed gene expression data of pleural mesothelioma and non-small cell lung cancer cell lines (squamous cell carcinoma and adenocarcinoma) and identified secreted protein acidic and cysteine-rich (SPARC) as a promising candidate for the differential diagnosis of epithelioid mesothelioma from lung squamous cell carcinoma and/or lung adenocarcinoma. SPARC expression in mesothelioma and lung cancer cell lines was validated using reverse-transcription polymerase chain reaction, western blotting, and immunohistochemistry. Immunohistochemical staining was performed using anti-SPARC antibodies against solid epithelioid mesothelioma, solid lung adenocarcinoma, and poorly differentiated lung squamous cell carcinoma. SPARC positivity was seen in 42/45 (93.3%) of solid epithelioid mesothelioma, 2/40 (5%) solid lung adenocarcinoma, and 2/45 (4.5%) of lung squamous cell carcinomas. The sensitivity, specificity, and diagnostic accuracy for differentiating solid epithelioid mesothelioma from lung cancer (solid lung adenocarcinoma and poorly differentiated lung squamous cell carcinoma) were 93.3, 95.2, and 94.6%, respectively. In conclusion, SPARC is a novel mesothelial marker that can be used to differentiate epithelioid mesothelioma from squamous cell carcinoma and lung adenocarcinoma.
Collapse
Affiliation(s)
- Tetsuya Nakagiri
- Department of Pathology, Graduate School of Biomedical and Health Sciences
| | - Vishwa J Amatya
- Department of Pathology, Graduate School of Biomedical and Health Sciences
| | - Kei Kushitani
- Department of Pathology, Graduate School of Biomedical and Health Sciences
| | - Takahiro Kambara
- Department of Pathology, Graduate School of Biomedical and Health Sciences
| | - Kohei Aoe
- Department of Pathology, Graduate School of Biomedical and Health Sciences
| | - Ihiro Endo
- Department of Pathology, Graduate School of Biomedical and Health Sciences
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Center for Radiation Casualty Medicine, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Graduate School of Biomedical and Health Sciences
| |
Collapse
|
7
|
Cheng F, Hansson VC, Georgolopoulos G, Mani K. Attenuation of cancer proliferation by suppression of glypican-1 and its pleiotropic effects in neoplastic behavior. Oncotarget 2023; 14:219-235. [PMID: 36944188 PMCID: PMC10030152 DOI: 10.18632/oncotarget.28388] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Glypicans (GPC1-6) are associated with tumorigenic processes and their involvement in neoplastic behavior has been discussed in different cancer types. Here, a cancer-wide GPC expression study, using clinical cancer patient data in The Cancer Genome Atlas, reveals net upregulation of GPC1 and GPC2 in primary solid tumors, whereas GPC3, GPC5 and GPC6 display lowered expression pattern compared to normal tissues. Focusing on GPC1, survival analyses of the clinical cancer patient data reveal statistically significant correlation between high expression of GPC1 and poor prognosis in 10 particular cancer types i.e., bladder urothelial carcinoma, brain lower grade glioma, liver hepatocellular carcinoma, colon adenocarcinoma, kidney renal clear cell carcinoma, lung adenocarcinoma, mesothelioma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uveal melanoma. In vitro studies targeting GPC1 expression by CRISPR/Cas9 or siRNA or treatment with an anti-GPC1 antibody resulted in attenuation of proliferation of cancer cells from bladder carcinoma, glioma and hepatocellular carcinoma patients (T24, U87 and HepG2 cells). Further, overexpression of GPC1 exhibited a significant and negative correlation between GPC1 expression and proliferation of T24 cells. Attempt to reveal the mechanism through which downregulation of GPC1 leads to attenuation of tumor growth using systematic Ingenuity Pathway Analysis indicate that suppression of GPC1 results in ECM-mediated inhibition of specific pro-cancer signaling pathways involving TGF-β and p38 MAPK. Identified differential expression and pleiotropic effects of GPCs in specific cancer types emphasize their potential of as novel diagnostic tools and prognostic factors and open doors for future GPC targeted therapy.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | - Victor Chérouvrier Hansson
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| | | | - Katrin Mani
- Department of Experimental Medical Science, Glycobiology Group, Lund University, Biomedical Center A13, Lund, Sweden
| |
Collapse
|
8
|
Liu S, Wang H, Jiang X, Ji Y, Wang Z, Zhang Y, Wang P, Xiao H. Integrated N-glycoproteomics Analysis of Human Saliva for Lung Cancer. J Proteome Res 2022; 21:1589-1602. [PMID: 35715216 DOI: 10.1021/acs.jproteome.1c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant protein N-glycosylation is a cancer hallmark, which has great potential for cancer detection. However, large-scale and in-depth analysis of N-glycosylation remains challenging because of its high heterogeneity, complexity, and low abundance. Human saliva is an attractive diagnostic body fluid, while few efforts explored its N-glycoproteome for lung cancer. Here, we utilized a zwitterionic-hydrophilic interaction chromatography-based strategy to specifically enrich salivary glycopeptides. Through quantitative proteomics analysis, 1492 and 1234 intact N-glycopeptides were confidently identified from pooled saliva samples of 10 subjects in the nonsmall-cell lung cancer group and 10 subjects in the normal control group. Accordingly, 575 and 404 N-glycosites were revealed for the lung cancer group and normal control group. In particular, 154 N-glycosites and 259 site-specific glycoforms were significantly dysregulated in the lung cancer group. Several N-glycosites located at the same glycoprotein and glycans attached to the same N-glycosites were observed with differential expressions, including haptoglobin, Mucin-5B, lactotransferrin, and α-1-acid glycoprotein 1. These N-glycoproteins were mainly related to inflammatory responses, infectious diseases, and cancers. Our study achieved comprehensive characterization of salivary N-glycoproteome, and dysregulated site-specific glycoforms hold promise for noninvasive detection of lung cancer.
Collapse
Affiliation(s)
- Sha Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huiyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoteng Jiang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yin Ji
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Zeyuan Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peng Wang
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Pharmaceutical Co., Ltd., Nanjing 210042, China
| | - Hua Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Ghosh S, Huda P, Fletcher N, Campbell D, Thurecht KJ, Walsh B. Clinical development of an anti-GPC-1 antibody for the treatment of cancer. Expert Opin Biol Ther 2022; 22:603-613. [DOI: 10.1080/14712598.2022.2033204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saikat Ghosh
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Pie Huda
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | - Nicholas Fletcher
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | | - Kristofer J. Thurecht
- Centre for Advanced Imaging (CAI)-Australian Institute for Bioengineering and Nanotechnology (AIBN), ARC Training Centre for Innovation in Biomedical Imaging Technologies, The University of Queensland, Brisbane, QLD, Australia
| | | |
Collapse
|
10
|
Sabanathan D, Lund ME, Campbell DH, Walsh BJ, Gurney H. Radioimmunotherapy for solid tumors: spotlight on Glypican-1 as a radioimmunotherapy target. Ther Adv Med Oncol 2021; 13:17588359211022918. [PMID: 34646364 PMCID: PMC8504276 DOI: 10.1177/17588359211022918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Radioimmunotherapy (i.e., the use of radiolabeled tumor targeting antibodies) is an emerging approach for the diagnosis, therapy, and monitoring of solid tumors. Often using paired agents, each targeting the same tumor molecule, but labelled with an imaging or therapeutic isotope, radioimmunotherapy has achieved promising clinical results in relatively radio-resistant solid tumors such as prostate. Several approaches to optimize therapeutic efficacy, such as dose fractionation and personalized dosimetry, have seen clinical success. The clinical use and optimization of a radioimmunotherapy approach is, in part, influenced by the targeted tumor antigen, several of which have been proposed for different solid tumors. Glypican-1 (GPC-1) is a heparan sulfate proteoglycan that is expressed in a variety of solid tumors, but whose expression is restricted in normal adult tissue. Here, we discuss the preclinical and clinical evidence for the potential of GPC-1 as a radioimmunotherapy target. We describe the current treatment paradigm for several solid tumors expressing GPC-1 and suggest the potential clinical utility of a GPC-1 directed radioimmunotherapy for these tumors.
Collapse
Affiliation(s)
- Dhanusha Sabanathan
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | | | | | - Howard Gurney
- Faculty of Medicine, Health and Human Sciences, Macquarie University, 2 Technology Place, Sydney, NSW 2109, Australia
| |
Collapse
|
11
|
Abstract
Despite multiple diagnostic toolkits, the diagnosis of diffuse malignant pleural mesothelioma relies primarily on proper histologic assessment. The definitive diagnosis of diffuse malignant pleural mesothelioma is based on the pathologic assessment of tumor tissue, which can be obtained from core biopsy sampling, pleurectomy, or other more extensive resections, such as extrapleural pneumonectomy. Given its rarity and overlapping microscopic features with other conditions, the histologic diagnosis of diffuse malignant pleural mesothelioma is challenging. This review discusses the pathologic features and the differential diagnosis of diffuse malignant pleural mesothelioma, including select diagnostic pitfalls.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Lucian R Chirieac
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Kai Y, Amatya VJ, Kushitani K, Kambara T, Suzuki R, Fujii Y, Tsutani Y, Miyata Y, Okada M, Takeshima Y. Glypican-1 is a novel immunohistochemical marker to differentiate poorly differentiated squamous cell carcinoma from solid predominant adenocarcinoma of the lung. Transl Lung Cancer Res 2021; 10:766-775. [PMID: 33718020 PMCID: PMC7947391 DOI: 10.21037/tlcr-20-857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background The histological classification of non-small cell lung cancer (NSCLC) is essential in determining new cancer-specific targeted therapies. However, the accurate typing of poorly differentiated is difficult, particularly for poorly differentiated squamous cell carcinoma and adenocarcinoma of the lung with limited immunohistochemical markers. Thus, novel immunohistochemical markers are required. We assumed the possibility of the immunohistochemical expression of glypican-1 in lung squamous cell carcinoma. Methods The microarray dataset GSE43580 from Gene Expression Omnibus database were analyzed for confirming the gene expression of glypican-1 in lung squamous cell carcinoma. We immunohistochemically investigated the use of glypican-1 as a novel positive diagnostic marker for lung squamous cell carcinoma. Glypican-1 expression in 63 cases of poorly differentiated lung squamous cell carcinoma and 60 cases of solid predominant lung adenocarcinoma was investigated by immunohistochemistry. Additionally, we compared glypican-1 expression with the expressions of p40, cytokeratin 5/6, thyroid transcription factor-1 (TTF-1), and napsin A. Results All 63 cases of lung squamous cell carcinoma showed glypican-1 expression. In contrast, only 2 cases of lung adenocarcinoma showed glypican-1 expression. The sensitivity, specificity, and diagnostic accuracy of glypican-1 expression for differentiating lung squamous cell carcinoma from lung adenocarcinoma were 100%, 96.7%, and 98.4%, respectively. These were similar to those of p40 and significantly better than those of CK 5/6. Conclusions We recommend the use of glypican-1 as an additional positive marker of lung squamous cell carcinoma.
Collapse
Affiliation(s)
- Yuichiro Kai
- Department of Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Vishwa Jeet Amatya
- Department of Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kei Kushitani
- Department of Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takahiro Kambara
- Department of Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Rui Suzuki
- Department of Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yutaro Fujii
- Department of Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Yukio Takeshima
- Department of Pathology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
13
|
Polikarpov DM, Campbell DH, Lund ME, Lu Y, Lu Y, Wu J, Walsh BJ, Zvyagin AV, Gillatt DA. The feasibility of Miltuximab®-IRDye700DX-mediated photoimmunotherapy of solid tumors. Photodiagnosis Photodyn Ther 2020; 32:102064. [PMID: 33069874 DOI: 10.1016/j.pdpdt.2020.102064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/28/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Photoimmunotherapy (PIT) is an emerging method of cancer treatment based on the use of a photosensitizer near-infrared dye IRDye700DX (IR700) conjugated to a monoclonal antibody. The antibody selectively delivers IR700 to cancer cells, which can then be killed after photoexcitation. Glypican-1 (GPC-1) is a novel target expressed specifically in malignant tumors. We aimed to investigate whether anti-GPC-1 antibody Miltuximab® (Glytherix Ltd., Sydney, Australia) can be conjugated with IR700 for PIT of solid tumors. METHODS The dye IR700 was conjugated with Miltuximab® and characterized by spectrophotometry and flow cytometry. Miltuximab®-IR700-mediated PIT was tested in prostate (DU-145), bladder (C3 and T-24), brain (U-87 and U-251) and ovarian (SKOV-3) cancer cell lines. After 1 h incubation with Miltuximab®-IR700, the cells were washed by PBS and illuminated using a 690-nm light-emitting diode. The viability of the cells was assessed by a CCK-8 viability kit 24 h later. RESULTS Miltuximab®-IR700-mediated PIT caused 67.3-92.3% reduction in viability of cells with medium-high GPC-1 expression and did not affect the viability of GPC-1-low cells. Cytotoxicity was attributed to the targeted binding of the conjugate with subsequent photoactivation, as the conjugate or light exposure alone had no effect on the cell viability. Miltuximab®-IR700 did not induce cytotoxicity in cells blocked by unconjugated Miltuximab®. CONCLUSIONS PIT with Miltuximab®-IR700 appears to be highly specific and effective against GPC-1-expressing cancer cells, indicating that it holds promise for an effective and safe treatment of early stage solid tumors or as adjuvant therapy following surgical resection. These findings necessitate further investigation of PIT with Miltuximab®-IR700 in other GPC-1-expressing cancer cell lines in vitro and in vivo in xenograft tumor models.
Collapse
Affiliation(s)
- Dmitry M Polikarpov
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| | | | | | - Yanling Lu
- Glytherix Ltd., Sydney, NSW, 2113, Australia
| | - Yiqing Lu
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jiehua Wu
- Glytherix Ltd., Sydney, NSW, 2113, Australia
| | | | - Andrei V Zvyagin
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia; Institute of Molecular Medicine, Sechenov University, 119991, Moscow, Russia.
| | - David A Gillatt
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
14
|
SOX6 is a Novel Immunohistochemical Marker for Differential Diagnosis of Epithelioid Mesothelioma From Lung Adenocarcinoma. Am J Surg Pathol 2020; 44:1259-1265. [PMID: 32496433 DOI: 10.1097/pas.0000000000001507] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The differential diagnosis of epithelioid mesothelioma from lung adenocarcinoma using immunohistochemistry is improving. However, immunohistochemical markers with high sensitivity and specificity have yet to be identified. In this study, we investigated the utility of sex-determining region Y box 6 (SOX6) as a novel immunohistochemical marker, identified by analyzing previous gene expression data. Immunohistochemically, SOX6 expression was present in 53 of 54 (98%) cases of epithelioid mesothelioma, compared with its expression in only 5 of 69 (7%) cases of lung adenocarcinoma. The sensitivity and specificity of SOX6 expression for differentiating epithelioid mesothelioma and lung adenocarcinoma were 98% and 93%, respectively. SOX6 expression showed similar sensitivity and far better specificity than those of calretinin or podoplanin (D2-40). In addition, SOX6 expression was more sensitive than Wilms' tumor 1 expression. The combination of SOX6 with other markers showed comparable or better sensitivity and specificity relative to other combinations. In particular, the sensitivity of positivity for both SOX6 and calretinin (96%) and the specificity of positivity for both SOX6 and Wilms' tumor 1 (93%) were higher than those of the other combinations. In conclusion, SOX6 is a novel candidate immunohistochemical marker for differentiating epithelioid mesothelioma from lung adenocarcinoma.
Collapse
|
15
|
Yeh MC, Tse BWC, Fletcher NL, Houston ZH, Lund M, Volpert M, Stewart C, Sokolowski KA, Jeet V, Thurecht KJ, Campbell DH, Walsh BJ, Nelson CC, Russell PJ. Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1). EJNMMI Res 2020; 10:46. [PMID: 32382920 PMCID: PMC7206480 DOI: 10.1186/s13550-020-00637-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Chimeric antibody Miltuximab®, a human IgG1 engineered from the parent antibody MIL-38, is in clinical development for solid tumour therapy. Miltuximab® targets glypican-1 (GPC-1), a cell surface protein involved in tumour growth, which is overexpressed in solid tumours, including prostate cancer (PCa). This study investigated the potential of 89Zr-labelled Miltuximab® as an imaging agent, and 177Lu-labelled Miltuximab® as a targeted beta therapy, in a mouse xenograft model of human prostate cancer. METHODS Male BALB/c nude mice were inoculated subcutaneously with GPC-1-positive DU-145 PCa cells. In imaging and biodistribution studies, mice bearing palpable tumours received (a) 2.62 MBq [89Zr]Zr-DFO-Miltuximab® followed by PET-CT imaging, or (b) 6 MBq [177Lu]Lu-DOTA-Miltuximab® by Cerenkov imaging, and ex vivo assessment of biodistribution. In an initial tumour efficacy study, mice bearing DU-145 tumours were administered intravenously with 6 MBq [177Lu]Lu-DOTA-Miltuximab® or control DOTA-Miltuximab® then euthanised after 27 days. In a subsequent survival efficacy study, tumour-bearing mice were given 3 or 10 MBq of [177Lu]Lu-DOTA-Miltuximab®, or control, and followed up to 120 days. RESULTS Antibody accumulation in DU-145 xenografts was detected by PET-CT imaging using [89Zr]Zr-DFO-Miltuximab® and confirmed by Cerenkov luminescence imaging post injection of [177Lu]Lu-DOTA-Miltuximab®. Antibody accumulation was higher (% IA/g) in tumours than other organs across multiple time points. A single injection with 6 MBq of [177Lu]Lu-DOTA-Miltuximab® significantly inhibited tumour growth as compared with DOTA-Miltuximab® (control). In the survival study, mice treated with 10 MBq [177Lu]Lu-DOTA-Miltuximab® had significantly prolonged survival (mean 85 days) versus control (45 days), an effect associated with increased cancer cell apoptosis. Tissue histopathology assessment showed no abnormalities associated with [177Lu]Lu-DOTA-Miltuximab®, in line with other observations of tolerability, including body weight stability. CONCLUSION These findings demonstrate the potential utility of Miltuximab® as a PET imaging agent ([89Zr]Zr-DFO-Miltuximab®) and a beta therapy ([177Lu]Lu-DOTA-Miltuximab®) in patients with PCa or other GPC-1 expressing tumours.
Collapse
Affiliation(s)
- Mei-Chun Yeh
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Brian W C Tse
- Preclinical Imaging Facility, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre in Biomedical Imaging Technology, University of Queensland, Building 57 University Drive, St Lucia, Queensland, 4072, Australia
| | - Zachary H Houston
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre in Biomedical Imaging Technology, University of Queensland, Building 57 University Drive, St Lucia, Queensland, 4072, Australia
| | - Maria Lund
- Glytherix Ltd, Suite 2, Ground Floor 75 Talavera Road, Macquarie Park, New South Wales, 2113, Australia
| | - Marianna Volpert
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Chelsea Stewart
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Kamil A Sokolowski
- Preclinical Imaging Facility, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Varinder Jeet
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Kristofer J Thurecht
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology and ARC Training Centre in Biomedical Imaging Technology, University of Queensland, Building 57 University Drive, St Lucia, Queensland, 4072, Australia
| | - Douglas H Campbell
- Glytherix Ltd, Suite 2, Ground Floor 75 Talavera Road, Macquarie Park, New South Wales, 2113, Australia
| | - Bradley J Walsh
- Glytherix Ltd, Suite 2, Ground Floor 75 Talavera Road, Macquarie Park, New South Wales, 2113, Australia
| | - Colleen C Nelson
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Pamela J Russell
- Australian Prostate Cancer Research Centre - Queensland, Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
16
|
Lund ME, Campbell DH, Walsh BJ. The Role of Glypican-1 in the Tumour Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:163-176. [PMID: 32266658 DOI: 10.1007/978-3-030-40146-7_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glypican-1 (GPC-1) is a cell surface heparan sulphate proteoglycan that is critical during normal development, but which is not required for normal homoeostasis in the adult. It is, however, overexpressed in a variety of solid tumours and is known to regulate tumour growth, invasion, metastasis and progression, through modulation of tumour cell biology as well as influence on the tumour microenvironment (TME). The role of GPC-1 in the TME and on the tumour cell is broad, as GPC-1 regulates signalling by several growth factors, including FGF, HGF, TGF-β, Wnt and Hedgehog (Hh). Signalling via these pathways promotes tumour growth and invasive and metastatic ability (drives epithelial-to-mesenchymal transition (EMT)) and influences angiogenesis, affecting both tumour and stromal cells. Broad modulation of the TME via inhibition of GPC-1 may represent a novel therapeutic strategy for inhibition of tumour progression. Here, we discuss the complex role of GPC-1 in tumour cells and the TME, with discussion of potential therapeutic targeting strategies.
Collapse
|
17
|
Kato D, Yaguchi T, Iwata T, Katoh Y, Morii K, Tsubota K, Takise Y, Tamiya M, Kamada H, Akiba H, Tsumoto K, Serada S, Naka T, Nishimura R, Nakagawa T, Kawakami Y. GPC1 specific CAR-T cells eradicate established solid tumor without adverse effects and synergize with anti-PD-1 Ab. eLife 2020; 9:49392. [PMID: 32228854 PMCID: PMC7108862 DOI: 10.7554/elife.49392] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 03/12/2020] [Indexed: 12/15/2022] Open
Abstract
Current xenogeneic mouse models cannot evaluate on-target off-tumor adverse effect, hindering the development of chimeric antigen receptor (CAR) T cell therapies for solid tumors, due to limited human/mouse cross-reactivity of antibodies used in CAR and sever graft-versus-host disease induced by administered human T cells. We have evaluated safety and antitumor efficacy of CAR-T cells targeting glypican-1 (GPC1) overexpressed in various solid tumors. GPC1-specific human and murine CAR-T cells generated from our original anti-human/mouse GPC1 antibody showed strong antitumor effects in xenogeneic and syngeneic mouse models, respectively. Importantly, the murine CAR-T cells enhanced endogenous T cell responses against a non-GPC1 tumor antigen through the mechanism of antigen-spreading and showed synergistic antitumor effects with anti-PD-1 antibody without any adverse effects in syngeneic models. Our study shows the potential of GPC1 as a CAR-T cell target for solid tumors and the importance of syngeneic and xenogeneic models for evaluating their safety and efficacy.
Collapse
Affiliation(s)
- Daiki Kato
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Laboratory of Veterinary Surgery, Graduate school of agricultural and life sciences, The University of Tokyo, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Iwata
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Katoh
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Morii
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kinya Tsubota
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of Ophthalmology, Tokyo Medical University, Tokyo, Japan
| | - Yoshiaki Takise
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masaki Tamiya
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Kamada
- Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Hiroki Akiba
- Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institute of Biomedical Innovation, Health and Nutrition, Tokyo, Japan
| | - Satoshi Serada
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Tetsuji Naka
- Center for Intractable Immune Disease, Kochi Medical School, Kochi University, Kochi, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate school of agricultural and life sciences, The University of Tokyo, Tokyo, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate school of agricultural and life sciences, The University of Tokyo, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan.,Department of immunology, School of Medicine, International University of Health and Welfare, Tokyo, Japan
| |
Collapse
|
18
|
Calretinin-expressing lung adenocarcinoma: Distinct characteristics of advanced stages, smoker-type features, and rare expression of other mesothelial markers are useful to differentiate epithelioid mesothelioma. Pathol Res Pract 2020; 216:152817. [PMID: 32008868 DOI: 10.1016/j.prp.2020.152817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 01/24/2023]
Abstract
Calretinin, a mesothelioma marker, is sometimes expressed in lung cancer, which may complicate the differential diagnosis of mesothelioma. Here, the clinicopathological and immunohistochemical characteristics of calretinin-positive lung cancer were examined to reduce confusion with malignant mesothelioma. Calretinin expression in 307 consecutive cases of lung cancer was evaluated immunohistochemically. Survival was analyzed using the Kaplan-Meier method and log-rank test. Calretinin expression was identified in 67 (22%) tumors, including those with partial and weak expression [15% (37/250) of adenocarcinomas, 54% (25/46) of squamous cell carcinomas, 75% (3/4) of adenosquamous carcinomas, and 29% (2/7) of sarcomatoid carcinomas]. In calretinin-positive adenocarcinoma (n = 37), expression percentages of Wilms tumor-1, podoplanin, thyroid transcription factor-1, and claudin-4 were 6, 3, 52, 82%, respectively, whereas in calretinin-positive squamous cell carcinoma (n = 25) the percentages were 8, 12, 12, 68%, respectively, indicating that other mesothelial markers were only rarely expressed and that claudin-4 expression was common. Although not an independent marker, calretinin expression was associated with a poor prognosis for stage I tumors of adenocarcinoma (p < 0.001) and of all histological subtypes (p < 0.001). In conclusion, calretinin-positive lung tumors share characteristics with those of smokers and advanced stages and can be differentiated from mesothelioma with the use of other mesothelial and epithelial markers.
Collapse
|
19
|
Role of glypicans in regulation of the tumor microenvironment and cancer progression. Biochem Pharmacol 2019; 168:108-118. [PMID: 31251939 DOI: 10.1016/j.bcp.2019.06.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/28/2022]
Abstract
Glypicans are evolutionary conserved, cell surface heparan sulfate (HS) proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol (GPI) anchor. Glypicans interact with a broad class of soluble and insoluble ligands, such as morphogens, growth factors, chemokines, receptors and components of the extracellular matrix (ECM). Such versatility comes from their ability to interact through both their HS chains and core protein. Glypicans are involved in cellular and tissue development, morphogenesis and cell motility. They exhibit differential expression in several cancers, acting as both tumor promoters and inhibitors in a cancer type-specific manner. They also influence tumor stroma by facilitating angiogenesis, ECM remodeling and alteration of immune cell functions. Glypicans have emerged as a new therapeutic moiety, whose functions can be exploited in the field of targeted therapies and precision medicine in cancer. This is demonstrated by the emergence of several anti-glypican antibody-based immunologics that have been recently developed and are being evaluated in clinical trials. This review will focus on glypican structure and function with an emphasis on their expression in various cancers. Discussion will also center on the potential of glypicans to be therapeutic targets for inhibition of cancer cell growth.
Collapse
|
20
|
Kai Y, Amatya VJ, Kushitani K, Kambara T, Suzuki R, Tsutani Y, Miyata Y, Okada M, Takeshima Y. Mucin 21 is a novel, negative immunohistochemical marker for epithelioid mesothelioma for its differentiation from lung adenocarcinoma. Histopathology 2019; 74:545-554. [DOI: 10.1111/his.13775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/12/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Yuichiro Kai
- Department of Pathology; Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
- Department of Surgical Oncology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - Vishwa J Amatya
- Department of Pathology; Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Kei Kushitani
- Department of Pathology; Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Takahiro Kambara
- Department of Pathology; Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Rui Suzuki
- Department of Pathology; Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| | - Yasuhiro Tsutani
- Department of Surgical Oncology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - Yoshihiro Miyata
- Department of Surgical Oncology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - Morihito Okada
- Department of Surgical Oncology; Research Institute for Radiation Biology and Medicine; Hiroshima University; Hiroshima Japan
| | - Yukio Takeshima
- Department of Pathology; Graduate School of Biomedical and Health Sciences; Hiroshima University; Hiroshima Japan
| |
Collapse
|
21
|
Glypican-1 immunohistochemistry does not separate mesothelioma from pulmonary adenocarcinoma. Mod Pathol 2018; 31:1400-1403. [PMID: 29785020 DOI: 10.1038/s41379-018-0066-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/24/2018] [Indexed: 12/13/2022]
Abstract
Immunohistochemistry (IHC) is used to help differentiate pleural mesothelioma from pulmonary adenocarcinoma in pleural biopsies and cytology specimens of pleural effusions due to overlapping morphologic features between these two malignancies. The aim of this study is to evaluate IHC glypican-1, a recently proposed marker for epithelioid mesothelioma, in our cohort of mesotheliomas and pulmonary adenocarcinoma. Tissue microarrays with duplicate cores from 33 cases of mesotheliomas (28 epithelioid type and five sarcomatoid type) and 21 cases of pulmonary adenocarcinoma were stained with glypican-1 antibody. The proportion of cases by tumor type showing staining with glypican-1 and the H-score for each tumor type were evaluated. All 33 cases of mesothelioma and all 20 cases of pulmonary adenocarcinoma with interpretable cores showed positive cytoplasmic staining. All but one case of mesothelioma and all pulmonary adenocarcinomas showed staining in at least 80% of the tumor cells. The mean H-score for glypican-1 of mesothelioma (134 ± 59, mean ± SD) was not significantly different from that for pulmonary adenocarcinoma (156 ± 60; P = 0.21). Neither epithelioid type (mean H-score 135 ± 57) nor sarcomatoid type (mean H-score 130 ± 78) of mesothelioma showed different H-scores when compared to pulmonary adenocarcinoma (P = 0.23 and 0.42, respectively). In conclusion, glypican-1 IHC does not differentiate mesothelioma from pulmonary adenocarcinoma.
Collapse
|
22
|
Salazar C, Kanter Md N, Abboud A. Malignant Pleural Mesothelioma, Biphasic Type: An Unusual and Insidious Case of Rapidly Progressive Small Blue Cell Tumor. Cureus 2018; 10:e2749. [PMID: 30109162 PMCID: PMC6082884 DOI: 10.7759/cureus.2749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare neoplasm. It predominantly affects elderly individuals aged over 70 years presenting with a unilateral pleural tumor usually associated with previous asbestos exposure. The respiratory symptoms are associated with ipsilateral pleural involvement with concomitant pleural effusions. The diagnosis of MPM is established by the morphologic and immunohistochemical features of a cytologic specimen. MPM can present as three histologic subtypes: epithelioid, sarcomatoid, or biphasic. We present a case of an 85-year-old Caucasian female with a history of occupational asbestos exposure. She complained of 1-week history of progressive sharp right flank and scapular pain with mild shortness of breath, dry cough and pleuritic chest pain. CT of the chest showed a large loculated right pleural effusion with adjacent pleural thickening. CT abdomen and pelvis was negative for other neoplastic findings. CT-guided core biopsy of the right pleural-based mass was positive for a spindle to plasmacytoid small blue cell tumor. An extensive immunohistochemical panel was non-specific. A focal OSCAR keratin and WT-1 expression in the absence of carcinoma markers, a malignant mesothelioma, biphasic type was diagnosed. Further workup with PET-CT and cytotoxic chemotherapy combined with immunotherapy or tyrosine kinase inhibitors was recommended by oncology. The patient refused further imaging and treatment, and palliative care was consulted.
Collapse
Affiliation(s)
- Carlos Salazar
- Department of Internal Medicine, Louis A. Weiss Memorial Hospital, Chicago, USA
| | - Nelson Kanter Md
- Department of Pulmonary and Critical Care Medicine, Louis A. Weiss Memorial Hospital, Chicago, USA
| | - Amer Abboud
- Department of Pathology, Louis A. Weiss Memorial Hospital, Chicago, USA
| |
Collapse
|