1
|
Landi D, Navai SA, Brock RM, Fousek K, Nawas Z, Sanber K, Chauvin-Fleurence C, Bhat RR, Xu S, Krishnamurthy P, Choe M, Campbell ME, Morris JS, Gad AZ, Shree A, Echeandia Marrero AS, Saadeldin AM, Matthew PR, Mullikin D, Bielamowicz K, Kurenbekova L, Major AM, Salsman VS, Byrd TT, Hicks JM, Zhang YJ, Yustein J, Carisey AF, Joseph SK, Ahmed N, Hegde M. A Checkpoint Reversal Receptor Mediates Bipartite Activation and Enhances CAR T-cell Function. CANCER RESEARCH COMMUNICATIONS 2025; 5:527-548. [PMID: 39973814 PMCID: PMC11955954 DOI: 10.1158/2767-9764.crc-24-0125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/18/2024] [Accepted: 02/17/2025] [Indexed: 02/21/2025]
Abstract
SIGNIFICANCE Enhancing CART function and persistence while balancing immune effector-mediated inflammation is crucial. Using our clinically relevant HER2-CAR platform, we demonstrate that tumor-intrinsic signals like the PD-1/PD-L1 immune checkpoint can be leveraged in CART design to modulate immune synapse and metabolic parameters, improving antitumor function without increasing cytokine production.
Collapse
Affiliation(s)
- Daniel Landi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Shoba A. Navai
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Rebecca M. Brock
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kristen Fousek
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Zeid Nawas
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Khaled Sanber
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Cynthia Chauvin-Fleurence
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Raksha R. Bhat
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Shuo Xu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Purna Krishnamurthy
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Michelle Choe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Matthew E. Campbell
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Jessica S. Morris
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Ahmed Z. Gad
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Ankita Shree
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Alesandra S. Echeandia Marrero
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Amr M. Saadeldin
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX
| | - Pretty R. Matthew
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Dolores Mullikin
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Kevin Bielamowicz
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Lyazat Kurenbekova
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Angela M. Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Vita S. Salsman
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Tiara T. Byrd
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - John M. Hicks
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Yi Jonathan Zhang
- Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas
| | - Jason Yustein
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Alexandre F. Carisey
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Cell & Molecular Biology Department, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sujith K. Joseph
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nabil Ahmed
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Meenakshi Hegde
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
- Texas Children’s Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
2
|
Szabo DJ, Toth E, Szabo K, Hegedus ZK, Bozsity-Farago N, Zupko I, Rovo L, Xiao X, Xu L, Keller-Pinter A. Trastuzumab Decreases the Expression of G1/S Regulators and Syndecan-4 Proteoglycan in Human Rhabdomyosarcoma. Int J Mol Sci 2025; 26:2137. [PMID: 40076757 PMCID: PMC11900631 DOI: 10.3390/ijms26052137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, arises from skeletal muscle cells that fail to differentiate terminally. Two subgroups of RMS, fusion-positive and fusion-negative RMS (FPRMS and FNRMS, respectively), are characterized by the presence or absence of the PAX3/7-FOXO1 fusion gene. RMSs frequently exhibit increased expression of human epidermal growth factor receptor-2 (HER2). Trastuzumab is a humanized monoclonal antibody targeting HER2, and its potential role in RMS treatment remains to be elucidated. Syndecan-4 (SDC4) is a heparan sulfate proteoglycan (HSPG) affecting myogenesis via Rac1-mediated actin remodeling. Previously, we demonstrated that the SDC4 gene is amplified in 28% of human FNRMS samples, associated with high mRNA expression, suggesting a tumor driver role. In this study, after analyzing the copy numbers and mRNA expressions of other HSPGs in human RMS samples, we found that in addition to SDC4, syndecan-1, syndecan-2, and glypican-1 were also amplified and highly expressed in FNRMS. In RD (human FNRMS) cells, elevated SDC4 expression was accompanied by low levels of phospho-Ser179 of SDC4, leading to high Rac1-GTP activity. Notably, this high SDC4 expression in RD cells decreased following trastuzumab treatment. Trastuzumab decreased the levels of G1/S checkpoint regulators cyclin E and cyclin D1 and reduced the cell number; however, it also downregulated the cyclin-dependent kinase inhibitor p21. The level of MyoD, a transcription factor essential for RMS cell survival, also decreased following trastuzumab administration. Our findings contribute to the understanding of the role of SDC4 in FNRMS. Since HER2 is expressed in about half of RMSs, the trastuzumab-mediated changes observed here may have therapeutic implications.
Collapse
Affiliation(s)
- Dora Julianna Szabo
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Eniko Toth
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Kitti Szabo
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
| | - Zsofia Kata Hegedus
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| | - Noemi Bozsity-Farago
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Istvan Zupko
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, 6720 Szeged, Hungary
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, 6720 Szeged, Hungary
| | - Xue Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, 6720 Szeged, Hungary
| |
Collapse
|
3
|
Song Z, Gong B, Qu T, Chen Y, Zhao G, Jin Y, Zhao Q. Anlotinib destabilizes PAX3-FOXO1 to induce rhabdomyosarcoma cell death via upregulating NEK2. Biomed Pharmacother 2024; 177:117126. [PMID: 38996706 DOI: 10.1016/j.biopha.2024.117126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is one of the most common soft tissue sarcomas in children and adolescents, in which PAX3-FOXO1 fusion gene positive patients have very poor prognosis. PAX3-FOXO1 has been identified as an independent prognostic predictor in RMS, with no currently available targeted therapeutic intervention. The novel tyrosine kinase inhibitor anlotinib exhibits a wide range of anticancer effects in multiple types of cancers; however, there have been no relevant studies regarding its application in RMS. MATERIALS AND METHODS We investigated the effects of PAX3-FOXO1 on the therapeutic efficacy of anlotinib using the CCK-8 assay, flow cytometry, invasion assay, wound healing assay, western blotting, quantitative polymerase chain reaction(qPCR), and xenograft experiments. RNA-seq and co-immunoprecipitation assays were conducted to determine the specific mechanism by which anlotinib regulates PAX3-FOXO1 expression. RESULTS Anlotinib effectively inhibited RMS cell proliferation and promoted apoptosis and G2/M phase arrest while impeding tumor growth in vivo. Downregulation of PAX3-FOXO1 enhances the antitumor effects of anlotinib. Anlotinib upregulates protein kinase NEK2 and increases the degradation of PAX3-FOXO1 via the ubiquitin-proteasome pathway, leading to a reduction in PAX3-FOXO1 protein levels. CONCLUSION Anlotinib effectively inhibited the malignant progression of RMS and promoted degradation of the fusion protein PAX3-FOXO1. Anlotinib could be a targeted therapeutic approach to treat PAX3-FOXO1 fusion-positive RMS.
Collapse
Affiliation(s)
- Zian Song
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Baocheng Gong
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Tongyuan Qu
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yankun Chen
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Guangzong Zhao
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
| | - Yan Jin
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| | - Qiang Zhao
- Department of Pediatric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Centre for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China.
| |
Collapse
|
4
|
Heim C, Hartig L, Weinelt N, Moser LM, Salzmann-Manrique E, Merker M, Wels WS, Tonn T, Bader P, Klusmann JH, van Wijk SJ, Rettinger E. Bortezomib promotes the TRAIL-mediated killing of resistant rhabdomyosarcoma by ErbB2/Her2-targeted CAR-NK-92 cells via DR5 upregulation. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200802. [PMID: 38706988 PMCID: PMC11067460 DOI: 10.1016/j.omton.2024.200802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Treatment resistance and immune escape are hallmarks of metastatic rhabdomyosarcoma (RMS), underscoring the urgent medical need for therapeutic agents against this disease entity as a key challenge in pediatric oncology. Chimeric antigen receptor (CAR)-based immunotherapies, such as the ErbB2 (Her2)-CAR-engineered natural killer (NK) cell line NK-92/5.28.z, provide antitumor cytotoxicity primarily through CAR-mediated cytotoxic granule release and thereafter-even in cases with low surface antigen expression or tumor escape-by triggering intrinsic NK cell-mediated apoptosis induction via additional ligand/receptors. In this study, we showed that bortezomib increased susceptibility toward apoptosis in clinically relevant RMS cell lines RH30 and RH41, and patient-derived RMS tumor organoid RMS335, by upregulation of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor DR5 in these metastatic, relapsed/refractory (r/r) RMS tumors. Subsequent administration of NK-92/5.28.z cells significantly enhanced antitumor activity in vitro. Applying recombinant TRAIL instead of NK-92/5.28.z cells confirmed that the synergistic antitumor effects of the combination treatment were mediated via TRAIL. Western blot analyses indicated that the combination treatment with bortezomib and NK-92/5.28.z cells increased apoptosis by interacting with the nuclear factor κB, JNK, and caspase pathways. Overall, bortezomib pretreatment can sensitize r/r RMS tumors to CAR- and, by upregulating DR5, TRAIL-mediated cytotoxicity of NK-92/5.28.z cells.
Collapse
Affiliation(s)
- Catrin Heim
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Leonie Hartig
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Nadine Weinelt
- Institute for Experimental Paediatric Haematology and Oncology (EPOH), 60528 Frankfurt am Main, Germany
| | - Laura M. Moser
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Emilia Salzmann-Manrique
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Michael Merker
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Torsten Tonn
- DRK-Blutspendedienst Baden-Württemberg/Hessen gemeinnützige GmbH, 60505 Frankfurt am Main, Germany
| | - Peter Bader
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, 60590 Frankfurt am Main, Germany
| | - Sjoerd J.L. van Wijk
- Institute for Experimental Paediatric Haematology and Oncology (EPOH), 60528 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
| | - Eva Rettinger
- Goethe University Frankfurt, Department of Pediatrics, Division of Stem Cell Transplantation and Immunology, 60590 Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), partner site Frankfurt am Main, a partnership between DKFZ and University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT) Frankfurt Marburg, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Chauhan S, Sen S, Irshad K, Kashyap S, Pushker N, Meel R, Sharma MC. Receptor tyrosine kinase gene expression profiling of orbital rhabdomyosarcoma unveils MET as a potential biomarker and therapeutic target. Hum Cell 2024; 37:297-309. [PMID: 37914903 DOI: 10.1007/s13577-023-00993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 10/06/2023] [Indexed: 11/03/2023]
Abstract
Receptor tyrosine kinases (RTKs) serve as molecular targets for the development of novel personalized therapies in many malignancies. In the present study, expression pattern of receptor tyrosine kinases and its clinical significance in orbital RMS has been explored. Eighteen patients with histopathologically confirmed orbital RMS formed part of this study. Comprehensive q-PCR gene expression profiles of 19 RTKs were generated in the cases and controls. The patients were followed up for 59.53 ± 20.93 years. Clustering and statistical analysis tools were applied to identify the significant combination of RTKs associated with orbital rhabdomyosarcoma patients. mRNA overexpression of RTKs which included MET, AXL, EGFR was seen in 60-80% of cases; EGFR3, IGFR2, FGFR1, RET, PDGFR1, VEGFR2, PDGFR2 in 30-60% of cases; and EGFR4, FGFR3,VEGFR3 and ROS,IGFR1, EGFR1, FGFR2, VEGFR1 in 10-30% of cases. Immunoexpression of MET was seen in 89% of cases. A significant association was seen between MET mRNA and its protein expression. In all the cases MET gene expression was associated with worst overall survival (P = 0.03).There was a significant correlation of MET mRNA expression with RET, ROS, AXL, FGFR1, FGFR3, PDGFR1, IGFR1, VEGFR2, and EGFR3 genes. Association between MET gene and collective expression of RTKs was further evaluated by semi-supervised gene cluster analysis and Principal component analysis, which showed well-separated tumor clusters. MET gene overexpression could be a useful biomarker for identifying high risk orbital rhabdomyosarcoma patients. Well-separated tumor clusters confirmed the association between MET gene and collective expression of RTK genes. Therefore, the therapeutic potential of multi-kinase inhibitors targeting MET and the 9 other significant RTKs needs to be explored.
Collapse
Affiliation(s)
- Sheetal Chauhan
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Seema Sen
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India.
| | - Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Seema Kashyap
- Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, Room No. 725, New Delhi, 110029, India
| | - Neelam Pushker
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Rachna Meel
- Ophthalmoplasty Services, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, 110029, India
| |
Collapse
|
6
|
Timpanaro A, Piccand C, Dzhumashev D, Anton-Joseph S, Robbi A, Moser J, Rössler J, Bernasconi M. CD276-CAR T cells and Dual-CAR T cells targeting CD276/FGFR4 promote rhabdomyosarcoma clearance in orthotopic mouse models. J Exp Clin Cancer Res 2023; 42:293. [PMID: 37924157 PMCID: PMC10625270 DOI: 10.1186/s13046-023-02838-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/21/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in childhood, whose prognosis is still poor especially for metastatic, high-grade, and relapsed RMS. New treatments are urgently needed, especially systemic therapies. Chimeric Antigen Receptor T cells (CAR Ts) are very effective against hematological malignancies, but their efficacy against solid tumors needs to be improved. CD276 (B7-H3) is a target upregulated in RMS and detected at low levels in normal tissues. FGFR4 is a very specific target for RMS. Here, we optimized CAR Ts for these two targets, alone or in combination, and tested their anti-tumor activity in vitro and in vivo. METHODS Four different single-domain antibodies were used to select the most specific FGFR4-CAR construct. RMS cell killing and cytokine production by CD276- and FGFR4-CAR Ts expressing CD8α or CD28 HD/TM domains in combination with 4-1BB and/or CD28 co-stimulatory domains were tested in vitro. The most effective CD276- and FGFR4-CAR Ts were used to generate Dual-CAR Ts. Tumor killing was evaluated in vivo in three orthotopic RMS mouse models. RESULTS CD276.V-CAR Ts (276.MG.CD28HD/TM.CD28CSD.3ζ) showed the strongest killing of RMS cells, and the highest release of IFN-γ and Granzyme B in vitro. FGFR4.V-CAR Ts (F8-FR4.CD28HD/TM.CD28CSD.3ζ) showed the most specific killing. CD276-CAR Ts successfully eradicated RD- and Rh4-derived RMS tumors in vivo, achieving complete remission in 3/5 and 5/5 mice, respectively. In CD276low JR-tumors, however, they achieved complete remission in only 1/5 mice. FGFR4 CAR Ts instead delayed Rh4 tumor growth. Dual-CAR Ts promoted Rh4-tumors clearance in 5/5 mice. CONCLUSIONS CD276- and CD276/FGFR4-directed CAR Ts showed effective RMS cell killing in vitro and eradication of CD276high RMS tumors in vivo. CD276low tumors escaped the therapy highlighting a correlation between antigen density and effectiveness. FGFR4-CAR Ts showed specific killing in vitro but could only delay RMS growth in vivo. Our results demonstrate that combined expression of CD276-CAR with other CAR does not reduce its benefit. Introducing immunotherapy with CD276-CAR Ts in RMS seems to be feasible and promising, although CAR constructs design and target combinations have to be further improved to eradicate tumors with low target expression.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Stenija Anton-Joseph
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Andrea Robbi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Janine Moser
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010, Bern, Switzerland.
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008, Bern, Switzerland.
| |
Collapse
|
7
|
Heim C, Moser LM, Kreyenberg H, Bonig HB, Tonn T, Wels WS, Gradhand E, Ullrich E, Meister MT, Koerkamp MG, Holstege FCP, Drost J, Klusmann JH, Bader P, Merker M, Rettinger E. ErbB2 (HER2)-CAR-NK-92 cells for enhanced immunotherapy of metastatic fusion-driven alveolar rhabdomyosarcoma. Front Immunol 2023; 14:1228894. [PMID: 37662907 PMCID: PMC10471977 DOI: 10.3389/fimmu.2023.1228894] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Metastatic rhabdomyosarcoma (RMS) is a challenging tumor entity that evades conventional treatments and endogenous antitumor immune responses, highlighting the need for novel therapeutic strategies. Applying chimeric antigen receptor (CAR) technology to natural killer (NK) cells may offer safe, effective, and affordable therapies that enhance cancer immune surveillance. Methods Here, we assess the efficacy of clinically usable CAR-engineered NK cell line NK-92/5.28.z against ErbB2-positive RMS in vitro and in a metastatic xenograft mouse model. Results Our results show that NK-92/5.28.z cells effectively kill RMS cells in vitro and significantly prolong survival and inhibit tumor progression in mice. The persistence of NK-92/5.28.z cells at tumor sites demonstrates efficient antitumor response, which could help overcome current obstacles in the treatment of solid tumors. Discussion These findings encourage further development of NK-92/5.28.z cells as off-the-shelf immunotherapy for the treatment of metastatic RMS.
Collapse
Affiliation(s)
- Catrin Heim
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
| | - Laura M. Moser
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Herman Kreyenberg
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
| | - Halvard B. Bonig
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt am Main, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Torsten Tonn
- Experimental Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Elise Gradhand
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt, Germany
| | - Evelyn Ullrich
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Michael T. Meister
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Marian Groot Koerkamp
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Frank C. P. Holstege
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Molecular Medicine, UMC Utrecht and Utrecht University, Utrecht, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Jan-Henning Klusmann
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
- Goethe University Frankfurt, Department of Pediatrics, Frankfurt am Main, Germany
| | - Peter Bader
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Michael Merker
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| | - Eva Rettinger
- Goethe University Frankfurt, Department of Pediatrics, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt am Main, a Partnership Between DKFZ, University Hospital and Georg-Speyer-Haus, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), Frankfurt am Main, Germany
| |
Collapse
|
8
|
Belyaeva E, Loginova N, Schroeder BA, Goldlust IS, Acharya A, Kumar S, Timashev P, Ulasov I. The spectrum of cell death in sarcoma. Biomed Pharmacother 2023; 162:114683. [PMID: 37031493 DOI: 10.1016/j.biopha.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023] Open
Abstract
The balance between cell death and cell survival is a highly coordinated process by which cells break down and remove unnecessary or harmful materials in a controlled, highly regulated, and compartmentalized manner. Cell exposure to various stresses, such as oxygen starvation, a lack of nutrients, or exposure to radiation, can initiate autophagy. Autophagy is a carefully orchestrated process with multiple steps, each regulated by specific genes and proteins. Autophagy proteins impact cellular maintenance and cell fate in response to stress, and targeting this process is one of the most promising methods of anti-tumor therapy. It is currently not fully understood how autophagy affects different types of tumor cells, which makes it challenging to predict outcomes when this process is manipulated. In this review, we will explore the mechanisms of autophagy and investigate it as a potential and promising therapeutic target for aggressive sarcomas.
Collapse
Affiliation(s)
- Elizaveta Belyaeva
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Nina Loginova
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Brett A Schroeder
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Ian S Goldlust
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA
| | - Arbind Acharya
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Sandeep Kumar
- Laboratory of Cancer Immunology, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Peter Timashev
- World-Class Research Centre "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Centre "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| |
Collapse
|
9
|
Timpanaro A, Piccand C, Uldry AC, Bode PK, Dzhumashev D, Sala R, Heller M, Rössler J, Bernasconi M. Surfaceome Profiling of Cell Lines and Patient-Derived Xenografts Confirm FGFR4, NCAM1, CD276, and Highlight AGRL2, JAM3, and L1CAM as Surface Targets for Rhabdomyosarcoma. Int J Mol Sci 2023; 24:2601. [PMID: 36768928 PMCID: PMC9917031 DOI: 10.3390/ijms24032601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 02/03/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. The prognosis for patients with high-grade and metastatic disease is still very poor, and survivors are burdened with long-lasting side effects. Therefore, more effective and less toxic therapies are needed. Surface proteins are ideal targets for antibody-based therapies, like bispecific antibodies, antibody-drug conjugates, or chimeric antigen receptor (CAR) T-cells. Specific surface targets for RMS are scarce. Here, we performed a surfaceome profiling based on differential centrifugation enrichment of surface/membrane proteins and detection by LC-MS on six fusion-positive (FP) RMS cell lines, five fusion-negative (FN) RMS cell lines, and three RMS patient-derived xenografts (PDXs). A total of 699 proteins were detected in the three RMS groups. Ranking based on expression levels and comparison to expression in normal MRC-5 fibroblasts and myoblasts, followed by statistical analysis, highlighted known RMS targets such as FGFR4, NCAM1, and CD276/B7-H3, and revealed AGRL2, JAM3, MEGF10, GPC4, CADM2, as potential targets for immunotherapies of RMS. L1CAM expression was investigated in RMS tissues, and strong L1CAM expression was observed in more than 80% of alveolar RMS tumors, making it a practicable target for antibody-based therapies of alveolar RMS.
Collapse
Affiliation(s)
- Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Caroline Piccand
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Peter Karl Bode
- Department of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Rita Sala
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Translational Cancer Research, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
10
|
Dzhumashev D, Timpanaro A, Ali S, De Micheli AJ, Mamchaoui K, Cascone I, Rössler J, Bernasconi M. Quantum Dot-Based Screening Identifies F3 Peptide and Reveals Cell Surface Nucleolin as a Therapeutic Target for Rhabdomyosarcoma. Cancers (Basel) 2022; 14:5048. [PMID: 36291832 PMCID: PMC9600270 DOI: 10.3390/cancers14205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Active drug delivery by tumor-targeting peptides is a promising approach to improve existing therapies for rhabdomyosarcoma (RMS), by increasing the therapeutic effect and decreasing the systemic toxicity, e.g., by drug-loaded peptide-targeted nanoparticles. Here, we tested 20 different tumor-targeting peptides for their ability to bind to two RMS cell lines, Rh30 and RD, using quantum dots Streptavidin and biotin-peptides conjugates as a model for nanoparticles. Four peptides revealed a very strong binding to RMS cells: NCAM-1-targeting NTP peptide, nucleolin-targeting F3 peptide, and two Furin-targeting peptides, TmR and shTmR. F3 peptide showed the strongest binding to all RMS cell lines tested, low binding to normal control myoblasts and fibroblasts, and efficient internalization into RMS cells demonstrated by the cytoplasmic delivery of the Saporin toxin. The expression of the nucleophosphoprotein nucleolin, the target of F3, on the surface of RMS cell lines was validated by competition with the natural ligand lactoferrin, by colocalization with the nucleolin-binding aptamer AS1411, and by the marked sensitivity of RMS cell lines to the growth inhibitory nucleolin-binding N6L pseudopeptide. Taken together, our results indicate that nucleolin-targeting by F3 peptide represents a potential therapeutic approach for RMS.
Collapse
Affiliation(s)
- Dzhangar Dzhumashev
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andrea Timpanaro
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Safa Ali
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Andrea J. De Micheli
- Department of Oncology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| | - Kamel Mamchaoui
- Centre de Recherche en Myologie, Institut de Myologie, INSERM, Sorbonne Université, F-75013 Paris, France
| | - Ilaria Cascone
- IMRB, INSERM, University Paris Est Creteil, 94010 Creteil, France
- AP-HP, Groupe Hospitalo-Universitaire Chenevier Mondor, Centre d’Investigation Clinique Biothérapie, 94010 Créteil, France
| | - Jochen Rössler
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michele Bernasconi
- Department of Pediatric Hematology and Oncology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, 3032 Zurich, Switzerland
| |
Collapse
|
11
|
Yoon HY, Maron BY, Girald-Berlingeri S, Gasilina A, Gollin JC, Jian X, Akpan I, Yohe ME, Randazzo PA, Chen PW. ERK phosphorylation is dependent on cell adhesion in a subset of pediatric sarcoma cell lines. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119264. [PMID: 35381293 DOI: 10.1016/j.bbamcr.2022.119264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Osteosarcoma (OS) and Pax-Foxo1 fusion negative rhabdomyosarcoma (FN-RMS) are pediatric sarcomas with poor prognoses in patients with advanced disease. In both malignancies, an actin binding protein has been linked to poor prognosis. Integrin adhesion complexes (IACs) are closely coupled to actin networks and IAC-mediated signaling has been implicated in the progression of carcinomas. However, the relationship of IACs and actin cytoskeleton remodeling with cell signaling is understudied in pediatric sarcomas. Here, we tested the hypothesis that IAC dynamics affect ERK activation in OS and FN-RMS cell lines. Adhesion dependence of ERK activation differed among the OS and FN-RMS cells examined. In the OS cell lines, adhesion did not have a consistent effect on phospho-ERK (pERK). ERK phosphorylation in response to fetal calf serum or 1 ng/ml EGF was nearly as efficient in OS cell lines and one FN-RMS cell line in suspension as cells adherent to poly-l-lysine (PL) or fibronectin (FN). By contrast, adhesion to plastic, PL or FN increased ERK phosphorylation and was greater than additive with a 15 min exposure to 1 ng/ml EGF in three FN-RMS cell lines. Increases in pERK were partly dependent on FAK and PAK1/2 but independent of IAC maturation. As far as we are aware, this examination of adhesion-dependent signaling is the first in pediatric sarcomas and has led to the discovery of differences from the prevailing paradigms and differences in the degree of coupling between components in the signaling pathways among the cell lines.
Collapse
Affiliation(s)
- Hye-Young Yoon
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Ben Y Maron
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Sofia Girald-Berlingeri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Anjelika Gasilina
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Josephine C Gollin
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Itoro Akpan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America
| | - Marielle E Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States of America.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| |
Collapse
|
12
|
Patel AG, Chen X, Huang X, Clay MR, Komorova N, Krasin MJ, Pappo A, Tillman H, Orr BA, McEvoy J, Gordon B, Blankenship K, Reilly C, Zhou X, Norrie JL, Karlstrom A, Yu J, Wodarz D, Stewart E, Dyer MA. The myogenesis program drives clonal selection and drug resistance in rhabdomyosarcoma. Dev Cell 2022; 57:1226-1240.e8. [PMID: 35483358 PMCID: PMC9133224 DOI: 10.1016/j.devcel.2022.04.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/07/2022] [Accepted: 04/01/2022] [Indexed: 11/29/2022]
Abstract
Rhabdomyosarcoma (RMS) is a pediatric cancer with features of skeletal muscle; patients with unresectable or metastatic RMS fare poorly due to high rates of disease recurrence. Here, we use single-cell and single-nucleus RNA sequencing to show that RMS tumors recapitulate the spectrum of embryonal myogenesis. Using matched patient samples from a clinical trial and orthotopic patient-derived xenografts (O-PDXs), we show that chemotherapy eliminates the most proliferative component with features of myoblasts within embryonal RMS; after treatment, the immature population with features of paraxial mesoderm expands to reconstitute the developmental hierarchy of the original tumor. We discovered that this paraxial mesoderm population is dependent on EGFR signaling and is sensitive to EGFR inhibitors. Taken together, these data serve as a proof of concept that targeting each developmental state in embryonal RMS is an effective strategy for improving outcomes by preventing disease recurrence.
Collapse
Affiliation(s)
- Anand G Patel
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xiang Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xin Huang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael R Clay
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Natalia Komorova
- Department of Mathematics, University of California, Irvine, CA 92697, USA
| | - Matthew J Krasin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alberto Pappo
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Heather Tillman
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brent A Orr
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Justina McEvoy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brittney Gordon
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kaley Blankenship
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Colleen Reilly
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jackie L Norrie
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Asa Karlstrom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Dominik Wodarz
- Department of Population Health and Disease Prevention, Program in Public Health, Susan and Henry Samueli College of Health Sciences, University of California, Irvine, CA 92697, USA
| | - Elizabeth Stewart
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael A Dyer
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
13
|
Varlet P, Bouffet E, Casanova M, Giangaspero F, Antonelli M, Hargrave D, Ladenstein R, Pearson A, Hawkins C, König FB, Rüschoff J, Schmauch C, Bühnemann C, Garin-Chesa P, Schweifer N, Uttenreuther-Fischer M, Gibson N, Ittrich C, Krämer N, Solca F, Stolze B, Geoerger B. Comprehensive analysis of the ErbB receptor family in pediatric nervous system tumors and rhabdomyosarcoma. Pediatr Blood Cancer 2022; 69:e29316. [PMID: 34546642 DOI: 10.1002/pbc.29316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/05/2021] [Accepted: 08/01/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND There is a paucity of knowledge regarding pediatric biomarkers, including the relevance of ErbB pathway aberrations in pediatric tumors. We investigated the occurrence of ErbB receptor aberrations across different pediatric malignancies, to identify patterns of ErbB dysregulation and define biomarkers suitable for patient enrichment in clinical studies. PROCEDURE Tissue samples from 297 patients with nervous system tumors and rhabdomyosarcoma were analyzed for immunohistochemical expression or gene amplification of epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2). Exploratory analyses of HER3/HER4 expression, and mRNA expression of ErbB receptors/ligands (NanoString) were performed. Assay validation followed general procedures, with additional validation to address Clinical Laboratory Improvement Amendments (CLIA) requirements. RESULTS In most tumor types, samples with high ErbB receptor expression were found with heterogeneous distribution. We considered increased/aberrant ErbB pathway activation when greater than or equal to two EGFR/HER2 markers were simultaneously upregulated. ErbB pathway dysregulation was identified in ∼20%-30% of samples for most tumor types (medulloblastoma/primitive neuroectodermal tumors 31.1%, high-grade glioma 27.1%, neuroblastoma 22.7%, rhabdomyosarcoma 23.1%, ependymoma 18.8%), 4.2% of diffuse intrinsic pontine gliomas, and no recurrent or refractory low-grade astrocytomas. In medulloblastoma/primitive neuroectodermal tumors and neuroblastoma, this was attributed mainly to high EGFR polysomy/HER2 amplification, whereas EGFR gene amplification was observed in some high-grade glioma samples. EGFR/HER2 overexpression was most prevalent in ependymoma. CONCLUSIONS Overexpression and/or amplification of EGFR/HER2 were identified as potential enrichment biomarkers for clinical trials of ErbB-targeted drugs.
Collapse
Affiliation(s)
- Pascale Varlet
- GHU Psychiatrie et Neurosciences, site Sainte-Anne, service de Neuropathologie, Paris, France
| | - Eric Bouffet
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | - Darren Hargrave
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Ruth Ladenstein
- Department of Paediatrics, St. Anna Children's Cancer Research Institute, Medical University, Vienna, Austria
| | - Andy Pearson
- Paediatric Drug Development, Children and Young People's Unit, Royal Marsden Hospital, London, UK.,Division of Clinical Studies, Institute of Cancer Research, London, UK
| | | | | | | | | | | | - Pilar Garin-Chesa
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Norbert Schweifer
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Neil Gibson
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Carina Ittrich
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Nicole Krämer
- Staburo GmbH, Munich, Germany, on behalf of Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Flavio Solca
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Britta Stolze
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Geoerger
- Gustave Roussy Cancer Center, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris Saclay, Villejuif, France
| |
Collapse
|
14
|
Yan C, Yang Q, Zhang S, Millar DG, Alpert EJ, Do D, Veloso A, Brunson DC, Drapkin BJ, Stanzione M, Scarfò I, Moore JC, Iyer S, Qin Q, Wei Y, McCarthy KM, Rawls JF, Dyson NJ, Cobbold M, Maus MV, Langenau DM. Single-cell imaging of T cell immunotherapy responses in vivo. J Exp Med 2021; 218:e20210314. [PMID: 34415995 PMCID: PMC8383813 DOI: 10.1084/jem.20210314] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/19/2021] [Accepted: 07/09/2021] [Indexed: 12/22/2022] Open
Abstract
T cell immunotherapies have revolutionized treatment for a subset of cancers. Yet, a major hurdle has been the lack of facile and predicative preclinical animal models that permit dynamic visualization of T cell immune responses at single-cell resolution in vivo. Here, optically clear immunocompromised zebrafish were engrafted with fluorescent-labeled human cancers along with chimeric antigen receptor T (CAR T) cells, bispecific T cell engagers (BiTEs), and antibody peptide epitope conjugates (APECs), allowing real-time single-cell visualization of T cell-based immunotherapies in vivo. This work uncovered important differences in the kinetics of T cell infiltration, tumor cell engagement, and killing between these immunotherapies and established early endpoint analysis to predict therapy responses. We also established EGFR-targeted immunotherapies as a powerful approach to kill rhabdomyosarcoma muscle cancers, providing strong preclinical rationale for assessing a wider array of T cell immunotherapies in this disease.
Collapse
Affiliation(s)
- Chuan Yan
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Qiqi Yang
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Songfa Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - David G. Millar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Eric J. Alpert
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Daniel Do
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Alexandra Veloso
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Dalton C. Brunson
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Benjamin J. Drapkin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Marcello Stanzione
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Irene Scarfò
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - John C. Moore
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Sowmya Iyer
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Qian Qin
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Yun Wei
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Karin M. McCarthy
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC
| | - Nick J. Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - Mark Cobbold
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Early Oncology R&D, AstraZeneca, Gaithersburg, MD
| | - Marcela V. Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
| | - David M. Langenau
- Molecular Pathology Unit, Massachusetts General Research Institute, Charlestown, MA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
15
|
Murayama Y, Kawashima H, Kubo N, Shin C, Kasahara Y, Imamura M, Oike N, Ariizumi T, Saitoh A, Mihara K, Umezu H, Ogose A, Imai C. Effectiveness of 4-1BB-costimulated HER2-targeted chimeric antigen receptor T cell therapy for synovial sarcoma. Transl Oncol 2021; 14:101227. [PMID: 34555727 PMCID: PMC8461377 DOI: 10.1016/j.tranon.2021.101227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/21/2022] Open
Abstract
HER2-targeted/4-1BB costimulated CAR T cells recognized synovial sarcoma cells. HER2-targeted CAR T cells secrete interferon gamma and tumor necrosis factor alpha. HER2-targeted CAR T cells exert cytotoxic effects in synovial sarcoma cells. HER2-targeted CAR T cell therapy for chemo-refractory or relapsed synovial sarcoma.
Background Synovial sarcoma is a rare malignant soft-tissue tumor that is prevalent in adolescents and young adults, and poor prognosis has been reported in patients with metastatic lesions. Chimeric antigen receptor (CAR) T-cell therapy is an emerging novel therapy for solid tumors; however, its application in synovial sarcoma has not yet been explored. Methods A novel human epidermal growth factor receptor 2 (HER2)-targeted CAR containing scFv-FRP5, CD8α hinge and transmembrane domains as well as 4-1BB costimulatory and CD3ζ signaling domains was developed. Three synovial sarcoma cell lines that expressed the fusion transcript SS18-SSX1/2/4 were used in the study. Cytokine secretion assay, cytotoxicity assay, and real-time cell analysis experiments were conducted to confirm the function of T cells transduced with the CAR gene. Results High cell-surface expression of HER2 was observed in all the cell lines. HER2-targeted/4-1BB-costimulated CAR T cells specifically recognized the synovial sarcoma cells, secreted interferon gamma and tumor necrosis factor alpha, and exerted cytotoxic effects in these cells. Conclusion To the best of our knowledge, this is the first study to indicate that HER2-targeted CAR T cells are directly effective against molecularly defined synovial sarcoma cells. Furthermore, our findings might set the basis for developing improved CAR T cell-based therapies for chemo-refractory or relapsed synovial sarcoma.
Collapse
Affiliation(s)
- Yudai Murayama
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan; Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Kawashima
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nobuhiro Kubo
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Chansu Shin
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Yasushi Kasahara
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Masaru Imamura
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Naoki Oike
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takashi Ariizumi
- Division of Orthopedic Surgery, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saitoh
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan
| | - Keichiro Mihara
- International Regenerative Medical Center, Fujita Health University, Aichi, Japan
| | - Hajime Umezu
- Division of Pathology, Niigata University Medical & Dental Hospital, Niigata, Japan
| | - Akira Ogose
- Department of Orthopedic Surgery, Uonuma Kikan Hospital, Niigata, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuou-ku, Niigata City, Niigata 951-8510, Japan.
| |
Collapse
|
16
|
Mitra S, Sydow S, Magnusson L, Piccinelli P, Törnudd L, Øra I, Ljungman G, Sandgren J, Gisselsson D, Mertens F. Amplification of ERBB2 (HER2) in embryonal rhabdomyosarcoma: A potential treatment target in rare cases? Genes Chromosomes Cancer 2021; 61:5-9. [PMID: 34418214 DOI: 10.1002/gcc.22996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/11/2022] Open
Abstract
The ERBB2 gene encodes a receptor tyrosine kinase also known as HER2. The gene is amplified and overexpressed in one-fifth of breast carcinomas; patients with such tumors benefit from targeted treatment with trastuzumab or other drugs blocking the receptor. In addition, ERBB2 has been shown to be amplified and/or overexpressed in a variety of other malignancies. Notably, both alveolar and embryonal rhabdomyosarcoma (RMS), especially in children, often show increased expression of ERBB2. Although high-level amplification of the gene has not been described in RMS, its frequent expression at the cell surface of RMS cells has been exploited for chimeric antigen receptor T-cell (CAR T)-based treatment strategies. We here describe two cases of pediatric, fusion-negative embryonal RMS with high-level amplification of the ERBB2 gene. One patient is currently treated with conventional chemotherapy for a recently detected standard risk RMS, whereas the other patient died from metastatic disease. Both tumors displayed focal amplicons (210 and 274 Kb, respectively) in chromosome band 17q12, with proximal and distal borders corresponding to those typically seen in breast cancer. In both tumors, the ERBB2 amplicon correlated with high expression at the RNA and protein levels. Thus, breast cancer-like ERBB2 amplification is a very rare, but recurrent feature of pediatric RMS, and should be exploited as an alternative treatment target.
Collapse
Affiliation(s)
- Shamik Mitra
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Saskia Sydow
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Linda Magnusson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Paul Piccinelli
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Lisa Törnudd
- Department of Pediatrics, Linköping University Hospital, Linköping, Sweden
| | - Ingrid Øra
- Department of Pediatric Oncology, Skåne University Hospital, Lund, Sweden
| | - Gustaf Ljungman
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Johanna Sandgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - David Gisselsson
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden.,Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| | - Fredrik Mertens
- Department of Laboratory Medicine, Division of Clinical Genetics, Lund University, Lund, Sweden.,Department of Clinical Genetics and Pathology, Division of Laboratory Medicine, Lund, Sweden
| |
Collapse
|
17
|
Antibody Conjugates for Sarcoma Therapy: How Far along Are We? Biomedicines 2021; 9:biomedicines9080978. [PMID: 34440182 PMCID: PMC8392509 DOI: 10.3390/biomedicines9080978] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 01/12/2023] Open
Abstract
Sarcomas are one of the most difficult type of cancer to manage and treat because of their extremely heterogeneous molecular and morphological features. Despite the progress made over the years in the establishment of standard protocols for high and low grading/staging sarcoma patients, mostly with chemotherapy and/or radiotherapy, 50% of treated patients experience relapse episodes. Because of this, in the last 20 years, new therapeutic approaches for sarcoma treatment have been evaluated in preclinical and clinical studies. Among them, antibody-based therapies have been the most studied. Immunoconjugates consist of a carrier portion, frequently represented by an antibody, linked to a toxic moiety, i.e., a drug, toxin, or radionuclide. While the efficacy of immunoconjugates is well demonstrated in the therapy of hematological tumors and more recently also of epithelial ones, their potential as therapeutic agents against sarcomas is still not completely explored. In this paper, we summarize the results obtained with immunoconjugates targeting sarcoma surface antigens, considering both preclinical and clinical studies. To date, the encouraging results obtained in preclinical studies allowed nine immunoconjugates to enter clinical trials, demonstrating the validity of immunotherapy as a promising pharmacological tool also for sarcoma therapy.
Collapse
|
18
|
HER Tyrosine Kinase Family and Rhabdomyosarcoma: Role in Onset and Targeted Therapy. Cells 2021; 10:cells10071808. [PMID: 34359977 PMCID: PMC8305095 DOI: 10.3390/cells10071808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 12/29/2022] Open
Abstract
Rhabdomyosarcomas (RMS) are tumors of the skeletal muscle lineage. Two main features allow for distinction between subtypes: morphology and presence/absence of a translocation between the PAX3 (or PAX7) and FOXO1 genes. The two main subtypes are fusion-positive alveolar RMS (ARMS) and fusion-negative embryonal RMS (ERMS). This review will focus on the role of receptor tyrosine kinases of the human epidermal growth factor receptor (EGFR) family that is comprised EGFR itself, HER2, HER3 and HER4 in RMS onset and the potential therapeutic targeting of receptor tyrosine kinases. EGFR is highly expressed by ERMS tumors and cell lines, in some cases contributing to tumor growth. If not mutated, HER2 is not directly involved in control of RMS cell growth but can be expressed at significant levels. A minority of ERMS carries a HER2 mutation with driving activity on tumor growth. HER3 is frequently overexpressed by RMS and can play a role in the residual myogenic differentiation ability and in resistance to signaling-directed therapy. HER family members could be exploited for therapeutic approaches in two ways: blocking the HER member (playing a driving role for tumor growth with antibodies or inhibitors) and targeting expressed HER members to vehiculate toxins or immune effectors.
Collapse
|
19
|
Gossel LDH, Heim C, Pfeffermann LM, Moser LM, Bönig HB, Klingebiel TE, Bader P, Wels WS, Merker M, Rettinger E. Retargeting of NK-92 Cells against High-Risk Rhabdomyosarcomas by Means of an ERBB2 (HER2/Neu)-Specific Chimeric Antigen Receptor. Cancers (Basel) 2021; 13:cancers13061443. [PMID: 33809981 PMCID: PMC8004684 DOI: 10.3390/cancers13061443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
The dismal prognosis of pediatric and young adult patients with high-risk rhabdomyosarcoma (RMS) underscores the need for novel treatment options for this patient group. In previous studies, the tumor-associated surface antigen ERBB2 (HER2/neu) was identified as targetable in high-risk RMS. As a proof of concept, in this study, a novel treatment approach against RMS tumors using a genetically modified natural killer (NK)-92 cell line (NK-92/5.28.z) as an off-the-shelf ERBB2-chimeric antigen receptor (CAR)-engineered cell product was preclinically explored. In cytotoxicity assays, NK-92/5.28.z cells specifically recognized and efficiently eliminated RMS cell suspensions, tumor cell monolayers, and 3D tumor spheroids via the ERBB2-CAR even at effector-to-target ratios as low as 1:1. In contrast to unmodified parental NK-92 cells, which failed to lyse RMS cells, NK-92/5.28.z cells proliferated and became further activated through contact with ERBB2-positive tumor cells. Furthermore, high amounts of effector molecules, such as proinflammatory and antitumoral cytokines, were found in cocultures of NK-92/5.28.z cells with tumor cells. Taken together, our data suggest the enormous potential of this approach for improving the immunotherapy of treatment-resistant tumors, revealing the dual role of NK-92/5.28.z cells as CAR-targeted killers and modulators of endogenous adaptive immunity even in the inhibitory tumor microenvironment of high-risk RMS.
Collapse
Affiliation(s)
- Leonie D. H. Gossel
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (L.D.H.G.); (C.H.); (L.M.M.); (P.B.); (M.M.)
| | - Catrin Heim
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (L.D.H.G.); (C.H.); (L.M.M.); (P.B.); (M.M.)
| | - Lisa-Marie Pfeffermann
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunohematology Frankfurt am Main, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (L.-M.P.); (H.B.B.)
| | - Laura M. Moser
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (L.D.H.G.); (C.H.); (L.M.M.); (P.B.); (M.M.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; (T.E.K.); (W.S.W.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), 60590 Frankfurt am Main, Germany
| | - Halvard B. Bönig
- Department of Cellular Therapeutics/Cell Processing, Institute for Transfusion Medicine and Immunohematology Frankfurt am Main, Goethe University Medical School, 60528 Frankfurt am Main, Germany; (L.-M.P.); (H.B.B.)
- Department of Medicine, Division of Hematology, University of Washington, Seattle, WA 98198-7720, USA
| | - Thomas E. Klingebiel
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; (T.E.K.); (W.S.W.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), 60590 Frankfurt am Main, Germany
- Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Peter Bader
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (L.D.H.G.); (C.H.); (L.M.M.); (P.B.); (M.M.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; (T.E.K.); (W.S.W.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), 60590 Frankfurt am Main, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; (T.E.K.); (W.S.W.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), 60590 Frankfurt am Main, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Michael Merker
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (L.D.H.G.); (C.H.); (L.M.M.); (P.B.); (M.M.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; (T.E.K.); (W.S.W.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), 60590 Frankfurt am Main, Germany
| | - Eva Rettinger
- Department for Children and Adolescents, Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (L.D.H.G.); (C.H.); (L.M.M.); (P.B.); (M.M.)
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, 60590 Frankfurt am Main, Germany; (T.E.K.); (W.S.W.)
- Frankfurt Cancer Institute (FCI), 60596 Frankfurt am Main, Germany
- Universitäres Centrum für Tumorerkrankungen (UCT), 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-(0)69-6301-80631; Fax: +49-(0)69-6301-4202
| |
Collapse
|
20
|
Candidate Biomarkers for Specific Intraoperative Near-Infrared Imaging of Soft Tissue Sarcomas: A Systematic Review. Cancers (Basel) 2021; 13:cancers13030557. [PMID: 33535618 PMCID: PMC7867119 DOI: 10.3390/cancers13030557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Near-infrared imaging of tumors during surgery facilitates the oncologic surgeon to distinguish malignant from healthy tissue. The technique is based on fluorescent tracers binding to tumor biomarkers on malignant cells. Currently, there are no clinically available fluorescent tracers that specifically target soft tissue sarcomas. This review searched the literature to find candidate biomarkers for soft tissue sarcomas, based on clinically used therapeutic antibodies. The search revealed 7 biomarkers: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. These biomarkers are abundantly present on soft tissue sarcoma tumor cells and are already being targeted with humanized monoclonal antibodies. The conjugation of these antibodies with a fluorescent dye will yield in specific tracers for image-guided surgery of soft tissue sarcomas to improve the success rates of tumor resections. Abstract Surgery is the mainstay of treatment for localized soft tissue sarcomas (STS). The curative treatment highly depends on complete tumor resection, as positive margins are associated with local recurrence (LR) and prognosis. However, determining the tumor margin during surgery is challenging. Real-time tumor-specific imaging can facilitate complete resection by visualizing tumor tissue during surgery. Unfortunately, STS specific tracers are presently not clinically available. In this review, STS-associated cell surface-expressed biomarkers, which are currently already clinically targeted with monoclonal antibodies for therapeutic purposes, are evaluated for their use in near-infrared fluorescence (NIRF) imaging of STS. Clinically targeted biomarkers in STS were extracted from clinical trial registers and a PubMed search was performed. Data on biomarker characteristics, sample size, percentage of biomarker-positive STS samples, pattern of biomarker expression, biomarker internalization features, and previous applications of the biomarker in imaging were extracted. The biomarkers were ranked utilizing a previously described scoring system. Eleven cell surface-expressed biomarkers were identified from which 7 were selected as potential biomarkers for NIRF imaging: TEM1, VEGFR-1, EGFR, VEGFR-2, IGF-1R, PDGFRα, and CD40. Promising biomarkers in common and aggressive STS subtypes are TEM1 for myxofibrosarcoma, TEM1, and PDGFRα for undifferentiated soft tissue sarcoma and EGFR for synovial sarcoma.
Collapse
|
21
|
Merker M, Wagner J, Kreyenberg H, Heim C, Moser LM, Wels WS, Bonig H, Ivics Z, Ullrich E, Klingebiel T, Bader P, Rettinger E. ERBB2-CAR-Engineered Cytokine-Induced Killer Cells Exhibit Both CAR-Mediated and Innate Immunity Against High-Risk Rhabdomyosarcoma. Front Immunol 2020; 11:581468. [PMID: 33193388 PMCID: PMC7641627 DOI: 10.3389/fimmu.2020.581468] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
High-risk rhabdomyosarcoma (RMS) occurring in childhood to young adulthood is associated with a poor prognosis; especially children above the age of 10 with advanced stage alveolar RMS still succumb to the disease within a median of 2 years. The advent of chimeric antigen receptor (CAR)-engineered T cells marked significant progress in the treatment of refractory B cell malignancies, but experience for solid tumors has proven challenging. We speculate that this is at least in part due to the poor quality of the patient's own T cells and therefore propose using CAR-modified cytokine-induced killer (CIK) cells as effector cells. CIK cells are a heterogeneous population of polyclonal T cells that acquire phenotypic and cytotoxic properties of natural killer (NK) cells through the cultivation process, becoming so-called T-NK cells. CIK cells can be genetically modified to express CARs. They are minimally alloreactive and can therefore be acquired from haploidentical first-degree relatives. Here, we explored the potential of ERBB2-CAR-modified random-donor CIK cells as a treatment for RMS in xenotolerant mice bearing disseminated high-risk RMS tumors. In otherwise untreated mice, RMS tumors engrafted 13-35 days after intravenous tumor cell injection, as shown by in vivo bioluminescence imaging, immunohistochemistry, and polymerase chain reaction for human gDNA, and mice died shortly thereafter (median/range: 62/56-66 days, n = 5). Wild-type (WT) CIK cells given at an early stage delayed and eliminated RMS engraftment in 4 of 6 (67%) mice, while ERBB2-CAR CIK cells inhibited initial tumor load in 8 of 8 (100%) mice. WT CIK cells were detectable but not as active as CAR CIK cells at distant tumor sites. CIK cell therapies during advanced RMS delayed but did not inhibit tumor progression compared to untreated controls. ERBB2-CAR CIK cell therapy also supported innate immunity as evidenced by selective accumulation of NK and T-NK cell subpopulations in disseminated RMS tumors, which was not observed for WT CIK cells. Our data underscore the power of heterogenous immune cell populations (T, NK, and T-NK cells) to control solid tumors, which can be further enhanced with CARs, suggesting ERBB2-CAR CIK cells as a potential treatment for high-risk RMS.
Collapse
MESH Headings
- Adolescent
- Animals
- Cell Line, Tumor
- Cytokine-Induced Killer Cells/immunology
- Humans
- Immunity, Innate/immunology
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Natural Killer T-Cells/immunology
- Receptor, ErbB-2/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/immunology
- Rhabdomyosarcoma/immunology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Michael Merker
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Juliane Wagner
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Hermann Kreyenberg
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Catrin Heim
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Laura M. Moser
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Winfried S. Wels
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany
| | - Halvard Bonig
- Department of Cellular Therapeutics/Cell Processing (Good Manufacturing Practice, GMP), Institute for Transfusion Medicine and Immunotherapy, Goethe University, Frankfurt, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | - Evelyn Ullrich
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Experimental Immunology, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt, Germany
| | - Thomas Klingebiel
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Peter Bader
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| | - Eva Rettinger
- Division for Stem Cell Transplantation, Immunology, and Intensive Care Medicine, Department for Children and Adolescents, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe University, Frankfurt, Germany
| |
Collapse
|
22
|
Berning P, Hennemann C, Tulotta C, Schaefer C, Lechtape B, Hotfilder M, El Gourari Y, Jürgens H, Snaar-Jagalska E, Hempel G, Dirksen U, Potratz J. The Receptor Tyrosine Kinase RON and Its Isoforms as Therapeutic Targets in Ewing Sarcoma. Cancers (Basel) 2020; 12:cancers12040904. [PMID: 32272784 PMCID: PMC7226494 DOI: 10.3390/cancers12040904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 11/16/2022] Open
Abstract
The receptor tyrosine kinase (RTK) RON is linked to an aggressive metastatic phenotype of carcinomas. While gaining interest as a therapeutic target, RON remains unstudied in sarcomas. In Ewing sarcoma, we identified RON among RTKs conferring resistance to insulin-like growth factor-1 receptor (IGF1R) targeting. Therefore, we explored RON in pediatric sarcoma cell lines and an embryonic Tg(kdrl:mCherry) zebrafish model, using an shRNA-based approach. To examine RON–IGF1R crosstalk, we employed the clinical-grade monoclonal antibody IMC-RON8, alone and together with the IGF1R-antibody IMC-A12. RON silencing demonstrated functions in vitro and in vivo, particularly within micrometastatic cellular capacities. Signaling studies revealed a unidirectional IGF1-mediated cross-activation of RON. Yet, IMC-A12 failed to sensitize cells to IMC-RON8, suggesting additional mechanisms of RON activation. Here, RT-PCR revealed that childhood sarcomas express short-form RON, an isoform resistant to antibody-mediated targeting. Interestingly, in contrast to carcinomas, treatment with DNA methyltransferase inhibitor did not diminish but increased short-form RON expression. Thus, this first report supports a role for RON in the metastatic progression of Ewing sarcoma. While principal molecular functions appear transferrable between carcinomas, Ewing sarcoma and possibly more common sarcoma subtypes, RON highlights that specific regulations of cellular networks and isoforms require better understanding to successfully transfer targeting strategies.
Collapse
Affiliation(s)
- Philipp Berning
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Carolin Hennemann
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Claudia Tulotta
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Christiane Schaefer
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Birgit Lechtape
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Yassmine El Gourari
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Heribert Jürgens
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Ewa Snaar-Jagalska
- Institute of Biology, Leiden University, Gorlaeus Laboratories, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Georg Hempel
- Institute of Pharmaceutical and Medical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Uta Dirksen
- Division of Hematology and Oncology, Department of Pediatrics III, West German Cancer Centre, University Hospital Essen, Hufelandstraße 55, 45147 Essen, Germany
| | - Jenny Potratz
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Department of General Pediatrics, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
23
|
Abstract
The capacity of single-agent therapy with immune checkpoint inhibitors to control solid cancers by unleashing preexisting local antitumor T cell responses has renewed interest in the broader use of T cells as anticancer therapeutics. At the same time, durable responses of refractory B-lineage malignancies to chimeric-receptor engineered T cells illustrate that T cells can be effectively redirected to cancers that lack preexisting tumor antigen-specific T cells, as most typical childhood cancers. This review summarizes strategies by which T cells can be modified to recognize defined antigens, with a focus on chimeric-receptor engineering. We provide an overview of candidate target antigens currently investigated in advanced preclinical and early clinical trials in pediatric malignancies and discuss the prerequisites for an adequate in vivo function of engineered T cells in the microenvironment of solid tumors and intrinsic and extrinsic limitations of current redirected T cell therapies. We further address innovative solutions to recruit therapeutic T cells to tumors, overcome the unreliable and heterogenous expression of most known tumor-associated antigens, and prevent functional inactivation of T cells in the hostile microenvironment of solid childhood tumors.
Collapse
Affiliation(s)
- Kerstin K Rauwolf
- Department of Pediatric Hematology and Oncology Albert-Schweitzer Campus 1, University Children's Hospital Muenster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology Albert-Schweitzer Campus 1, University Children's Hospital Muenster, 48149, Münster, Germany.
| |
Collapse
|
24
|
Figeac N, Mohamed AD, Sun C, Schönfelder M, Matallanas D, Garcia-Munoz A, Missiaglia E, Collie-Duguid E, De Mello V, Pobbati AV, Pruller J, Jaka O, Harridge SDR, Hong W, Shipley J, Vargesson N, Zammit PS, Wackerhage H. VGLL3 operates via TEAD1, TEAD3 and TEAD4 to influence myogenesis in skeletal muscle. J Cell Sci 2019; 132:jcs.225946. [PMID: 31138678 PMCID: PMC6633393 DOI: 10.1242/jcs.225946] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/03/2019] [Indexed: 12/21/2022] Open
Abstract
VGLL proteins are transcriptional co-factors that bind TEAD family transcription factors to regulate events ranging from wing development in fly, to muscle fibre composition and immune function in mice. Here, we characterise Vgll3 in skeletal muscle. We found that mouse Vgll3 was expressed at low levels in healthy muscle but that its levels increased during hypertrophy or regeneration; in humans, VGLL3 was highly expressed in tissues from patients with various muscle diseases, such as in dystrophic muscle and alveolar rhabdomyosarcoma. Interaction proteomics revealed that VGLL3 bound TEAD1, TEAD3 and TEAD4 in myoblasts and/or myotubes. However, there was no interaction with proteins from major regulatory systems such as the Hippo kinase cascade, unlike what is found for the TEAD co-factors YAP (encoded by YAP1) and TAZ (encoded by WWTR1). Vgll3 overexpression reduced the activity of the Hippo negative-feedback loop, affecting expression of muscle-regulating genes including Myf5, Pitx2 and Pitx3, and genes encoding certain Wnts and IGFBPs. VGLL3 mainly repressed gene expression, regulating similar genes to those regulated by YAP and TAZ. siRNA-mediated Vgll3 knockdown suppressed myoblast proliferation, whereas Vgll3 overexpression strongly promoted myogenic differentiation. However, skeletal muscle was overtly normal in Vgll3-null mice, presumably due to feedback signalling and/or redundancy. This work identifies VGLL3 as a transcriptional co-factor operating with the Hippo signal transduction network to control myogenesis. Summary: VGLL3 interacts with TEAD transcription factors to direct expression of crucial muscle regulatory genes and contribute to the control of skeletal myogenesis.
Collapse
Affiliation(s)
- Nicolas Figeac
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Abdalla D Mohamed
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environment and Health, Ingolstaedter Landstrasse 1, D-85764 Munich/Neuherberg, Germany
| | - Congshan Sun
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK.,Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Martin Schönfelder
- Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
| | - David Matallanas
- Systems Biology Ireland, Conway Institute, Belfield; Dublin 4, Ireland
| | | | - Edoardo Missiaglia
- Institute of Pathology, Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Elaina Collie-Duguid
- University of Aberdeen, Centre for Genome Enabled Biology and Medicine, 23 St Machar Drive, Aberdeen AB24 3RY, UK
| | - Vanessa De Mello
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Ajaybabu V Pobbati
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Johanna Pruller
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Oihane Jaka
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Stephen D R Harridge
- Centre for Human and Applied Physiological Sciences, King's College London, London SE1 1UL, UK
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, A-STAR, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Janet Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, Institute of Cancer Research, Surrey, SM2 5NG, UK
| | - Neil Vargesson
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Peter S Zammit
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Henning Wackerhage
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK .,Faculty of Sport and Health Sciences, Technical University of Munich, Georg-Brauchle-Ring 60, 80992 Munich, Germany
| |
Collapse
|
25
|
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and represents a high-grade neoplasm of skeletal myoblast-like cells. Decades of clinical and basic research have gradually improved our understanding of the pathophysiology of RMS and helped to optimize clinical care. The two major subtypes of RMS, originally characterized on the basis of light microscopic features, are driven by fundamentally different molecular mechanisms and pose distinct clinical challenges. Curative therapy depends on control of the primary tumour, which can arise at many distinct anatomical sites, as well as controlling disseminated disease that is known or assumed to be present in every case. Sophisticated risk stratification for children with RMS incorporates various clinical, pathological and molecular features, and that information is used to guide the application of multifaceted therapy. Such therapy has historically included cytotoxic chemotherapy as well as surgery, ionizing radiation or both. This Primer describes our current understanding of RMS epidemiology, disease susceptibility factors, disease mechanisms and elements of clinical care, including diagnostics, risk-based care of newly diagnosed and relapsed disease and the prevention and management of late effects in survivors. We also outline potential opportunities to further translate new biological insights into improved clinical outcomes.
Collapse
Affiliation(s)
- Stephen X Skapek
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Andrea Ferrari
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Abha A Gupta
- Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Erin Butler
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Belmont, UK
| | - Frederic G Barr
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Douglas S Hawkins
- Seattle Children's Hospital, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
26
|
Han T, Chen J, Luan Y, Chen X, Yang X, Zhang Y, Li G, Wang D, Zheng Z. Successful treatment of relapsed testicular embryonal rhabdomyosarcoma with Endostar and traditional chemotherapy: a case report. Onco Targets Ther 2018; 11:5287-5291. [PMID: 30214234 PMCID: PMC6124800 DOI: 10.2147/ott.s170008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) has a low prevalence, poor prognosis, and limited treatment efficacy. We report a case of an 18-year-old male whose disease relapsed in the abdominal cavity after a testicular ERMS curative resection. The patient received eight sequential cycles of rescue therapy using cisplatin and isocyclophosphamide in combination with a vascular targeted drug, Endostar. The therapeutic effect of the combination regimen has been evaluated for complete response. This is the first case to report using Endostar and chemotherapy in relapsed ERMS, and the curative effect results in complete response. Endostar, a new vascular targeted drug, combined with chemotherapy may play a synergistic role and provide a reference for the treatment of ERMS.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Jianjun Chen
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Yuting Luan
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110840, People's Republic of China
| | - Xiaoxia Chen
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Xiaodan Yang
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Yue Zhang
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| | - Gao Li
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang 110840, People's Republic of China
| | - Di Wang
- Department of Pathology, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China
| | - Zhendong Zheng
- Department of Oncology, Cancer Center of People's Liberation Army, General Hospital of Shenyang Military Region, Shenyang 110840, People's Republic of China,
| |
Collapse
|
27
|
Patel SK, Leong R, Zhao H, Barone A, Casey D, Liu Q, Burckart GJ, Reaman G. Pediatric Development of Molecularly Targeted Oncology Drugs. Clin Pharmacol Ther 2017; 104:384-389. [DOI: 10.1002/cpt.942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shivam Kamlesh Patel
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
- University of North Carolina at Chapel Hill; Chapel Hill North Carolina USA
| | - Ruby Leong
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Hong Zhao
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Amy Barone
- Office of Hematology and Oncology Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Denise Casey
- Office of Hematology and Oncology Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Qi Liu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Gilbert J. Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| | - Gregory Reaman
- Office of Hematology and Oncology Products, Office of New Drugs, Center for Drug Evaluation and Research; Food and Drug Administration; Silver Spring Maryland USA
| |
Collapse
|
28
|
Targeting pediatric sarcoma with a bispecific ligand immunotoxin targeting urokinase and epidermal growth factor receptors. Oncotarget 2017; 9:11938-11947. [PMID: 29552283 PMCID: PMC5844719 DOI: 10.18632/oncotarget.21187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022] Open
Abstract
Children with high risk sarcoma have a poor prognosis despite surgical resection, irradiation and chemotherapy. Alternative therapies are urgently needed. Urokinase-type plasminogen activator receptor (uPAR) and epidermal growth factor receptor (EGFR) are surface proteins expressed by some pediatric sarcomas. We show for the first time that a de-immunized bispecific ligand toxin, EGFATFKDEL, directed against EGFR and uPAR, successfully targets pediatric sarcoma. Using flow cytometry, we identified a rhabdomyosarcoma (RMS) cell line, RH30, that expresses both uPAR and EGFR, and a Ewing sarcoma (EWS) cell line, TC-71, that expresses only uPAR. We tested the differential sensitivity of these two sarcoma cell lines to toxin-induced killing, using both in vitro assays and an in vivo murine model. We show that pediatric sarcomas are highly sensitive to EGFATFKDEL (at subnanomolar concentrations) in vitro. In vivo, tumor growth was significantly attenuated after treatment with EGFTFKDEL, compared to untreated controls, in both RH30 and TC-71 tumor bearing mice. In addition, we found that simultaneously targeting both receptors in a dual positive cell line was more effective than targeting a single receptor or antigen, resulting in a greater tumor response, including complete tumor regression in an animal model of bulky disease. Our findings provide support for further exploration of bispecific targeting of pediatric sarcomas with bispecific ligand toxins, such as EGFATFKDEL.
Collapse
|
29
|
Woitok M, Klose D, Di Fiore S, Richter W, Stein C, Gresch G, Grieger E, Barth S, Fischer R, Kolberg K, Niesen J. Comparison of a mouse and a novel human scFv-SNAP-auristatin F drug conjugate with potent activity against EGFR-overexpressing human solid tumor cells. Onco Targets Ther 2017; 10:3313-3327. [PMID: 28740407 PMCID: PMC5505605 DOI: 10.2147/ott.s140492] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antibody–drug conjugates (ADCs) can deliver toxins to specific targets such as tumor cells. They have shown promise in preclinical/clinical development but feature stoichiometrically undefined chemical linkages, and those based on full-size antibodies achieve only limited tumor penetration. SNAP-tag technology can overcome these challenges by conjugating benzylguanine-modified toxins to single-chain fragment variables (scFvs) with 1:1 stoichiometry while preserving antigen binding. Two (human and mouse) scFv-SNAP fusion proteins recognizing the epidermal growth factor receptor (EGFR) were expressed in HEK 293T cells. The purified fusion proteins were conjugated to auristatin F (AURIF). Binding activity was confirmed by flow cytometry/immunohistochemistry, and cytotoxic activity was confirmed by cell viability/apoptosis and cell cycle arrest assays, and a novel microtubule dynamics disassembly assay was performed. Both ADCs bound specifically to their target cells in vitro and ex vivo, indicating that the binding activity of the scFv-SNAP fusions was unaffected by conjugation to AURIF. Cytotoxic assays confirmed that the ADCs induced apoptosis and cell cycle arrest at nanomolar concentrations and microtubule disassembly. The SNAP-tag technology provides a platform for the development of novel ADCs with defined conjugation sites and stoichiometry. We achieved the stable and efficient linkage of AURIF to human or murine scFvs using the SNAP-tag technology, offering a strategy to improve the development of personalized medicines.
Collapse
Affiliation(s)
- Mira Woitok
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Diana Klose
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | | | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Gerrit Gresch
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Elena Grieger
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany.,Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Katharina Kolberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| | - Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany
| |
Collapse
|
30
|
Kozlova AV, Kazakov VM, Kokh LN, Ruksha TG. Pleomorphic rhabdomyosarcoma: a case study. VESTNIK DERMATOLOGII I VENEROLOGII 2016. [DOI: 10.25208/0042-4609-2016-92-2-71-75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Pleomorphic rhabdomyosarcoma of the skin is a fast progressing tumor with high risk of development of lymphogenous and hematogenous metastasis, low survival rates and complex diagnostics. this clinical case describes the application of typing tumor cells on the basis of immunohistochemistry to establish the nature of the tumor clone neoplasms.
Collapse
|
31
|
A novel fully-human cytolytic fusion protein based on granzyme B shows in vitro cytotoxicity and ex vivo binding to solid tumors overexpressing the epidermal growth factor receptor. Cancer Lett 2016; 374:229-40. [PMID: 26912070 DOI: 10.1016/j.canlet.2016.02.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/10/2016] [Accepted: 02/11/2016] [Indexed: 12/28/2022]
Abstract
Human cytolytic fusion proteins (hCFPs) offer a promising immunotherapeutic approach for the treatment of solid tumors, avoiding the immunogenicity and undesirable side-effects caused by immunotoxins derived from plants or bacteria. The well-characterized human serine protease granzyme B has already been used as a therapeutic pro-apoptotic effector domain. We therefore developed a novel recombinant hCFP (GbR201K-scFv1711) consisting of an epidermal growth factor receptor-specific human antibody fragment and a granzyme B point mutant (R201K) that is insensitive to serpin B9 (PI9), a natural inhibitor of wild-type granzyme B that is often expressed in solid tumors. We found that GbR201K-scFv1711 selectively bound to epidermoid cancer and rhabdomyosarcoma cells and was rapidly internalized by them. Nanomolar concentrations of GbR201K-scFv1711 achieved the specific killing of epidermoid cancer cells by inducing apoptosis, and similar effects were observed in rhabdomyosarcoma cells when GbR201K-scFv1711 was combined with the endosomolytic substance chloroquine. The novel hCFP was stable in serum and bound to human rhabdomyosarcoma tissue ex vivo. These data confirm that GbR201K-scFv1711 is a promising therapeutic candidate suitable for further clinical investigation.
Collapse
|
32
|
Niesen J, Stein C, Brehm H, Hehmann-Titt G, Fendel R, Melmer G, Fischer R, Barth S. Novel EGFR-specific immunotoxins based on panitumumab and cetuximab show in vitro and ex vivo activity against different tumor entities. J Cancer Res Clin Oncol 2015; 141:2079-95. [PMID: 25899161 DOI: 10.1007/s00432-015-1975-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/15/2015] [Indexed: 12/15/2022]
Abstract
PURPOSE The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA'). METHODS The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA' (from cetuximab) and scFv1711-ETA' (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies. RESULTS Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed. CONCLUSIONS These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA'-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.
Collapse
Affiliation(s)
- Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany.
| | - Christoph Stein
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Hannes Brehm
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | | | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute of Applied Medical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| |
Collapse
|
33
|
Walther C, Mayrhofer M, Nilsson J, Hofvander J, Jonson T, Mandahl N, Øra I, Gisselsson D, Mertens F. Genetic heterogeneity in rhabdomyosarcoma revealed by SNP array analysis. Genes Chromosomes Cancer 2015; 55:3-15. [DOI: 10.1002/gcc.22285] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/27/2015] [Indexed: 12/25/2022] Open
Affiliation(s)
- Charles Walther
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| | - Markus Mayrhofer
- Array & Analysis Facility, Science for Life Laboratory, Uppsala University; Sweden
| | - Jenny Nilsson
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| | - Jakob Hofvander
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| | - Tord Jonson
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| | - Nils Mandahl
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| | - Ingrid Øra
- Department of Pediatric Oncology; Skåne University Hospital; Lund Sweden
| | - David Gisselsson
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| | - Fredrik Mertens
- Department of Clinical Genetics; University and Regional Laboratories, Skåne University Hospital, Lund University; Lund Sweden
| |
Collapse
|
34
|
Peron M, Lovisa F, Poli E, Basso G, Bonvini P. Understanding the Interplay between Expression, Mutation and Activity of ALK Receptor in Rhabdomyosarcoma Cells for Clinical Application of Small-Molecule Inhibitors. PLoS One 2015; 10:e0132330. [PMID: 26147305 PMCID: PMC4493009 DOI: 10.1371/journal.pone.0132330] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/14/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Receptor tyrosine kinases (RTKs) have a central role in cancer initiation and progression, since changes in their expression and activity potentially results in cell transformation. This concept is essential from a therapeutic standpoint, as clinical evidence indicates that tumours carrying deregulated RTKs are particularly susceptible to their activity but also to their inhibition. Rhabdomyosarcoma (RMS) is an aggressive childhood cancer where emerging therapies rely on the use kinase inhibitors, and among druggable kinases ALK represents a potential therapeutic target to commit efforts against. However, the functional relevance of ALK in RMS is not known, likewise the multi-component deregulated RTK profile to which ALK belongs. METHODS In this study we used RMS cell lines representative of the alveolar and embrional histotype and looked at ALK intracellular localization, activity and cell signalling. RESULTS We found that ALK was properly located at the plasma membrane of RMS cells, though in an unphosphorylated and inactive state due to intracellular tyrosine phosphatases (PTPases) activity. Indeed, increase of ALK phosphorylation was observed upon PTPase inhibition, as well as after ligand binding or protein overexpression. In these conditions, ALK signalling proceeded through the MAPK/ERK and PI3K/AKT pathways, and it was susceptible to ATP-competitive inhibitors exposure. However, drug-induced growth inhibition, cell cycle arrest and apoptosis did not correlate with ALK expression only, but relied also on the expression of other RTKs with akin drug binding affinity. Indeed, analysis of baseline and inducible RTK phosphorylation confirmed that RMS cells were susceptible to ALK kinase inhibitors even in the absence of the primary intended target, due to the presence of compensatory RTKs signalling pathways. CONCLUSIONS These data, hence, provided evidences of a potentially active role of ALK in RMS cells, but also suggest caution in considering ALK a major therapeutic target in this malignancy, particularly if expression and activity cannot be accurately determined.
Collapse
Affiliation(s)
- Marica Peron
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Federica Lovisa
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Elena Poli
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Giuseppe Basso
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
| | - Paolo Bonvini
- Clinica di Oncoematologia Pediatrica di Padova, Azienda Ospedaliera-Università di Padova, Padua, Italy
- Istituto di Ricerca Pediatrica Città della Speranza, Padova, Italy
- * E-mail:
| |
Collapse
|
35
|
Niesen J, Brehm H, Stein C, Berges N, Pardo A, Fischer R, Ten Haaf A, Gattenlöhner S, Tur MK, Barth S. In vitro effects and ex vivo binding of an EGFR-specific immunotoxin on rhabdomyosarcoma cells. J Cancer Res Clin Oncol 2015; 141:1049-61. [PMID: 25433506 DOI: 10.1007/s00432-014-1884-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE Rhabdomyosarcoma (RMS) is a rare and aggressive soft tissue sarcoma with limited treatment options and a high failure rate during standard therapy. New therapeutic strategies based on targeted immunotherapy are therefore much in demand. The epidermal growth factor receptor (EGFR) has all the characteristics of an ideal target. It is overexpressed in up to 80 % of embryonal RMS and up to 50 % of alveolar RMS tumors. We therefore tested the activity of the EGFR-specific recombinant immunotoxin (IT) 425(scFv)-ETA' against EGFR(+) RMS cells in vitro and ex vivo. METHODS We tested the specific binding and internalization behavior of 425(scFv)-ETA' in RMS cell lines in vitro by flow cytometry, compared to the corresponding imaging probe 425(scFv)-SNAP monitored by live cell imaging. The cytotoxic activity of 425(scFv)-ETA' was tested using cell viability and apoptosis assays. Specific binding of the IT was confirmed on formalin-fixed paraffin-embedded tissue samples from two RMS patients. RESULTS We confirmed the specific binding of 425(scFv)-ETA' to RMS cells in vitro and ex vivo. Both the IT and the corresponding imaging probe were rapidly internalized. The IT killed EGFR(+) RMS cells in a dose-dependent manner, while showing no effect against control cells. It showed specific apoptotic activity against one selected RMS cell line. CONCLUSIONS This is the first study showing the promising therapeutic potential of a recombinant, EGFR-targeting, ETA'-based IT on RMS cells. We confirmed the selective killing with IC50 values of up to 50 pM, and immunohistochemical staining confirmed the specific ex vivo binding to primary RMS material.
Collapse
Affiliation(s)
- Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhan XK, Zhang S, Cao BW, Wang JW, Li JL, Sun YK, Zhang W, Yang L, Zhou AP, Chi YHB, Li YX, Ma JH, Li CL. Clinicopathological characteristics and treatment outcomes of Chinese patients with genitourinary embryonal rhabdomyosarcoma. World J Surg Oncol 2015; 13:190. [PMID: 26018798 PMCID: PMC4475326 DOI: 10.1186/s12957-015-0574-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 04/06/2015] [Indexed: 12/22/2022] Open
Abstract
Background Genitourinary embryonal rhabdomyosarcoma is rarely reported in China. This retrospective analysis aimed to characterize the clinicopathologic features and treatment outcomes of genitourinary embryonal rhabdomyosarcoma in a sample of Chinese patients. Methods Basic demographic and clinical data of 29 patients, who were diagnosed with genitourinary embryonal rhabdomyosarcoma between January 2000 and December 2011, were retrieved and analyzed. Results In these patients, 25 were males and 4 were females with a median age of 12 years. Paratesticule was the most common lesion site, followed by the prostate, bladder, and vagina. The median tumor size was 5.80 cm. Six patients had clinically positive regional nodes. At the initial diagnosis, patients had a metastatic disease. According to the TNM staging classification for the IRS-IV, phase I lesions were detected in ten cases, phase II lesions in six cases, phase III lesions in four cases, and phase IV lesions in nine cases. The median survival of all patients was 63 (range from 6 to 118) months. The 1-, 3-, and 5-year survival rates for these patients were 93%, 83%, and 52%, respectively. Multivariate analyses demonstrated that staging and anemia were significant predictors of prognosis. Conclusions Our findings suggest that metastasis predicts a poor prognosis. Chemotherapy played an important role in comprehensive treatment. Palliative and neo-adjuvant chemotherapy could increase median survival time.
Collapse
Affiliation(s)
- Xiao-kai Zhan
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China. .,Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Sen Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Bang-wei Cao
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Jin-wan Wang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jun-ling Li
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yong-kun Sun
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Wen Zhang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Lin Yang
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ai-ping Zhou
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Yi-he Bali Chi
- Department of Medical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Ye-xiong Li
- Department of Radiation Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jian-hui Ma
- Department of Urological Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| | - Chang-ling Li
- Department of Urological Surgical Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
37
|
Koiwai K, Kubota T, Watanabe N, Hori K, Koiwai O, Masai H. Definition of the transcription factor TdIF1 consensus-binding sequence through genomewide mapping of its binding sites. Genes Cells 2015; 20:242-54. [PMID: 25619743 DOI: 10.1111/gtc.12216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/04/2014] [Indexed: 12/26/2022]
Abstract
TdIF1 was originally identified as a protein that directly binds to terminal deoxynucleotidyltransferase, TdT. Through in vitro selection assays (SELEX), we recently showed that TdIF1 recognizes both AT-tract and a specific DNA sequence motif, 5'-TGCATG-3', and can up-regulate the expression of RAB20 through the latter motif. However, whether TdIF1 binds to these sequences in the cells has not been clear and its other target genes remain to be identified. Here, we determined in vivo TdIF1-binding sequences (TdIF1-invivoBMs) on the human chromosomes through ChIP-seq analyses. The result showed a 160-base pair cassette containing 'AT-tract~palindrome (inverted repeat)~AT-tract' as a likely target sequence of TdIF1. Interestingly, the core sequence of the palindrome in the TdIF1-invivoBMs shares significant similarity to the above 5'-TGCATG-3' motif determined by SELEX in vitro. Furthermore, spacer sequences between AT-tract and the palindrome contain many potential transcription factor binding sites. In luciferase assays, TdIF1 can up-regulate transcription activity of the promoters containing the TdIF1-invivoBM, and this effect is mainly through the palindrome. Clusters of this motif were found in the potential target genes. Gene ontology analysis and RT-qPCR showed the enrichment of some candidate targets of TdIF1 among the genes involved in the regulation of ossification. Potential modes of transcription activation by TdIF1 are discussed.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-8506, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Slotkin EK, Patwardhan PP, Vasudeva SD, de Stanchina E, Tap WD, Schwartz GK. MLN0128, an ATP-competitive mTOR kinase inhibitor with potent in vitro and in vivo antitumor activity, as potential therapy for bone and soft-tissue sarcoma. Mol Cancer Ther 2014; 14:395-406. [PMID: 25519700 DOI: 10.1158/1535-7163.mct-14-0711] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that exists in two complexes (mTORC1 and mTORC2) and integrates extracellular and intracellular signals to act as a master regulator of cell growth, survival, and metabolism. The PI3K/AKT/mTOR prosurvival pathway is often dysregulated in multiple sarcoma subtypes. First-generation allosteric inhibitors of mTORC1 (rapalogues) have been extensively tested with great preclinical promise, but have had limited clinical utility. Here, we report that MLN0128, a second-generation, ATP-competitive, pan-mTOR kinase inhibitor, acts on both mTORC1 and mTORC2 and has potent in vitro and in vivo antitumor activity in multiple sarcoma subtypes. In vitro, MLN0128 inhibits mTORC1/2 targets in a concentration-dependent fashion and shows striking antiproliferative effect in rhabdomyosarcoma (RMS), Ewing sarcoma, malignant peripheral nerve sheath tumor, synovial sarcoma, osteosarcoma, and liposarcoma. Unlike rapamycin, MLN0128 inhibits phosphorylation of 4EBP1 and NDRG1 as well as prevents the reactivation of pAKT that occurs via negative feedback release with mTORC1 inhibition alone. In xenograft models, MLN0128 treatment results in suppression of tumor growth with two dosing schedules (1 mg/kg daily and 3 mg/kg b.i.d. t.i.w.). At the 3 mg/kg dosing schedule, MLN0128 treatment results in significantly better tumor growth suppression than rapamycin in RMS and Ewing sarcoma models. In addition, MLN0128 induces apoptosis in models of RMS both in vitro and in vivo. Results from our study strongly suggest that MLN0128 treatment should be explored further as potential therapy for sarcoma.
Collapse
Affiliation(s)
- Emily K Slotkin
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Parag P Patwardhan
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York.
| | - Shyamprasad D Vasudeva
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elisa de Stanchina
- Department of Molecular Pharmacology and Chemistry, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D Tap
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gary K Schwartz
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York
| |
Collapse
|
39
|
Wang H, Yang Q, Fu Z, Zuo D, Hua Y, Cai Z. ErbB receptors as prognostic and therapeutic drug targets in bone and soft tissue sarcomas. Cancer Invest 2014; 32:533-42. [PMID: 25347730 DOI: 10.3109/07357907.2014.964409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ErbB receptors have been intensely studied to understand their importance in cancer biology and as therapeutic targets, and many ErbB inhibitors are now used in the clinical setting. A large number of studies have been conducted to examine the expression of ErbB family members in bone and soft tissue sarcomas, including osteosarcomas, synovial sarcomas, Ewing sarcomas, rhabdomyosarcomas, and so on. Nevertheless, the clinical implications of ErbB receptors remain elusive. To illustrate the potential of ErbB family members as prognostic and therapeutic drug targets in bone and soft tissue sarcomas, we summarized the molecular evidence and observations from clinical and basic trials.
Collapse
Affiliation(s)
- Hongsheng Wang
- 1Department of Orthopedics, Shanghai 1st People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Myxoid/round cell liposarcoma (MRCL) represents about 10% of all soft-tissue sarcomas. Therapeutic options for this subgroup of tumours are limited, essentially doxorubicin-based regimens and trabectedin. Recently, the mammalian target of rapamycin (mTOR) pathway has been identified as a therapeutic target in several sarcomas. MRCLs should be included among these, as various molecular aberrations of the mTOR pathway have been recently reported. RECENT FINDINGS PI3KCA mutations were identified in 10-20% of MRCLs. Other molecular aberrations include loss of PTEN, Akt activation and overexpression of IGF1R. Recently, two minor responses to mTOR inhibitors were reported. SUMMARY The relatively high frequency of mTOR signalling pathway alterations in MRCL provides a preclinical rationale for considering mTOR inhibition as a potential novel therapeutic strategy warranting further investigation.
Collapse
|
41
|
High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma. Br J Cancer 2013; 109:3084-91. [PMID: 24149177 PMCID: PMC3859940 DOI: 10.1038/bjc.2013.653] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 12/28/2022] Open
Abstract
Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (P<0.0001), and also correlated with larger tumour size (P<0.05) and advanced clinical stage (P<0.01), independently of fusion gene status. High ALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour.
Collapse
|
42
|
Yamamoto Y, Fukuda K, Fuchimoto Y, Matsuzaki Y, Saikawa Y, Kitagawa Y, Morikawa Y, Kuroda T. Cetuximab promotes anticancer drug toxicity in rhabdomyosarcomas with EGFR amplification in vitro. Oncol Rep 2013; 30:1081-6. [PMID: 23828214 DOI: 10.3892/or.2013.2588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/02/2013] [Indexed: 11/06/2022] Open
Abstract
Overexpression of human epidermal growth factor receptor (EGFR) has been detected in various tumors and is associated with poor outcomes. Combination treatment regimens with EGFR-targeting and cytotoxic agents are a potential therapeutic option for rhabdomyosarcoma (RMS) with EGFR amplification. We investigated the effects of combination treatment with actinomycin D and the EGFR-targeting agent cetuximab in 4 RMS cell lines. All 4 RMS cell lines expressed wild-type K-ras, and 2 of the 4 overexpressed EGFR, as determined by flow cytometry, real-time PCR and direct sequencing. Combination of cetuximab and actinomycin D was highly effective, synergistically inhibiting cell growth with a combination index of less than 1. Moreover, combination treatment with these two reagents increased the rate of apoptosis in EGFR-positive cells. Cetuximab has antitumor activity in EGFR-amplified RMS cells when combined with antitumor reagents, indicating that cetuximab is a potential therapeutic reagent for RMS with EGFR amplification.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Department of Pediatric Surgery, Keio University School of Medicine, Tokyo 160-858, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sokolowski E, Turina CB, Kikuchi K, Langenau DM, Keller C. Proof-of-concept rare cancers in drug development: the case for rhabdomyosarcoma. Oncogene 2013; 33:1877-89. [PMID: 23665679 DOI: 10.1038/onc.2013.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/22/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
Rare diseases typically affect fewer than 200,000 patients annually, yet because thousands of rare diseases exist, the cumulative impact is millions of patients worldwide. Every form of childhood cancer qualifies as a rare disease-including the childhood muscle cancer, rhabdomyosarcoma (RMS). The next few years promise to be an exceptionally good era of opportunity for public-private collaboration for rare and childhood cancers. Not only do certain governmental regulation advantages exist, but these advantages are being made permanent with special incentives for pediatric orphan drug-product development. Coupled with a growing understanding of sarcoma tumor biology, synergy with pharmaceutical muscle disease drug-development programs, and emerging publically available preclinical and clinical tools, the outlook for academic-community-industry partnerships in RMS drug development looks promising.
Collapse
Affiliation(s)
- E Sokolowski
- Department of Student Affairs, Oregon State University, Corvallis, OR, USA
| | - C B Turina
- 1] Department of Student Affairs, Oregon State University, Corvallis, OR, USA [2] Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - K Kikuchi
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| | - D M Langenau
- 1] Division of Molecular Pathology and Cancer Center, Massachusetts General Hospital, Boston, MA, USA [2] Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - C Keller
- Pediatric Cancer Biology Program, Department of Pediatrics, Papé Family Pediatric Research Institute, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
44
|
Zanola A, Rossi S, Faggi F, Monti E, Fanzani A. Rhabdomyosarcomas: an overview on the experimental animal models. J Cell Mol Med 2012; 16:1377-91. [PMID: 22225829 PMCID: PMC3823208 DOI: 10.1111/j.1582-4934.2011.01518.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Rhabdomyosarcomas (RMS) are aggressive childhood soft-tissue malignancies deriving from mesenchymal progenitors that are committed to muscle-specific lineages. Despite the histopathological signatures associated with three main histological variants, termed embryonal, alveolar and pleomorphic, a plethora of genetic and molecular changes are recognized in RMS. Over the years, exposure to carcinogens or ionizing radiations and gene-targeting approaches in vivo have greatly contributed to disclose some of the mechanisms underlying RMS onset. In this review, we describe the principal distinct features associated with RMS variants and focus on the current available experimental animal models to point out the molecular determinants cooperating with RMS development and progression.
Collapse
Affiliation(s)
- Alessandra Zanola
- Department of Biomedical Sciences and Biotechnologies, Interuniversity Institute of Myology (IIM), University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
45
|
Davicioni E, Wai DH, Anderson MJ. Diagnostic and Prognostic Sarcoma Signatures. Mol Diagn Ther 2012; 12:359-74. [DOI: 10.1007/bf03256302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Martín Liberal J, Lagares-Tena L, Sáinz-Jaspeado M, Mateo-Lozano S, García del Muro X, Tirado OM. Targeted therapies in sarcomas: challenging the challenge. Sarcoma 2012; 2012:626094. [PMID: 22701332 PMCID: PMC3372278 DOI: 10.1155/2012/626094] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 03/27/2012] [Indexed: 12/16/2022] Open
Abstract
Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient's outcome. During the last years, there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway, the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients affected with this disease.
Collapse
Affiliation(s)
- Juan Martín Liberal
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Laura Lagares-Tena
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Miguel Sáinz-Jaspeado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Silvia Mateo-Lozano
- Nanomedicine Research Program, Molecular Biology and Biochemistry Research Center, CIBBIM-Nanomedicine, Vall d'Hebron Hospital Research Institute, 08035 Barcelona, Spain
| | - Xavier García del Muro
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Oscar M. Tirado
- Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| |
Collapse
|
47
|
Abstract
Caveolins are scaffolding proteins that play a pivotal role in numerous processes, including caveolae biogenesis, vesicular transport, cholesterol homeostasis and regulation of signal transduction. There are three different isoforms (Cav-1, -2 and -3) that form homo- and hetero-aggregates at the plasma membrane and modulate the activity of a number of intracellular binding proteins. Cav-1 and Cav-3, in particular, are respectively expressed in the reserve elements (e.g. satellite cells) and in mature myofibres of skeletal muscle and their expression interplay characterizes the switch from muscle precursors to differentiated elements. Recent findings have shown that caveolins are also expressed in rhabdomyosarcoma, a group of heterogeneous childhood soft-tissue sarcomas in which the cancer cells seem to derive from progenitors that resemble myogenic cells. In this review, we will focus on the role of caveolins in rhabdomyosarcomas and on their potential use as markers of the degree of differentiation in these paediatric tumours. Given that the function of Cav-1 as tumour conditional gene in cancer has been well-established, we will also discuss the relationship between Cav-1 and the progression of rhabdomyosarcoma.
Collapse
Affiliation(s)
- Stefania Rossi
- Department of Biomedical Sciences and Biotechnologies, Interuniversity Institute of Myology (IIM), University of Brescia, Brescia, Italy Department of Pathology, University of Brescia, Brescia, Italy
| | | | | | | | | |
Collapse
|
48
|
Agulnik M. New developments in mammalian target of rapamycin inhibitors for the treatment of sarcoma. Cancer 2012; 118:1486-97. [PMID: 21837674 PMCID: PMC3412949 DOI: 10.1002/cncr.26361] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 05/23/2011] [Accepted: 03/25/2011] [Indexed: 12/11/2022]
Abstract
Although sarcomas account for a small portion of solid malignancies, currently, there are few treatment options for sarcomas, particularly for advanced disease. The mammalian target of rapamycin (mTOR), a serine-threonine protein kinase in the phosphatidylinositol 3-kinase/serine/threonine protein kinase Akt signaling pathway, has an important role in the regulation of protein synthesis, cell proliferation, angiogenesis, and metabolism. Alterations of the mTOR signaling pathway are common in malignancies, including several types of sarcoma. Therefore, mTOR is a potentially important therapeutic target in these diseases. Rapamycin and its analogs (rapalogs) are effective anticancer agents in a broad range of preclinical models. Clinical trials with these agents alone and in combination with other anticancer agents, including chemotherapy and targeted therapies, have demonstrated potential clinical benefit in several types of sarcoma. The evidence from both preclinical and clinical studies supports further study of mTOR-targeting rapalogs in the treatment of various subtypes of sarcoma.
Collapse
Affiliation(s)
- Mark Agulnik
- Division of Medical Hematology/Oncology, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
49
|
Vincenzi B, Napolitano A, D'Onofrio L, Frezza AM, Silletta M, Venditti O, Santini D, Tonini G. Targeted therapy in sarcomas: mammalian target of rapamycin inhibitors from bench to bedside. Expert Opin Investig Drugs 2011; 20:1685-705. [DOI: 10.1517/13543784.2011.628984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bruno Vincenzi
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Andrea Napolitano
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Loretta D'Onofrio
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Anna Maria Frezza
- University Campus Biomedico, Via Emilio Longoni 69, 155, Rome, Italy
| | - Marianna Silletta
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Olga Venditti
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Daniele Santini
- University Campus Biomedico, Via Emilio Longoni 69, 155, Rome, Italy
| | - Giuseppe Tonini
- University Campus Biomedico, Via Emilio Longoni 69, 155, Rome, Italy
| |
Collapse
|
50
|
Hou J, Dong J, Sun L, Geng L, Wang J, Zheng J, Li Y, Bridge J, Hinrichs SH, Ding SJ. Inhibition of phosphorylated c-Met in rhabdomyosarcoma cell lines by a small molecule inhibitor SU11274. J Transl Med 2011; 9:64. [PMID: 21575221 PMCID: PMC3212957 DOI: 10.1186/1479-5876-9-64] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/16/2011] [Indexed: 01/18/2023] Open
Abstract
Background c-Met is a receptor tyrosine kinase (RTK) that is over-expressed in a variety of cancers and involved in cell growth, invasion, metastasis and angiogenesis. In this study, we investigated the role of c-Met in rhabdomyosarcoma (RMS) using its small molecule inhibitor SU11274, which has been hypothesized to be a potential therapeutic target for RMS. Methods The expression level of phosphorylated c-Met in RMS cell lines (RD, CW9019 and RH30) and tumor tissues was assessed by phospho-RTK array and immunohistochemistry, respectively. The inhibition effects of SU11274 on RMS cells were studied with regard to intracellular signaling, cell proliferation, cell cycle and cell migration. Results A high level of phosphorylated c-Met was detected in 2 alveolar RMS cell lines (CW9019 and RH30) and 14 out of 24 RMS tissue samples, whereas relatively low levels of phospho-c-Met were observed in the embryonic RMS cell line (RD). The small molecule SU11274 could significantly reduce the phosphorylation of c-Met, resulting in inhibition of cell proliferation, G1 phase arrest of cell cycle and blocking of cell migration in CW9019 and RH30 cell lines. Conclusion These results might support the role of c-Met in the development and progression of RMS. Furthermore, the inhibitor of c-Met, SU11274, could be an effective targeting therapy reagent for RMS, especially alveolar RMS.
Collapse
Affiliation(s)
- Jinxuan Hou
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha 68105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|