1
|
Abatti LE, Gillespie ZE, Lado-Fernández P, Collado M, Mitchell JA. A role for NFIB in SOX2 downregulation and epigenome accessibility changes due to long-term estrogen treatment of breast cancer epithelial cells. Biochem Cell Biol 2025; 103:1-14. [PMID: 40009831 DOI: 10.1139/bcb-2024-0287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025] Open
Abstract
Estrogen (E2) regulates the differentiation and proliferation of mammary progenitor cells by modulating the transcription of multiple genes. One of the genes that is downregulated by E2 is SOX2, a transcription factor associated with stem and progenitor cells that is overexpressed during breast tumourigenesis. To elucidate the mechanisms underlying E2-mediated SOX2 repression, we investigated epigenome and transcriptome changes following short- and long-term E2 exposure in breast cancer cells. We found that short-term E2 exposure reduces chromatin accessibility at the downstream SOX2 SRR134 enhancer, decreasing SOX2 expression. In contrast, long-term E2 exposure completely represses SOX2 transcription while maintaining accessibility at the SRR124-134 enhancer cluster, keeping it poised for reactivation. This repression was accompanied by widespread epigenome and transcriptome changes associated with commitment towards a more differentiated and less invasive luminal phenotype. Finally, we identified a role for the transcription factor NFIB in this process, suggesting it collaborates with the estrogen receptor to mediate SOX2 repression and genome-wide epigenome accessibility changes.
Collapse
Affiliation(s)
- Luis E Abatti
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Zoe E Gillespie
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Patricia Lado-Fernández
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Collado
- Laboratory of Cell Senescence, Cancer and Aging, Health Research Institute of Santiago de Compostela (IDIS), Xerencia de Xestión Integrada de Santiago (XXIS/SERGAS), Santiago de Compostela, Spain
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
3
|
Robinson L, Smit C, van Heerden MB, Moolla H, Afrogheh AH, Opperman JF, Ambele MA, van Heerden WFP. Surrogate Immunohistochemical Markers of Proliferation and Embryonic Stem Cells in Distinguishing Ameloblastoma from Ameloblastic Carcinoma. Head Neck Pathol 2024; 18:92. [PMID: 39365497 PMCID: PMC11452366 DOI: 10.1007/s12105-024-01704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE The current study aimed to investigate the use of surrogate immunohistochemical (IHC) markers of proliferation and stem cells to distinguish ameloblastoma (AB) from ameloblastic carcinoma (AC). METHODS The study assessed a total of 29 ACs, 6 ABs that transformed into ACs, and a control cohort of 20 ABs. The demographics and clinicopathologic details of the included cases of AC were recorded. The Ki-67 proliferation index was scored through automated methods with the QuPath open-source software platform. For SOX2, OCT4 and Glypican-3 IHC, each case was scored using a proportion of positivity score combined with an intensity score to produce a total score. RESULTS All cases of AC showed a relatively high median proliferation index of 41.7%, with statistically significant higher scores compared to ABs. ABs that transformed into ACs had similar median proliferation scores to the control cohort of ABs. Most cases of AC showed some degree of SOX2 expression, with 58.6% showing high expression. OCT4 expression was not seen in any case of AC. GPC-3 expression in ACs was limited, with high expression in 17.2% of ACs. Primary ACs showed higher median proliferation scores and degrees of SOX2 and GPC-3 expression than secondary cases. Regarding SOX2, OCT4 and GPC-3 IHC expression, no statistically significant differences existed between the cohort of ABs and ACs. CONCLUSION Ki-67 IHC as a proliferation marker, particularly when assessed via automated methods, was helpful in distinguishing AC from AB cases. In contrast to other studies, surrogate IHC markers of embryonic stem cells, SOX2, OCT4 and GPC-3, were unreliable in distinguishing the two entities.
Collapse
Affiliation(s)
- Liam Robinson
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria Oral Health Care Centre, Office 6-11, Corner of Steve Biko and Dr Savage Roads, Pretoria, 0084, South Africa.
| | - Chané Smit
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria Oral Health Care Centre, Office 6-11, Corner of Steve Biko and Dr Savage Roads, Pretoria, 0084, South Africa
| | - Marlene B van Heerden
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria Oral Health Care Centre, Office 6-11, Corner of Steve Biko and Dr Savage Roads, Pretoria, 0084, South Africa
| | - Haroon Moolla
- Centre for Infectious Disease Epidemiology and Research, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Amir H Afrogheh
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- Division of Anatomical Pathology, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Johan F Opperman
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- Division of Anatomical Pathology, Faculty of Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Melvin A Ambele
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria Oral Health Care Centre, Office 6-11, Corner of Steve Biko and Dr Savage Roads, Pretoria, 0084, South Africa
- Institute for Cellular and Molecular Medicine, Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, South African Medical Research Council, University of Pretoria, Pretoria, South Africa
| | - Willie F P van Heerden
- Department of Oral and Maxillofacial Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria Oral Health Care Centre, Office 6-11, Corner of Steve Biko and Dr Savage Roads, Pretoria, 0084, South Africa
- PathCare Vermaak Histopathology Laboratory, Pretoria, South Africa
| |
Collapse
|
4
|
Aurrekoetxea-Rodriguez I, Lee SY, Rábano M, Gris-Cárdenas I, Gamboa-Aldecoa V, Gorroño I, Ramella-Gal I, Parry C, Kypta RM, Artetxe B, Gutierrez-Zorrilla JM, Vivanco MDM. Polyoxometalate inhibition of SOX2-mediated tamoxifen resistance in breast cancer. Cell Commun Signal 2024; 22:425. [PMID: 39223652 PMCID: PMC11367752 DOI: 10.1186/s12964-024-01800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells. METHODS Various POM derivatives were synthesised and characterised by infrared spectra, powder X-ray diffraction pattern and nuclear magnetic resonance spectroscopy. Estrogen receptor (ER) positive breast cancer cells, and their counterparts, which have developed resistance to the hormone therapy tamoxifen, were treated with POMs and their consequences assessed by gel retardation and chromatin immunoprecipitation to determine SOX2 binding to DNA. Effects on proliferation, migration, invasion and tumorigenicity were monitored and quantified using microscopy, clone formation, transwell, wound healing assays, flow cytometry and in vivo chick chorioallantoic membrane (CAM) models. Generation of lentiviral stable gene silencing and gene knock-out using CRISPR-Cas9 genome editing were applied to validate the inhibitory effects of the selected POM. Cancer stem cell subpopulations were quantified by mammosphere formation assays, ALDEFLUOR activity and CD44/CD24 stainings. Flow cytometry and western blotting were used to measure reactive oxygen species (ROS) and apoptosis. RESULTS POMs blocked in vitro binding activity of endogenous SOX2. [P2W18O62]6- (PW) Wells-Dawson-type anion was the most effective at inhibiting proliferation in various cell line models of tamoxifen resistance. 10 µM PW also reduced cancer cell migration and invasion, as well as SNAI2 expression levels. Treatment of tamoxifen-resistant cells with PW impaired tumour formation by reducing CSC content, in a SOX2-dependent manner, which led to stem cell depletion in vivo. Mechanistically, PW induced formation of reactive oxygen species (ROS) and inhibited Bcl-2, leading to the death of tamoxifen-resistant cells. PW-treated tamoxifen-resistant cells showed restored sensitivity to tamoxifen. CONCLUSIONS Together, these observations highlight the potential use of PW as a SOX2 inhibitor and the therapeutic relevance of targeting SOX2 to treat tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
| | - So Young Lee
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Miriam Rábano
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Isabel Gris-Cárdenas
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Virginia Gamboa-Aldecoa
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Irantzu Gorroño
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Isabella Ramella-Gal
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Connor Parry
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Robert M Kypta
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Beñat Artetxe
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Bilbao, 48080, Spain
| | - Juan M Gutierrez-Zorrilla
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Bilbao, 48080, Spain
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain.
| |
Collapse
|
5
|
Del Puerto HL, Miranda APGS, Qutob D, Ferreira E, Silva FHS, Lima BM, Carvalho BA, Roque-Souza B, Gutseit E, Castro DC, Pozzolini ET, Duarte NO, Lopes TBG, Taborda DYO, Quirino SM, Elgerbi A, Choy JS, Underwood A. Clinical Correlation of Transcription Factor SOX3 in Cancer: Unveiling Its Role in Tumorigenesis. Genes (Basel) 2024; 15:777. [PMID: 38927713 PMCID: PMC11202618 DOI: 10.3390/genes15060777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Members of the SOX (SRY-related HMG box) family of transcription factors are crucial for embryonic development and cell fate determination. This review investigates the role of SOX3 in cancer, as aberrations in SOX3 expression have been implicated in several cancers, including osteosarcoma, breast, esophageal, endometrial, ovarian, gastric, hepatocellular carcinomas, glioblastoma, and leukemia. These dysregulations modulate key cancer outcomes such as apoptosis, epithelial-mesenchymal transition (EMT), invasion, migration, cell cycle, and proliferation, contributing to cancer development. SOX3 exhibits varied expression patterns correlated with clinicopathological parameters in diverse tumor types. This review aims to elucidate the nuanced role of SOX3 in tumorigenesis, correlating its expression with clinical and pathological characteristics in cancer patients and cellular modelsBy providing a comprehensive exploration of SOX3 involvement in cancer, this review underscores the multifaceted role of SOX3 across distinct tumor types. The complexity uncovered in SOX3 function emphasizes the need for further research to unravel its full potential in cancer therapeutics.
Collapse
Affiliation(s)
- Helen Lima Del Puerto
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ana Paula G. S. Miranda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Dinah Qutob
- Department of Biological Sciences, Kent State University at Stark, North Canton, OH 44720, USA;
| | - Enio Ferreira
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Felipe H. S. Silva
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna M. Lima
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Barbara A. Carvalho
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Bruna Roque-Souza
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Eduardo Gutseit
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Diego C. Castro
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Emanuele T. Pozzolini
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Nayara O. Duarte
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Thacyana B. G. Lopes
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Daiana Y. O. Taborda
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Stella M. Quirino
- Department of General Pathology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil (E.F.)
| | - Ahmed Elgerbi
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - John S. Choy
- Department of Biology, The Catholic University of America, Washington, DC 20064, USA
| | - Adam Underwood
- Division of Mathematics and Sciences, Walsh University, North Canton, OH 44720, USA;
| |
Collapse
|
6
|
Lee J, Kim EA, Kang J, Chae YS, Park HY, Kang B, Lee SJ, Lee IH, Park JY, Park NJY, Jung JH. Long non-coding RNA SOX2OT in tamoxifen-resistant breast cancer. BMC Mol Cell Biol 2024; 25:12. [PMID: 38649821 PMCID: PMC11036730 DOI: 10.1186/s12860-024-00510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Abstract
Hormone receptor (HR)-positive breast cancer can become aggressive after developing hormone-treatment resistance. This study elucidated the role of long non-coding RNA (lncRNA) SOX2OT in tamoxifen-resistant (TAMR) breast cancer and its potential interplay with the tumor microenvironment (TME). TAMR breast cancer cell lines TAMR-V and TAMR-H were compared with the luminal type A cell line (MCF-7). LncRNA expression was assessed via next-generation sequencing, RNA extraction, lncRNA profiling, and quantitative RT-qPCR. SOX2OT overexpression effects on cell proliferation, migration, and invasion were evaluated using various assays. SOX2OT was consistently downregulated in TAMR cell lines and TAMR breast cancer tissue. Overexpression of SOX2OT in TAMR cells increased cell proliferation and cell invasion. However, SOX2OT overexpression did not significantly alter SOX2 levels, suggesting an independent interaction within TAMR cells. Kaplan-Meier plot analysis revealed an inverse relationship between SOX2OT expression and prognosis in luminal A and B breast cancers. Our findings highlight the potential role of SOX2OT in TAMR breast cancer progression. The downregulation of SOX2OT in TAMR breast cancer indicates its involvement in resistance mechanisms. Further studies should explore the intricate interactions between SOX2OT, SOX2, and TME in breast cancer subtypes.
Collapse
Affiliation(s)
- Jeeyeon Lee
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Eun-Ae Kim
- Cell & Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jieun Kang
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Yee Soo Chae
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Ho Yong Park
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Byeongju Kang
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Soo Jung Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - In Hee Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Ji-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea
| | - Jin Hyang Jung
- Department of Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
- Kyungpook National University Chilgok Hospital, Hoguk-ro 807, Buk-gu, 41404, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Amiri-Farsani M, Taheri Z, Tirbakhsh Gouran S, Chabok O, Safarpour-Dehkordi M, Kazemi Roudsari M. Cancer stem cells: Recent trends in cancer therapy. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1383-1414. [PMID: 38319997 DOI: 10.1080/15257770.2024.2311789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024]
Abstract
Cancer stem cells (CSCs) are a subset of tumor cells that were first identified in blood cancers (leukemia) and are considered promising therapeutic targets in cancer treatment. These cells are the cause of many malignancies including metastasis, heterogeneity, drug resistance, and tumor recurrence. They carry out these activities through multiple transcriptional programs and signaling pathways. This review summarizes the characteristics of cancer stem cells, explains their key signaling pathways and factors, and discusses targeted therapies for cancer stem cells. Investigating these mechanisms and signaling pathways responsible for treatment failure may help identify new therapeutic pathways in cancer.
Collapse
Affiliation(s)
- Maryam Amiri-Farsani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Zahra Taheri
- Department of Biology and Biotechnology, Pavia University, Pavia, Italy
| | - Somayeh Tirbakhsh Gouran
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Omid Chabok
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahsa Kazemi Roudsari
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
8
|
Yadav D, Sharma PK, Mishra PS, Malviya R. The Potential of Stem Cells in Treating Breast Cancer. Curr Stem Cell Res Ther 2024; 19:324-333. [PMID: 37132308 DOI: 10.2174/1574888x18666230428094056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 12/29/2022] [Indexed: 05/04/2023]
Abstract
There has been a lot of interest in stem cell therapy as a means of curing disease in recent years. Despite extensive usage of stem cell therapy in the treatment of a wide range of medical diseases, it has been hypothesized that it plays a key part in the progression of cancer. Breast cancer is still the most frequent malignancy in women globally. However, the latest treatments, such as stem cell targeted therapy, are considered to be more effective in preventing recurrence, metastasis, and chemoresistance of breast cancer than older methods like chemotherapy and radiation. This review discusses the characteristics of stem cells and how stem cells may be used to treat breast cancer.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prem Shankar Mishra
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
9
|
Sun R, Lee EJ, Lee S, Kim G, Kim J. KPT6566 induces apoptotic cell death and suppresses the tumorigenicity of testicular germ cell tumors. Front Cell Dev Biol 2023; 11:1220179. [PMID: 38020885 PMCID: PMC10652286 DOI: 10.3389/fcell.2023.1220179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Testicular germ cell tumors (TGCTs) frequently affect adolescent and young adult males. Although TGCT is more responsive to cisplatin-based chemotherapy than other solid tumors, some patients are nonresponders, and following treatment, many patients continue to experience acute and long-term cytotoxic effects from cisplatin-based chemotherapy. Consequently, it is imperative to develop new therapeutic modalities for treatment-resistant TGCTs. Peptidyl-prolyl isomerase (Pin1) regulates the activity and stability of many cancer-associated target proteins. Prior findings suggest that Pin1 contributes to the pathogenesis of multiple human cancers. However, the specific function of Pin1 in TGCTs has not yet been elucidated. TGCT cell proliferation and viability were examined using cell cycle analysis and apoptosis assays following treatment with KPT6566, a potent, selective Pin1 inhibitor that covalently binds to the catalytic domain of Pin1. A xenograft mouse model was used to assess the effect of KPT6566 on tumor growth in vivo. KPT6566 effectively suppressed cell proliferation, colony formation, and ATP production in P19 and NCCIT cells. Further, KPT6566 induced apoptotic cell death by generating cellular reactive oxygen species and downregulating the embryonic transcription factors Oct-4 and Sox2. Finally, KPT6566 treatment significantly reduced tumor volume and mass in P19 cell xenografts. The Pin1 inhibitor KPT6566 has significant antiproliferative and antitumor effects in TGCT cells. These findings suggest that Pin1 inhibitors could be considered as a potential therapeutic approach for TGCTs.
Collapse
Affiliation(s)
| | | | | | | | - Jungho Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sogang University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Zeng Z, Fu M, Hu Y, Wei Y, Wei X, Luo M. Regulation and signaling pathways in cancer stem cells: implications for targeted therapy for cancer. Mol Cancer 2023; 22:172. [PMID: 37853437 PMCID: PMC10583419 DOI: 10.1186/s12943-023-01877-w] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/05/2023] [Indexed: 10/20/2023] Open
Abstract
Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.
Collapse
Affiliation(s)
- Zhen Zeng
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Minyang Fu
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China
| | - Min Luo
- Laboratory of Aging Research and Cancer Agent Target, State Key Laboratory of Biotherapy, Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
11
|
Hu B, Song X, Ding W, Wang H, Cai H, Huang Z. Expression and Clinical Significance of Ki67 and SOX2 in Colorectal Cancer. JOURNAL OF HEALTHCARE ENGINEERING 2023; 2023:3783631. [PMID: 37457497 PMCID: PMC10348847 DOI: 10.1155/2023/3783631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 07/18/2023]
Abstract
The purpose of the paper is to explore the expression levels and clinical significance of Ki67 and sex-determining region Y-box 2 (SOX2) in colorectal cancer. From January 2013 to December 2016, 176 patients with colorectal cancer who were pathologically diagnosed after surgery in the Department of General Surgery in Xiamen Chinese Medical Hospital are included in this study. The pathological parameters, including gender, age, pathological stage, depth of tumor invasion, lymph node metastasis, and distant metastasis, are recorded. Immunohistochemistry is used to detect the correlation between Ki67 and Sox2 protein expression and clinicopathological parameters in colorectal cancer. Immunohistochemistry shows that in each stage of colorectal cancer, the positive rate of SOX2 is higher than that of Ki67, and the sensitivity of SOX2 is relatively high. Moreover, the levels of Ki67 and SOX2 in the cancerous tissues are not related to gender, age, lymph node metastasis and distant metastasis (p > 0.05).
Collapse
Affiliation(s)
- Bo Hu
- Department of Gastrointestinal Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361000, China
| | - Xinfu Song
- Department of Gastrointestinal Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361000, China
| | - Weiji Ding
- Department of Gastrointestinal Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361000, China
| | - Hailong Wang
- Department of Gastrointestinal Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361000, China
| | - Huali Cai
- Department of Gastrointestinal Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361000, China
| | - Zhengjie Huang
- The Third Clinical Medical College, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
12
|
Abstract
The full name of the FTO gene is fat mass and obesity-associated gene. In recent years, it has also been found that FTO is involved in m6A demethylation and regulates the progression of multiple cancers, including gastric cancer. The cancer stem cell theory argues that cancer stem cells are key factors in cancer metastasis, and inhibiting the expression of stemness genes is a good method to inhibit metastasis of gastric cancer. Currently, the role of the FTO gene in regulating stemness of gastric cancer cells is still unclear. By analyzing public databases, it was discovered that FTO gene expression was increased in gastric cancer, and high expression of FTO was associated with poor prognosis of patients with gastric cancer. After gastric cancer stem cells were isolated, it was found that FTO protein expression was increased in gastric cancer stem cells; stemness of gastric cancer cells was reduced after the FTO gene knockdown; subcutaneous tumors of nude mice were smaller than those of the control group after FTO knockdown; and stemness of gastric cancer cells was enhanced after FTO was overexpressed by plasmid. By reviewing additional literature and experimental validation, we found that SOX2 may be the factor by which FTO promotes the stemness of gastric cancer cells. Therefore, it was concluded that FTO could promote the stemness of gastric cancer cells, and targeting FTO may be a potential therapeutic approach for patients with metastatic gastric cancer. CTR number: TOP-IACUC-2021-0123.
Collapse
Affiliation(s)
- Mengqing Li
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Peking University Shenzhen Hospital, Cancer Institute of Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Department of Pathology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xuan Wu
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Peking University Shenzhen Hospital, Cancer Institute of Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| | - Guan Li
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guoqing Lv
- Department of Gastrointestinal Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shubin Wang
- Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Department of Oncology, Peking University Shenzhen Hospital, Cancer Institute of Shenzhen PKU-HKUST Medical Center, Shenzhen, China
| |
Collapse
|
13
|
Singh A, Rajeevan A, Gopalan V, Agrawal P, Day CP, Hannenhalli S. Broad misappropriation of developmental splicing profile by cancer in multiple organs. Nat Commun 2022; 13:7664. [PMID: 36509773 PMCID: PMC9744839 DOI: 10.1038/s41467-022-35322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
Oncogenesis mimics key aspects of embryonic development. However, the underlying mechanisms are incompletely understood. Here, we demonstrate that the splicing events specifically active during human organogenesis, are broadly reactivated in the organ-specific tumor. Such events are associated with key oncogenic processes and predict proliferation rates in cancer cell lines as well as patient survival. Such events preferentially target nitrosylation and transmembrane-region domains, whose coordinated splicing in multiple genes respectively affect intracellular transport and N-linked glycosylation. We infer critical splicing factors potentially regulating embryonic splicing events and show that such factors are potential oncogenic drivers and are upregulated specifically in malignant cells. Multiple complementary analyses point to MYC and FOXM1 as potential transcriptional regulators of critical splicing factors in brain and liver. Our study provides a comprehensive demonstration of a splicing-mediated link between development and cancer, and suggest anti-cancer targets including splicing events, and their upstream splicing and transcriptional regulators.
Collapse
Affiliation(s)
- Arashdeep Singh
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Arati Rajeevan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Piyush Agrawal
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
14
|
Mohammad T, Singh P, Jairajpuri DS, Al-Keridis LA, Alshammari N, Adnan M, Dohare R, Hassan MI. Differential Gene Expression and Weighted Correlation Network Dynamics in High-Throughput Datasets of Prostate Cancer. Front Oncol 2022; 12:881246. [PMID: 35719950 PMCID: PMC9198298 DOI: 10.3389/fonc.2022.881246] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
Precision oncology is an absolute need today due to the emergence of treatment resistance and heterogeneity among cancerous profiles. Target-propelled cancer therapy is one of the treasures of precision oncology which has come together with substantial medical accomplishment. Prostate cancer is one of the most common cancers in males, with tremendous biological heterogeneity in molecular and clinical behavior. The spectrum of molecular abnormalities and varying clinical patterns in prostate cancer suggest substantial heterogeneity among different profiles. To identify novel therapeutic targets and precise biomarkers implicated with prostate cancer, we performed a state-of-the-art bioinformatics study, beginning with analyzing high-throughput genomic datasets from The Cancer Genome Atlas (TCGA). Weighted gene co-expression network analysis (WGCNA) suggests a set of five dysregulated hub genes (MAF, STAT6, SOX2, FOXO1, and WNT3A) that played crucial roles in biological pathways associated with prostate cancer progression. We found overexpressed STAT6 and SOX2 and proposed them as candidate biomarkers and potential targets in prostate cancer. Furthermore, the alteration frequencies in STAT6 and SOX2 and their impact on the patients' survival were explored through the cBioPortal platform. The Kaplan-Meier survival analysis suggested that the alterations in the candidate genes were linked to the decreased overall survival of the patients. Altogether, the results signify that STAT6 and SOX2 and their genomic alterations can be explored in therapeutic interventions of prostate cancer for precision oncology, utilizing early diagnosis and target-propelled therapy.
Collapse
Affiliation(s)
- Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Prithvi Singh
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Deeba Shamim Jairajpuri
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Ravins Dohare
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
15
|
Breast Cancer Patient-Derived Scaffolds Can Expose Unique Individual Cancer Progressing Properties of the Cancer Microenvironment Associated with Clinical Characteristics. Cancers (Basel) 2022; 14:cancers14092172. [PMID: 35565301 PMCID: PMC9103124 DOI: 10.3390/cancers14092172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Despite huge progress in cancer diagnostics and medicine we still lack optimal cancer treatments for patients with aggressive diseases. This problem can be influenced by the biological heterogeneity of cancer cells as well as poorly understood cancer promoting effects of the cancer microenvironment being an important part of the cancer niche. In this study we have specifically monitored the activity of the cancer microenvironment in breast cancer patients using cell-free scaffolds repopulated with reporter cancer cells sensing the activity of the patient environment. The data show that scaffold induced changes in epithelial-mesenchymal transition and pluripotency markers were linked to clinical and prognostic properties of the original cancer and the information was even more precise when matching estrogen receptor status in our system. The findings highlight that patient-derived scaffolds uncover important information about varying malignant promoting properties in the cancer niche and can be used as a complementary diagnostic tool. Abstract Breast cancer is a heterogeneous disease in terms of cellular and structural composition, and besides acquired aggressive properties in the cancer cell population, the surrounding tumor microenvironment can affect disease progression and clinical behaviours. To specifically decode the clinical relevance of the cancer promoting effects of individual tumor microenvironments, we performed a comprehensive test of 110 breast cancer samples using a recently established in vivo-like 3D cell culture platform based on patient-derived scaffolds (PDSs). Cell-free PDSs were recellularized with three breast cancer cell lines and adaptation to the different patient-based microenvironments was monitored by quantitative PCR. Substantial variability in gene expression between individual PDS cultures from different patients was observed, as well as between different cell lines. Interestingly, specific gene expression changes in the PDS cultures were significantly linked to prognostic features and clinical information from the original cancer. This link was even more pronounced when ERα-status of cell lines and PDSs matched. The results support that PDSs cultures, including a cancer cell line of relevant origin, can monitor the activity of the tumor microenvironment and reveal unique information about the malignancy-inducing properties of the individual cancer niche and serve as a future complementary diagnostic tool for breast cancer.
Collapse
|
16
|
Pouremamali F, Vahedian V, Hassani N, Mirzaei S, Pouremamali A, Kazemzadeh H, Faridvand Y, Jafari-gharabaghlou D, Nouri M, Maroufi NF. The role of SOX family in cancer stem cell maintenance: With a focus on SOX2. Pathol Res Pract 2022; 231:153783. [DOI: 10.1016/j.prp.2022.153783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
|
17
|
Marqués M, Sorolla MA, Urdanibia I, Parisi E, Hidalgo I, Morales S, Salud A, Sorolla A. Are Transcription Factors Plausible Oncotargets for Triple Negative Breast Cancers? Cancers (Basel) 2022; 14:cancers14051101. [PMID: 35267409 PMCID: PMC8909618 DOI: 10.3390/cancers14051101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Triple negative breast cancer is a type of breast cancer that does not have a selective and effective therapy. It is known that this cancer possesses high abundance of certain proteins called transcription factors, which are essential for their growth. However, inhibiting transcription factors is very difficult with common therapeutics due to their inaccessibility inside the cell and their molecular structure. In this work, we identified the most important transcription factors for the growth of triple negative breast cancers, and that can predict worse clinical outcome. Moreover, we described different strategies that have been utilised to inhibit them. A successful inhibition of these transcription factors could reduce the mortality and convalescence associated with triple negative breast cancers. Abstract Breast cancer (BC) is the most diagnosed cancer worldwide and one of the main causes of cancer deaths. BC is a heterogeneous disease composed of different BC intrinsic subtypes such as triple-negative BC (TNBC), which is one of the most aggressive subtypes and which lacks a targeted therapy. Recent comprehensive analyses across cell types and cancer types have outlined a vast network of protein–protein associations between transcription factors (TFs). Not surprisingly, protein–protein networks central to oncogenesis and disease progression are highly altered during TNBC pathogenesis and are responsible for the activation of oncogenic programs, such as uncontrollable proliferation, epithelial-to-mesenchymal transition (EMT) and stemness. From the therapeutic viewpoint, inhibiting the interactions between TFs represents a very significant challenge, as the contact surfaces of TFs are relatively large and featureless. However, promising tools have emerged to offer a solution to the targeting problem. At the clinical level, some TF possess diagnostic and prognostic value in TNBC. In this review, we outline the recent advances in TFs relevant to TNBC growth and progression. Moreover, we highlight different targeting approaches to inhibit these TFs. Furthermore, the validity of such TFs as clinical biomarkers has been explored. Finally, we discuss how research is likely to evolve in the field.
Collapse
Affiliation(s)
- Marta Marqués
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Maria Alba Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Izaskun Urdanibia
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Eva Parisi
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
| | - Iván Hidalgo
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Serafín Morales
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Antonieta Salud
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Department of Medicine, University of Lleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
- Department of Medical Oncology, Arnau de Vilanova University Hospital (HUAV), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Anabel Sorolla
- Research Group of Cancer Biomarkers, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; (M.M.); (M.A.S.); (I.U.); (E.P.); (I.H.); (S.M.); (A.S.)
- Correspondence:
| |
Collapse
|
18
|
SYT-SSX1 enhances the invasiveness and maintains stem-like cell properties in synovial sarcoma via induction of TGF-β1/Smad signaling. BMC Cancer 2022; 22:166. [PMID: 35151264 PMCID: PMC8841078 DOI: 10.1186/s12885-022-09229-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 01/17/2022] [Indexed: 12/02/2022] Open
Abstract
Background Synovial sarcoma (SS) is a type of soft tissue sarcoma (STS) of undetermined tissue origin, which is characterized by the recurrent pathognomonic chromosomal translocation t (X;18)(p11.2; q11.2). Studies have shown that SS is a malignant tumor originating from cancer stem cells or pluripotent mesenchymal stem cells and may be related to fusion genes. In addition, some studies have indicated that the induction of epithelial–mesenchymal transition (EMT) via the TGF-β1/Smad signaling pathway leads to SS metastasis. Methods We analyzed the effects of SYT-SSX1 on the stemness of SS cells via TGF-β1/Smad signaling in vitro. The SYT-SSX1 fusion gene high expression cell was constructed by lentiviral stable transfer technology. SYT-SSX1 and SW982 cells were cultured and tested for sphere-forming ability. The transwell migration assay and flow cytometry were used to assess the migration ability of the sphere cells as well as the expression of CSC-related markers. We treated SYT-SSX1 cells with rhTGF-β1 (a recombinant agent of the TGF-β1 signaling pathway) and SB431542 and observed morphological changes. A CCK-8 experiment and a western blot (WB) experiment were conducted to detect the expression of TGF-β1 signaling pathway- and EMT-related proteins after treatment. The SYT-SSX1 cells were then cultured and their ability to form spheres was tested. Flow cytometry, WB, and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the expression of CSC surface markers on SYT-SSX1 sphere cells. Results It was found that SYT-SSX1 has stronger sphere-forming ability, migration ability, and higher expression of CSC-related molecules than SW982 cells. Through treating SYT-SSX1 and SW982 cells with rhTGF-β1 and SB431542, we found that TGF-β1 enhanced the proliferation of cells, induced EMT, and that TGF-β1 enhanced the characteristics of tumor stem cells. Conclusions Our results suggest that SYT-SSX1 enhances invasiveness and maintains stemness in SS cells via TGF-β1/Smad signaling. These findings reveal an effective way to potentially improve the prognosis of patients with SS by eliminating the characteristics of cancer stem cells (CSCs) during treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09229-5.
Collapse
|
19
|
Dey A, Kundu M, Das S, Jena BC, Mandal M. Understanding the function and regulation of Sox2 for its therapeutic potential in breast cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188692. [PMID: 35122882 DOI: 10.1016/j.bbcan.2022.188692] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/11/2022] [Accepted: 01/28/2022] [Indexed: 12/12/2022]
Abstract
Sox family of transcriptional factors play essential functions in development and are implicated in multiple clinical disorders, including cancer. Sox2 being their most prominent member and performing a critical role in reprogramming differentiated adult cells to an embryonic phenotype is frequently upregulated in multiple cancers. High Sox2 levels are detected in breast tumor tissues and correlate with a worse prognosis. In addition, Sox2 expression is connected with resistance to conventional anticancer therapy. Together, it can be said that inhibiting Sox2 expression can reduce the malignant features associated with breast cancer, including invasion, migration, proliferation, stemness, and chemoresistance. This review highlights the critical roles played by the Sox gene family members in initiating or suppressing breast tumor development, while primarily focusing on Sox2 and its role in breast tumor initiation, maintenance, and progression, elucidates the probable mechanisms that control its activity, and puts forward potential therapeutic strategies to inhibit its expression.
Collapse
Affiliation(s)
- Ankita Dey
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Moumita Kundu
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Subhayan Das
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Bikash Chandra Jena
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| | - Mahitosh Mandal
- Cancer Biology Lab, School of Medical Science and Technology, Indian Institute of Technology Kharagpur (IIT Kharagpur), Kharagpur, West Bengal, India..
| |
Collapse
|
20
|
Kretzmann JA, Irving KL, Smith NM, Evans CW. Modulating gene expression in breast cancer via DNA secondary structure and the CRISPR toolbox. NAR Cancer 2022; 3:zcab048. [PMID: 34988459 PMCID: PMC8693572 DOI: 10.1093/narcan/zcab048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most commonly diagnosed malignancy in women, and while the survival prognosis of patients with early-stage, non-metastatic disease is ∼75%, recurrence poses a significant risk and advanced and/or metastatic breast cancer is incurable. A distinctive feature of advanced breast cancer is an unstable genome and altered gene expression patterns that result in disease heterogeneity. Transcription factors represent a unique therapeutic opportunity in breast cancer, since they are known regulators of gene expression, including gene expression involved in differentiation and cell death, which are themselves often mutated or dysregulated in cancer. While transcription factors have traditionally been viewed as 'undruggable', progress has been made in the development of small-molecule therapeutics to target relevant protein-protein, protein-DNA and enzymatic active sites, with varying levels of success. However, non-traditional approaches such as epigenetic editing, transcriptional control via CRISPR/dCas9 systems, and gene regulation through non-canonical nucleic acid secondary structures represent new directions yet to be fully explored. Here, we discuss these new approaches and current limitations in light of new therapeutic opportunities for breast cancers.
Collapse
Affiliation(s)
- Jessica A Kretzmann
- Laboratory for Biomolecular Nanotechnology, Department of Physics, Technical University of Munich, Am Coulombwall 4a, 85748 Garching, Germany
| | - Kelly L Irving
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Nicole M Smith
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| |
Collapse
|
21
|
Afify SM, Hassan G, Ishii H, Monzur S, Nawara HM, Osman A, Abu Quora HA, Sheta M, Zahra MH, Seno A, Seno M. Functional and Molecular Characters of Cancer Stem Cells Through Development to Establishment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:83-101. [PMID: 36587303 DOI: 10.1007/978-3-031-12974-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cancer stem cells (CSCs) are small subpopulation sharing similar properties like normal stem such as self-renewal and differentiation potential to direct tumor growth. Last few years, scientists considered CSCs as the cause of phenotypic heterogeneity in diverse cancer types. Also, CSCs contribute to cancer metastasis and recurrence. The cellular and molecular regulators influence on the CSCs' phenotype changing their behaviors in different stages of cancer progression. CSC markers play significance roles in cancer diagnosis and characterization. We delineate the cross-talks between CSCs and the tumor microenvironment that supports their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation. An insight into the markers of CSCs specific to organs is described.
Collapse
Affiliation(s)
- Said M Afify
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Division of Biochemistry, Chemistry Department, Menoufia University, Shebin El Koum, 32511, Egypt
| | - Ghmkin Hassan
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Pharmacy, Department of Microbiology and Biochemistry, Damascus University, Damascus, 10769, Syria
| | - Hiroko Ishii
- GSP Enterprise, Inc, 1-4-38 12F Minato-Machi, Naniwaku, Osaka, 556-0017, Japan
| | - Sadia Monzur
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Hend M Nawara
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Amira Osman
- Faculty of Medicine, Department of Histology, Kafr Elsheikh University, Kafr Elsheikh, 33511, Egypt
| | - Hagar A Abu Quora
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Faculty of Science, Cytology, Histology and Histochemistry, Zoology Department, Menoufia University, Menoufia, 32511, Egypt
| | - Mona Sheta
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Maram H Zahra
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Akimasa Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
22
|
Segura-Bautista D, Maya-Nunez G, Aguilar-Rojas A, Huerta-Reyes M, Pérez-Solis MA. Contribution of Stemness-linked Transcription Regulators to the Progression of Breast Cancer. Curr Mol Med 2021; 22:766-778. [PMID: 34819003 DOI: 10.2174/1566524021666211124154803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Although there are currently several factors that allow measuring the risk of having breast cancer or predicting its progression, the underlying causes of this malignancy have remained unknown. Several molecular studies have described some mechanisms involved in the progress of breast cancer. These have helped in identifying new targets with therapeutic potential. However, despite the therapeutic strategies implemented from the advances achieved in breast cancer research, a large percentage of patients with breast cancer die due to the spread of malignant cells to other tissues or organs, such as bones and lungs. Therefore, determining the processes that promote the migration of malignant cells remains one of the greatest challenges for oncological research. Several research groups have reported evidence on how the dedifferentiation of tumor cells leads to the acquisition of stemness characteristics, such as invasion, metastasis, the capability to evade the immunological response, and resistance to several cytotoxic drugs. These phenotypic changes have been associated with a complex reprogramming of gene expression in tumor cells during the Epithelial-Mesenchymal Transition (EMT). Considering the determining role that the transcriptional regulation plays in the expression of the specific characteristics and attributes of breast cancer during ETM, in the present work, we reviewed and analyzed several transcriptional mechanisms that support the mesenchymal phenotype. In the same way, we established the importance of transcription factors with a therapeutic perspective in the progress of breast cancer.
Collapse
Affiliation(s)
- David Segura-Bautista
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Guadalupe Maya-Nunez
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Arturo Aguilar-Rojas
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Maira Huerta-Reyes
- Medical Research Unit in Nephrological Diseases, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City. Mexico
| | - Marco Allan Pérez-Solis
- Medical Research Unit in Reproductive Medicine, UMAE Hospital de Gineco Obstetricia no. 4 'Luis Castelazo-Ayala', Instituto Mexicano del Seguro Social, Mexico City. Mexico
| |
Collapse
|
23
|
Design and Characterization of a Cell-Penetrating Peptide Derived from the SOX2 Transcription Factor. Int J Mol Sci 2021; 22:ijms22179354. [PMID: 34502261 PMCID: PMC8431565 DOI: 10.3390/ijms22179354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
SOX2 is an oncogenic transcription factor overexpressed in nearly half of the basal-like triple-negative breast cancers associated with very poor outcomes. Targeting and inhibiting SOX2 is clinically relevant as high SOX2 mRNA levels are positively correlated with decreased overall survival and progression-free survival in patients affected with breast cancer. Given its key role as a master regulator of cell proliferation, SOX2 represents an important scaffold for the engineering of dominant-negative synthetic DNA-binding domains (DBDs) that act by blocking or interfering with the oncogenic activity of the endogenous transcription factor in cancer cells. We have synthesized an interference peptide (iPep) encompassing a truncated 24 amino acid long C-terminus of SOX2 containing a potential SOX-specific nuclear localization sequence, and the determinants of the binding of SOX2 to the DNA and to its transcription factor binding partners. We found that the resulting peptide (SOX2-iPep) possessed intrinsic cell penetration and promising nuclear localization into breast cancer cells, and decreased cellular proliferation of SOX2 overexpressing cell lines. The novel SOX2-iPep was found to exhibit a random coil conformation predominantly in solution. Molecular dynamics simulations were used to characterize the interactions of both the SOX2 transcription factor and the SOX2-iPep with FGF4-enhancer DNA in the presence of the POU domain of the partner transcription factor OCT4. Predictions of the free energy of binding revealed that the iPep largely retained the binding affinity for DNA of parental SOX2. This work will enable the future engineering of novel dominant interference peptides to transport different therapeutic cargo molecules such as anti-cancer drugs into cells.
Collapse
|
24
|
Bryan S, Witzel I, Borgmann K, Oliveira-Ferrer L. Molecular Mechanisms Associated with Brain Metastases in HER2-Positive and Triple Negative Breast Cancers. Cancers (Basel) 2021; 13:4137. [PMID: 34439289 PMCID: PMC8392331 DOI: 10.3390/cancers13164137] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) is the most frequent cause of cancer-associated death for women worldwide, with deaths commonly resulting from metastatic spread to distant organs. Approximately 30% of metastatic BC patients develop brain metastases (BM), a currently incurable diagnosis. The influence of BC molecular subtype and gene expression on breast cancer brain metastasis (BCBM) development and patient prognosis is undeniable and is, therefore, an important focus point in the attempt to combat the disease. The HER2-positive and triple-negative molecular subtypes are associated with an increased risk of developing BCBM. Several genetic and molecular mechanisms linked to HER2-positive and triple-negative BC breast cancers appear to influence BCBM formation on several levels, including increased development of circulating tumor cells (CTCs), enhanced epithelial-mesenchymal transition (EMT), and migration of primary BC cells to the brain and/or through superior local invasiveness aided by cancer stem-like cells (CSCs). These specific BC characteristics, together with the ensuing developments at a clinical level, are presented in this review article, drawing a connection between research findings and related therapeutic strategies aimed at preventing BCBM formation and/or progression. Furthermore, we briefly address the critical limitations in our current understanding of this complex topic, highlighting potential focal points for future research.
Collapse
Affiliation(s)
- Sarah Bryan
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (S.B.); (I.W.)
| | - Isabell Witzel
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (S.B.); (I.W.)
| | - Kerstin Borgmann
- Center of Oncology, Laboratory of Radiobiology & Experimental Radiooncology, Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany;
| | - Leticia Oliveira-Ferrer
- Department of Gynaecology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (S.B.); (I.W.)
| |
Collapse
|
25
|
Human Primary Breast Cancer Stem Cells Are Characterized by Epithelial-Mesenchymal Plasticity. Int J Mol Sci 2021; 22:ijms22041808. [PMID: 33670400 PMCID: PMC7918351 DOI: 10.3390/ijms22041808] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with only limited treatment options available. Recently, cancer stem cells (CSCs) have emerged as the potential drivers of tumor progression due to their ability to both self-renew and give rise to differentiated progeny. The CSC state has been linked to the process of epithelial-mesenchymal transition (EMT) and to the highly flexible state of epithelial-mesenchymal plasticity (EMP). We aimed to establish primary breast cancer stem cell (BCSC) cultures isolated from TNBC specimens. These cells grow as tumor spheres under anchorage-independent culture conditions in vitro and reliably form tumors in mice when transplanted in limiting dilutions in vivo. The BCSC xenograft tumors phenocopy the original patient tumor in architecture and gene expression. Analysis of an EMT-related marker profile revealed the concomitant expression of epithelial and mesenchymal markers suggesting an EMP state for BCSCs of TNBC. Furthermore, BCSCs were susceptible to stimulation with the EMT inducer TGF-β1, resulting in upregulation of mesenchymal genes and enhanced migratory abilities. Overall, primary BCSC cultures are a promising model close to the patient that can be used both in vitro and in vivo to address questions of BCSC biology and evaluate new treatment options for TNBC.
Collapse
|
26
|
Truchot Y, Dagher E, Abadie J, Nguyen F. Unfavorable Prognostic Effects of the Stem Cell Pluripotency Factor Sox2 in Feline Invasive Mammary Carcinomas. Front Vet Sci 2021; 7:622019. [PMID: 33553286 PMCID: PMC7862120 DOI: 10.3389/fvets.2020.622019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023] Open
Abstract
Background: Sex-determining Region Y (SRY)-box transcription factor-2 (Sox2) belongs to the "Yamanaka's factors," necessary and sufficient to convert somatic cells into pluripotent stem cells. In breast cancers, Sox2 expression has been associated with poor prognosis, and resistance to therapy. The aims of this study were to determine the frequency of Sox2 positivity in feline invasive mammary carcinomas (FMCs), its relationships with other clinical-pathologic variables, and with patient outcomes. Materials and Methods: This study relies on a previously described retrospective cohort of 180 FMCs, diagnosed in female cats treated by mastectomy alone, with 2-year follow-up. Sox2 (clone SP76), Estrogen Receptor alpha (ER), Progesterone Receptor (PR), Ki-67, Human Epidermal growth factor Receptor 2 (HER2), Androgen Receptor (AR), Bcl-2, Forkhead box protein A1 (FOXA1), basal markers and FoxP3-positive regulatory T cells (Tregs) were detected by automated immunohistochemistry. Sox2 expression was quantitated as an index (percentage of neoplastic cells demonstrating a positive nuclear signal). The FMCs were considered Sox2-positive at threshold >42%. Results: Sox2 was not expressed in the normal mammary gland or in mammary hyperplasia without atypia, but was occasionally detected in atypical hyperplasia. In FMCs, the mean Sox2 index was 38 ± 30%, and 79/180 FMCs (44%) were Sox2-positive. Sox2 expression was associated with older age at diagnosis, lymphovascular invasion, high Ki-67 proliferation indexes, low PR and FOXA1 expression, and increased numbers of tumor-associated Tregs, but was not significantly associated with the clinical stage, histological types, and histological grade. By multivariate survival analysis, Sox2 was associated with poor cancer-specific survival (Hazard Ratio = 1.48, 95% confidence interval 1.04-2.11, p = 0.0292), independently of the pathologic tumor size, pathologic nodal stage, distant metastasis, and AR expression. A rare subgroup of FMCs characterized by an AR+Sox2-phenotype (19/180 cases, 11%) was associated with very favorable outcomes. Conclusion: Sox2 expression was associated with poor cancer-specific survival of female cats with invasive mammary carcinomas, as previously reported in human breast cancer, but was more commonly expressed in cats than reported in breast cancers. Sox2 showed complementarity with AR in FMC prognostication.
Collapse
Affiliation(s)
- Yohan Truchot
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Elie Dagher
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
| | - Jérôme Abadie
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
- Université de Nantes, Inserm, CRCINA, Nantes, France
| | - Frédérique Nguyen
- AMaROC (Animal Cancers, Models for Research in Comparative Oncology), Oniris, Nantes Atlantic College of Veterinary Medicine, Food Science and Engineering, Nantes, France
- Université de Nantes, Inserm, CRCINA, Nantes, France
- Integrated Center for Oncology Nantes/Angers, Nantes, France
| |
Collapse
|
27
|
Lu Y, Zhu Y, Deng S, Chen Y, Li W, Sun J, Xu X. Targeting the Sonic Hedgehog Pathway to Suppress the Expression of the Cancer Stem Cell (CSC)-Related Transcription Factors and CSC-Driven Thyroid Tumor Growth. Cancers (Basel) 2021; 13:cancers13030418. [PMID: 33499351 PMCID: PMC7866109 DOI: 10.3390/cancers13030418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Poorly differentiated and anaplastic thyroid cancers respond poorly to surgery, radiation, and hormone therapy. Cancer stem cells play an important role in tumor growth, drug resistance, and recurrence. This study focuses on how the sonic hedgehog (Shh) pathway maintains thyroid cancer stem cell self-renewal and whether it can be targeted for anticancer therapy. The authors report that the Shh pathway regulates the expression of BMI1 and SOX2, two genes involved in stem cell self-renewal, and that targeting the Shh pathway has little effect on thyroid tumor xenografts but can inhibit the growth of tumor xenografts derived from thyroid cancer stem cells. This study advances the knowledge on how thyroid cancer stem cells regenerate and highlights the potential therapeutic values of targeting the Shh pathway. Abstract The sonic hedgehog (Shh) pathway plays important roles in tumorigenesis, tumor growth, drug resistance, and metastasis. We and others have reported earlier that this pathway is highly activated in thyroid cancer. However, its role in thyroid cancer stem cell (CSC) self-renewal and tumor development remains incompletely understood. B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and SRY-Box Transcription Factor 2 (SOX2) are two CSC-related transcription factors that have been implicated in promoting CSC self-renewal. The objective of our current investigation was to determine the role of the Shh pathway in regulating BMI1 and SOX2 expression in thyroid cancer and promoting thyroid tumor growth and development. Here we report that inhibition of the Shh pathway by Gli1 siRNA or by cyclopamine and GANT61 reduced BMI1 and SOX2 expression in SW1736 and KAT-18 cells, two anaplastic thyroid cancer cell lines. The opposite results were obtained in cells overexpressing Gli1 or its downstream transcription factor Snail. The Shh pathway regulated SOX2 and BMI1 expression at a transcriptional and post-transcriptional level, respectively. GANT61 treatment suppressed the growth of SW1736 CSC-derived tumor xenografts but did not significantly inhibit the growth of tumors grown from bulk tumor cells. Clinicopathological analyses of thyroid tumor specimens by immunohistochemical (IHC) staining revealed that BMI1 and SOX2 were highly expressed in thyroid cancer and correlated with Gli1 expression. Our study provides evidence that activation of the Shh pathway leads to increased BMI1 and SOX2 expression in thyroid cancer and promotes thyroid CSC-driven tumor initiation. Targeting the Shh pathway may have therapeutic value for treating thyroid cancer and preventing recurrence.
Collapse
Affiliation(s)
- Yurong Lu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Yiwen Zhu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Shihan Deng
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Yuhuang Chen
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Wei Li
- College of Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China;
| | - Jing Sun
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
| | - Xiulong Xu
- Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; (Y.L.); (Y.Z.); (S.D.); (Y.C.); (J.S.)
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu, China
- Correspondence: ; Tel.: +86-514-8797-7382; Fax: +86-514-8797-7046
| |
Collapse
|
28
|
Osman NAA, Khalil AI, Yousef RK. The Clinical and Prognostic Implications of Pluripotent Stem Cell Markers Expression and Their Correlation with the WNT signal pathway in Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2020; 21:2961-2970. [PMID: 33112555 PMCID: PMC7798175 DOI: 10.31557/apjcp.2020.21.10.2961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Objectives: This study aimed to investigate the expression of SOX2, SOX9, p53, and β-catenin in hepatocellular carcinoma (HCC) and their correlation with clinicopathological parameters of prognostic importance. Materials and Methods: Seventy-five patients were enrolled in this study. All patients had full clinical and follow-up data and available paraffin blocks. Immunohistochemical analysis was performed and correlated with clinicopathological factors and patient survival. Results: We detected the positive expression of SOX2, SOX9, p53, and β-catenin in 76%, 50.7%, 50.7%, and 77.9% of HCC specimens respectively. All studied markers showed a significant increase in the expression in tumor tissue specimens compared to non-tumor tissue. Both SOX2 and SOX9 expressions were significantly associated with adverse prognostic factors in HCC. Significant positive correlations were found between SOX2 and SOX9 and both p53 and β-catenin expression (r= 0.528, 0.485 and; r = 0.253, 0.327, respectively; p< 0.0001 for both of them). Regarding survival, we found that HCC patients with positive SOX2 and SOX9 expressions had significantly shorter overall survival (p=0.0001, each). Additionally, larger tumor size, tumor grade, high stage, tumor multiplicity, presence of cirrhosis, tumor necrosis, high p53 expression, and positive β-catenin expression were independent predictors of worse survival. A multivariate Cox analysis revealed that tumor grade, stage, p53, and SOX2 expression were independent predictors of unfavorable prognosis in overall survival (p=0.0001, p=0.0001,p=0.033; and p=0.003, respectively). Conclusions: Our findings might provide an insight into SOX2 and SOX9’s role in HCC and suggest that SOX2 might be targeted for HCC therapy.
Collapse
Affiliation(s)
- Nisreen A A Osman
- Department of Pathology, Faculty of Medicine, Minia University, Egypt
| | | | | |
Collapse
|
29
|
Iturri J, Weber A, Vivanco MD, Toca-Herrera JL. Single-Cell Probe Force Studies to Identify Sox2 Overexpression-Promoted Cell Adhesion in MCF7 Breast Cancer Cells. Cells 2020; 9:E935. [PMID: 32290242 PMCID: PMC7227807 DOI: 10.3390/cells9040935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/31/2022] Open
Abstract
The replacement of the cantilever tip by a living cell in Atomic Force Microscopy (AFM) experiments permits the direct quantification of cell-substrate and cell-cell adhesion forces. This single-cell probe force measurement technique, when complemented by microscopy, allows controlled manipulation of the cell with defined location at the area of interest. In this work, a setup based on two glass half-slides, a non-fouling one with bacterial S-layer protein SbpA from L. sphaericus CMM 2177 and the second with a fibronectin layer, has been employed to measure the adhesion of MCF7 breast cancer cells to fibronectin films (using SbpA as control) and to other cells (symmetric vs. asymmetric systems). The measurements aimed to characterize and compare the adhesion capacities of parental cells and cells overexpressing the embryonic transcription factor Sox2, which have a higher capacity for invasion and are more resistant to endocrine therapy in vivo. Together with the use of fluorescence techniques (epifluorescence, Total Internal Fluorescence Microscopy (TIRF)), the visualization of vinculin and actin distribution in cells in contact with fibronectin surfaces is enabled, facilitating the monitoring and quantification of the formation of adhesion complexes. These findings demonstrate the strength of this combined approach to assess and compare the adhesion properties of cell lines and to illustrate the heterogeneity of adhesive strength found in breast cancer cells.
Collapse
Affiliation(s)
- Jagoba Iturri
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - Andreas Weber
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| | - María d.M. Vivanco
- Cancer Heterogeneity Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, 48160 Derio, Spain
| | - José L. Toca-Herrera
- Department of Nanobiotechnology (DNBT), Institute for Biophysics, BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria; (A.W.); (J.L.T.-H.)
| |
Collapse
|
30
|
Li H, Wang L, Li Z, Geng X, Li M, Tang Q, Wu C, Lu Z. SOX2 has dual functions as a regulator in the progression of neuroendocrine prostate cancer. J Transl Med 2020; 100:570-582. [PMID: 31772313 DOI: 10.1038/s41374-019-0343-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022] Open
Abstract
The mechanisms underlying the lineage switching from prostate adenocarcinoma (AdPC) to lethal neuroendocrine prostate cancer (NEPC) have yet to be completely elucidated. In this study, RNA sequencing data from a unique patient-derived xenograft NEPC model and a clinical NEPC cohort were used to identify the potential genes driving NEPC progression. Enrichr analysis resulted in the identification of SRY-related HMG-box gene 2 (SOX2) as a potential repressor that causes decrease in the expression of AdPC specific genes in NEPC. Assays involving the stable overexpression of SOX2 in LNCaP and CWR22RV1 cells validated this role of SOX2 in vitro. Mechanistic studies showed that the repressor role of SOX2 was attributed to the marked global hypomethylation of histone H3, which was driven by the activation of lysine-specific demethylase 1 (LSD1). Furthermore, Enrichr also predicted SOX2 as a driver gene involved in the upregulation of NEPC specific genes. However, SOX2 alone could only marginally induce the expression of some neuroendocrine markers in vitro, which was consistent with previous reports. Moreover, we also elucidated the molecular features of LNCaP-SOX2 cells that may confer resistance to androgen-deprivation therapy (ADT) and the inclination toward neuroendocrine transdifferentiation. The results of this study reveal a novel mechanism for SOX2 in the progression of NEPC via LSD1-mediated global epigenetic modulation. This discovery suggests that LSD1 may be a selective target for the prevention of NEPC progression.
Collapse
Affiliation(s)
- Haiying Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Lili Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Zhang Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Xu Geng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Ming Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Qi Tang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China
| | - Chunxiao Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China.
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, PR China.
| |
Collapse
|
31
|
Zhao G, Wang X, Qu L, Zhu Z, Hong J, Hou H, Li Z, Wang J, Lv Z. The Clinical and Molecular Characteristics of Sex-Determining Region Y-Box 2 and its Prognostic Value in Breast Cancer: A Systematic Meta-Analysis. Breast Care (Basel) 2020; 16:16-26. [PMID: 33716628 DOI: 10.1159/000505806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/02/2020] [Indexed: 01/17/2023] Open
Abstract
Objective Transcription factor SOX2 (sex-determining region Y-box 2) has a crucial role in the maintenance of the stem cell state. However, current evidence regarding the role of SOX2 in breast cancer is conflicting. We conducted this meta-analysis to clarify the association of SOX2 expression with clinical and molecular features and its prognostic effect on breast cancer. Methods All relevant articles were searched using electronic databases. The pooled odds ratios (ORs) or hazard ratios (HRs: multivariate Cox survival analysis) with their 95% confidence intervals (CIs) were calculated. Results A final total of 18 studies containing 3,080 patients with breast cancer were included. SOX2 protein expression was not related to age, menopausal status, lymph node metastasis, lymphovascular invasion, molecular estrogen receptor status, progesterone receptor status, triple-negative status, and the overall survival in breast cancer, but was closely associated with advanced tumor grade (grade 3 vs. grade 1-2: OR = 2.74, 95% CI = 1.85-4.06, p < 0.001), clinical stage (stage 3-4 vs. stage 0-2: OR = 2.46, 95% CI = 1.37-4.40, p = 0.002), pT stage (T stage 2-4 vs. T stage 1: OR = 1.52, 95% CI = 1.07-2.17, p = 0.019), molecular human epidermal growth factor receptor 2 (HER2) status (positive vs. negative: OR = 1.61, 95% CI = 1.21-2.14, p = 0.001), epidermal growth factor receptor (EGFR) status (positive vs. negative: OR = 2.21, 95% CI = 1.13-4.33, p = 0.021), and worse disease-free survival (DFS) (HR = 2.66, 95% CI = 1.20-5.91, p = 0.016) of breast cancer. Conclusions SOX2 expression is correlated with breast cancer progression, HER2 status, and EGFR status, and may be an independent prognostic marker for predicting poor DFS.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Xiaozhen Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Limei Qu
- Department of Pathology, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zhu Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jinghui Hong
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Haiqin Hou
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zuonong Li
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jun Wang
- Department of Breast Surgery, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Zheng Lv
- Cancer Center, the First Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Cuyàs E, Gumuzio J, Verdura S, Brunet J, Bosch-Barrera J, Martin-Castillo B, Alarcón T, Encinar JA, Martin ÁG, Menendez JA. The LSD1 inhibitor iadademstat (ORY-1001) targets SOX2-driven breast cancer stem cells: a potential epigenetic therapy in luminal-B and HER2-positive breast cancer subtypes. Aging (Albany NY) 2020; 12:4794-4814. [PMID: 32191225 PMCID: PMC7138538 DOI: 10.18632/aging.102887] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
Abstract
SOX2 is a core pluripotency-associated transcription factor causally related to cancer initiation, aggressiveness, and drug resistance by driving the self-renewal and seeding capacity of cancer stem cells (CSC). Here, we tested the ability of the clinically proven inhibitor of the lysine-specific demethylase 1 (LSD1/KDM1A) iadademstat (ORY-100) to target SOX2-driven CSC in breast cancer. Iadademstat blocked CSC-driven mammosphere formation in breast cancer cell lines that are dependent on SOX2 expression to maintain their CSC phenotype. Iadademstat prevented the activation of an LSD1-targeted stemness-specific SOX2 enhancer in CSC-enriched 3-dimensional spheroids. Using high-throughput transcriptional data available from the METABRIC dataset, high expression of SOX2 was significantly more common in luminal-B and HER2-enriched subtypes according to PAM50 classifier and in IntClust1 (high proliferating luminal-B) and IntClust 5 (luminal-B and HER2-amplified) according to integrative clustering. Iadademstat significantly reduced mammospheres formation by CSC-like cells from a multidrug-resistant luminal-B breast cancer patient-derived xenograft but not of those from a treatment-naïve luminal-A patient. Iadademstat reduced the expression of SOX2 in luminal-B but not in luminal-A mammospheres, likely indicating a selective targeting of SOX2-driven CSC. The therapeutic relevance of targeting SOX2-driven breast CSC suggests the potential clinical use of iadademstat as an epigenetic therapy in luminal-B and HER2-positive subtypes.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joan Brunet
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain.,Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain.,Department of Medical Sciences, Medical School University of Girona, Girona, Spain
| | | | - Tomás Alarcón
- ICREA, Barcelona, Spain.,Centre de Recerca Matemàtica (CRM), Barcelona, Spain.,Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain.,Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| | - José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), Elche, Spain
| | | | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain.,Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
33
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 1163] [Impact Index Per Article: 232.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
34
|
Zhang M, Wei Y, Liu Y, Guan W, Zhang X, Kong J, Li H, Yang S, Wang H. Metastatic Phosphatase PRL-3 Induces Ovarian Cancer Stem Cell Sub-population through Phosphatase-Independent Deacetylation Modulations. iScience 2020; 23:100766. [PMID: 31887658 PMCID: PMC6941878 DOI: 10.1016/j.isci.2019.100766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/01/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, chemoresistance, metastasis, and relapse, but the underlying molecular origin of CSCs remains elusive. Here we identified that metastatic phosphatase of regenerating liver 3 (PRL-3) transcriptionally upregulates SOX2 in the expansion of CSC sub-population from normal cancer cells. Mechanistically, SOX2 upregulation is attributed to the binding of the acetylated myocyte enhancer factor 2A (MEF2A) to SOX2 promoter in tumor cells. In parallel, PRL-3 competitively binds to Class IIa histone deacetylase 4 (HDAC4) to facilitate HDAC4 translocation, leading to the disassociation of HDAC4 from MEF2A and histones. The released MEF2A and histones thus remain acetylated and render the subsequent accessibility of the acetylated MEF2A to SOX2 promoter region. Clinical relevance among PRL-3, SOX2, and HDAC4 is validated in ovary cancer samples. Therefore, this PRL-3-HDAC4-MEF2A/histones-SOX2 signaling axis would be a potential therapeutic target in inhibiting ovarian cancer metastasis and relapse.
Collapse
Affiliation(s)
- Mingming Zhang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanbin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaomei Zhang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianqiu Kong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
35
|
Yeh IJ, Esakov E, Lathia JD, Miyagi M, Reizes O, Montano MM. Phosphorylation of the histone demethylase KDM5B and regulation of the phenotype of triple negative breast cancer. Sci Rep 2019; 9:17663. [PMID: 31776402 PMCID: PMC6881367 DOI: 10.1038/s41598-019-54184-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Epigenetic modifications are known to play critical roles in the expression of genes related to differentiation and dedifferentiation. Histone lysine demethylase KDM5B (PLU-1) catalyzes the demethylation of histone H3 on Lys 4 (H3K4), which results in the repression of gene expression. KDM5B is involved in regulation of luminal and basal cell specific gene expression in breast cancers. However, the mechanisms by which KDM5B is regulated in breast cancer, in particular in response to post-translational signals is not well-defined. Here, we demonstrate that KDM5B is phosphorylated at Ser1456 by the cyclin-dependent kinase 1 (CDK1). Phosphorylation of KDM5B at Ser1456 attenuated the occupancy of KDM5B on the promoters of pluripotency genes. Moreover, KDM5B inhibited the expression of pluripotency genes, SOX2 and NANOG, and decreased the stem cell population in triple-negative breast cancer cell lines (TNBC). We previously reported that the tumor suppressor HEXIM1 is a mediator of KDM5B recruitment to its target genes, and HEXIM1 is required for the inhibition of nuclear hormone receptor activity by KDM5B. Similarly, HEXIM1 is required for regulation of pluripotency genes by KDM5B.
Collapse
Affiliation(s)
- I-Ju Yeh
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Emily Esakov
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Ave., Cleveland, OH, 44195, USA
| | - Monica M Montano
- Department of Pharmacology, Case Western Reserve University Cleveland, Cleveland, OH, 44106, USA.
| |
Collapse
|
36
|
Zhang XH, Wang W, Wang YQ, Zhu L, Ma L. The association of SOX2 with clinical features and prognosis in colorectal cancer: A meta-analysis. Pathol Res Pract 2019; 216:152769. [PMID: 31810585 DOI: 10.1016/j.prp.2019.152769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES The expression of SOX2 protein has been reported to be correlated with colorectal cancers. In this study, we conducted a meta-analysis to evaluate the association of SOX2 with clinical features and prognosis in colorectal cancer. METHODS The relevant studies up to March 2019 were searched in Two English databases(PubMed and EMBASE)and two Chinese databases (CNKI and Wanfang database). Pooled ORs or HRs were used to assess the strength of the association between SOX2 and clinical parameters. RESULTS 14 studies involving 2077 colorectal cancer patients were included in the meta-analysis. Our results revealed there were no associations between SOX2 and gender and age. However, significant positive associations were observed for N categories (OR = 3.02, 95 %CI = 2.11-4.31), advanced stage (OR = 2.85, 95 %CI = 2.00-4.07), poor differentiation (OR = 1.90, 95 %CI = 1.38-2.64), distant metastasis (OR = 4.66, 95 %CI = 2.77-7.85) and poor OS (HR = 1.49, 95 %CI = 1.09-2.03). CONCLUSION The results indicated that SOX2 protein may serve as a novel prognostic factor for patients with colorectal cancer.
Collapse
Affiliation(s)
- Xian-Hui Zhang
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Wei Wang
- Department of Laboratory Medicine, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Ya-Qi Wang
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Lei Zhu
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China
| | - Lan Ma
- Department of Laboratory Medicine, Children's Hospital of Shanxi Province, Taiyuan, China.
| |
Collapse
|
37
|
Mehta GA, Khanna P, Gatza ML. Emerging Role of SOX Proteins in Breast Cancer Development and Maintenance. J Mammary Gland Biol Neoplasia 2019; 24:213-230. [PMID: 31069617 PMCID: PMC6790170 DOI: 10.1007/s10911-019-09430-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022] Open
Abstract
The SOX genes encode a family of more than 20 transcription factors that are critical regulators of embryogenesis and developmental processes and, when aberrantly expressed, have been shown to contribute to tumor development and progression in both an oncogenic and tumor suppressive role. Increasing evidence demonstrates that the SOX proteins play essential roles in multiple cellular processes that mediate or contribute to oncogenic transformation and tumor progression. In the context of breast cancer, SOX proteins function both as oncogenes and tumor suppressors and have been shown to be associated with tumor stage and grade and poor prognosis. Experimental evidence demonstrates that a subset of SOX proteins regulate critical aspects of breast cancer biology including cancer stemness and multiple signaling pathways leading to altered cell proliferation, survival, and tumor development; EMT, cell migration and metastasis; as well as other tumor associated characteristics. This review will summarize the role of SOX family members as important mediators of tumorigenesis in breast cancer, with an emphasis on the triple negative or basal-like subtype of breast cancer, as well as examine the therapeutic potential of these genes and their downstream targets.
Collapse
Affiliation(s)
- Gaurav A Mehta
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pooja Khanna
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Michael L Gatza
- Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, CINJ 4558, New Brunswick, NJ, 08903, USA.
- Department of Radiation Oncology, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
38
|
Comprehensive in situ analysis of ALDH1 and SOX2 reveals increased expression of stem cell markers in high-grade serous carcinomas compared to low-grade serous carcinomas and atypical proliferative serous tumors. Virchows Arch 2019; 475:479-488. [PMID: 31451895 DOI: 10.1007/s00428-019-02647-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/26/2019] [Accepted: 08/13/2019] [Indexed: 10/26/2022]
Abstract
Recent studies have shown that re-expression of stem cell factors contribute to pathogenesis, therapy resistance, and recurrent disease in ovarian carcinomas. In this study, we compare the expression and co-expression of stem cell markers ALDH1 and SOX2 in different types of serous ovarian tumors. A total of 215 serous ovarian tumors (161 high-grade serous carcinomas (HGSC), 17 low-grade serous carcinomas (LGSC), 37 atypical proliferative serous tumors (APST)), and 10 cases of serous tubal intraepithelial carcinoma (STIC) were analyzed. Double immunostaining experiments addressed the association of cell proliferation (Ki67) with ALDH1 and the potential co-expression of SOX2 and ALDH1. The prognostic effect was analyzed in the cohort of HGSC. Expression of ALDH1and/or SOX2 was detected with increased frequency in HGSC (88.8%), compared with LGSC (70.5%) and APST (36.4%), while ALDH1 alone was significantly more frequently expressed in LGSC. The majority of all tumor types showed expression of ALDH1 and SOX2 in different cells. Only a minority of HGSC (4.6%) and STIC (20%) showed SOX2/ALDH1 co-expression in > 10% of tumor cells. Double staining also revealed that ALDH1 is associated with the non-proliferating Ki67-negative fraction consistent with a stem cell phenotype. Co-expression of ALDH1 and SOX2 or ALDH1 and Ki67 has no effect on survival. Expression of stem cell factors ALDH1 and/or SOX2 shows increased frequency in high-grade serous ovarian carcinomas compared to low-grade carcinomas and borderline tumors, supporting the concept that stem cell markers play different biological roles in low-grade versus high-grade serous neoplasia of the ovary.
Collapse
|
39
|
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2019; 67:74-82. [PMID: 31412296 DOI: 10.1016/j.semcancer.2019.08.007] [Citation(s) in RCA: 214] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.
Collapse
Affiliation(s)
- Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jonathan J Elton
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
40
|
Abdelrahman AE, Ibrahim HM, Elsebai EA, Ismail EI, Elmesallamy W. The clinicopathological significance of CD133 and Sox2 in astrocytic glioma. Cancer Biomark 2019; 23:391-403. [PMID: 30248046 DOI: 10.3233/cbm-181460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The treatment strategies of astrocytoma have not changed considerably due to the restricted appreciation of its biology. OBJECTIVES This study aimed to evaluate the expression of the stem cell-related proteins (CD133 and Sox2) and their prognostic value in astrocytic glioma. METHODS The immunohistochemical expression of CD133 and Sox2 in 40 patients with an astrocytic glioma of different grades was studied. The recorded data on the overall survival (OS), progression-free survival (PFS) and the response to the therapeutic protocol were collected and lastly analyzed. RESULTS CD133 expression was observed in 87.5% of the cases, while positive Sox2 expression was found in all the studied cases. There was a significant association of CD133 expression with the histological grade and the tumor size (p< 0.001). A significant association of Sox2 with the histological grade and the tumor size was noted (p= 0.004, p= 0.006 respectively). Up-regulation of both CD133 and Sox2 had a significant association with poor clinical response to the therapy (p< 0.001 for each). Shorter OS and PFS were related to CD133 and Sox2 overexpression. CONCLUSIONS Astrocytoma with CD133 and Sox2 overexpression had an unfavorable prognosis and poor clinical response to the current therapeutic protocol.
Collapse
Affiliation(s)
- Aziza E Abdelrahman
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Hanaa M Ibrahim
- Pathology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman A Elsebai
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Eman I Ismail
- Clinical Oncology and Nuclear Medicine Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wael Elmesallamy
- Neurosurgery Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
41
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
42
|
Dey P, Rathod M, De A. Targeting stem cells in the realm of drug-resistant breast cancer. BREAST CANCER-TARGETS AND THERAPY 2019; 11:115-135. [PMID: 30881110 PMCID: PMC6410754 DOI: 10.2147/bctt.s189224] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since its first documentation, breast cancer (BC) has been a conundrum that ails millions of women every year. This cancer has been well studied by researchers all over the world, which has improved the patient outcome significantly. There are many diagnostic markers to identify the disease, but early detection and then subclassification of this cancer remain dubious. Even after the correct diagnosis, more than half the patients come back with a more aggressive and metastatic tumor. The underpinning mechanism that governs the resistance includes over-amplification of receptors, mutations in key gene targets, and activation of different signaling. A plethora of drugs have been devised that have shown promising results in clinical settings. However, in recent times, the role played by cancer stem cells in disease progression and their interaction in mediating the resistance to cellular insults have come into the limelight. As breast cancer stem cells (BCSCs) are dormant in nature, it is highly likely that they fail to directly respond to the cytotoxic drugs which are meant for ablating rapidly proliferating cells. Furthermore, the absence of well-characterized, drug-able surface markers to date, has limited the application of targeted therapies in complete eradication of the disease. In this review, our intent is to discuss versatile therapeutics in practice followed by discussing the upcoming therapy strategies in the pipeline for BC. Furthermore, we focus on the roles played by BCSCs in mediating the resistance, and therefore, the aspects of new therapeutics against BCSCs under development that may ease the burden in future has also been discussed.
Collapse
Affiliation(s)
- Pranay Dey
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Maitreyi Rathod
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| | - Abhijit De
- Molecular Functional Imaging Lab, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India, .,Molecular Functional Imaging Lab, Homi Bhabha National Institute, Mumbai, India,
| |
Collapse
|
43
|
López-Ozuna VM, Hachim IY, Hachim MY, Lebrun JJ, Ali S. Prolactin modulates TNBC aggressive phenotype limiting tumorigenesis. Endocr Relat Cancer 2019; 26:321-337. [PMID: 30640712 DOI: 10.1530/erc-18-0523] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/14/2019] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) accounts for ~20% of all breast cancer cases. The management of TNBC represents a challenge due to its aggressive phenotype, heterogeneity and lack of targeted therapy. Loss of cell differentiation and enrichment with breast cancer stem-like cells (BCSC) are features of TNBC contributing to its aggressive nature. Here, we found that treatment of TNBC cells with PRL significantly depletes the highly tumorigenic BCSC subpopulations CD44+/CD24- and ALDH+ and differentiates them to the least tumorigenic CD44-/CD24- and ALDH- phenotype with limited tumorsphere formation and self-renewal capacities. Importantly, we found PRL to induce a heterochromatin phenotype marked by histone H3 lysine 9 trimethylation (H3K9me3) and accompanied by ultra-structural cellular architecture associated with differentiation and senescence rendering the cells refractory to growth signals. Crucially, we found PRL to mediate these effects in vivo in a pre-clinical animal xenograft of TNBC controlling tumor growth. These results reveal that the lactogenic hormone PRL may exert its anti-tumorigenic effects on TNBC through cellular reprogramming indicative of differentiation resulting in the depletion of BCSCs and restricting tumorigenesis.
Collapse
Affiliation(s)
- Vanessa M López-Ozuna
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Ibrahim Y Hachim
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Mahmood Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, McGill University Health Centre, McGill University, Montreal, Québec, Canada
| |
Collapse
|
44
|
Granda-Díaz R, Menéndez ST, Pedregal Mallo D, Hermida-Prado F, Rodríguez R, Suárez-Fernández L, Vallina A, Sánchez-Canteli M, Rodríguez A, Fernández-García MS, Rodrigo JP, García-Pedrero JM. The Novel Role of SOX2 as an Early Predictor of Cancer Risk in Patients with Laryngeal Precancerous Lesions. Cancers (Basel) 2019; 11:cancers11030286. [PMID: 30823625 PMCID: PMC6468607 DOI: 10.3390/cancers11030286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
The SOX2 gene located at 3q26 is frequently amplified and overexpressed in multiple cancers, including head and neck squamous cell carcinomas (HNSCC). The tumor-promoting activity and involvement of SOX2 in tumor progression has been extensively demonstrated, thereby emerging as a promising therapeutic target. However, the role of SOX2 in early stages of tumorigenesis and its possible contribution to malignant transformation remain unexplored. This study investigates for the first time SOX2 protein expression by immunohistochemistry and gene amplification by real-time PCR using a large series of 94 laryngeal precancerous lesions. Correlations with the histopathological classification and the risk of progression to invasive carcinoma were established. Nuclear SOX2 expression was frequently detected in 38 (40%) laryngeal dysplasias, whereas stromal cells and normal adjacent epithelia showed negative expression. SOX2 gene amplification was detected in 18 (33%) of 55 laryngeal dysplasias. Univariate Cox analysis showed that SOX2 gene amplification (p = 0.046) and protein expression (p < 0.001) but not histological grading (p = 0.432) were significantly associated with laryngeal cancer risk. In multivariate stepwise analysis including age, tobacco, histology, SOX2 gene amplification and SOX2 expression, SOX2 expression (HR = 3.531, 95% CI 1.144 to 10.904; p = 0.028) was the only significant independent predictor of laryngeal cancer development. These findings underscore the relevant role of SOX2 in early tumorigenesis and a novel clinical application of SOX2 expression as independent predictor of laryngeal cancer risk in patients with precancerous lesions beyond current WHO histological grading. Therefore, targeting SOX2 could lead to effective strategies for both cancer prevention and treatment.
Collapse
Affiliation(s)
- Rocío Granda-Díaz
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Sofía T Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Daniel Pedregal Mallo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
| | - René Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Laura Suárez-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
| | - Aitana Vallina
- Department of Pathology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
| | - Mario Sánchez-Canteli
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
| | - Aida Rodríguez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
| | - M Soledad Fernández-García
- Department of Pathology, Hospital Universitario Central de Asturias, Instituto Universitario de Oncología del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
| | - Juan P Rodrigo
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| | - Juana M García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria del Principado de Asturias, University of Oviedo, Avda. Roma, 33011 Oviedo, Spain.
- Ciber de Cáncer, CIBERONC, Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
45
|
Deng P, Wang J, Zhang X, Wu X, Ji N, Li J, Zhou M, Jiang L, Zeng X, Chen Q. AFF4 promotes tumorigenesis and tumor-initiation capacity of head and neck squamous cell carcinoma cells by regulating SOX2. Carcinogenesis 2019; 39:937-947. [PMID: 29741610 PMCID: PMC6031063 DOI: 10.1093/carcin/bgy046] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 04/27/2018] [Indexed: 02/05/2023] Open
Abstract
Super elongation complex (SEC) controls gene transcription by releasing Pol II from pausing. Previous studies have shown that dysfunction of SEC was associated with multiple human cancers, such as leukemia and breast cancer. However, the role of SEC in head and neck squamous cell carcinoma (HNSCC) development remains largely unknown. In this study, we found expression of AF4/FMR2 family member 4 (AFF4), the core component of SEC, was upregulated dramatically in HNSCC cell lines and tumor tissues. By using siRNA-mediated depletion and overexpression of AFF4, we demonstrated AFF4 promoted proliferation, migration and invasion of HNSCC cells. Moreover, we found AFF4 enhanced the aldehyde dehydrogenase (ALDH) activity and sphere formatting activity and was required for the tumor-initiation capacity of stem-like cells in HNSCC cell lines. Mechanistically, we found the role of AFF4 in regulation of HNSCC cell behaviors was mainly mediated by sex-determining region Y box2 (SOX2), a critical regulator involved in development of several human cancers. SOX2 expression changed in parallel with AFF4 expression in response to depletion and overexpression of AFF4, respectively. More importantly, overexpression of SOX2 rescued the inhibited proliferation, migration, invasion and ALDH activity induced by knockdown of AFF4 in HNSCC cells, at least in part. Collectively, our findings indicate AFF4 may serve as a biomarker and a potential target of therapies for patients with HNSCC.
Collapse
Affiliation(s)
- Peng Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xingyu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Ning Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Min Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Lu Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
46
|
Wollenzien H, Voigt E, Kareta MS. Somatic Pluripotent Genes in Tissue Repair, Developmental Disease, and Cancer. SPG BIOMED 2018; 1. [PMID: 31172135 DOI: 10.32392/biomed.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryonic stem cells possess the ability to differentiate into all cell types of the body. This pliable developmental state is achieved by the function of a series of pluripotency factors, classically identified as OCT4, SOX2, and NANOG. These pluripotency factors are responsible for activating the larger pluripotency networks and the self-renewal programs which give ES cells their unique characteristics. However, during differentiation pluripotency networks become downregulated as cells achieve greater lineage specification and exit the cell cycle. Typically the repression of pluripotency is viewed as a positive factor to ensure the fidelity of cellular identity by restricting cellular pliancy. Consistent with this view, the expression of pluripotency factors is greatly restricted in somatic cells. However, there are examples whereby cells either maintain or reactivate pluripotency factors to preserve the increased potential for the healing of wounds or tissue homeostasis. Additionally there are many examples where these pluripotency factors become reactivated in a variety of human pathologies, particularly cancer. In this review, we will summarize the somatic repression of pluripotency factors, their role in tissue homeostasis and wound repair, and the human diseases that are associated with pluripotency factor misregulation with an emphasis on their role in the etiology of multiple cancers.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA
| | - Ellen Voigt
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA
| | - Michael S Kareta
- Genetics and Genomics Group, Cellular Therapies and Stem Cell Biology Group, and the Cancer Biology and Immunotherapies Group, Sanford Research, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.,Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, SD 57069, USA.,Department of Pediatrics, Sanford School of Medicine, 1400 W. 22nd St., Sioux Falls, SD 57105, USA.,Department of Chemistry and Biochemistry, South Dakota State University, 1175 Medary Ave, Brookings, SD 57006, USA
| |
Collapse
|
47
|
Gong X, Liu W, Wu L, Ma Z, Wang Y, Yu S, Zhang J, Xie H, Wei G, Ma F, Lu L, Chen L. Transcriptional repressor GATA binding 1-mediated repression of SRY-box 2 expression suppresses cancer stem cell functions and tumor initiation. J Biol Chem 2018; 293:18646-18654. [PMID: 30315105 DOI: 10.1074/jbc.ra118.003983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/09/2018] [Indexed: 01/22/2023] Open
Abstract
Cancer stem cells (CSCs) have been reported in a variety of cancers. SRY-box 2 (SOX2) is a member of the SOX family of transcription factors and has been shown to play a critical role in maintaining the functions of CSCs and promoting tumor initiation. However, the underlying mechanisms for the transcriptional regulation of the SOX2 gene in CSCs are unclear. In this study, using in silico and experimental approaches, we identified transcriptional repressor GATA binding 1 (TRPS1), an atypical GATA-type transcription factor, as a critical transcriptional regulator that represses SOX2 expression and thereby suppresses cancer stemness and tumorigenesis. Mechanistically, TRPS1 repressed SOX2 expression by directly targeting the consensus GATA-binding element in the SOX2 promoter as elucidated by ChIP and luciferase reporter assays. Of note, in vitro mammosphere formation assays in culture and in vivo xenograft tumor initiation experiments in mouse models revealed that TRPS1-mediated repression of SOX2 expression suppresses CSC functions and tumor initiation. Taken together, our study provides detailed mechanistic insights into CSC functions and tumor initiation by the TRPS1-SOX2 axis.
Collapse
Affiliation(s)
- Xue Gong
- From the Institute of Life Science, Southeast University, Nanjing 210096, China.,the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Weiguang Liu
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Lele Wu
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhifang Ma
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuzhi Wang
- From the Institute of Life Science, Southeast University, Nanjing 210096, China.,the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyi Yu
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Hao Xie
- From the Institute of Life Science, Southeast University, Nanjing 210096, China
| | - Guanyun Wei
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Fei Ma
- the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Ling Lu
- the Department of Otolaryngology-Head and Neck Surgery, DrumTower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China, and.,the Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, Jiangsu 210008, China
| | - Liming Chen
- From the Institute of Life Science, Southeast University, Nanjing 210096, China, .,the Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
48
|
Pelekanou V, Notas G, Athanasouli P, Alexakis K, Kiagiadaki F, Peroulis N, Kalyvianaki K, Kampouri E, Polioudaki H, Theodoropoulos P, Tsapis A, Castanas E, Kampa M. BCMA (TNFRSF17) Induces APRIL and BAFF Mediated Breast Cancer Cell Stemness. Front Oncol 2018; 8:301. [PMID: 30131941 PMCID: PMC6091000 DOI: 10.3389/fonc.2018.00301] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/18/2018] [Indexed: 01/16/2023] Open
Abstract
Recent advances in cancer immunology revealed immune-related properties of cancer cells as novel promising therapeutic targets. The two TNF superfamily members, APRIL (TNFSF13), and BAFF (TNFSF13B), which are type II membrane proteins, released in active forms by proteolytic cleavage and are primarily involved in B-lymphocyte maturation, have also been associated with tumor growth and aggressiveness in several solid tumors, including breast cancer. In the present work we studied the effect of APRIL and BAFF on epithelial to mesenchymal transition, migration, and stemness of breast cancer cells. Our findings show that both molecules increase epithelial to mesenchymal transition and migratory capacity of breast cancer cells, as well as cancer stem cell numbers, by increasing the expression of pluripotency genes such as ALDH1A1, KLF4, and NANOG. These effects are mediated by their common receptor BCMA (TNFRSF17) and the JNK signaling pathway. Interestingly, transcriptional data analysis from breast cancer cells and patients revealed that androgens can increase APRIL transcription and subsequently, in an autocrine/paracrine manner, enhance its pluripotency effect. In conclusion, our data suggest a possible role of APRIL and BAFF in breast cancer disease progression and provide evidence for a new possible mechanism of therapy resistance, that could be particularly relevant in aromatase inhibitors-treated patients, were local androgen is increased.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Paraskevi Athanasouli
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantinos Alexakis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Fotini Kiagiadaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Nikolaos Peroulis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Errika Kampouri
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Hara Polioudaki
- Department of Biochemistry, School of Medicine, University of Crete, Heraklion, Greece
| | | | - Andreas Tsapis
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
49
|
Feng X, Lu M. Expression of sex-determining region Y-box protein 2 in breast cancer and its clinical significance. Saudi Med J 2018; 38:685-690. [PMID: 28674712 PMCID: PMC5556274 DOI: 10.15537/smj.2017.7.19372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sex-determining region Y-box protein 2 (SOX2) is an embryo transcription factor located on chromosome 3q26.3-q27. It plays an important role in the maintenance of differentiation and self-renewal of pluripotent stem cells. Studies have shown that SOX2 is associated with multiple cancers and is overexpressed in many different phenotypes of breast cancer. To study the relationship between SOX2 and clinicopathological parameters of breast cancer patients, we found that the expression of SOX2 was closely related to the increase in tumor size, histological grade, lymph node metastasis, and high invasiveness. Therefore, studies on the role of SOX2 in breast cancer may provide effective biomarkers and potential therapeutic targets for the diagnosis and treatment of breast cancer. This article will discuss the role of SOX2 in breast cancer, including its occurrence, invasion and metastasis, diagnosis and treatment, relapse, resistance, and prognosis.
Collapse
Affiliation(s)
- Xuesong Feng
- The First College of Clinical Medical Science, China Three Gorges University Cancer Center & Yichang Central People's Hospital, Yichang, China. E-mail.
| | | |
Collapse
|
50
|
Wuebben EL, Rizzino A. The dark side of SOX2: cancer - a comprehensive overview. Oncotarget 2018; 8:44917-44943. [PMID: 28388544 PMCID: PMC5546531 DOI: 10.18632/oncotarget.16570] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/14/2022] Open
Abstract
The pluripotency-associated transcription factor SOX2 is essential during mammalian embryogenesis and later in life, but SOX2 expression can also be highly detrimental. Over the past 10 years, SOX2 has been shown to be expressed in at least 25 different cancers. This review provides a comprehensive overview of the roles of SOX2 in cancer and focuses on two broad topics. The first delves into the expression and function of SOX2 in cancer focusing on the connection between SOX2 levels and tumor grade as well as patient survival. As part of this discussion, we address the developing connection between SOX2 expression and tumor drug resistance. We also call attention to an under-appreciated property of SOX2, its levels in actively proliferating tumor cells appear to be optimized to maximize tumor growth - too little or too much SOX2 dramatically alters tumor growth. The second topic of this review focuses on the exquisite array of molecular mechanisms that control the expression and transcriptional activity of SOX2. In addition to its complex regulation at the transcriptional level, SOX2 expression and activity are controlled carefully by microRNAs, long non-coding RNAs, and post-translational modifications. In the Conclusion and Future Perspectives section, we point out that there are still important unanswered questions. Addressing these questions is expected to lead to new insights into the functions of SOX2 in cancer, which will help design novels strategies for more effectively treating some of the most deadly cancers.
Collapse
Affiliation(s)
- Erin L Wuebben
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|