1
|
Nani JV, Muotri AR, Hayashi MAF. Peering into the mind: unraveling schizophrenia's secrets using models. Mol Psychiatry 2025; 30:659-678. [PMID: 39245692 DOI: 10.1038/s41380-024-02728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Schizophrenia (SCZ) is a complex mental disorder characterized by a range of symptoms, including positive and negative symptoms, as well as cognitive impairments. Despite the extensive research, the underlying neurobiology of SCZ remain elusive. To overcome this challenge, the use of diverse laboratory modeling techniques, encompassing cellular and animal models, and innovative approaches like induced pluripotent stem cell (iPSC)-derived neuronal cultures or brain organoids and genetically engineered animal models, has been crucial. Immortalized cellular models provide controlled environments for investigating the molecular and neurochemical pathways involved in neuronal function, while iPSCs and brain organoids, derived from patient-specific sources, offer significant advantage in translational research by facilitating direct comparisons of cellular phenotypes between patient-derived neurons and healthy-control neurons. Animal models can recapitulate the different psychopathological aspects that should be modeled, offering valuable insights into the neurobiology of SCZ. In addition, invertebrates' models are genetically tractable and offer a powerful approach to dissect the core genetic underpinnings of SCZ, while vertebrate models, especially mammals, with their more complex nervous systems and behavioral repertoire, provide a closer approximation of the human condition to study SCZ-related traits. This narrative review provides a comprehensive overview of the diverse modeling approaches, critically evaluating their strengths and limitations. By synthesizing knowledge from these models, this review offers a valuable source for researchers, clinicians, and stakeholders alike. Integrating findings across these different models may allow us to build a more holistic picture of SCZ pathophysiology, facilitating the exploration of new research avenues and informed decision-making for interventions.
Collapse
Affiliation(s)
- João V Nani
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| | - Alysson R Muotri
- Department of Pediatrics and Department of Molecular and Cellular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
- National Institute for Translational Medicine (INCT-TM, CNPq/FAPESP/CAPES), Ribeirão Preto, Brazil.
| |
Collapse
|
2
|
Honda T, Kurita K, Arai Y, Pandey H, Sawa A, Furukubo-Tokunaga K. FMR1 genetically interacts with DISC1 to regulate glutamatergic synaptogenesis. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:112. [PMID: 39604386 PMCID: PMC11603133 DOI: 10.1038/s41537-024-00532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024]
Abstract
Synaptic development and functions have been hypothesized as crucial mechanisms of diverse neuropsychiatric disorders. Studies in past years suggest that mutations in the fragile X mental retardation 1 (FMR1) are associated with diverse mental disorders including intellectual disability, autistic spectrum disorder, and schizophrenia. In this study, we have examined genetical interactions between a select set of risk factor genes using fruit flies to find that dfmr1, the Drosophila homolog of the human FMR1 gene, exhibits functional interactions with DISC1 in synaptic development. We show that DISC1 overexpression in the dfmr1null heterozygous background causes synaptic alterations at the larval neuromuscular junctions that are distinct from those in the wild-type background. Loss of dfmr1 modifies the DISC1 overexpression phenotype in synaptic formation, suppressing the formation of synapse boutons. Interaction between the two genes was further supported molecularly by the results that dfmr1 mutations suppress the DISC1-mediated upregulations of the postsynaptic expression of a glutamate receptor and the expression of ELKS/CAST protein, Bruchpilot, in presynaptic motoneurons. Moreover, DISC1 overexpression in the dfmr1null heterozygous background causes downregulation of a MAP1 family protein, Futsch. These results thus suggest an intriguing converging mechanism controlled by FMR1 and DISC1 in the developing glutamatergic synapses.
Collapse
Affiliation(s)
- Takato Honda
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusettes Institute of Technology (MIT), Cambridge, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusettes General Hospital, Harvard Medical School, Boston, MA, USA.
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Department of Biotechnology, Mahatma Gandhi Central University, Motihari, Bihar, India
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Mental Health, Pharmacology, Biomedical Engineering and Genetic Medicine, Johns Hopkins University School of Medicine and Bloomberg School of Public Health, Johns Hopkins Medicine, Baltimore, MD, USA
| | | |
Collapse
|
3
|
Chowdhury MAR, Haq MM, Lee JH, Jeong S. Multi-faceted regulation of CREB family transcription factors. Front Mol Neurosci 2024; 17:1408949. [PMID: 39165717 PMCID: PMC11333461 DOI: 10.3389/fnmol.2024.1408949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/12/2024] [Indexed: 08/22/2024] Open
Abstract
cAMP response element-binding protein (CREB) is a ubiquitously expressed nuclear transcription factor, which can be constitutively activated regardless of external stimuli or be inducibly activated by external factors such as stressors, hormones, neurotransmitters, and growth factors. However, CREB controls diverse biological processes including cell growth, differentiation, proliferation, survival, apoptosis in a cell-type-specific manner. The diverse functions of CREB appear to be due to CREB-mediated differential gene expression that depends on cAMP response elements and multi-faceted regulation of CREB activity. Indeed, the transcriptional activity of CREB is controlled at several levels including alternative splicing, post-translational modification, dimerization, specific transcriptional co-activators, non-coding small RNAs, and epigenetic regulation. In this review, we present versatile regulatory modes of CREB family transcription factors and discuss their functional consequences.
Collapse
Affiliation(s)
- Md Arifur Rahman Chowdhury
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Md Mazedul Haq
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sangyun Jeong
- Department of Bioactive Material Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Molecular Biology, and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
4
|
Samardžija B, Petrović M, Zaharija B, Medija M, Meštrović A, Bradshaw NJ, Filošević Vujnović A, Andretić Waldowski R. Transgenic Drosophila melanogaster Carrying a Human Full-Length DISC1 Construct (UAS- hflDISC1) Showing Effects on Social Interaction Networks. Curr Issues Mol Biol 2024; 46:8526-8549. [PMID: 39194719 DOI: 10.3390/cimb46080502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a scaffold protein implicated in major mental illnesses including schizophrenia, with a significant negative impact on social life. To investigate if DISC1 affects social interactions in Drosophila melanogaster, we created transgenic flies with second or third chromosome insertions of the human full-length DISC1 (hflDISC1) gene fused to a UAS promotor (UAS-hflDISC1). Initial characterization of the insertion lines showed unexpected endogenous expression of the DISC1 protein that led to various behavioral and neurochemical phenotypes. Social interaction network (SIN) analysis showed altered social dynamics and organizational structures. This was in agreement with the altered levels of the locomotor activity of individual flies monitored for 24 h. Together with a decreased ability to climb vertical surfaces, the observed phenotypes indicate altered motor functions that could be due to a change in the function of the motor neurons and/or central brain. The changes in social behavior and motor function suggest that the inserted hflDISC1 gene influences nervous system functioning that parallels symptoms of DISC1-related mental diseases in humans. Furthermore, neurochemical analyses of transgenic lines revealed increased levels of hydrogen peroxide and decreased levels of glutathione, indicating an impact of DISC1 on the dynamics of redox regulation, similar to that reported in transgenic mammals. Future studies are needed to address the localization of DISC1 expression and to address how the redox parameter changes correlate with the observed behavioral changes.
Collapse
Affiliation(s)
- Bobana Samardžija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Milan Petrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Beti Zaharija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Marta Medija
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Meštrović
- Faculty of Informatics and Digital Technologies, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Ana Filošević Vujnović
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
| |
Collapse
|
5
|
Dysregulated Signaling at Postsynaptic Density: A Systematic Review and Translational Appraisal for the Pathophysiology, Clinics, and Antipsychotics' Treatment of Schizophrenia. Cells 2023; 12:cells12040574. [PMID: 36831241 PMCID: PMC9954794 DOI: 10.3390/cells12040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Emerging evidence from genomics, post-mortem, and preclinical studies point to a potential dysregulation of molecular signaling at postsynaptic density (PSD) in schizophrenia pathophysiology. The PSD that identifies the archetypal asymmetric synapse is a structure of approximately 300 nm in diameter, localized behind the neuronal membrane in the glutamatergic synapse, and constituted by more than 1000 proteins, including receptors, adaptors, kinases, and scaffold proteins. Furthermore, using FASS (fluorescence-activated synaptosome sorting) techniques, glutamatergic synaptosomes were isolated at around 70 nm, where the receptors anchored to the PSD proteins can diffuse laterally along the PSD and were stabilized by scaffold proteins in nanodomains of 50-80 nm at a distance of 20-40 nm creating "nanocolumns" within the synaptic button. In this context, PSD was envisioned as a multimodal hub integrating multiple signaling-related intracellular functions. Dysfunctions of glutamate signaling have been postulated in schizophrenia, starting from the glutamate receptor's interaction with scaffolding proteins involved in the N-methyl-D-aspartate receptor (NMDAR). Despite the emerging role of PSD proteins in behavioral disorders, there is currently no systematic review that integrates preclinical and clinical findings addressing dysregulated PSD signaling and translational implications for antipsychotic treatment in the aberrant postsynaptic function context. Here we reviewed a critical appraisal of the role of dysregulated PSD proteins signaling in the pathophysiology of schizophrenia, discussing how antipsychotics may affect PSD structures and synaptic plasticity in brain regions relevant to psychosis.
Collapse
|
6
|
Cabana-Domínguez J, Antón-Galindo E, Fernàndez-Castillo N, Singgih EL, O'Leary A, Norton WH, Strekalova T, Schenck A, Reif A, Lesch KP, Slattery D, Cormand B. The translational genetics of ADHD and related phenotypes in model organisms. Neurosci Biobehav Rev 2023; 144:104949. [PMID: 36368527 DOI: 10.1016/j.neubiorev.2022.104949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/10/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent neurodevelopmental disorder resulting from the interaction between genetic and environmental risk factors. It is well known that ADHD co-occurs frequently with other psychiatric disorders due, in part, to shared genetics factors. Although many studies have contributed to delineate the genetic landscape of psychiatric disorders, their specific molecular underpinnings are still not fully understood. The use of animal models can help us to understand the role of specific genes and environmental stimuli-induced epigenetic modifications in the pathogenesis of ADHD and its comorbidities. The aim of this review is to provide an overview on the functional work performed in rodents, zebrafish and fruit fly and highlight the generated insights into the biology of ADHD, with a special focus on genetics and epigenetics. We also describe the behavioral tests that are available to study ADHD-relevant phenotypes and comorbid traits in these models. Furthermore, we have searched for new models to study ADHD and its comorbidities, which can be useful to test potential pharmacological treatments.
Collapse
Affiliation(s)
- Judit Cabana-Domínguez
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| | - Ester Antón-Galindo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain
| | - Euginia L Singgih
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany; Division of Neuropsychopharmacology, Department of Psychology, University of Tartu, Tartu, Estonia
| | - William Hg Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany, and Department of Neuropsychology and Psychiatry, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, the Netherlands
| | - David Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Bru Cormand
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Barcelona, Catalonia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Catalonia, Spain; Institut de Recerca Sant Joan de Déu (IR-SJD), Esplugues de Llobregat, Catalonia, Spain.
| |
Collapse
|
7
|
Lee D, Woo Y, Lim JS, Park I, Park SK, Park JW. Quantification of a Neurological Protein in a Single Cell Without Amplification. ACS OMEGA 2022; 7:20165-20171. [PMID: 35722002 PMCID: PMC9201896 DOI: 10.1021/acsomega.2c02009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Proteins are key biomolecules that not only play various roles in the living body but also are used as biomarkers. If these proteins can be quantified at the level of a single cell, understanding the role of proteins will be deepened and diagnosing diseases and abnormality will be further upgraded. In this study, we quantified a neurological protein in a single cell using atomic force microscopy (AFM). After capturing specifically disrupted-in-schizophrenia 1 (DISC1) in a single cell onto a microspot immobilizing the corresponding antibody on the surface, force mapping with AFM was followed to visualize individual DISC1. Although a large variation of the number of DISC1 in a cell was observed, the average number is 4.38 × 103, and the number agrees with the ensemble-averaged value. The current AFM approach for the quantitative analysis of proteins in a single cell should be useful to study molecular behavior of proteins in depth and to follow physiological change of individual cells in response to external stimuli.
Collapse
Affiliation(s)
- Donggyu Lee
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Youngsik Woo
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Ji-seon Lim
- Department
of Chemistry, Pohang University of Science
and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, Republic of Korea
| | - Ikbum Park
- Analysis
and Assessment Research Center, Research
Institute of Industrial Science and Technology, 67 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic
of Korea
| | - Sang Ki Park
- Department
of Life Sciences, Pohang University of Science
and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, Republic of Korea
| | - Joon Won Park
- Department
of Chemistry, Pohang University of Science
and Technology, 77 Cheongam-Ro,
Nam-Gu, Pohang 37673, Republic of Korea
- Institute
of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic
of Korea
| |
Collapse
|
8
|
Tsao CY, Tuan LH, Lee LJH, Liu CM, Hwu HG, Lee LJ. Impaired response to sleep deprivation in heterozygous Disc1 mutant mice. World J Biol Psychiatry 2022; 23:55-66. [PMID: 33783301 DOI: 10.1080/15622975.2021.1907724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Sleep/circadian rhythm disturbances are environmental stress factors that might interact with genetic risk factors and contribute to the pathogenesis of psychiatric disorders. METHODS In this study, the multiple-platform method was used to induce sleep deprivation (SD). We evaluated the impact of 72-hour SD in behavioural, anatomical, and biochemical aspects in heterozygous Disc1 mutant (Disc1 Het) mice, an animal model of schizophrenia. RESULTS The sleep pattern and circadian activity were not altered in Disc1 Het mice. Yet, we observed differential responses to SD stress between genotypes. Increased microglial density and reduced neuronal proliferative activity were found in the dentate gyrus, a neurogenic niche, in Het-SD mice. Notably, SD-induced Bdnf mRNA elevations were evident in both WT and Het mice, while only in WT-SD mice did we observe increased BDNF protein expression. Our results suggested an SD-induced physical response featured by the elevation of BDNF protein expression to counteract the harmful influences of SD and sufficient DISC1 is required in this process. CONCLUSIONS The present study proposes that sleep disturbance could be pathogenic especially in genetically predisposed subjects who fail to cope with the stress. Potential therapeutic strategies for psychiatric disorders targeting the mRNA translation machinery could be considered.
Collapse
Affiliation(s)
- Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Heng Tuan
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lukas Jyuhn-Hsiarn Lee
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan.,Departments of Environmental and Occupational Medicine, Neurology and Stroke Center, National Taiwan University Hospital, Taipei, Taiwan.,Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan.,Research Center for Environmental Medicine, Ph.D. Program of Environmental and Occupational Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Min Liu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hai-Gwo Hwu
- Department of Psychiatry, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Cukkemane A, Becker N, Zielinski M, Frieg B, Lakomek NA, Heise H, Schröder GF, Willbold D, Weiergräber OH. Conformational heterogeneity coupled with β-fibril formation of a scaffold protein involved in chronic mental illnesses. Transl Psychiatry 2021; 11:639. [PMID: 34921141 PMCID: PMC8683410 DOI: 10.1038/s41398-021-01765-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic mental illnesses (CMIs) pose a significant challenge to global health due to their complex and poorly understood etiologies and hence, absence of causal therapies. Research of the past two decades has revealed dysfunction of the disrupted in schizophrenia 1 (DISC1) protein as a predisposing factor involved in several psychiatric disorders. DISC1 is a multifaceted protein that serves myriads of functions in mammalian cells, for instance, influencing neuronal development and synapse maintenance. It serves as a scaffold hub forming complexes with a variety (~300) of partners that constitute its interactome. Herein, using combinations of structural and biophysical tools, we demonstrate that the C-region of the DISC1 protein is highly polymorphic, with important consequences for its physiological role. Results from solid-state NMR spectroscopy and electron microscopy indicate that the protein not only forms symmetric oligomers but also gives rise to fibrils closely resembling those found in certain established amyloid proteinopathies. Furthermore, its aggregation as studied by isothermal titration calorimetry (ITC) is an exergonic process, involving a negative enthalpy change that drives the formation of oligomeric (presumably tetrameric) species as well as β-fibrils. We have been able to narrow down the β-core region participating in fibrillization to residues 716-761 of full-length human DISC1. This region is absent in the DISC1Δ22aa splice variant, resulting in reduced association with proteins from the dynein motor complex, viz., NDE-like 1 (NDEL1) and lissencephaly 1 (LIS1), which are crucial during mitosis. By employing surface plasmon resonance, we show that the oligomeric DISC1 C-region has an increased affinity and shows cooperativity in binding to LIS1 and NDEL1, in contrast to the noncooperative binding mode exhibited by the monomeric version. Based on the derived structural models, we propose that the association between the binding partners involves two neighboring subunits of DISC1 C-region oligomers. Altogether, our findings highlight the significance of the DISC1 C-region as a crucial factor governing the balance between its physiological role as a multifunctional scaffold protein and aggregation-related aberrations with potential significance for disease.
Collapse
Affiliation(s)
- Abhishek Cukkemane
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Nina Becker
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Mara Zielinski
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Benedikt Frieg
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Nils-Alexander Lakomek
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Henrike Heise
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Gunnar F. Schröder
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany.
| | - Oliver H. Weiergräber
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
10
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Wang X, Ye F, Wen Z, Guo Z, Yu C, Huang WK, Rojas Ringeling F, Su Y, Zheng W, Zhou G, Christian KM, Song H, Zhang M, Ming GL. Structural interaction between DISC1 and ATF4 underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders. Mol Psychiatry 2021; 26:1346-1360. [PMID: 31444471 PMCID: PMC8444148 DOI: 10.1038/s41380-019-0485-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 04/01/2019] [Accepted: 05/17/2019] [Indexed: 01/01/2023]
Abstract
Psychiatric disorders are a collection of heterogeneous mental disorders arising from a contribution of genetic and environmental insults, many of which molecularly converge on transcriptional dysregulation, resulting in altered synaptic functions. The underlying mechanisms linking the genetic lesion and functional phenotypes remain largely unknown. Patient iPSC-derived neurons with a rare frameshift DISC1 (Disrupted-in-schizophrenia 1) mutation have previously been shown to exhibit aberrant gene expression and deficits in synaptic functions. How DISC1 regulates gene expression is largely unknown. Here we show that Activating Transcription Factor 4 (ATF4), a DISC1 binding partner, is more abundant in the nucleus of DISC1 mutant human neurons and exhibits enhanced binding to a collection of dysregulated genes. Functionally, overexpressing ATF4 in control neurons recapitulates deficits seen in DISC1 mutant neurons, whereas transcriptional and synaptic deficits are rescued in DISC1 mutant neurons with CRISPR-mediated heterozygous ATF4 knockout. By solving the high-resolution atomic structure of the DISC1-ATF4 complex, we show that mechanistically, the mutation of DISC1 disrupts normal DISC1-ATF4 interaction, and results in excessive ATF4 binding to DNA targets and deregulated gene expression. Together, our study identifies the molecular and structural basis of an DISC1-ATF4 interaction underlying transcriptional and synaptic dysregulation in an iPSC model of mental disorders.
Collapse
Affiliation(s)
- Xinyuan Wang
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Ziyuan Guo
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Chuan Yu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Wei-Kai Huang
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Pathology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Francisca Rojas Ringeling
- The Human Genetics Pre-doctoral Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yijing Su
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guomin Zhou
- School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
| | - Kimberly M Christian
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- The Epigenetics Institute, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Cell and Developmental Biology, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Institute for Regenerative Medicine, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School for Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
12
|
Lee SB, Park J, Kwak Y, Park YU, Nhung TTM, Suh BK, Woo Y, Suh Y, Cho E, Cho S, Park SK. Disrupted-in-schizophrenia 1 enhances the quality of circadian rhythm by stabilizing BMAL1. Transl Psychiatry 2021; 11:110. [PMID: 33542182 PMCID: PMC7862247 DOI: 10.1038/s41398-021-01212-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/15/2020] [Accepted: 01/07/2021] [Indexed: 11/27/2022] Open
Abstract
Disrupted-in-schizophrenia 1 (DISC1) is a scaffold protein that has been implicated in multiple mental disorders. DISC1 is known to regulate neuronal proliferation, signaling, and intracellular calcium homeostasis, as well as neurodevelopment. Although DISC1 was linked to sleep-associated behaviors, whether DISC1 functions in the circadian rhythm has not been determined yet. In this work, we revealed that Disc1 expression exhibits daily oscillating pattern and is regulated by binding of circadian locomotor output cycles kaput (CLOCK) and Brain and muscle Arnt-like protein-1 (BMAL1) heterodimer to E-box sequences in its promoter. Interestingly, Disc1 deficiency increases the ubiquitination of BMAL1 and de-stabilizes it, thereby reducing its protein levels. DISC1 inhibits the activity of GSK3β, which promotes BMAL1 ubiquitination, suggesting that DISC1 regulates BMAL1 stability by inhibiting its ubiquitination. Moreover, Disc1-deficient cells and mice show reduced expression of other circadian genes. Finally, Disc1-LI (Disc1 knockout) mice exhibit damped circadian physiology and behaviors. Collectively, these findings demonstrate that the oscillation of DISC1 expression is under the control of CLOCK and BMAL1, and that DISC1 contributes to the core circadian system by regulating BMAL1 stability.
Collapse
Affiliation(s)
- Su Been Lee
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jihyun Park
- grid.289247.20000 0001 2171 7818Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yongdo Kwak
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.507563.2Present Address: SK biopharmaceuticals Ltd, Seongnam-Si, Republic of Korea
| | - Young-Un Park
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea ,grid.49606.3d0000 0001 1364 9317Present Address: Department of Pathology, College of Medicine, Hanyang University, Seoul, Korea
| | - Truong Thi My Nhung
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Bo Kyoung Suh
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Youngsik Woo
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeongjun Suh
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eunbyul Cho
- grid.49100.3c0000 0001 0742 4007Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sehyung Cho
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
13
|
Singgih EL, van der Voet M, Schimmel-Naber M, Brinkmann EL, Schenck A, Franke B. Investigating cytosolic 5'-nucleotidase II family genes as candidates for neuropsychiatric disorders in Drosophila (114/150 chr). Transl Psychiatry 2021; 11:55. [PMID: 33462198 PMCID: PMC7813868 DOI: 10.1038/s41398-020-01149-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/25/2022] Open
Abstract
Cytosolic 5'-nucleotidases II (cNT5-II) are an evolutionary conserved family of 5'-nucleotidases that catalyze the intracellular hydrolysis of nucleotides. In humans, the family is encoded by five genes, namely NT5C2, NT5DC1, NT5DC2, NT5DC3, and NT5DC4. While very little is known about the role of these genes in the nervous system, several of them have been associated with neuropsychiatric disorders. Here, we tested whether manipulating neuronal expression of cNT5-II orthologues affects neuropsychiatric disorders-related phenotypes in the model organism Drosophila melanogaster. We investigated the brain expression of Drosophila orthologues of cNT5-II family (dNT5A-CG2277, dNT5B-CG32549, and dNT5C-CG1814) using quantitative real-time polymerase chain reaction (qRT-PCR). Using the UAS/Gal4 system, we also manipulated the expression of these genes specifically in neurons. The knockdown was subjected to neuropsychiatric disorder-relevant behavioral assays, namely light-off jump reflex habituation and locomotor activity, and sleep was measured. In addition, neuromuscular junction synaptic morphology was assessed. We found that dNT5A, dNT5B, and dNT5C were all expressed in the brain. dNT5C was particularly enriched in the brain, especially at pharate and adult stages. Pan-neuronal knockdown of dNT5A and dNT5C showed impaired habituation learning. Knockdown of each of the genes also consistently led to mildly reduced activity and/or increased sleep. None of the knockdown models displayed significant alterations in synaptic morphology. In conclusion, in addition to genetic associations with psychiatric disorders in humans, altered expression of cNT5-II genes in the Drosophila nervous system plays a role in disease-relevant behaviors.
Collapse
Affiliation(s)
- Euginia L. Singgih
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Monique van der Voet
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marlies Schimmel-Naber
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Emma L. Brinkmann
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annette Schenck
- grid.10417.330000 0004 0444 9382Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Delorme TC, Srivastava LK, Cermakian N. Are Circadian Disturbances a Core Pathophysiological Component of Schizophrenia? J Biol Rhythms 2020; 35:325-339. [DOI: 10.1177/0748730420929448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a multifactorial disorder caused by a combination of genetic variations and exposure to environmental insults. Sleep and circadian rhythm disturbances are a prominent and ubiquitous feature of many psychiatric disorders, including schizophrenia. There is growing interest in uncovering the mechanistic link between schizophrenia and circadian rhythms, which may directly affect disorder outcomes. In this review, we explore the interaction between schizophrenia and circadian rhythms from 2 complementary angles. First, we review evidence that sleep and circadian rhythm disturbances constitute a fundamental component of schizophrenia, as supported by both human studies and animal models with genetic mutations related to schizophrenia. Second, we discuss the idea that circadian rhythm disruption interacts with existing risk factors for schizophrenia to promote schizophrenia-relevant behavioral and neurobiological abnormalities. Understanding the mechanistic link between schizophrenia and circadian rhythms will have implications for mitigating risk to the disorder and informing the development of circadian-based therapies.
Collapse
Affiliation(s)
- Tara C. Delorme
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Lalit K. Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
15
|
Kano SI, Hodgkinson CA, Jones-Brando L, Eastwood S, Ishizuka K, Niwa M, Choi EY, Chang DJ, Chen Y, Velivela SD, Leister F, Wood J, Chowdari K, Ducci F, Caycedo DA, Heinz E, Newman ER, Cascella N, Mortensen PB, Zandi PP, Dickerson F, Nimgaonkar V, Goldman D, Harrison PJ, Yolken RH, Sawa A. Host-parasite interaction associated with major mental illness. Mol Psychiatry 2020; 25:194-205. [PMID: 30127472 PMCID: PMC6382596 DOI: 10.1038/s41380-018-0217-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 11/23/2022]
Abstract
Clinical studies frequently report that patients with major mental illness such as schizophrenia and bipolar disorder have co-morbid physical conditions, suggesting that systemic alterations affecting both brain and peripheral tissues might underlie the disorders. Numerous studies have reported elevated levels of anti-Toxoplasma gondii (T. gondii) antibodies in patients with major mental illnesses, but the underlying mechanism was unclear. Using multidisciplinary epidemiological, cell biological, and gene expression profiling approaches, we report here multiple lines of evidence suggesting that a major mental illness-related susceptibility factor, Disrupted in schizophrenia (DISC1), is involved in host immune responses against T. gondii infection. Specifically, our cell biology and gene expression studies have revealed that DISC1 Leu607Phe variation, which changes DISC1 interaction with activating transcription factor 4 (ATF4), modifies gene expression patterns upon T. gondii infection. Our epidemiological data have also shown that DISC1 607 Phe/Phe genotype was associated with higher T. gondii antibody levels in sera. Although further studies are required, our study provides mechanistic insight into one of the few well-replicated serological observations in major mental illness.
Collapse
Affiliation(s)
- Shin-Ichi Kano
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Colin A Hodgkinson
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Lorraine Jones-Brando
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Sharon Eastwood
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Koko Ishizuka
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Minae Niwa
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Eric Y Choi
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Daniel J Chang
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Yian Chen
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Swetha D Velivela
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Flora Leister
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joel Wood
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Kodavali Chowdari
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Francesca Ducci
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Daniel A Caycedo
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Elizabeth Heinz
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Emily R Newman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Nicola Cascella
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Preben B Mortensen
- National Centre for Register-Based Research, University of Aarhus, Aarhus, 8000, Denmark
| | - Peter P Zandi
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt Health System, Baltimore, MD, 21204, USA
| | - Vishwajit Nimgaonkar
- Departments of Psychiatry and Human Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, 20892, USA
| | - Paul J Harrison
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, United Kingdom
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Akira Sawa
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
16
|
Fuentes-Villalobos F, Farkas C, Riquelme-Barrios S, Armijo ME, Soto-Rifo R, Pincheira R, Castro AF. DISC1 promotes translation maintenance during sodium arsenite-induced oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:657-669. [DOI: 10.1016/j.bbagrm.2019.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/13/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
|
17
|
Suh Y, Noh SJ, Lee S, Suh BK, Lee SB, Choi J, Jeong J, Kim S, Park SK. Dopamine D1 Receptor (D1R) Expression Is Controlled by a Transcriptional Repressor Complex Containing DISC1. Mol Neurobiol 2019; 56:6725-6735. [PMID: 30915712 PMCID: PMC6728282 DOI: 10.1007/s12035-019-1566-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/13/2019] [Indexed: 11/26/2022]
Abstract
Disrupted-in-Schizophrenia 1 (DISC1) is a scaffold protein implicated in various psychiatric diseases. Dysregulation of the dopamine system has been associated with DISC1 deficiency, while the molecular mechanism is unclear. In this study, we propose a novel molecular mechanism underlying the transcriptional regulation of the dopamine D1 receptor (D1R) in the striatum via DISC1. We verified the increase in D1R at the transcriptional level in the striatum of DISC1-deficient mouse models and altered histone acetylation status at the D1r locus. We identified a functional interaction between DISC1 and Krüppel-like factor 16 (KLF16). KLF16 translocates DISC1 into the nucleus and forms a regulatory complex by recruiting SIN3A corepressor complexes to the D1r locus. Moreover, DISC1-deficient mice have altered D1R-mediated signaling in the striatum and exhibit hyperlocomotion in response to cocaine; the blockade of D1R suppresses these effects. Taken together, our results suggest that nuclear DISC1 plays a critical role in the transcriptional regulation of D1R in the striatal neuron, providing a mechanistic link between DISC1 and dopamine-related psychiatric symptoms.
Collapse
Affiliation(s)
- Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su-Jin Noh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Saebom Lee
- The Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University of School of Medicine, Baltimore, MD, USA
- The Center for Nanomedicine at Wilmer Eye Institute, The Johns Hopkins University of School of Medicine, Baltimore, MD, USA
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Su Been Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jinhyuk Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jaehoon Jeong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Sangjune Kim
- Neurodegeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University of School of Medicine, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
18
|
St Clair D, Johnstone M. Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0037. [PMID: 29352035 PMCID: PMC5790834 DOI: 10.1098/rstb.2017.0037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2017] [Indexed: 12/22/2022] Open
Abstract
Solid progress has occurred over the last decade in our understanding of the molecular genetic basis of neurodevelopmental disorders, and of schizophrenia and autism in particular. Although the genetic architecture of both disorders is far more complex than previously imagined, many key loci have at last been identified. This has allowed in vivo and in vitro technologies to be refined to model specific high-penetrant genetic loci involved in both disorders. Using the DISC1/NDE1 and CYFIP1/EIF4E loci as exemplars, we explore the opportunities and challenges of using animal models and human-induced pluripotent stem cell technologies to further understand/treat and potentially reverse the worst consequences of these debilitating disorders. This article is part of a discussion meeting issue ‘Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists’.
Collapse
Affiliation(s)
- David St Clair
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK.,Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
20
|
Niimori-Kita K, Tamamaki N, Koizumi D, Niimori D. Matrin-3 is essential for fibroblast growth factor 2-dependent maintenance of neural stem cells. Sci Rep 2018; 8:13412. [PMID: 30194346 PMCID: PMC6128890 DOI: 10.1038/s41598-018-31597-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/22/2018] [Indexed: 12/11/2022] Open
Abstract
To investigate the mechanisms underlying the maintenance of neural stem cells, we performed two-dimensional fluorescence-difference gel electrophoresis (2D-DIGE) targeting the nuclear phosphorylated proteins. Nuclear phosphorylated protein Matrin-3 was identified in neural stem cells (NSCs) after stimulation using fibroblast growth factor 2 (FGF2). Matrin-3 was expressed in the mouse embryonic subventricular and ventricular zones. Small interfering RNA (siRNA)-mediated knockdown of Matrin-3 caused neuronal differentiation of NSCs in vitro, and altered the cerebral layer structure of foetal brain in vivo. Transfection of Matrin-3 plasmids in which the serine 208 residue was point-mutated to alanine (Ser208Ala mutant Matrin3) and inhibition of Ataxia telangiectasia mutated kinase (ATM kinase), which phosphorylates Matrin-3 Ser208 residue, caused neuronal differentiation and decreased the proliferation of neurosphere-forming stem cells. Thus, our proteomic approach revealed that Matrin-3 phosphorylation was essential for FGF2-dependent maintenance of NSCs in vitro and in vivo.
Collapse
Affiliation(s)
- Kanako Niimori-Kita
- Department of Molecular Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan.
| | - Nobuaki Tamamaki
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan
| | - Daikai Koizumi
- Department of Molecular Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan
| | - Daisuke Niimori
- Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
21
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
22
|
Katsel P, Fam P, Tan W, Khan S, Yang C, Jouroukhin Y, Rudchenko S, Pletnikov MV, Haroutunian V. Overexpression of Truncated Human DISC1 Induces Appearance of Hindbrain Oligodendroglia in the Forebrain During Development. Schizophr Bull 2018; 44:515-524. [PMID: 28981898 PMCID: PMC5890457 DOI: 10.1093/schbul/sbx106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic, neuroimaging, and gene expression studies suggest a role for oligodendrocyte (OLG) dysfunction in schizophrenia (SZ). Disrupted-in-schizophrenia 1 (DISC1) is a risk gene for major psychiatric disorders, including SZ. Overexpression of mutant truncated (hDISC1), but not full-length sequence of human DISC1 in forebrain influenced OLG differentiation and proliferation of glial progenitors in the developing cerebral cortex concurrently with reduction of OLG progenitor markers in the hindbrain. We examined gene and protein expression of the molecular determinants of hindbrain OLG development and their interactions with DISC1 in mutant hDISC1 mice. We found ectopic upregulation of hindbrain glial progenitor markers (early growth response 2 [Egr2] and NK2 homeobox 2 [Nkx2-2]) in the forebrain of hDISC1 (E15) embryos. DISC1 and Nkx2-2 were coexpressed and interacted in progenitor cells. Overexpression of truncated hDISC1 impaired interactions between DISC1 and Nkx2-2, which was associated with increased differentiation of OLG and upregulation of hindbrain mature OLG markers (laminin alpha-1 [LAMA1] and myelin protein zero [MPZ]) suggesting a suppressive function of endogenous DISC1 in OLG specialization of hindbrain glial progenitors during embryogenesis. Consistent with findings in hDISC1 mice, several hindbrain OLG markers (PRX, LAMA1, and MPZ) were significantly upregulated in the superior temporal cortex of persons with SZ. These findings show a significant effect of truncated hDISC1 on glial identity cells along the rostrocaudal axis and their OLG specification. Appearance of hindbrain OLG lineage cells and their premature differentiation may affect cerebrocortical organization and contribute to the pathophysiology of SZ.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,To whom correspondence should be addressed; JJ Peters VA Medical Center, 151 Research Build, Room 5F-04C, 130 West Kingsbridge Road, Bronx, NY 10468; tel: 718-584-9000 ext. 6067, fax: 718-741-4746, e-mail:
| | - Peter Fam
- Department of Psychiatry, James J Peters VA Medical Center, Bronx, NY
| | - Weilun Tan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sonia Khan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY
| | - Chunxia Yang
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yan Jouroukhin
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Mikhail V Pletnikov
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD,Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY,Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY
| |
Collapse
|
23
|
Shiftwork-Mediated Disruptions of Circadian Rhythms and Sleep Homeostasis Cause Serious Health Problems. Int J Genomics 2018; 2018:8576890. [PMID: 29607311 PMCID: PMC5828540 DOI: 10.1155/2018/8576890] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Shiftwork became common during the last few decades with the growing demands of human life. Despite the social inactivity and irregularity in habits, working in continuous irregular shifts causes serious health issues including sleep disorders, psychiatric disorders, cancer, and metabolic disorders. These health problems arise due to the disruption in circadian clock system, which is associated with alterations in genetic expressions. Alteration in clock controlling genes further affects genes linked with disorders including major depression disorder, bipolar disorder, phase delay and phase advance sleep syndromes, breast cancer, and colon cancer. A diverse research work is needed focusing on broad spectrum changes caused by jet lag in brain and neuronal system. This review is an attempt to motivate the researchers to conduct advanced studies in this area to identify the risk factors and mechanisms. Its goal is extended to make the shift workers aware about the risks associated with shiftwork.
Collapse
|
24
|
Pocivavsek A, Rowland LM. Basic Neuroscience Illuminates Causal Relationship Between Sleep and Memory: Translating to Schizophrenia. Schizophr Bull 2018; 44:7-14. [PMID: 29136236 PMCID: PMC5768044 DOI: 10.1093/schbul/sbx151] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patients with schizophrenia are often plagued by sleep disturbances that can exacerbate the illness, including potentiating psychosis and cognitive impairments. Cognitive dysfunction is a core feature of schizophrenia with learning and memory being particularly impaired. Sleep disruptions often accompanying the illness and may be key mechanism that contribute to these core dysfunctions. In this special translational neuroscience feature, we highlight the role of sleep in mediating cognitive function, with a special focus on learning and memory. By defining dysfunctional sleep architecture and rhythms in schizophrenia, we focus on the disarray of mechanisms critical to learning and memory and postulate an association between sleep disturbances and cognitive impairments in the disorder. Lastly, we review preclinical models of schizophrenia and highlight exciting translational research that may lead to new therapeutic approaches to alleviating sleep disturbances and effectively improving cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Ana Pocivavsek
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| | - Laura M Rowland
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
25
|
Shao L, Lu B, Wen Z, Teng S, Wang L, Zhao Y, Wang L, Ishizuka K, Xu X, Sawa A, Song H, Ming G, Zhong Y. Disrupted-in-Schizophrenia-1 (DISC1) protein disturbs neural function in multiple disease-risk pathways. Hum Mol Genet 2018; 26:2634-2648. [PMID: 28472294 DOI: 10.1093/hmg/ddx147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/13/2017] [Indexed: 12/20/2022] Open
Abstract
Although the genetic contribution is under debate, biological studies in multiple mouse models have suggested that the Disrupted-in-Schizophrenia-1 (DISC1) protein may contribute to susceptibility to psychiatric disorders. In the present study, we took the advantages of the Drosophila model to dissect the molecular pathways that can be affected by DISC1 in the context of pathology-related phenotypes. We found that three pathways that include the homologs of Drosophila Dys, Trio, and Shot were downregulated by introducing a C-terminal truncated mutant DISC1. Consistently, these three molecules were downregulated in the induced pluripotent stem cell-derived forebrain neurons from the subjects carrying a frameshift deletion in DISC1 C-terminus. Importantly, the three pathways were underscored in the pathophysiology of psychiatric disorders in bioinformatics analysis. Taken together, our findings are in line with the polygenic theory of psychiatric disorders.
Collapse
Affiliation(s)
- Lisha Shao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Binyan Lu
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, P.R. China
| | - Zhexing Wen
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shaolei Teng
- Department of Biology, Howard University, Washington, DC 20059, USA
| | - Lingling Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhao
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Liyuan Wang
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Koko Ishizuka
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Akira Sawa
- Molecular Psychiatry Program, Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hongjun Song
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guoli Ming
- Departments of Psychiatry and Behavioral Sciences, Cell Biology, and Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Zhong
- Tsinghua-Peking Center for Life Sciences, IDG/McGovern Institute for Brain Research, MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China.,Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
26
|
Pandey H, Bourahmoune K, Honda T, Honjo K, Kurita K, Sato T, Sawa A, Furukubo-Tokunaga K. Genetic interaction of DISC1 and Neurexin in the development of fruit fly glutamatergic synapses. NPJ SCHIZOPHRENIA 2017; 3:39. [PMID: 29079805 PMCID: PMC5660244 DOI: 10.1038/s41537-017-0040-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/19/2017] [Accepted: 09/27/2017] [Indexed: 12/31/2022]
Abstract
Originally identified at the breakpoint of a (1;11)(q42.1; q14.3) chromosomal translocation in a Scottish family with a wide range of mental disorders, the DISC1 gene has been a focus of intensive investigations as an entry point to study the molecular mechanisms of diverse mental dysfunctions. Perturbations of the DISC1 functions lead to behavioral changes in animal models, which are relevant to psychiatric conditions in patients. In this work, we have expressed the human DISC1 gene in the fruit fly (Drosophila melanogaster) and performed a genetic screening for the mutations of psychiatric risk genes that cause modifications of DISC1 synaptic phenotypes at the neuromuscular junction. We found that DISC1 interacts with dnrx1, the Drosophila homolog of the human Neurexin (NRXN1) gene, in the development of glutamatergic synapses. While overexpression of DISC1 suppressed the total bouton area on the target muscles and stimulated active zone density in wild-type background, a partial reduction of the dnrx1 activity negated the DISC1–mediated synaptic alterations. Likewise, overexpression of DISC1 stimulated the expression of a glutamate receptor component, DGLURIIA, in wild-type background but not in the dnrx1 heterozygous background. In addition, DISC1 caused mislocalization of Discs large, the Drosophila PSD-95 homolog, in the dnrx1 heterozygous background. Analyses with a series of domain deletions have revealed the importance of axonal localization of the DISC1 protein for efficient suppression of DNRX1 in synaptic boutons. These results thus suggest an intriguing converging mechanism controlled by the interaction of DISC1 and Neurexin in the developing glutamatergic synapses. Fruit fly models uncover a potential new mechanism by which two schizophrenia risk factor genes interact to alter synaptic junctions. DISC1 gene alterations have previously been linked to psychiatric anomalies, although the gene has not been formally recognized as a schizophrenia risk factor. A US-Japan research collaboration led by the University of Tsukuba’s Katsuo Furukubo-Tokunaga expressed human DISC1 in fruit fly synapses to better understand the changes that take place when gene disruption leads to overexpression. The team found that overexpression of DISC1 affected the expression of the fruit fly counterpart to human ‘neurexin,’ a known risk factor for conditions including schizophrenia and autism spectrum disorders. The interaction between neurexin and DISC1 also influenced other synapse-altering genes. Further research is warranted to explore the roles of DISC1 and neurexin in psychiatric disease.
Collapse
Affiliation(s)
- Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Katia Bourahmoune
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takato Honda
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Tomohito Sato
- Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
27
|
Ivanova-Stoevska M, Penchev M, Stoyanova V, Vladimirova R, Milanova V, Kremensky I, Mitev V, Kaneva R. Investigation of candidate genes reveals significant statistical epistasis between DISC1 and TPH2 in Bulgarian affective disorder patients. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1382391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mina Ivanova-Stoevska
- Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
- National Genetic Laboratory, Department of Obstetrics and Gynaecology, Faculty of Medicine, Medical University-Sofia, Sofia, Bulgaria
| | - Mladen Penchev
- Department of Psychiatry, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Vessela Stoyanova
- Department of Psychiatry, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Rossitza Vladimirova
- Department of Psychiatry, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Vihra Milanova
- Department of Psychiatry, Faculty of Medicine, Medical University of Sofia, Sofia, Bulgaria
- Psychiatric Clinic, Alexandrovska University Hospital, Sofia, Bulgaria
| | - Ivo Kremensky
- Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
- National Genetic Laboratory, Department of Obstetrics and Gynaecology, Faculty of Medicine, Medical University-Sofia, Sofia, Bulgaria
| | - Vanio Mitev
- Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| | - Radka Kaneva
- Molecular Medicine Center, Medical University of Sofia, Sofia, Bulgaria
- Department of Medical Chemistry and Biochemistry, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
28
|
Tian Y, Zhang ZC, Han J. Drosophila Studies on Autism Spectrum Disorders. Neurosci Bull 2017; 33:737-746. [PMID: 28795356 DOI: 10.1007/s12264-017-0166-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
In the past decade, numerous genes associated with autism spectrum disorders (ASDs) have been identified. These genes encode key regulators of synaptogenesis, synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Zi Chao Zhang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
29
|
Dittrich L, Petese A, Jackson WS. The natural Disc1-deletion present in several inbred mouse strains does not affect sleep. Sci Rep 2017; 7:5665. [PMID: 28720848 PMCID: PMC5515846 DOI: 10.1038/s41598-017-06015-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/06/2017] [Indexed: 02/03/2023] Open
Abstract
The gene Disrupted in Schizophrenia-1 (DISC1) is linked to a range of psychiatric disorders. Two recent transgenic studies suggest DISC1 is also involved in homeostatic sleep regulation. Several strains of inbred mice commonly used for genome manipulation experiments, including several Swiss and likely all 129 substrains, carry a natural deletion mutation of Disc1. This constitutes a potential confound for studying sleep in genetically modified mice. Since disturbed sleep can also influence psychiatric and neurodegenerative disease models, this putative confound might affect a wide range of studies in several fields. Therefore, we asked to what extent the natural Disc1 deletion affects sleep. To this end, we first compared sleep and electroencephalogram (EEG) phenotypes of 129S4 mice carrying the Disc1 deletion and C57BL/6N mice carrying the full-length version. We then bred Disc1 from C57BL/6N into the 129S4 background, resulting in S4-Disc1 mice. The differences between 129S4 and C57BL/6N were not detected in the 129S4 to S4-Disc1 comparison. We conclude that the mutation has no effect on the measured sleep and EEG characteristics. Thus, it is unlikely the widespread Disc1 deletion has led to spurious results in previous sleep studies or that it alters sleep in mouse models of psychiatric or neurodegenerative diseases.
Collapse
Affiliation(s)
- Lars Dittrich
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Str, 27 53127, Bonn, Germany
| | - Alessandro Petese
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Str, 27 53127, Bonn, Germany
| | - Walker S Jackson
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Sigmund-Freud-Str, 27 53127, Bonn, Germany.
| |
Collapse
|
30
|
Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KKW, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J Clin Invest 2017; 127:1438-1450. [PMID: 28263187 DOI: 10.1172/jci85594] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.
Collapse
|
31
|
Yerabham ASK, Mas PJ, Decker C, Soares DC, Weiergräber OH, Nagel-Steger L, Willbold D, Hart DJ, Bradshaw NJ, Korth C. A structural organization for the Disrupted in Schizophrenia 1 protein, identified by high-throughput screening, reveals distinctly folded regions, which are bisected by mental illness-related mutations. J Biol Chem 2017; 292:6468-6477. [PMID: 28249940 DOI: 10.1074/jbc.m116.773903] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/22/2017] [Indexed: 11/06/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a scaffolding protein of significant importance for neurodevelopment and a prominent candidate protein in the pathology of major mental illness. DISC1 modulates a number of critical neuronal signaling pathways through protein-protein interactions; however, the mechanism by which this occurs and how DISC1 causes mental illness is unclear, partly because knowledge of the structure of DISC1 is lacking. A lack of homology with known proteins has hindered attempts to define its domain composition. Here, we employed the high-throughput Expression of Soluble Proteins by Random Incremental Truncation (ESPRIT) technique to identify discretely folded regions of human DISC1 via solubility assessment of tens of thousands of fragments of recombinant DISC1. We identified four novel structured regions, named D, I, S, and C, at amino acids 257-383, 539-655, 635-738, and 691-836, respectively. One region (D) is located in a DISC1 section previously predicted to be unstructured. All regions encompass coiled-coil or α-helical structures, and three are involved in DISC1 oligomerization. Crucially, three of these domains would be lost or disrupted by a chromosomal translocation event after amino acid 597, which has been strongly linked to major mental illness. Furthermore, we observed that a known illness-related frameshift mutation after amino acid 807 causes the C region to form aberrantly multimeric and aggregated complexes with an unstable secondary structure. This newly revealed domain architecture of DISC1, therefore, provides a powerful framework for understanding the critical role of this protein in a variety of devastating mental illnesses.
Collapse
Affiliation(s)
| | - Philippe J Mas
- the Integrated Structural Biology Grenoble (ISBG) CNRS, CEA, Université Grenoble Alpes, EMBL, 38042 Grenoble, France
| | - Christina Decker
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Dinesh C Soares
- the MRC Human Genetics Unit, Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Oliver H Weiergräber
- the Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany, and
| | - Luitgard Nagel-Steger
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,the Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany, and
| | - Dieter Willbold
- the Institute of Physical Biology, Heinrich Heine University, 40225 Düsseldorf, Germany.,the Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany, and
| | - Darren J Hart
- the Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany, and
| | | | | |
Collapse
|
32
|
|
33
|
Furukubo-Tokunaga K, Kurita K, Honjo K, Pandey H, Ando T, Takayama K, Arai Y, Mochizuki H, Ando M, Kamiya A, Sawa A. DISC1 causes associative memory and neurodevelopmental defects in fruit flies. Mol Psychiatry 2016; 21:1232-43. [PMID: 26976042 PMCID: PMC4993648 DOI: 10.1038/mp.2016.15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/16/2016] [Accepted: 01/20/2016] [Indexed: 01/18/2023]
Abstract
Originally found in a Scottish family with diverse mental disorders, the DISC1 protein has been characterized as an intracellular scaffold protein that associates with diverse binding partners in neural development. To explore its functions in a genetically tractable system, we expressed the human DISC1 in fruit flies (Drosophila melanogaster). As in mammalian neurons, DISC1 is localized to diverse subcellular domains of developing fly neurons including the nuclei, axons and dendrites. Overexpression of DISC1 impairs associative memory. Experiments with deletion/mutation constructs have revealed the importance of amino-terminal domain (46-290) for memory suppression whereas carboxyl domain (598-854) and the amino-terminal residues (1-45) including the nuclear localization signal (NLS1) are dispensable. DISC1 overexpression also causes suppression of axonal and dendritic branching of mushroom body neurons, which mediate a variety of cognitive functions in the fly brain. Analyses with deletion/mutation constructs reveal that protein domains 598-854 and 349-402 are both required for the suppression of axonal branching, while amino-terminal domains including NLS1 are dispensable. In contrast, NLS1 was required for the suppression of dendritic branching, suggesting a mechanism involving gene expression. Moreover, domain 403-596 is also required for the suppression of dendritic branching. We also show that overexpression of DISC1 suppresses glutamatergic synaptogenesis in developing neuromuscular junctions. Deletion/mutation experiments have revealed the importance of protein domains 403-596 and 349-402 for synaptic suppression, while amino-terminal domains including NLS1 are dispensable. Finally, we show that DISC1 functionally interacts with the fly homolog of Dysbindin (DTNBP1) via direct protein-protein interaction in developing synapses.
Collapse
Affiliation(s)
| | - Kazuki Kurita
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Ken Honjo
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Himani Pandey
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Tetsuya Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Kojiro Takayama
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Yuko Arai
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Hiroaki Mochizuki
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Mai Ando
- Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Atsushi Kamiya
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore MD, USA
| |
Collapse
|
34
|
Abstract
Sleep disorders in humans are increasingly appreciated to be not only widespread but also detrimental to multiple facets of physical and mental health. Recent work has begun to shed light on the mechanistic basis of sleep disorders like insomnia, restless legs syndrome, narcolepsy, and a host of others, but a more detailed genetic and molecular understanding of how sleep goes awry is lacking. Over the past 15 years, studies in Drosophila have yielded new insights into basic questions regarding sleep function and regulation. More recently, powerful genetic approaches in the fly have been applied toward studying primary human sleep disorders and other disease states associated with dysregulated sleep. In this review, we discuss the contribution of Drosophila to the landscape of sleep biology, examining not only fundamental advances in sleep neurobiology but also how flies have begun to inform pathological sleep states in humans.
Collapse
|
35
|
Jaaro-Peled H, Altimus C, LeGates T, Cash-Padgett T, Zoubovsky S, Hikida T, Ishizuka K, Hattar S, Mongrain V, Sawa A. Abnormal wake/sleep pattern in a novel gain-of-function model of DISC1. Neurosci Res 2016; 112:63-69. [PMID: 27354230 DOI: 10.1016/j.neures.2016.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023]
Abstract
Sleep disturbances are common in psychiatric disorders, but the causal relationship between the two and the underlying genetic factors is unclear. The DISC1 gene is strongly linked to mood disorders and schizophrenia in a Scottish pedigree. In an earlier study we found a sleep homeostasis disturbance in a Drosophila model overexpressing wild-type human DISC1. Here we aimed to explore the relationship between sleep and the DISC1 gene in a mammalian model, a novel transgenic mouse model expressing full-length human DISC1. We assessed circadian rhythms by monitoring wheel running activity under normal 24-h light:dark conditions and in constant darkness and found the DISC1 mice to have normal circadian photoentrainment and normal intrinsic circadian period. We also assessed sleep duration and quality in the DISC1 mice and found that they were awake longer than wild-type controls at baseline with a tendency for lower rebound of delta activity during recovery from a short sleep deprivation. Thus we suggest that DISC1 may be involved in sleep regulation.
Collapse
Affiliation(s)
- Hanna Jaaro-Peled
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States.
| | - Cara Altimus
- Department of Biology, Johns Hopkins University, United States
| | - Tara LeGates
- Department of Biology, Johns Hopkins University, United States
| | - Tyler Cash-Padgett
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Sandra Zoubovsky
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Takatoshi Hikida
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, United States.
| | | | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University School of Medicine, United States.
| |
Collapse
|
36
|
I Believe I Can Fly!: Use of Drosophila as a Model Organism in Neuropsychopharmacology Research. Neuropsychopharmacology 2016; 41:1439-46. [PMID: 26576740 PMCID: PMC4832023 DOI: 10.1038/npp.2015.322] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 01/03/2023]
Abstract
Neuropsychiatric disorders are of complex etiology, often including a large genetic component. In order to help identify and study the molecular and physiological mechanisms that such genes participate in, numerous animal models have been established in a variety of species. Over the past decade, this has increasingly included the vinegar fly, Drosophila melanogaster. Here, we outline why we study an invertebrate organism in the context of neuropsychiatric disorders, and we discuss how we can gain insight from studies in Drosophila. We focus on a few disorders and findings to make the larger point that modeling these diseases in flies can have both mechanistic and predictive validity. Highlighting some translational examples, we underline the fact that their brains works more like ours than one would have anticipated.
Collapse
|
37
|
Xia M, Broek JAC, Jouroukhin Y, Schoenfelder J, Abazyan S, Jaaro-Peled H, Sawa A, Bahn S, Pletnikov M. Cell Type-Specific Effects of Mutant DISC1: A Proteomics Study. MOLECULAR NEUROPSYCHIATRY 2016; 2:28-36. [PMID: 27606318 DOI: 10.1159/000444587] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/08/2016] [Indexed: 12/19/2022]
Abstract
Despite the recent progress in psychiatric genetics, very few studies have focused on genetic risk factors in glial cells that, compared to neurons, can manifest different molecular pathologies underlying psychiatric disorders. In order to address this issue, we studied the effects of mutant disrupted in schizophrenia 1 (DISC1), a genetic risk factor for schizophrenia, in cultured primary neurons and astrocytes using an unbiased mass spectrometry-based proteomic approach. We found that selective expression of mutant DISC1 in neurons affects a wide variety of proteins predominantly involved in neuronal development (e.g., SOX1) and vesicular transport (Rab proteins), whereas selective expression of mutant DISC1 in astrocytes produces changes in the levels of mitochondrial (GDPM), nuclear (TMM43) and cell adhesion (ECM2) proteins. The present study demonstrates that DISC1 variants can perturb distinct molecular pathways in a cell type-specific fashion to contribute to psychiatric disorders through heterogenic effects in diverse brain cells.
Collapse
Affiliation(s)
- Meng Xia
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA; Preclinical College, Guangxi University of Chinese Medicine, Nanning, PR China
| | - Jantine A C Broek
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Yan Jouroukhin
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Jeannine Schoenfelder
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sofya Abazyan
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Hanna Jaaro-Peled
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Akira Sawa
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Mikhail Pletnikov
- Departments of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Md., USA; Departments of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Md., USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Md., USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Md., USA
| |
Collapse
|
38
|
Tankou S, Ishii K, Elliott C, Yalla KC, Day JP, Furukori K, Kubo KI, Brandon NJ, Tang Q, Hayward G, Nakajima K, Houslay MD, Kamiya A, Baillie G, Ishizuka K, Sawa A. SUMOylation of DISC1: a potential role in neural progenitor proliferation in the developing cortex. MOLECULAR NEUROPSYCHIATRY 2016; 2:20-27. [PMID: 27525255 DOI: 10.1159/000444257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DISC1 is a multifunctional, intracellular scaffold protein. At the cellular level, DISC1 plays a pivotal role in neural progenitor proliferation, migration, and synaptic maturation. Perturbation of the biological pathways involving DISC1 is known to lead to behavioral changes in rodents, which supports a clinical report of a Scottish pedigree in which the majority of family members with disruption of the DISC1 gene manifest depression, schizophrenia, and related mental conditions. The discrepancy of modest evidence in genetics but strong biological support for the role of DISC1 in mental conditions suggests a working hypothesis that regulation of DISC1 at the protein level, such as posttranslational modification, may play a role in the pathology of mental conditions. In this study, we report the SUMOylation of DISC1. This posttranslational modification occurs on lysine residues where small ubiquitin-related modifier (SUMO) and its homologs are conjugated to a large number of cellular proteins, which in turn regulates their subcellular distribution and protein stability. By using in silico, biochemical, and cell biological approaches, we now demonstrate that human DISC1 is SUMOylated at one specific lysine 643 (K643). We also show that this residue is crucial for proper neural progenitor proliferation in the developing cortex.
Collapse
Affiliation(s)
- Stephanie Tankou
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Kazuhiro Ishii
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Christina Elliott
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Krishna C Yalla
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Jon P Day
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Keiko Furukori
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | | | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Gary Hayward
- Department of Pharmacology, The Johns Hopkins University, Baltimore, MD, USA
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Miles D Houslay
- Institute of Pharmaceutical Sciences, King's College London, London, UK
| | - Atsushi Kamiya
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - George Baillie
- Molecular Pharmacology Group, CMVLS, University of Glasgow, Glasgow, UK
| | - Koko Ishizuka
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
39
|
Liu JR, Liu Q, Khoury J, Li YJ, Han XH, Li J, Ibla JC. Hypoxic preconditioning decreases nuclear factor κB activity via Disrupted in Schizophrenia-1. Int J Biochem Cell Biol 2016; 70:140-148. [PMID: 26615762 DOI: 10.1016/j.biocel.2015.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 01/15/2023]
Abstract
Nuclear factor κB is a key mediator of inflammation during conditions of hypoxia. Here, we used models of hypoxic pre-conditioning as mechanism to decrease nuclear factor κB activity induced by hypoxia. Our initial studies suggested that Disrupted in Schizophrenia-1 may be induced by hypoxic pre-conditioning and possibly involved in the regulation of nuclear factor κB. In this study we used Disrupted in Schizophrenia-1 exogenous over-expression and knock-down to determine its effect on ataxia telangiectasia mutated--nuclear factor κB activation cascade. Our results demonstrated that hypoxic pre-conditioning significantly increased the expression of Disrupted in Schizophrenia-1 at mRNA and protein levels both in vitro and in vivo. Over-expression of Disrupted in Schizophrenia-1 significantly attenuated the hypoxia-mediated ataxia telangiectasia mutated phosphorylation and prevented its cytoplasm translocation where it functions to activate nuclear factor κB. We further determined that Disrupted in Schizophrenia-1 activated the protein phosphatase 2A, preventing the phosphorylation of ataxia telangiectasia mutated serine-1981, the main regulatory site of ataxia telangiectasia mutated activity. Cellular levels of Disrupted in Schizophrenia-1 protein significantly decreased nuclear factor κB activation profiles and pro-inflammatory gene expression. Taken together, these results demonstrate that hypoxic pre-conditioning decreases the activation of nuclear factor κB through the transcriptional induction of Disrupted in Schizophrenia-1.
Collapse
Affiliation(s)
- Jia-Ren Liu
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| | - Qian Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of GanNan Medical University, JiangXi 341000, PR China
| | - Joseph Khoury
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Yue-Jin Li
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Xiao-Hui Han
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Jing Li
- Laboratory of Stem Cell and Tissue Engineering, Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Juan C Ibla
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
40
|
Cho K, Cho M, Seo J, Peak J, Kong K, Yoon S, Kim D. Calpain-mediated cleavage of DARPP-32 in Alzheimer's disease. Aging Cell 2015; 14:878-86. [PMID: 26178297 PMCID: PMC4568975 DOI: 10.1111/acel.12374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
Toxicity induced by aberrant protein aggregates in Alzheimer’s disease (AD) causes synaptic disconnection and concomitant progressive neurodegeneration that eventually impair cognitive function. cAMP-response element-binding protein (CREB) is a transcription factor involved in the molecular switch that converts short-term to long-term memory. Although disturbances in CREB function have been suggested to cause memory deficits in both AD and AD animal models, the mechanism of CREB dysfunction is still unclear. Here, we show that the dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP-32), a key inhibitor of protein phosphate-1 (PP-1) that regulates CREB phosphorylation, is cleaved by activated calpain in both AD brains and neuronal cells treated with amyloid-β or okadaic acid, a protein phosphatase-2A inhibitor that induces tau hyperphosphorylation and neuronal death. We found that DARPP-32 is mainly cleaved at Thr153 by calpain and that this cleavage of DARPP-32 reduces CREB phosphorylation via loss of its inhibitory function on PP1. Our results suggest a novel mechanism of DARPP-32–CREB signalling dysregulation in AD.
Collapse
Affiliation(s)
- Kwangmin Cho
- Alzheimer's Disease Experts Lab (ADEL) Asan Medical Center University of Ulsan College of MedicineSeoul Korea
- Department of Brain ScienceUniversity of Ulsan College of Medicine Seoul Korea
- Bio‐Medical Institute of Technology (BMIT)University of Ulsan College of Medicine Seoul Korea
- Cell Dysfunction Research Center (CDRC) University of Ulsan College of Medicine Seoul Korea
| | - Mi‐Hyang Cho
- Alzheimer's Disease Experts Lab (ADEL) Asan Medical Center University of Ulsan College of MedicineSeoul Korea
- Department of Brain ScienceUniversity of Ulsan College of Medicine Seoul Korea
- Bio‐Medical Institute of Technology (BMIT)University of Ulsan College of Medicine Seoul Korea
- Cell Dysfunction Research Center (CDRC) University of Ulsan College of Medicine Seoul Korea
| | - Jung‐Han Seo
- Department of Brain ScienceUniversity of Ulsan College of Medicine Seoul Korea
- Cell Dysfunction Research Center (CDRC) University of Ulsan College of Medicine Seoul Korea
| | - Jongjin Peak
- Alzheimer's Disease Experts Lab (ADEL) Asan Medical Center University of Ulsan College of MedicineSeoul Korea
- Department of Brain ScienceUniversity of Ulsan College of Medicine Seoul Korea
- Bio‐Medical Institute of Technology (BMIT)University of Ulsan College of Medicine Seoul Korea
- Cell Dysfunction Research Center (CDRC) University of Ulsan College of Medicine Seoul Korea
| | - Kyoung‐Hye Kong
- Alzheimer's Disease Experts Lab (ADEL) Asan Medical Center University of Ulsan College of MedicineSeoul Korea
- Department of Brain ScienceUniversity of Ulsan College of Medicine Seoul Korea
- Bio‐Medical Institute of Technology (BMIT)University of Ulsan College of Medicine Seoul Korea
- Cell Dysfunction Research Center (CDRC) University of Ulsan College of Medicine Seoul Korea
| | - Seung‐Yong Yoon
- Alzheimer's Disease Experts Lab (ADEL) Asan Medical Center University of Ulsan College of MedicineSeoul Korea
- Department of Brain ScienceUniversity of Ulsan College of Medicine Seoul Korea
- Bio‐Medical Institute of Technology (BMIT)University of Ulsan College of Medicine Seoul Korea
- Cell Dysfunction Research Center (CDRC) University of Ulsan College of Medicine Seoul Korea
| | - Dong‐Hou Kim
- Alzheimer's Disease Experts Lab (ADEL) Asan Medical Center University of Ulsan College of MedicineSeoul Korea
- Department of Brain ScienceUniversity of Ulsan College of Medicine Seoul Korea
- Bio‐Medical Institute of Technology (BMIT)University of Ulsan College of Medicine Seoul Korea
- Cell Dysfunction Research Center (CDRC) University of Ulsan College of Medicine Seoul Korea
| |
Collapse
|
41
|
Wei J, Graziane NM, Gu Z, Yan Z. DISC1 Protein Regulates γ-Aminobutyric Acid, Type A (GABAA) Receptor Trafficking and Inhibitory Synaptic Transmission in Cortical Neurons. J Biol Chem 2015; 290:27680-7. [PMID: 26424793 DOI: 10.1074/jbc.m115.656173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Indexed: 12/12/2022] Open
Abstract
Association studies have suggested that Disrupted-in-Schizophrenia 1 (DISC1) confers a genetic risk at the level of endophenotypes that underlies many major mental disorders. Despite the progress in understanding the significance of DISC1 at neural development, the mechanisms underlying DISC1 regulation of synaptic functions remain elusive. Because alterations in the cortical GABA system have been strongly linked to the pathophysiology of schizophrenia, one potential target of DISC1 that is critically involved in the regulation of cognition and emotion is the GABAA receptor (GABAAR). We found that cellular knockdown of DISC1 significantly reduced GABAAR-mediated synaptic and whole-cell current, whereas overexpression of wild-type DISC1, but not the C-terminal-truncated DISC1 (a schizophrenia-related mutant), significantly increased GABAAR currents in pyramidal neurons of the prefrontal cortex. These effects were accompanied by DISC1-induced changes in surface GABAAR expression. Moreover, the regulation of GABAARs by DISC1 knockdown or overexpression depends on the microtubule motor protein kinesin 1 (KIF5). Our results suggest that DISC1 exerts an important effect on GABAergic inhibitory transmission by regulating KIF5/microtubule-based GABAAR trafficking in the cortex. The knowledge gained from this study would shed light on how DISC1 and the GABA system are linked mechanistically and how their interactions are critical for maintaining a normal mental state.
Collapse
Affiliation(s)
- Jing Wei
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and the Veterans Affairs Western New York Healthcare System, Buffalo, New York 14215
| | - Nicholas M Graziane
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and
| | - Zhenglin Gu
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and
| | - Zhen Yan
- From the Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214 and the Veterans Affairs Western New York Healthcare System, Buffalo, New York 14215
| |
Collapse
|
42
|
Phillips KG, Uhlhaas PJ. Neural oscillations as a translational tool in schizophrenia research: rationale, paradigms and challenges. J Psychopharmacol 2015; 29:155-68. [PMID: 25567552 DOI: 10.1177/0269881114562093] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neural oscillations have received recently a great deal of interest in schizophrenia research because of the possibility to integrate findings from non-invasive electro/magnetoencephalographical recordings with pre-clinical research, which could potentially lead to the identification of pathophysiological mechanisms and novel treatment targets. In the current paper, we review the potential as well as the challenges of this approach by summarizing findings on alterations in rhythmic activity from both animal models and human data which have implicated dysfunctional neural oscillations in the explanation of cognitive deficits and certain clinical symptoms of schizophrenia. Specifically, we will focus on findings that have examined neural oscillations during 1) perceptual processing, 2) working memory and executive processes and 3) spontaneous activity. The importance of the development of paradigms suitable for human and animal models is discussed as well as the search for mechanistic explanation for oscillatory dysfunctions.
Collapse
Affiliation(s)
- Keith G Phillips
- Lilly Centre for Cognitive Neuroscience, Eli Lilly and Company, Windlesham, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| |
Collapse
|
43
|
Muñoz-Estrada J, Benítez-King G, Berlanga C, Meza I. Altered subcellular distribution of the 75-kDa DISC1 isoform, cAMP accumulation, and decreased neuronal migration in schizophrenia and bipolar disorder: implications for neurodevelopment. CNS Neurosci Ther 2015; 21:446-53. [PMID: 25620115 DOI: 10.1111/cns.12377] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/09/2014] [Accepted: 12/09/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND DISC1 (Disrupted-In-Schizophrenia-1) is considered a genetic risk factor for schizophrenia (SZ) and bipolar disorder (BD). DISC1 regulates microtubule stability, migration, and cAMP signaling in mammalian cell lines and mouse brain tissue. cAMP is a regulator of microtubule organization and migration in neurons. Aberrant microtubule organization has been observed in olfactory neuronal precursors (ONP) derived from patients with SZ and BD, which suggests involvement of DISC1 and cAMP. However, the biology of DISC1 in the physiopathology of psychiatric conditions remains elusive. AIMS Herein, utilizing ONP obtained from SZ, BD patients and healthy subjects, we have studied DISC1 expression, protein levels, and subcellular distribution by qRT-PCR, immunoblotting, subcellular fractionation, and confocal microscopy. Cell migration and cAMP accumulation were assessed by Transwell and PKA competition assays. RESULTS We found increased levels of the 75-kDa DISC1 isoform in total cell extracts of ONP from patients with SZ and BD compared with controls. Subcellular distribution showed a significant decrease of cytoplasmic DISC1 concomitant with its augmented levels in transcription sites. Moreover, significant cAMP accumulation and diminished migration were also observed in patients' cells. CONCLUSION Alterations of DISC1 levels and its cellular distribution, which negatively modify cAMP homeostasis, microtubule organization, and cell migration, in ONP from patients with SZ and BD, suggest that their presence in early stages of brain development may impact brain maturation and function.
Collapse
Affiliation(s)
- Jesús Muñoz-Estrada
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico, Mexico; Laboratory of Neuropharmacology, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico, Mexico
| | | | | | | |
Collapse
|
44
|
Sprecher KE, Ferrarelli F, Benca RM. Sleep and plasticity in schizophrenia. Curr Top Behav Neurosci 2015; 25:433-58. [PMID: 25608723 DOI: 10.1007/7854_2014_366] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Schizophrenia is a devastating mental illness with a worldwide prevalence of approximately 1%. Although the clinical features of the disorder were described over one hundred years ago, its neurobiology is still largely elusive despite several decades of research. Schizophrenia is associated with marked sleep disturbances and memory impairment. Above and beyond altered sleep architecture, sleep rhythms including slow waves and spindles are disrupted in schizophrenia. In the healthy brain, these rhythms reflect and participate in plastic processes during sleep. This chapter discusses evidence that schizophrenia patients exhibit dysfunction of sleep-mediated plasticity on a behavioral, cellular, and molecular level and offers suggestions on how the study of sleeping brain activity can shed light on the pathophysiological mechanisms of the disorder.
Collapse
Affiliation(s)
- Kate E Sprecher
- Department of Psychiatry, Neuroscience Training Program, University of Wisconsin, Madison, WI, USA
| | | | | |
Collapse
|
45
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Thomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, Yao J, Soares DC, McCarthy S, Morris SW, Cardone L, Cass S, Ghiban E, Hennah W, Evans KL, Rebolini D, Millar JK, Harris SE, Starr JM, MacIntyre DJ, Generation Scotland 7, McIntosh AM, Watson JD, Deary IJ, Visscher PM, Blackwood DH, McCombie WR, Porteous DJ. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 2014; 19:668-75. [PMID: 23732877 PMCID: PMC4031635 DOI: 10.1038/mp.2013.68] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 04/22/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
A balanced t(1;11) translocation that transects the Disrupted in schizophrenia 1 (DISC1) gene shows genome-wide significant linkage for schizophrenia and recurrent major depressive disorder (rMDD) in a single large Scottish family, but genome-wide and exome sequencing-based association studies have not supported a role for DISC1 in psychiatric illness. To explore DISC1 in more detail, we sequenced 528 kb of the DISC1 locus in 653 cases and 889 controls. We report 2718 validated single-nucleotide polymorphisms (SNPs) of which 2010 have a minor allele frequency of <1%. Only 38% of these variants are reported in the 1000 Genomes Project European subset. This suggests that many DISC1 SNPs remain undiscovered and are essentially private. Rare coding variants identified exclusively in patients were found in likely functional protein domains. Significant region-wide association was observed between rs16856199 and rMDD (P=0.026, unadjusted P=6.3 × 10(-5), OR=3.48). This was not replicated in additional recurrent major depression samples (replication P=0.11). Combined analysis of both the original and replication set supported the original association (P=0.0058, OR=1.46). Evidence for segregation of this variant with disease in families was limited to those of rMDD individuals referred from primary care. Burden analysis for coding and non-coding variants gave nominal associations with diagnosis and measures of mood and cognition. Together, these observations are likely to generalise to other candidate genes for major mental illness and may thus provide guidelines for the design of future studies.
Collapse
Affiliation(s)
- P A Thomson
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J S Parla
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - A F McRae
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - M Kramer
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - K Ramakrishnan
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - J Yao
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D C Soares
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S McCarthy
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S W Morris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - L Cardone
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - S Cass
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - E Ghiban
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - W Hennah
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
| | - K L Evans
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D Rebolini
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J K Millar
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | - S E Harris
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - J M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - D J MacIntyre
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Generation Scotland7
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Institute for Molecular Medicine, Finland FIMM, University of Helsinki, Helsinki, Finland
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, A Collaboration between the University Medical Schools and NHS, Aberdeen, Dundee, Edinburgh and Glasgow, UK
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - A M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - J D Watson
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - I J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| | - P M Visscher
- University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Brisbane, QLD, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - D H Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - W R McCombie
- Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - D J Porteous
- Medical Genetics Section, University of Edinburgh Molecular Medicine Centre, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh, UK
| |
Collapse
|
47
|
Gardner RJ, Kersanté F, Jones MW, Bartsch U. Neural oscillations during non-rapid eye movement sleep as biomarkers of circuit dysfunction in schizophrenia. Eur J Neurosci 2014; 39:1091-106. [DOI: 10.1111/ejn.12533] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/06/2014] [Accepted: 01/29/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Richard J. Gardner
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Flavie Kersanté
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Matthew W. Jones
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| | - Ullrich Bartsch
- School of Physiology and Pharmacology; University of Bristol; Medical Sciences Building University Walk Bristol BS8 1TD UK
| |
Collapse
|
48
|
Drosophila models of early onset cognitive disorders and their clinical applications. Neurosci Biobehav Rev 2014; 46 Pt 2:326-42. [PMID: 24661984 DOI: 10.1016/j.neubiorev.2014.01.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/28/2022]
Abstract
The number of genes known to cause human monogenic diseases is increasing rapidly. For the extremely large, genetically and phenotypically heterogeneous group of intellectual disability (ID) disorders, more than 600 causative genes have been identified to date. However, knowledge about the molecular mechanisms and networks disrupted by these genetic aberrations is lagging behind. The fruit fly Drosophila has emerged as a powerful model organism to close this knowledge gap. This review summarizes recent achievements that have been made in this model and envisions its future contribution to our understanding of ID genetics and neuropathology. The available resources and efficiency of Drosophila place it in a position to tackle the main challenges in the field: mapping functional modules of ID genes to provide conceptually novel insights into the genetic control of cognition, tailored functional studies to improve 'next-generation' diagnostics, and identification of reversible ID phenotypes and medication. Drosophila's behavioral repertoire and powerful genetics also open up perspectives for modeling genetically complex forms of ID and neuropsychiatric disorders, which overlap in their genetic etiologies. In conclusion, Drosophila provides many opportunities to advance future medical genomics of early onset cognitive disorders.
Collapse
|
49
|
Regulation of N-methyl-D-aspartate receptors by disrupted-in-schizophrenia-1. Biol Psychiatry 2014; 75:414-424. [PMID: 23906531 PMCID: PMC3864617 DOI: 10.1016/j.biopsych.2013.06.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/12/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Genetic studies have implicated disrupted-in-schizophrenia-1 (DISC1) as a risk factor for a wide range of mental conditions, including schizophrenia. Because N-methyl-D-aspartate receptor (NMDAR) dysfunction has been strongly linked to the pathophysiology of these conditions, we examined whether the NMDAR is a potential target of DISC1. METHODS DISC1 was knocked down with a small inference RNA. NMDAR-mediated currents were recorded and NMDAR expression was measured. RESULTS We found that cellular knockdown of DISC1 significantly increased NMDAR currents in cortical cultures, which were accompanied by an increase in the expression of NMDAR subunit, GluN2A. NMDAR-mediated synaptic response in prefrontal cortical pyramidal neurons was also increased by DISC1 knockdown in vivo. The effect of DISC1 knockdown on NMDAR currents in cortical cultures was blocked by protein kinase A (PKA) inhibitor, occluded by PKA activator, and prevented by phosphodiesterase 4 inhibitor. Knockdown of DISC1 caused a significant increase of cyclic adenosine monophosphate response element-binding protein (CREB) activity. Inhibiting CREB prevented the DISC1 deficiency-induced increase of NMDAR currents and GluN2A clusters. CONCLUSIONS Our results suggest that DISC1 exerts an important impact on NMDAR expression and function through a phosphodiesterase 4/PKA/CREB-dependent mechanism, which provides a potential molecular basis for the role of DISC1 in influencing NMDAR-dependent cognitive and emotional processes.
Collapse
|
50
|
Ogawa F, Malavasi EL, Crummie DK, Eykelenboom JE, Soares DC, Mackie S, Porteous DJ, Millar JK. DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking. Hum Mol Genet 2014; 23:906-19. [PMID: 24092329 PMCID: PMC3900104 DOI: 10.1093/hmg/ddt485] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 09/25/2013] [Indexed: 12/12/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a candidate risk factor for schizophrenia, bipolar disorder and severe recurrent depression. Here, we demonstrate that DISC1 associates robustly with trafficking-protein-Kinesin-binding-1 which is, in turn, known to interact with the outer mitochondrial membrane proteins Miro1/2, linking mitochondria to the kinesin motor for microtubule-based subcellular trafficking. DISC1 also associates with Miro1 and is thus a component of functional mitochondrial transport complexes. Consistent with these observations, in neuronal axons DISC1 promotes specifically anterograde mitochondrial transport. DISC1 thus participates directly in mitochondrial trafficking, which is essential for neural development and neurotransmission. Any factor affecting mitochondrial DISC1 function is hence likely to have deleterious consequences for the brain, potentially contributing to increased risk of psychiatric illness. Intriguingly, therefore, a rare putatively causal human DISC1 sequence variant, 37W, impairs the ability of DISC1 to promote anterograde mitochondrial transport. This is likely related to a number of mitochondrial abnormalities induced by expression of DISC1-37W, which redistributes mitochondrial DISC1 and enhances kinesin mitochondrial association, while also altering protein interactions within the mitochondrial transport complex.
Collapse
Affiliation(s)
- Fumiaki Ogawa
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Elise L.V. Malavasi
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Darragh K. Crummie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Jennifer E. Eykelenboom
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
- Now at Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Dinesh C. Soares
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - Shaun Mackie
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - David J. Porteous
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| | - J. Kirsty Millar
- University of Edinburgh Centre for Genomics and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK and
| |
Collapse
|