1
|
Ito W, Holmes A, Morozov A. Fear Synchrony of Mouse Dyads: Interaction of Sex Composition and Stress. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100484. [PMID: 40290195 PMCID: PMC12032872 DOI: 10.1016/j.bpsgos.2025.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 04/30/2025] Open
Abstract
Background Socially coordinated threat responses support a group's survival. Given the distinct social roles of each sex, social coordination can differ between males and females and mixed-sex groups. We investigated how the sex composition of mouse dyads affected one form of social coordination, the synchronization of conditioned freezing, and assessed how emotional state and social context influenced synchronization by exposure to stress and altering the partner's familiarity, respectively. Methods Mice were fear conditioned individually to an auditory stimulus and tested in same- or opposite-sex dyads with familiar or unfamiliar partners. Independent cohorts were tested after 5 minutes of restraint stress or with prefrontal inactivation by muscimol. Time-series data on freezing bouts were used to compute the synchrony index, freezing properties, and state transitions based on a Markov model. Results In same-sex dyads, males exhibited higher synchrony than females. State transition analysis revealed sex-specific synchronization strategies: Males maintained a congruent freezing state primarily by following their partners' state transitions, whereas females did so by reversing their own. Stress disrupted synchrony in males, which was prevented by prefrontal inactivation, while stress enhanced synchrony in females. Partner's unfamiliarity reduced synchrony in males but had no effect on females. Conversely, opposite-sex dyads exhibited high levels of synchrony and a unique resilience to stress and unfamiliarity without preferred synchronization strategies. Conclusions Mice display sex composition-specific synchronization of threat response and its modulation by stress and social context, providing insights into neuropsychiatric disorders characterized by abnormal threat responses in social contexts with same- and opposite-sex groups.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
- Fralin Biomedical Research Institute at VTC Center for Neurobiology Research, Roanoke, Virginia
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia
- Fralin Biomedical Research Institute at VTC Center for Neurobiology Research, Roanoke, Virginia
- Department of Psychiatry and Behavioral Medicine, Carilion Clinic, Roanoke, Virginia
| |
Collapse
|
2
|
Reyes B. The Locus Coeruleus: Anatomy, Physiology, and Stress-Related Neuropsychiatric Disorders. Eur J Neurosci 2025; 61:e70111. [PMID: 40219735 PMCID: PMC11992612 DOI: 10.1111/ejn.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/18/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025]
Abstract
The locus coeruleus-norepinephrine (LC-NE) system is involved in mediating a wide array of functions, including attention, arousal, cognition, and stress response. Dysregulation of the LC-NE system is strongly linked with several stress-induced neuropsychiatric disorders, highlighting the LC's pivotal role in the development of these disorders. Located in the dorsal pontine tegmental area, the LC contains noradrenergic neurons that serve as the main source of NE in the central nervous system. Activation of the LC and subsequent release of NE at different levels of the neuroaxis is adaptive, allowing the body to adjust appropriately amid a challenging stimulus. However, prolonged and repeated LC activation leads to maladaptive responses that implicate LC-NE dysfunction in stress-induced neuropsychiatric disorders. As the primary initiator of the stress response, corticotropin-releasing factor (CRF) activates the hypothalamic-pituitary-adrenal axis. Following the discovery of CRF more than four decades ago, numerous studies established that CRF also acts as a neurotransmitter that governs the activity of other neurotransmitters in the brain neurotransmitter system. The LC-NE system receives abundant CRF afferents arising from several brain nuclei. CRF afferents to LC-NE are activated and recruited in the pathogenesis of stress-induced neuropsychiatric disorders. Presented in this review are the CRF neuroanatomical connectivity and physiological characteristics that modulate LC-NE function, which may contribute to the pathogenesis of stress-induced neuropsychiatric disorders. Additionally, this review illustrates the contribution of LC-NE to the apparent sex-dependent differences in stress-induced neuropsychiatric disorders. Hence, the LC-NE system is a promising target for the development of therapeutic strategies for stress-induced neuropsychiatric disorders.
Collapse
Affiliation(s)
- Beverly A. S. Reyes
- Department of Pharmacology & PhysiologyDrexel University College of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
3
|
Piccin A, Allain AE, Baufreton JM, Bertrand SS, Contarino A. Disruption of the CRF 1 receptor eliminates morphine-induced sociability deficits and firing of oxytocinergic neurons in male mice. eLife 2025; 13:RP100849. [PMID: 39907358 PMCID: PMC11798570 DOI: 10.7554/elife.100849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Substance-induced social behavior deficits dramatically worsen the clinical outcome of substance use disorders; yet, the underlying mechanisms remain poorly understood. Herein, we investigated the role for the corticotropin-releasing factor receptor 1 (CRF1) in the acute sociability deficits induced by morphine and the related activity of oxytocin (OXY)- and arginine-vasopressin (AVP)-expressing neurons of the paraventricular nucleus of the hypothalamus (PVN). For this purpose, we used both the CRF1 receptor-preferring antagonist compound antalarmin and the genetic mouse model of CRF1 receptor-deficiency. Antalarmin completely abolished sociability deficits induced by morphine in male, but not in female, C57BL/6J mice. Accordingly, genetic CRF1 receptor-deficiency eliminated morphine-induced sociability deficits in male mice. Ex vivo electrophysiology studies showed that antalarmin also eliminated morphine-induced firing of PVN neurons in male, but not in female, C57BL/6J mice. Likewise, genetic CRF1 receptor-deficiency reduced morphine-induced firing of PVN neurons in a CRF1 gene expression-dependent manner. The electrophysiology results consistently mirrored the behavioral results, indicating a link between morphine-induced PVN activity and sociability deficits. Interestingly, in male mice antalarmin abolished morphine-induced firing in neurons co-expressing OXY and AVP, but not in neurons expressing only AVP. In contrast, in female mice antalarmin did not affect morphine-induced firing of neurons co-expressing OXY and AVP or only OXY, indicating a selective sex-specific role for the CRF1 receptor in opiate-induced PVN OXY activity. The present findings demonstrate a major, sex-linked, role for the CRF1 receptor in sociability deficits and related brain alterations induced by morphine, suggesting new therapeutic strategy for opiate use disorders.
Collapse
Affiliation(s)
- Alessandro Piccin
- Université de Bordeaux, INCIABordeauxFrance
- CNRS, INCIABordeauxFrance
| | | | | | | | - Angelo Contarino
- Université de Bordeaux, INCIABordeauxFrance
- CNRS, INCIABordeauxFrance
- INSERM, T3S, UMR-S 1124, Université Paris CitéParisFrance
| |
Collapse
|
4
|
Brannan S, Garbe L, Richardson BD. Early life stress induced sex-specific changes in behavior is paralleled by altered locus coeruleus physiology in BALB/cJ mice. Neurobiol Stress 2024; 33:100674. [PMID: 39385751 PMCID: PMC11462065 DOI: 10.1016/j.ynstr.2024.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Adverse childhood experiences have been associated with many neurodevelopmental and affective disorders including attention deficit hyperactivity disorder and generalized anxiety disorder, with more exposures increasing negative risk. Sex and genetic background are biological variables involved in adverse psychiatric outcomes due to early life trauma. Females in general have an increased prevalence of stress-related psychopathologies beginning after adolescence, indicative of adolescence being a female-specific sensitive period. To understand the underlying neuronal mechanisms potentially responsible for this relationship between genetic background, sex, stress/trauma, and cognitive/affective behaviors, we assessed behavioral and neuronal changes in a novel animal model of early life stress exposure. Male and female BALB/cJ mice that express elevated basal anxiety-like behaviors and differences in monoamine signaling-associated genes, were exposed to an early life variable stress protocol that combined deprivation in early life with unpredictability in adolescence. Stress exposure produced hyperlocomotion and attention deficits (5-choice serial reaction time task) in male and female mice along with female-specific increased anxiety-like behavior. These behavioral changes were paralleled by reduced excitability of locus coeruleus (LC) neurons, due to resting membrane potential hyperpolarization in males and a female-specific increase in action potential delay time. These data describe a novel interaction between sex, genetic background, and early life stress that results in behavioral changes in clinically relevant domains and potential underlying mechanistic lasting changes in physiological properties of neurons in the LC.
Collapse
Affiliation(s)
- Savannah Brannan
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Lauren Garbe
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| | - Ben D. Richardson
- Department of Pharmacology, Southern Illinois University – School of Medicine, Springfield, IL, 62702, USA
| |
Collapse
|
5
|
Sheppard M, Rasgado-Toledo J, Duncan N, Elliott R, Garza-Villarreal EA, Muhlert N. Noradrenergic alterations associated with early life stress. Neurosci Biobehav Rev 2024; 164:105832. [PMID: 39084582 DOI: 10.1016/j.neubiorev.2024.105832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Significant stress in childhood or adolescence is linked to both structural and functional changes in the brain in human and analogous animal models. In addition, neuromodulators, such as noradrenaline (NA), show life-long alterations in response to these early life stressors, which may impact upon the sensitivity and time course of key adrenergic activities, such as rapid autonomic stress responses (the 'fight or flight response'). The locus-coeruleus noradrenergic (LC-NA) network, a key stress-responsive network in the brain, displays numerous changes in response to significant early- life stress. Here, we review the relationship between NA and the neurobiological changes associated with early life stress and set out future lines of research that can illuminate how brain circuits and circulating neurotransmitters adapt in response to childhood stressors.
Collapse
Affiliation(s)
- Megan Sheppard
- Division of Psychology, Communication and Human Neuroscience, The University of Manchester, Manchester, UK.
| | - Jalil Rasgado-Toledo
- Institute of Neurobiology, Universidad Nacional de México campus Juriquilla, Queretaro, Mexico
| | - Niall Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taiwan
| | - Rebecca Elliott
- Division of Psychology and Mental Health, University of Manchester, Manchester, UK
| | | | - Nils Muhlert
- Division of Psychology, Communication and Human Neuroscience, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Ito W, Morozov A. Sex and stress interactions in fear synchrony of mouse dyads. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598132. [PMID: 38915653 PMCID: PMC11195068 DOI: 10.1101/2024.06.09.598132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Socially coordinated threat responses support the survival of animal groups. Given their distinct social roles, males and females must differ in such coordination. Here, we report such differences during the synchronization of auditory-conditioned freezing in mouse dyads. To study the interaction of emotional states with social cues underlying synchronization, we modulated emotional states with prior stress or modified the social cues by pairing unfamiliar or opposite-sex mice. In same-sex dyads, males exhibited more robust synchrony than females. Stress disrupted male synchrony in a prefrontal cortex-dependent manner but enhanced it in females. Unfamiliarity moderately reduced synchrony in males but not in females. In dyads with opposite-sex partners, fear synchrony was resilient to both stress and unfamiliarity. Decomposing the synchronization process in the same-sex dyads revealed sex-specific behavioral strategies correlated with synchrony magnitude: following partners' state transitions in males and retroacting synchrony-breaking actions in females. Those were altered by stress and unfamiliarity. The opposite-sex dyads exhibited no synchrony-correlated strategy. These findings reveal sex-specific adaptations of socio-emotional integration defining coordinated behavior and suggest that sex-recognition circuits confer resilience to stress and unfamiliarity in opposite-sex dyads.
Collapse
Affiliation(s)
- Wataru Ito
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Alexei Morozov
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| |
Collapse
|
7
|
Berry MM, Miller B, Kelsen S, Cockrell C, Kohtz AS. Sex differences in hippocampal β-adrenergic receptor subtypes drive retrieval, retention, and learning of cocaine-associated memories. Front Behav Neurosci 2024; 18:1379866. [PMID: 38807929 PMCID: PMC11130369 DOI: 10.3389/fnbeh.2024.1379866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/04/2024] [Indexed: 05/30/2024] Open
Abstract
Background Drug seeking behavior occurs in response to environmental contexts and drug-associated cues. The presence of these pervasive stimuli impedes abstinence success. β-adrenergic receptors (β-ARs) have a long-standing historical implication in driving processes associated with contextual memories, including drug-associated memories in substance use disorders. However, sex differences in the role of β-adrenergic receptors in drug memories remain unknown. Hypothesis Prior reports indicate a selective role for β2-ARs in retrieval and retention of contextual drug memories in males, and substantial sex differences exist in the expression of β-ARs of male and female rats. Therefore, we hypothesized that there are sex differences in selective recruitment of β-ARs during different stages of memory encoding and retrieval. Methods The role of β-ARs in driving retrieval and learning of contextual cocaine memories was investigated using cocaine conditioned place preference (CPP) in adult male and female Sprague-Dawley rats. Rats were infused directly to the dorsal hippocampus with Propranolol (β1 and β2) or ICI-118,551 (β1) and/or Betaxolol (β2), immediately prior to testing (retrieval), or paired to each cocaine (10 mg/kp, IP) conditioning session (learning). Results In males, administration of either β1, β2, or combined β1 and β2-ARs before the initial CPP testing reduced the expression of a CPP compared to vehicle administration. In females, β2-ARs transiently decreased CPP memories, whereas β1 had long lasting but not immediate effects to decrease CPP memories. Additionally, β1 and combined β1 and β2-ARs had immediate and persistent effects to decrease CPP memory expression. DG Fos + neurons predicted cocaine CPP expression in males, whereas CA1 and CA3 Fos + neurons predicted cocaine CPP expression in females. Conclusion There are significant sex differences in the role of dorsal hippocampus β-ARs in the encoding and expression of cocaine conditioned place preference. Furthermore, sub regions of the dorsal hippocampus appear to activate differently between male and female rats during CPP. Therefore DG, CA3, and CA1 may have separate region- and sex-specific impacts on driving drug- associated, or context-associated cues.
Collapse
Affiliation(s)
- Melanie M. Berry
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Beau Miller
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Biological Sciences, Mississippi College, Jackson, MS, United States
| | - Silvia Kelsen
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| | - Carlee Cockrell
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Department of Biological Sciences, Mississippi College, Jackson, MS, United States
| | - Amy Stave Kohtz
- Department of Psychiatry, Division of Neurobiology and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
- Center for Innovation and Discovery in Addictions, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
8
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
9
|
Cea Salazar VI, Perez MD, Robison AJ, Trainor BC. Impacts of sex differences on optogenetic, chemogenetic, and calcium-imaging tools. Curr Opin Neurobiol 2024; 84:102817. [PMID: 38042130 PMCID: PMC11374099 DOI: 10.1016/j.conb.2023.102817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/04/2023]
Abstract
Technical innovation in neuroscience introduced powerful tools for measuring and manipulating neuronal activity via optical, chemogenetic, and calcium-imaging tools. These tools were initially tested primarily in male animals but are now increasingly being used in females as well. In this review, we consider how these tools may work differently in males and females. For example, we review sex differences in the metabolism of chemogenetic ligands and their downstream signaling effects. Optical tools more directly alter depolarization or hyperpolarization of neurons, but biological sex and gonadal hormones modulate synaptic inputs and intrinsic excitability. We review studies demonstrating that optogenetic manipulations are sometimes consistent across the rodent estrous cycle but within certain circuits; manipulations can vary across the ovarian cycle. Finally, calcium-imaging methods utilize genetically encoded calcium indicators to measure neuronal activity. Testosterone and estradiol can directly modulate calcium influx, and we consider these implications for interpreting the results of calcium-imaging studies. Together, our findings suggest that these neuroscientific tools may sometimes work differently in males and females and that users should be aware of these differences when applying these methods.
Collapse
Affiliation(s)
| | - Melvin D Perez
- Department of Physiology, University of California, Davis, CA 95616, USA
| | - A J Robison
- Department of Psychology, University of California, Davis, CA 95616, USA
| | - Brian C Trainor
- Neuroscience Graduate Group, University of California, Davis, CA 95616, USA; Department of Physiology, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
10
|
Saito A, Murata H, Niitani K, Nagasaki J, Otoda A, Chujo Y, Yanagida J, Nishitani N, Deyama S, Kaneda K. Social defeat stress enhances the rewarding effects of cocaine through α 1A adrenoceptors in the medial prefrontal cortex of mice. Neuropharmacology 2024; 242:109757. [PMID: 37839511 DOI: 10.1016/j.neuropharm.2023.109757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023]
Abstract
Various stressors potentiate the rewarding effects of cocaine and contribute to cocaine cravings. However, it remains unclear whether psychosocial stress enhances the rewarding effects of cocaine. Accordingly, this study employed a cocaine-conditioned place preference (CPP) paradigm combined with social defeat (SD) exposure to investigate the effects of acute SD stress on cocaine reward in male mice. We found that SD stress immediately before the posttest significantly increased cocaine CPP, and systemic blockade of α1 adrenoceptors, but not β adrenoceptors, suppressed this increase. Fiber photometry recordings with GRABNE1m sensors revealed increased noradrenaline (NA) levels in the medial prefrontal cortex (mPFC) in test mice in response to attacks by aggressor mice during SD. Moreover, the SD stress-induced enhancement of CPP was effectively suppressed by intra-mPFC infusion of an α1 adrenoceptor antagonist. In vitro whole-cell recordings demonstrated that silodosin, an α1A, but not α1B or α1D, adrenoceptor antagonist, inhibited NA-induced depolarizing currents and facilitation of excitatory synaptic transmissions. Consistently, intra-mPFC silodosin infusion significantly suppressed the SD stress-induced CPP enhancement. Conversely, intra-mPFC infusion of α1A adrenoceptor agonist augmented cocaine CPP in the absence of stress exposure. Additionally, intranasal silodosin administration attenuated the SD stress-induced enhancement of CPP, and chemogenetic inhibition of mPFC excitatory neurons also suppressed the SD stress-induced CPP enhancement. Together, these findings suggest that NA stimulation of α1A adrenoceptors and the subsequent activation of mPFC pyramidal cells may contribute to SD stress-induced amplification of the rewarding effects of cocaine, and intranasal silodosin administration may hold therapeutic potential for mitigating stress-associated cocaine craving.
Collapse
Affiliation(s)
- Atsushi Saito
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Haruka Murata
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junpei Nagasaki
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Atsuki Otoda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusuke Chujo
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Junko Yanagida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
11
|
Kelly EA, Love TM, Fudge JL. Corticotropin-releasing factor-dopamine interactions in male and female macaque: Beyond the classic VTA. Synapse 2024; 78:e22284. [PMID: 37996987 PMCID: PMC10842953 DOI: 10.1002/syn.22284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
Dopamine (DA) is involved in stress and stress-related illnesses, including many psychiatric disorders. Corticotropin-releasing factor (CRF) plays a role in stress responses and targets the ventral midbrain DA system, which is composed of DA and non-DA cells, and divided into specific subregions. Although CRF inputs to the midline A10 nuclei ("classic VTA") are known, in monkeys, CRF-containing terminals are also highly enriched in the expanded A10 parabrachial pigmented nucleus (PBP) and in the A8 retrorubral field subregions. We characterized CRF-labeled synaptic terminals on DA (tyrosine hydroxylase, TH+) and non-DA (TH-) cell types in the PBP and A8 regions using immunoreactive electron microscopy (EM) in male and female macaques. CRF labeling was present mostly in axon terminals, which mainly contacted TH-negative dendrites in both subregions. Most CRF-positive terminals had symmetric profiles. In both PBP and A8, CRF symmetric (putative inhibitory) synapses onto TH-negative dendrites were significantly greater than asymmetric (putative excitatory) profiles. This overall pattern was similar in males and females, despite shifts in the size of these effects between regions depending on sex. Because stress and gonadal hormone shifts can influence CRF expression, we also did hormonal assays over a 6-month time period and found little variability in basal cortisol across similarly housed animals at the same age. Together our findings suggest that at baseline, CRF-positive synaptic terminals in the primate PBP and A8 are poised to regulate DA indirectly through synaptic contacts onto non-DA neurons.
Collapse
Affiliation(s)
- E A Kelly
- Departments of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - T M Love
- Department of Biostatistics, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - J L Fudge
- Departments of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Psychiatry, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
12
|
Pace SA, Myers B. Hindbrain Adrenergic/Noradrenergic Control of Integrated Endocrine and Autonomic Stress Responses. Endocrinology 2023; 165:bqad178. [PMID: 38015813 DOI: 10.1210/endocr/bqad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Hindbrain adrenergic/noradrenergic nuclei facilitate endocrine and autonomic responses to physical and psychological challenges. Neurons that synthesize adrenaline and noradrenaline target hypothalamic structures to modulate endocrine responses while descending spinal projections regulate sympathetic function. Furthermore, these neurons respond to diverse stress-related metabolic, autonomic, and psychosocial challenges. Accordingly, adrenergic and noradrenergic nuclei are integrative hubs that promote physiological adaptation to maintain homeostasis. However, the precise mechanisms through which adrenaline- and noradrenaline-synthesizing neurons sense interoceptive and exteroceptive cues to coordinate physiological responses have yet to be fully elucidated. Additionally, the regulatory role of these cells in the context of chronic stress has received limited attention. This mini-review consolidates reports from preclinical rodent studies on the organization and function of brainstem adrenaline and noradrenaline cells to provide a framework for how these nuclei coordinate endocrine and autonomic physiology. This includes identification of hindbrain adrenaline- and noradrenaline-producing cell groups and their role in stress responding through neurosecretory and autonomic engagement. Although temporally and mechanistically distinct, the endocrine and autonomic stress axes are complementary and interconnected. Therefore, the interplay between brainstem adrenergic/noradrenergic nuclei and peripheral physiological systems is necessary for integrated stress responses and organismal survival.
Collapse
Affiliation(s)
- Sebastian A Pace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Kelly L, Brown C, Gibbard AG, Jackson T, Swinny JD. Subunit-specific expression and function of AMPA receptors in the mouse locus coeruleus. J Anat 2023; 243:813-825. [PMID: 37391270 PMCID: PMC10557397 DOI: 10.1111/joa.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
The locus coeruleus (LC) provides the principal supply of noradrenaline (NA) to the brain, thereby modulating an array of brain functions. The release of NA, and therefore its impact on the brain, is governed by LC neuronal excitability. Glutamatergic axons, from various brain regions, topographically innervate different LC sub-domains and directly alter LC excitability. However, it is currently unclear whether glutamate receptor sub-classes, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, are divergently expressed throughout the LC. Immunohistochemistry and confocal microscopy were used to identify and localise individual GluA subunits in the mouse LC. Whole-cell patch clamp electrophysiology and subunit-preferring ligands were used to assess their impact on LC spontaneous firing rate (FR). GluA1 immunoreactive clusters were associated with puncta immunoreactive for VGLUT2 on somata, and VGLUT1 on distal dendrites. GluA4 was associated with these synaptic markers only in the distal dendrites. No specific signal was detected for the GluA2-3 subunits. The GluA1/2 receptor agonist (S)-CPW 399 increased LC FR, whilst the GluA1/3 receptor antagonist philanthotoxin-74 decreased it. 4-[2-(phenylsulfonylamino)ethylthio]-2,6-difluoro-phenoxyacetamide (PEPA), a positive allosteric modulator of GluA3/4 receptors, had no significant effect on spontaneous FR. The data suggest distinct AMPA receptor subunits are targeted to different LC afferent inputs and have contrasting effects on spontaneous neuronal excitability. This precise expression profile could be a mechanism for LC neurons to integrate diverse information contained in various glutamate afferents.
Collapse
Affiliation(s)
- Louise Kelly
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Christopher Brown
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Adina G. Gibbard
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Torquil Jackson
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| | - Jerome D. Swinny
- School of Pharmacy & Biomedical SciencesUniversity of PortsmouthPortsmouthUK
| |
Collapse
|
14
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
15
|
Abstract
Depression and anxiety disorders carry a tremendous worldwide burden and emerge as a significant cause of disability among western societies. Both disorders are known to disproportionally affect women, as they are twice more likely to be diagnosed and moreover, they are also prone to suffer from female-specific mood disorders. Importantly, the prevalence of these affective disorders has notably risen after the COVID pandemic, especially in women. In this chapter, we describe factors that are possibly contributing to the expression of such sex differences in depression and anxiety. For this, we overview the effect of transcriptomic and genetic factors, the immune system, neuroendocrine aspects, and cognition. Furthermore, we also provide evidence of sex differences in antidepressant response and their causes. Finally, we emphasize the importance to consider sex as a biological variable in preclinical and clinical research, which may facilitate the discovery and development of new and more efficacious antidepressant and anxiolytic pharmacotherapies for both women and men.
Collapse
Affiliation(s)
- Pavlina Pavlidi
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kokras
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Psychiatry, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
16
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Role of noradrenergic arousal for fear extinction processes in rodents and humans. Neurobiol Learn Mem 2022; 194:107660. [PMID: 35870717 DOI: 10.1016/j.nlm.2022.107660] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/29/2022] [Accepted: 07/17/2022] [Indexed: 01/22/2023]
Abstract
Fear extinction is a learning mechanism that is pivotal for the inhibition of fear responses towards cues or contexts that no longer predict the occurrence of a threat. Failure of fear extinction leads to fear expression under safe conditions and is regarded to be a cardinal characteristic of many anxiety-related disorders and posttraumatic stress disorder. Importantly, the neurotransmitter noradrenaline was shown to be a potent modulator of fear extinction. Rodent studies demonstrated that excessive noradrenaline transmission after acute stress opens a time window of vulnerability, in which fear extinction learning results in attenuated long-term extinction success. In contrast, when excessive noradrenergic transmission subsides, well-coordinated noradrenaline transmission is necessary for the formation of a long-lasting extinction memory. In addition, emerging evidence suggests that the neuropeptide corticotropin releasing hormone (CRF), which strongly regulates noradrenaline transmission under conditions of acute stress, also impedes long-term extinction success. Recent rodent work - using sophisticated methods - provides evidence for a hypothetical mechanistic framework of how noradrenaline and CRF dynamically orchestrate the neural fear and extinction circuitry to attenuate or to improve fear extinction and extinction recall. Accordingly, we review the evidence from rodent studies linking noradrenaline and CRF to fear extinction learning and recall and derive the hypothetical mechanistic framework of how different levels of noradrenaline and CRF may create a time window of vulnerability which impedes successful long-term fear extinction. We also address evidence from human studies linking noradrenaline and fear extinction success. Moreover, we accumulate emerging approaches to non-invasively measure and manipulate the noradrenergic system in healthy humans. Finally, we emphasize the importance of future studies to account for sex (hormone) differences when examining the interaction between fear extinction, noradrenaline, and CRF. To conclude, NA's effects on fear extinction recall strongly depend on the arousal levels at the onset of fear extinction learning. Our review aimed at compiling the available (mainly rodent) data in a neurobiological framework, suited to derive testable hypotheses for future work in humans.
Collapse
|
18
|
Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The Role of the Locus Coeruleus in Pain and Associated Stress-Related Disorders. Biol Psychiatry 2022; 91:786-797. [PMID: 35164940 DOI: 10.1016/j.biopsych.2021.11.023] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022]
Abstract
The locus coeruleus (LC)-noradrenergic system is the main source of noradrenaline in the central nervous system and is involved intensively in modulating pain and stress-related disorders (e.g., major depressive disorder and anxiety) and in their comorbidity. However, the mechanisms involving the LC that underlie these effects have not been fully elucidated, in part owing to the technical difficulties inherent in exploring such a tiny nucleus. However, novel research tools are now available that have helped redefine the LC system, moving away from the traditional view of LC as a homogeneous structure that exerts a uniform influence on neural activity. Indeed, innovative techniques such as DREADDs (designer receptors exclusively activated by designer drugs) and optogenetics have demonstrated the functional heterogeneity of LC, and novel magnetic resonance imaging applications combined with pupillometry have opened the way to evaluate LC activity in vivo. This review aims to bring together the data available on the efferent activity of the LC-noradrenergic system in relation to pain and its comorbidity with anxiodepressive disorders. Acute pain triggers a robust LC stress response, producing spinal cord-mediated endogenous analgesia while promoting aversion, vigilance, and threat detection through its ascending efferents. However, this protective biological system fails in chronic pain, and LC activity produces pain facilitation, anxiety, increased aversive memory, and behavioral despair, acting at the medulla, prefrontal cortex, and amygdala levels. Thus, the activation/deactivation of specific LC projections contributes to different behavioral outcomes in the shift from acute to chronic pain.
Collapse
Affiliation(s)
- Irene Suárez-Pereira
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Camarena-Delgado
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Carles Soriano-Mas
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain; Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz, Hospital Universitario Puerta del Mar, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Baugher BJ, Buckhaults K, Case J, Sullivan A, Huq SN, Sachs BD. Sub-chronic stress induces similar behavioral effects in male and female mice despite sex-specific molecular adaptations in the nucleus accumbens. Behav Brain Res 2022; 425:113811. [DOI: 10.1016/j.bbr.2022.113811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/06/2022] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
|
20
|
Lehner M, Skórzewska A, Wisłowska-Stanek A. Sex-Related Predisposition to Post-Traumatic Stress Disorder Development-The Role of Neuropeptides. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:314. [PMID: 35010574 PMCID: PMC8750761 DOI: 10.3390/ijerph19010314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Post-traumatic stress disorder (PTSD) is characterized by re-experiencing a traumatic event, avoidance, negative alterations in cognitions and mood, hyperarousal, and severe functional impairment. Women have a two times higher risk of developing PTSD than men. The neurobiological basis for the sex-specific predisposition to PTSD might be related to differences in the functions of stress-responsive systems due to the interaction between gonadal hormones and stress peptides such as corticotropin-releasing factor (CRF), orexin, oxytocin, and neuropeptide Y. Additionally, in phases where estrogens levels are low, the risk of developing or exacerbating PTSD is higher. Most studies have revealed several essential sex differences in CRF function. They include genetic factors, e.g., the CRF promoter contains estrogen response elements. Importantly, sex-related differences are responsible for different predispositions to PTSD and diverse treatment responses. Fear extinction (the process responsible for the effectiveness of behavioral therapy for PTSD) in women during periods of high endogenous estradiol levels (the primary form of estrogens) is reportedly more effective than in periods of low endogenous estradiol. In this review, we present the roles of selected neuropeptides in the sex-related predisposition to PTSD development.
Collapse
Affiliation(s)
- Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland; (M.L.); (A.S.)
| | - Aleksandra Wisłowska-Stanek
- Centre for Preclinical Research and Technology (CEPT), Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, 1B Banacha Street, 02-097 Warsaw, Poland
| |
Collapse
|
21
|
Sex differences in anxiety and depression: circuits and mechanisms. Nat Rev Neurosci 2021; 22:674-684. [PMID: 34545241 DOI: 10.1038/s41583-021-00513-0] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Epidemiological sex differences in anxiety disorders and major depression are well characterized. Yet the circuits and mechanisms that contribute to these differences are understudied, because preclinical studies have historically excluded female rodents. This oversight is beginning to be addressed, and recent studies that include male and female rodents are identifying sex differences in neurobiological processes that underlie features of these disorders, including conflict anxiety, fear processing, arousal, social avoidance, learned helplessness and anhedonia. These findings allow us to conceptualize various types of sex differences in the brain, which in turn have broader implications for considering sex as a biological variable. Importantly, comparing the sexes could aid in the discovery of novel therapeutics.
Collapse
|
22
|
Ballarotto G, Marzilli E, Cerniglia L, Cimino S, Tambelli R. How Does Psychological Distress Due to the COVID-19 Pandemic Impact on Internet Addiction and Instagram Addiction in Emerging Adults? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11382. [PMID: 34769897 PMCID: PMC8583668 DOI: 10.3390/ijerph182111382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023]
Abstract
International research has underlined a worrying increase in Internet and Instagram addiction among emerging adults during the COVID-19 pandemic. Although the role played by alexithymia and psychological distress due to COVID-19 has been evidenced, no study has explored their complex relationship in predicting emerging adults' Internet and Instagram addiction. The present study aimed to verify whether peritraumatic distress due to the COVID-19 pandemic mediated the relationship between emerging adults' alexithymia and their Internet/Instagram addiction, in a sample composed of n = 400 Italian emerging adults. Results showed that females had higher peritraumatic distress due to COVID-19 than males, whereas males had higher externally oriented thinking and higher levels of Internet addiction than females. Emerging adults' psychological distress due to COVID-19 significantly mediated the effect of alexithymia on Internet and Instagram addiction. Our findings supported the presence of a dynamic relationship between individual vulnerabilities and the co-occurrence of other psychological difficulties in predicting emerging adults' Internet and Instagram addiction during the pandemic, with important clinical implications.
Collapse
Affiliation(s)
- Giulia Ballarotto
- Department of Dynamic, Clinical & Health Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.M.); (S.C.); (R.T.)
| | - Eleonora Marzilli
- Department of Dynamic, Clinical & Health Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.M.); (S.C.); (R.T.)
| | - Luca Cerniglia
- Faculty of Psychology, International Telematic University Uninettuno, 00185 Rome, Italy;
| | - Silvia Cimino
- Department of Dynamic, Clinical & Health Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.M.); (S.C.); (R.T.)
| | - Renata Tambelli
- Department of Dynamic, Clinical & Health Psychology, Sapienza University of Rome, 00185 Rome, Italy; (E.M.); (S.C.); (R.T.)
| |
Collapse
|
23
|
Glodosky NC, Cuttler C, McLaughlin RJ. A review of the effects of acute and chronic cannabinoid exposure on the stress response. Front Neuroendocrinol 2021; 63:100945. [PMID: 34461155 PMCID: PMC8605997 DOI: 10.1016/j.yfrne.2021.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/28/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
While cannabis has been used for centuries for its stress-alleviating properties, the effects of acute and chronic cannabinoid exposure on responses to stress remain poorly understood. This review provides an overview of studies that measured stress-related endpoints following acute or chronic cannabinoid exposure in humans and animals. Acute cannabinoid exposure increases basal concentrations of stress hormones in rodents and humans and has dose-dependent effects on stress reactivity in humans and anxiety-like behavior in rodents. Chronic cannabis exposure is associated with dampened stress reactivity, a blunted cortisol awakening response (CAR), and flattened diurnal cortisol slope in humans. Sex differences in these effects remain underexamined, with limited evidence for sex differences in effects of cannabinoids on stress reactivity in rodents. Future research is needed to better understand sex differences in the effects of cannabis on the stress response, as well as downstream impacts on mental health and stress-related disorders.
Collapse
Affiliation(s)
| | - Carrie Cuttler
- Department of Psychology, Washington State University, Pullman, WA, USA.
| | - Ryan J McLaughlin
- Department of Psychology, Washington State University, Pullman, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| |
Collapse
|
24
|
Pereira G, Gillies H, Chanda S, Corbett M, Vernon SD, Milani T, Bateman L. Acute Corticotropin-Releasing Factor Receptor Type 2 Agonism Results in Sustained Symptom Improvement in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Syst Neurosci 2021; 15:698240. [PMID: 34539356 PMCID: PMC8441022 DOI: 10.3389/fnsys.2021.698240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex multi-symptom disease with widespread evidence of disrupted systems. The authors hypothesize that it is caused by the upregulation of the corticotropin-releasing factor receptor type 2 (CRFR2) in the raphé nuclei and limbic system, which impairs the ability to maintain homeostasis. The authors propose utilizing agonist-mediated receptor endocytosis to downregulate CRFR2. Materials and Methods This open-label trial tested the safety, tolerability and efficacy of an acute dose of CT38s (a short-lived, CRFR2-selective agonist, with no known off-target activity) in 14 ME/CFS patients. CT38s was subcutaneously-infused at one of four dose-levels (i.e., infusion rates of 0.01, 0.03, 0.06, and 0.20 μg/kg/h), for a maximum of 10.5 h. Effect was measured as the pre-/post-treatment change in the mean 28-day total daily symptom score (TDSS), which aggregated 13 individual patient-reported symptoms. Results ME/CFS patients were significantly more sensitive to the transient hemodynamic effects of CRFR2 stimulation than healthy subjects in a prior trial, supporting the hypothesized CRFR2 upregulation. Adverse events were generally mild, resolved without intervention, and difficult to distinguish from ME/CFS symptoms, supporting a CRFR2 role in the disease. The acute dose of CT38s was associated with an improvement in mean TDSS that was sustained (over at least 28 days post-treatment) and correlated with both total exposure and pre-treatment symptom severity. At an infusion rate of 0.03 μg/kg/h, mean TDSS improved by -7.5 ± 1.9 (or -25.7%, p = 0.009), with all monitored symptoms improving. Conclusion The trial supports the hypothesis that CRFR2 is upregulated in ME/CFS, and that acute CRFR2 agonism may be a viable treatment approach warranting further study. Clinical Trial Registration ClinicalTrials.gov, identifier NCT03613129.
Collapse
Affiliation(s)
| | | | | | | | | | - Tina Milani
- Bateman Horne Center, Salt Lake City, UT, United States
| | | |
Collapse
|
25
|
Van Batavia JP, Butler S, Lewis E, Fesi J, Canning DA, Vicini S, Valentino RJ, Zderic SA. Corticotropin-Releasing Hormone from the Pontine Micturition Center Plays an Inhibitory Role in Micturition. J Neurosci 2021; 41:7314-7325. [PMID: 34193553 PMCID: PMC8387110 DOI: 10.1523/jneurosci.0684-21.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
Lower urinary tract or voiding disorders are prevalent across all ages and affect >40% of adults over 40 years old, leading to decreased quality of life and high health care costs. The pontine micturition center (PMC; i.e., Barrington's nucleus) contains a large population of neurons that localize the stress-related neuropeptide, corticotropin-releasing hormone (CRH) and project to neurons in the spinal cord to regulate micturition. How the PMC and CRH-expressing neurons in the PMC control volitional micturition is of critical importance for human voiding disorders. To investigate the specific role of CRH in the PMC, neurons in the PMC-expressing CRH were optogenetically activated during in vivo cystometry in unanesthetized mice of either sex. Optogenetic activation of CRH-PMC neurons led to increased intermicturition interval and voided volume, similar to the altered voiding phenotype produced by social stress. Female mice showed a significantly more pronounced phenotype change compared with male mice. These effects were eliminated by CRH-receptor 1 antagonist pretreatment. Optogenetic inhibition of CRH-PMC neurons led to an altered voiding phenotype characterized by more frequent voids and smaller voided volumes. Last, in a cyclophosphamide cystitis model of bladder overactivity, optogenetic activation of CRH-PMC neurons returned the voiding pattern to normal. Collectively, our findings demonstrate that CRH from PMC spinal-projecting neurons has an inhibitory function on micturition and is a potential therapeutic target for human disease states, such as voiding postponement, urinary retention, and underactive or overactive bladder.SIGNIFICANCE STATEMENT The pontine micturition center (PMC), which is a major regulator of volitional micturition, is neurochemically heterogeneous, and excitatory neurotransmission derived from PMC neurons is thought to mediate the micturition reflex. In the present study, using optogenetic manipulation of CRH-containing neurons in double-transgenic mice, we demonstrate that CRH, which is prominent in PMC-spinal projections, has an inhibitory function on volitional micturition. Moreover, engaging this inhibitory function of CRH can ameliorate bladder hyperexcitability induced by cyclophosphamide in a model of cystitis. The data underscore CRH as a novel target for the treatment of voiding dysfunctions, which are highly prevalent disease processes in children and adults.
Collapse
Affiliation(s)
- Jason P Van Batavia
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stephan Butler
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Eleanor Lewis
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Joanna Fesi
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Douglas A Canning
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown, University Medical Center, Washington, DC 20007
| | - Rita J Valentino
- Department of Anesthesia and Critical Care, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Stephen A Zderic
- Division of Urology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| |
Collapse
|
26
|
Guajardo HM, Valentino RJ. Sex differences in μ-opioid regulation of coerulear-cortical transmission. Neurosci Lett 2021; 746:135651. [PMID: 33482313 DOI: 10.1016/j.neulet.2021.135651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 11/26/2022]
Abstract
Stress-induced activation of locus coeruleus (LC)-norepinephrine (NE) projections to the prefrontal cortex are thought to promote cognitive responses to stressors. LC activation by stressors is modulated by endogenous opioids that restrain LC activation and facilitate a return to baseline activity upon stress termination. Sex differences in this opioid influence could be a basis for sex differences in stress vulnerability. Consistent with this, we recently demonstrated that μ-opioid receptor (MOR) expression is decreased in the female rat LC compared to the male LC, and this was associated with sexually distinct consequences of activating MOR in the LC on cognitive flexibility. Given that the LC-NE system affects cognitive flexibility through its projections to the medial prefrontal cortex (mPFC), the present study quantified and compared the effects of LC-MOR activation on mPFC neural activity in male and female rats. Local field potential (LFPs) were recorded from the mPFC of freely behaving male and female rats before and following local LC microinjection of the MOR agonist, DAMGO, or vehicle. Intra-LC DAMGO altered the LFP power spectrum selectively in male but not female rats, resulting in a time-dependent increase in the power in delta and alpha frequency bands. LC microinfusion of ACSF had no effect on either sex. Together, the results are consistent with previous evidence for decreased MOR function in the female rat LC and demonstrate that this translates to a diminished effect on cortical activity that can account for sex differences in cognitive consequences. Decreased LC-MOR function in females could contribute to greater stress-induced activation of the LC and increased vulnerability of females to hyperarousal symptoms of stress-related neuropsychiatric pathologies.
Collapse
Affiliation(s)
- Herminio M Guajardo
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Rita J Valentino
- Neuroscience Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
28
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
29
|
Williams RG, Li KH, Phillips PEM. The Influence of Stress on Decision-Making: Effects of CRF and Dopamine Antagonism in the Nucleus Accumbens. Front Psychiatry 2021; 12:814218. [PMID: 35145440 PMCID: PMC8821535 DOI: 10.3389/fpsyt.2021.814218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/28/2021] [Indexed: 11/13/2022] Open
Abstract
The actions of corticotropin-releasing factor (CRF) in the core of the nucleus accumbens including increasing dopamine release and inducing conditioned place preference in stress-naïve animals. However, following two-day, repeated forced swim stress (rFSS), neither of these effects are present, indicating a stress-sensitive interaction between CRF and dopamine. To ascertain the degree to which this mechanism influences integrated, reward-based decision making, we used an operant concurrent-choice task where mice could choose between two liquid receptacles containing a sucrose solution or water delivery. Following initial training, either a CRF or dopamine antagonist, α-helical CRF (9-41) and flupenthixol, respectively, or vehicle was administered intracranially to the nucleus accumbens core. Next, the animals underwent rFSS, were reintroduced to the task, and were retested. Prior to stress, mice exhibited a significant preference for sucrose over water and made more total nose pokes into the sucrose receptacle than the water receptacle throughout the session. There were no observed sex differences. Stress did not robustly affect preference metrics but did increase the number of trial omissions compared to their stress-naïve, time-matched counterparts. Interestingly, flupenthixol administration did not affect sucrose choice but increased their nosepoke preference during the inter-trial interval, increased trial omissions, and decreased the total nosepokes during the ITI. In contrast, microinjections of α-helical CRF (9-41) did not affect omissions or ITI nosepokes but produced interactions with stress on choice metrics. These data indicate that dopamine and CRF both interact with stress to impact performance in the task but influence different behavioral aspects.
Collapse
Affiliation(s)
- Rapheal G Williams
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Graduate Program in Neuroscience, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| | - Kevin H Li
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Paul E M Phillips
- Center for Excellence in Neurobiology of Addiction, Pain and Emotion, Seattle, WA, United States.,Graduate Program in Neuroscience, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States.,Department of Pharmacology, University of Washington, Seattle, WA, United States
| |
Collapse
|
30
|
Abstract
The central noradrenergic system comprises multiple brainstem nuclei whose cells synthesize and release the catecholamine transmitter norepinephrine (NE). The largest of these nuclei is the pontine locus coeruleus (LC), which innervates the vast majority of the forebrain. NE interacts with a number of pre- and postsynaptically expressed G protein-coupled receptors to affect a wide array of functions, including sensory signal processing, waking and arousal, stress responsiveness, mood, attention, and memory. Given the myriad functions ascribed to the locus coeruleus-noradrenergic (LC-NE) system, it is unsurprising that it is implicated in many disease states, including various mood, cognitive, neuropsychiatric, and neurodegenerative diseases. The LC-NE system is also notably sexually dimorphic with regard to its morphologic and anatomical features as well as how it responds to the peptide transmitter corticotropin releasing hormone (CRH), a major mediator of the central stress response. The sex-biased morphology and signaling that is observed in the LC could then be considered a potential contributor to the differential prevalence of various diseases between men and women. This chapter summarizes the primary differences between the male and female LC, based primarily on preclinical observations and how these disparities may relate to differential diagnoses of several diseases between men and women.
Collapse
Affiliation(s)
- Neal Joshi
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Daniel Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
31
|
Eck SR, Xu SJ, Telenson A, Duggan MR, Cole R, Wicks B, Bergmann J, Lefebo H, Shore M, Shepard KA, Akins MR, Parikh V, Heller EA, Bangasser DA. Stress Regulation of Sustained Attention and the Cholinergic Attention System. Biol Psychiatry 2020; 88:566-575. [PMID: 32600739 PMCID: PMC7487022 DOI: 10.1016/j.biopsych.2020.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Stress exacerbates symptoms of schizophrenia and attention-deficit/hyperactivity disorder, which are characterized by impairments in sustained attention. Yet how stress regulates attention remains largely unexplored. We investigated whether a 6-day variable stressor altered sustained attention and the cholinergic attention system in male and female rats. METHODS Sustained attention was tested with the sustained attention task. Successful performance on the sustained attention task relies on the release of acetylcholine (ACh) into the cortex from cholinergic neurons in the nucleus basalis of Meynert (NBM). Thus, we evaluated whether variable stress (VS) altered the morphology of these neurons with a novel approach using a Cre-dependent virus in genetically modified ChAT::Cre rats, a species used for this manipulation only. Next, electrochemical recordings measured cortical ACh following VS. Finally, we used RNA sequencing to identify VS-induced transcriptional changes in the NBM. RESULTS VS impaired attentional performance in the sustained attention task and increased the dendritic complexity of NBM cholinergic neurons in both sexes. NBM cholinergic neurons are mainly under inhibitory control, so this morphological change could increase inhibition on these neurons, reducing downstream ACh release to impair attention. Indeed, VS decreased ACh release in the prefrontal cortex of male rats. Quantification of global transcriptional changes revealed that although VS induced many sex-specific changes in gene expression, it increased several signaling molecules in both sexes. CONCLUSIONS These studies suggest that VS impairs attention by inducing molecular and morphological changes in the NBM. Identifying mechanisms by which stress regulates attention may guide the development of novel treatments for psychiatric disorders with attention deficits.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Song-Jun Xu
- Penn Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexander Telenson
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Robert Cole
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Brittany Wicks
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Joy Bergmann
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Hanna Lefebo
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Marni Shore
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | | | - Michael R Akins
- Department of Biology, Drexel University, Philadelphia, Pennsylvania
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania
| | - Elizabeth A Heller
- Penn Epigenetics Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, Pennsylvania.
| |
Collapse
|
32
|
Agoglia AE, Tella J, Herman MA. Sex differences in corticotropin releasing factor peptide regulation of inhibitory control and excitability in central amygdala corticotropin releasing factor receptor 1-neurons. Neuropharmacology 2020; 180:108296. [PMID: 32950560 DOI: 10.1016/j.neuropharm.2020.108296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/28/2022]
Abstract
The central amygdala (CeA) is a critical regulator of emotional behavior that has been implicated in psychiatric illnesses, including anxiety disorders and addiction. The CeA corticotropin releasing factor receptor 1 (CRF1) system has been implicated in alcohol use disorder (AUD) and mood disorders, and has been shown to regulate anxiety-like behavior and alcohol consumption in rodents. However, the effects of CRF signaling within the CRF receptor 1-containing (CRF1+) population of the CeA remain unclear, and the effects of ethanol and CRF1 manipulations in female rodents have not been assessed. Here, we characterized inhibitory control and CRF1 signaling in male and female CRF1-GFP reporter mice. Male and female CRF1+ CeA neurons exhibited similar baseline GABAergic signaling and excitability and were comparably sensitive to CRF-induced increases in presynaptic GABA release. CRF1 antagonism reduced GABA release onto CRF1-containing neurons comparably in both males and females. Acute ethanol application reduced GABA release onto CRF1+ neurons from males, but female CRF1+ neurons were insensitive to ethanol. Exogenous CRF increased the firing rate of CRF1-containing neurons to a greater extent in male cells versus female cells, and CRF1 antagonism reduced firing in females but not males. Together, these findings indicate a critical sex-specific role for the CRF system in regulating inhibitory control and excitability of CRF1-containing neurons in the central amygdala. Sex differences in sensitivity of CRF/CRF1 signaling provide useful context for the sex differences in psychiatric illness reported in human patients, particularly AUD.
Collapse
Affiliation(s)
- Abigail E Agoglia
- Department of Pharmacology, United States; Bowles Center for Alcohol Studies, United States
| | | | - Melissa A Herman
- Department of Pharmacology, United States; Bowles Center for Alcohol Studies, United States.
| |
Collapse
|
33
|
Cardenas A, Caniglia J, Keljalic D, Dimitrov E. Sex differences in the development of anxiodepressive-like behavior of mice subjected to sciatic nerve cuffing. Pain 2020; 161:1861-1871. [PMID: 32701845 PMCID: PMC7502469 DOI: 10.1097/j.pain.0000000000001875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We investigated the contribution of nucleus locus ceruleus (LC) to the development of pain-associated affective behavior. Mice of both sexes were subjected to sciatic nerve cuffing, a model of peripheral nerve injury, and monitored for 45 days. Although the thermal and mechanical thresholds were equally decreased in both males and females, only the male mice developed anxiodepressive-like behavior, which was complemented by suppressed hippocampal neurogenesis. Furthermore, the LC activity was lower in males when compared with females subjected to sciatic cuffing. Next, we used a chemogenetic approach to modulate the activity of LC projections to the dentate gyrus of the hippocampus in females without cuffs and in males with sciatic cuffs. Sustained inhibition of the LC projections to the dentate gyrus for 15 days induced anxiodepressive-like behavior and reduced the hippocampal neurogenesis in females. Activation of the LC projections to the dentate gyrus for 15 days prevented the development of anxiodepressive-like behavior and increased the hippocampal neurogenesis in males with cuffs. In sum, we demonstrated that the LC projections to the hippocampus link the sensory to the affective component of neuropathic injury and that the female mice are able to dissociate the nociception from affect by maintaining robust LC activity. The work provides evidence that sex differences in LC response to pain determine the sex differences in the development of pain phenotype.
Collapse
Affiliation(s)
- Andrea Cardenas
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - John Caniglia
- Illinois College of Medicine, University of Illinois, 1 Illini Drive, Peoria, IL 61605
| | - Denis Keljalic
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064
| | - Eugene Dimitrov
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Tel: (847) 578-8364
| |
Collapse
|
34
|
Joshi N, McAree M, Chandler D. Corticotropin releasing factor modulates excitatory synaptic transmission. VITAMINS AND HORMONES 2020; 114:53-69. [PMID: 32723550 DOI: 10.1016/bs.vh.2020.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The mammalian brain contains many regions which synthesize and release the hormone and transmitter corticotropin releasing factor. This peptide is a key player in the function of the hypothalamic-pituitary-adrenal axis and has major role in mediating the endocrine limb of the stress response. However, there are several regions outside of the paraventricular nucleus of the hypothalamus which synthesize this peptide in which it has a role more akin to a classical neurotransmitter. A significant body of literature exists in which its role as a transmitter and its cellular effects in many brain regions, as well as how it affects various forms of behavior, is described. However, the receptors which corticotropin releasing factor interacts with in the brain are G-protein coupled receptors, and therefore their activation promotes a multitude of cellular effects. Despite this, comparatively little research has been done to investigate how this peptide affects excitatory synaptic transmission in the brain. This is important because both excitatory and inhibitory regulation of physiology are important extrinsic factors in the operation of neurons which occur in conjunction with their intrinsic properties. By not taking into account how corticotropin releasing factor affects these processes, a complete picture of this peptide's role in brain function is not available. In this chapter, the limited body of research which has explicitly investigated how corticotropin releasing factor affects excitatory synaptic transmission in various brain regions will be explored.
Collapse
Affiliation(s)
- Neal Joshi
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Michael McAree
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States
| | - Daniel Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, United States.
| |
Collapse
|
35
|
Ross JA, Van Bockstaele EJ. The role of catecholamines in modulating responses to stress: Sex-specific patterns, implications, and therapeutic potential for post-traumatic stress disorder and opiate withdrawal. Eur J Neurosci 2020; 52:2429-2465. [PMID: 32125035 DOI: 10.1111/ejn.14714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/15/2020] [Accepted: 02/20/2020] [Indexed: 12/22/2022]
Abstract
Emotional arousal is one of several factors that determine the strength of a memory and how efficiently it may be retrieved. The systems at play are multifaceted; on one hand, the dopaminergic mesocorticolimbic system evaluates the rewarding or reinforcing potential of a stimulus, while on the other, the noradrenergic stress response system evaluates the risk of threat, commanding attention, and engaging emotional and physical behavioral responses. Sex-specific patterns in the anatomy and function of the arousal system suggest that sexually divergent therapeutic approaches may be advantageous for neurological disorders involving arousal, learning, and memory. From the lens of the triple network model of psychopathology, we argue that post-traumatic stress disorder and opiate substance use disorder arise from maladaptive learning responses that are perpetuated by hyperarousal of the salience network. We present evidence that catecholamine-modulated learning and stress-responsive circuitry exerts substantial influence over the salience network and its dysfunction in stress-related psychiatric disorders, and between the sexes. We discuss the therapeutic potential of targeting the endogenous cannabinoid system; a ubiquitous neuromodulator that influences learning, memory, and responsivity to stress by influencing catecholamine, excitatory, and inhibitory synaptic transmission. Relevant preclinical data in male and female rodents are integrated with clinical data in men and women in an effort to understand how ideal treatment modalities between the sexes may be different.
Collapse
Affiliation(s)
- Jennifer A Ross
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
36
|
Biological intersection of sex, age, and environment in the corticotropin releasing factor (CRF) system and alcohol. Neuropharmacology 2020; 170:108045. [PMID: 32217364 DOI: 10.1016/j.neuropharm.2020.108045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/13/2020] [Accepted: 03/06/2020] [Indexed: 01/21/2023]
Abstract
The neuropeptide corticotropin-releasing factor (CRF) is critical in neural circuit function and behavior, particularly in the context of stress, anxiety, and addiction. Despite a wealth of preclinical evidence for the efficacy of CRF receptor 1 antagonists in reducing behavioral pathology associated with alcohol exposure, several clinical trials have had disappointing outcomes, possibly due to an underappreciation of the role of biological variables. Although he National Institutes of Health (NIH) now mandate the inclusion of sex as a biological variable in all clinical and preclinical research, the current state of knowledge in this area is based almost entirely on evidence from male subjects. Additionally, the influence of biological variables other than sex has received even less attention in the context of neuropeptide signaling. Age (particularly adolescent development) and housing conditions have been shown to affect CRF signaling and voluntary alcohol intake, and the interaction between these biological variables is particularly relevant to the role of the CRF system in the vulnerability or resilience to the development of alcohol use disorder (AUD). Going forward, it will be important to include careful consideration of biological variables in experimental design, reporting, and interpretation. As new research uncovers conditions in which sex, age, and environment play major roles in physiological and/or pathological processes, our understanding of the complex interaction between relevant biological variables and critical signaling pathways like the CRF system in the cellular and behavioral consequences of alcohol exposure will continue to expand ultimately improving the ability of preclinical research to translate to the clinic. This article is part of the special issue on Neuropeptides.
Collapse
|
37
|
Kuehl LK, Deuter CE, Hellmann-Regen J, Kaczmarczyk M, Otte C, Wingenfeld K. Enhanced noradrenergic activity by yohimbine and differential fear conditioning in patients with major depression with and without adverse childhood experiences. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109751. [PMID: 31446157 DOI: 10.1016/j.pnpbp.2019.109751] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023]
Abstract
Major depressive disorder (MDD) has been associated with changes in the biological stress systems, including the locus coeruleus-noradrenergic system. Accumulated evidence suggests an upregulation of central alpha2-receptors, leading to decreased noradrenergic activity on a central level in MDD patients. Adverse childhood experiences (ACE) such as physical or sexual abuse might contribute to those changes. Furthermore, noradrenaline can affect cognitive processes, e.g. learning and memory. Cognitive dysfunctions constitute an important symptom of MDD. We aimed to investigate the relationship of alpha2-receptor dysregulation with learning processes in MDD by conducting a differential fear conditioning paradigm after double-blind administration of the alpha2-receptor antagonist yohimbine versus placebo. To investigate the role of ACE systematically, we included four groups of healthy participants and MDD patients with and without ACE (MDD-/ACE-: N = 44, MDD-/ACE+: N = 26, MDD+/ACE-: N = 24, MDD+/ACE+: N = 24; without antidepressant medication). We found increased noradrenergic activity after yohimbine administration across groups as measured by alpha-amylase and blood pressure. Overall, fear responses were higher after yohimbine as indicated by skin conductance responses and fear-potentiated startle responses. While we found no significant MDD effect, ACE had significant impact on the ability to discriminate between both conditioned stimuli (CS+ predicting an aversive stimulus, CS- predicting none), depending on drug condition. After yohimbine, CS discrimination decreased in individuals without ACE, but not in individuals with ACE. Differences in the response to yohimbine might be explained by aberrant alpha2-receptor regulation in individuals with ACE. Impaired discrimination of threat and safety signals might contribute to enhanced vulnerability following ACE.
Collapse
Affiliation(s)
- Linn K Kuehl
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany.
| | - Christian E Deuter
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Michael Kaczmarczyk
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Christian Otte
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| | - Katja Wingenfeld
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
| |
Collapse
|
38
|
Abstract
Stress is associated with the onset of several stress-related mental disorders that occur more frequently in women than in men, such as major depression or posttraumatic stress disorder (PTSD). The hypothalamic-pituitary-adrenal (HPA) axis is the major component of the neuroendocrine network responding to internal and external challenges. The proper functioning of the HPA axis is critical for the maintenance of mental and physical health, as dysregulations of the HPA axis have been linked to several mental and physical disorders. Numerous studies have observed distinct sex differences in the regulation of the HPA axis in response to stress, and it is supposed that these differences may partially explain the female predominance in stress-related mental disorders. Preclinical models have clearly shown that the HPA axis in females is activated more rapidly and produces a larger output of stress hormones than in males. However, studies with humans often produced inconsistent findings, which might be traced back to the variation of investigated stressors, the use of contraceptives in some of the studies, and different menstrual cycle stages of the female subjects. This article discusses rodent and human literature of sex differences in the function of the HPA axis.
Collapse
Affiliation(s)
- Carolin Leistner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Andreas Menke
- Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital of Wuerzburg, Wuerzburg, Germany; Comprehensive Heart Failure Center, University Hospital of Wuerzburg, Wuerzburg, Germany; Department of Psychosomatic Medicine and Psychotherapy, Medical Park Chiemseeblick, Bernau-Felden, Germany.
| |
Collapse
|
39
|
|
40
|
Wyrofsky RR, Reyes BAS, Yu D, Kirby LG, Van Bockstaele EJ. Sex differences in the effect of cannabinoid type 1 receptor deletion on locus coeruleus-norepinephrine neurons and corticotropin releasing factor-mediated responses. Eur J Neurosci 2019; 48:2118-2138. [PMID: 30103253 DOI: 10.1111/ejn.14103] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/06/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022]
Abstract
Cannabinoids are capable of modulating mood, arousal, cognition and behavior, in part via their effects on the noradrenergic nucleus locus coeruleus (LC). Dysregulation of LC signaling and norepinephrine (NE) efflux in the medial prefrontal cortex (mPFC) can lead to the development of psychiatric disorders, and CB1r deletion results in alterations of α2- and β1-adrenoceptors in the mPFC, suggestive of increased LC activity. To determine how CB1r deletion alters LC signaling, whole-cell patch-clamp electrophysiology was conducted in LC-NE neurons of male and female wild type (WT) and CB1r-knock out (KO) mice. CB1r deletion caused a significant increase in LC-NE excitability and input resistance in male but not female mice when compared to WT. CB1r deletion also caused adaptations in several indices of noradrenergic function. CB1r/CB2r-KO male mice had a significant increase in cortical NE levels and tyrosine hydroxylase and CRF levels in the LC compared to WT males. CB1r/CB2r-KO female mice showed a significant increase in LC α2-AR levels compared to WT females. To further probe actions of the endocannabinoid system as an anti-stress neuromediator, the effect of CB1r deletion on CRF-induced responses in the LC was investigated. The increase in LC-NE excitability observed in male and female WT mice following CRF (300 nM) bath application was not observed in CB1r-KO mice. These results indicate that cellular adaptations following CB1r deletion cause a disruption in LC-NE signaling in males but not females, suggesting underlying sex differences in compensatory mechanisms in KO mice as well as basal endocannabinoid regulation of LC-NE activity.
Collapse
Affiliation(s)
- Ryan R Wyrofsky
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Daohai Yu
- Department of Clinical Sciences, Temple Clinical Research Institute, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Lynn G Kirby
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
41
|
Kokras N, Hodes GE, Bangasser DA, Dalla C. Sex differences in the hypothalamic-pituitary-adrenal axis: An obstacle to antidepressant drug development? Br J Pharmacol 2019; 176:4090-4106. [PMID: 31093959 PMCID: PMC6877794 DOI: 10.1111/bph.14710] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/11/2019] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysfunction has long been implicated in the pathophysiology of depression, and HPA axis-based compounds have served as potential new therapeutic targets, but with no success. This review details sex differences from animal and human studies in the function of HPA axis elements (glucocorticoids, corticotropin releasing factor, and vasopressin) and related compounds tested as candidate antidepressants. We propose that sex differences contribute to the failure of novel HPA axis-based drugs in clinical trials. Compounds studied preclinically in males were tested in clinical trials that recruited more, if not exclusively, women, and did not control, but rather adjusted, for potential sex differences. Indeed, clinical trials of antidepressants are usually not stratified by sex or other important factors, although preclinical and epidemiological data support such stratification. In conclusion, we suggest that clinical testing of HPA axis-related compounds creates an opportunity for targeted, personalized antidepressant treatments based on sex. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Nikolaos Kokras
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
- First Department of Psychiatry, Eginition HospitalNational and Kapodistrian University of AthensAthensGreece
| | - Georgia E. Hodes
- School of NeuroscienceVirginia Polytechnic Institute and State UniversityBlacksburgVirginia
| | | | - Christina Dalla
- Department of PharmacologyNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
42
|
Dunlop BW, Wong A. The hypothalamic-pituitary-adrenal axis in PTSD: Pathophysiology and treatment interventions. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:361-379. [PMID: 30342071 DOI: 10.1016/j.pnpbp.2018.10.010] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022]
Abstract
Questions of how altered functioning of the hypothalamic pituitary adrenal (HPA) axis contribute to the development and maintenance of posttraumatic stress disorder (PTSD) have been the focus of extensive animal and human research. As a rule, results have been inconsistent across studies, likely due to a variety of confounding variables that have received inadequate attention. Important confounding factors include the effects of early life stress, biological sex, and the glucocorticoid used for interventions. In this manuscript we review: 1) the literature on identified abnormalities of HPA axis function in PTSD, both in terms of basal functioning and as part of challenge paradigms; 2) the role of HPA axis function pre- and immediately post-trauma as a risk factor for PTSD development; 3) the impact of HPA axis genes' allelic variants and epigenetic modifications on PTSD risk; 4) the contributions of HPA axis components to fear learning and extinction; and 5) therapeutic manipulations of the HPA axis to both prevent and treat PTSD, including the role of glucocorticoids as part of medication enhanced psychotherapy.
Collapse
Affiliation(s)
- Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Andrea Wong
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
43
|
Nahvi RJ, Nwokafor C, Serova LI, Sabban EL. Single Prolonged Stress as a Prospective Model for Posttraumatic Stress Disorder in Females. Front Behav Neurosci 2019; 13:17. [PMID: 30804766 PMCID: PMC6378310 DOI: 10.3389/fnbeh.2019.00017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/21/2019] [Indexed: 12/27/2022] Open
Abstract
Sex plays an important role in susceptibility to stress triggered disorders. Posttraumatic Stress disorder (PTSD), a debilitating psychiatric disorder developed after exposure to a traumatic event, is two times more prevalent in women than men. However, the vast majority of animal models of PTSD, including single prolonged stress (SPS), were performed mostly with males. Here, we evaluated SPS as an appropriate PTSD model for females in terms of anxiety, depressive symptoms and changes in gene expression in the noradrenergic system in the brain. In addition, we examined intranasal neuropeptide Y (NPY) as a possible treatment in females. Female rats were subjected to SPS and given either intranasal NPY or vehicle in two separate experiments. In the first experiment, stressed females were compared to unstressed controls on forced swim test (FST) and for levels of expression of several genes in the locus coeruleus (LC) 12 days after SPS exposure. Using a separate cohort of animals, experiment two examined stressed females and unstressed controls on the elevated plus maze (EPM) and LC gene expression 7 days after SPS stressors. SPS led to increased anxiety-like behavior on EPM and depressive-like behavior on FST. Following FST, the rats displayed elevated tyrosine hydroxylase (TH), CRHR1 and Y1R mRNA levels in the LC, consistent with increased activation of the noradrenergic system. The expression level of these mRNAs was unchanged following EPM, except Y1R. Intranasal NPY at the doses shown to be effective in males, did not prevent development of depressive or anxiety-like behavior or molecular changes in the LC. The results indicate that while SPS could be an appropriate PTSD model for females, sex differences, such as response to NPY, are important to consider.
Collapse
Affiliation(s)
- Roxanna J Nahvi
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Chiso Nwokafor
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Lidia I Serova
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| | - Esther L Sabban
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
44
|
Sex differences in stress reactivity in arousal and attention systems. Neuropsychopharmacology 2019; 44:129-139. [PMID: 30022063 PMCID: PMC6235989 DOI: 10.1038/s41386-018-0137-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/21/2018] [Accepted: 06/15/2018] [Indexed: 01/04/2023]
Abstract
Women are more likely than men to suffer from psychiatric disorders with hyperarousal symptoms, including posttraumatic stress disorder (PTSD) and major depression. In contrast, women are less likely than men to be diagnosed with schizophrenia and attention deficit hyperactivity disorder (ADHD), which share attentional impairments as a feature. Stressful events exacerbate symptoms of the aforementioned disorders. Thus, researchers are examining whether sex differences in stress responses bias women and men towards different psychopathology. Here we review the preclinical literature suggesting that, compared to males, females are more vulnerable to stress-induced hyperarousal, while they are more resilient to stress-induced attention deficits. Specifically described are sex differences in receptors for the stress neuropeptide, corticotropin-releasing factor (CRF), that render the locus coeruleus arousal system of females more vulnerable to stress and less adaptable to CRF hypersecretion, a condition found in patients with PTSD and depression. Studies on the protective effects of ovarian hormones against CRF-induced deficits in sustained attention are also detailed. Importantly, we highlight how comparing males and females in preclinical studies can lead to the development of novel therapeutics to improve treatments for psychiatric disorders in both women and men.
Collapse
|
45
|
Schinke C, Hesse S, Rullmann M, Becker GA, Luthardt J, Zientek F, Patt M, Stoppe M, Schmidt E, Meyer K, Meyer PM, Orthgieß J, Blüher M, Kratzsch J, Ding YS, Then Bergh F, Sabri O. Central noradrenaline transporter availability is linked with HPA axis responsiveness and copeptin in human obesity and non-obese controls. Stress 2019; 22:93-102. [PMID: 30369292 DOI: 10.1080/10253890.2018.1511698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The central noradrenaline (NA) stress-response network co-mediates hypothalamic-pituitary-adrenal (HPA) axis activation and arginine-vasopressin (AVP) release. Dysregulation of these systems contributes to stress-related diseases such as human obesity, but their interrelation remains unclear. The study was aimed to test for the first time in vivo whether central noradrenergic activity quantitatively indexed by the availability of the presynaptic NA transporter (NAT) is associated with HPA axis responsiveness as measured with the combined dexamethasone suppression/corticotropin releasing hormone stimulation (dex/CRH) test and copeptin as a surrogate marker of the serum AVP tone in highly obese, otherwise, healthy individuals compared to age- and sex-matched non-obese, healthy controls. In order to assess central NAT availability, positron emission tomography (PET) was applied using the NAT-selective radiotracer S,S-[11C]O-methylreboxetine (MRB) and correlated with curve indicators derived from the dex/CRH test (maximum, MAX, and area under the curve, AUC, for cortisol and adrenocorticotropic hormone, ACTH) as well as with copeptin. In non-obese controls, positive correlations were found between the NAT distribution volume ratios (DVR) of the orbitofrontal cortex (OFC) and the amygdala with the HPA response (OFC: ACTHMAX r = 0.87, p = .001; cortisolMAX r = 0.86, p = .002; amygdala: ACTHMAX r = 0.86, p = .002; cortisolMAX r = 0.79, p = .006), while in obesity, the hypothalamic DVR correlated inversely with the HPA axis response (cortisolMAX, r = -0.66, p = .04) and with copeptin (r = -0.71, p = .02). This association of central NAT availability with HPA axis responsiveness and copeptin suggests a mechanistic interaction between noradrenergic transmission with HPA axis activity and the serum AVP system that differs between non-obese individuals with prefrontal-limbic involvement and obesity with a hypothalamic-centered relationship. Whether the latter finding contributes to obesogenic behavior needs to be further explored.
Collapse
Affiliation(s)
- Christian Schinke
- a Integrated Research and Treatment Center (IFB) Adiposity Diseases , Leipzig University Medical Center , Leipzig , Germany
- b Department of Neurology , University of Leipzig , Leipzig , Germany
- c Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Klinik und Hochschulambulanz für Neurologie , Berlin , Germany
| | - Swen Hesse
- a Integrated Research and Treatment Center (IFB) Adiposity Diseases , Leipzig University Medical Center , Leipzig , Germany
- d Department of Nuclear Medicine , University of Leipzig , Leipzig , Germany
| | - Michael Rullmann
- a Integrated Research and Treatment Center (IFB) Adiposity Diseases , Leipzig University Medical Center , Leipzig , Germany
- d Department of Nuclear Medicine , University of Leipzig , Leipzig , Germany
| | | | - Julia Luthardt
- d Department of Nuclear Medicine , University of Leipzig , Leipzig , Germany
| | - Franziska Zientek
- a Integrated Research and Treatment Center (IFB) Adiposity Diseases , Leipzig University Medical Center , Leipzig , Germany
- d Department of Nuclear Medicine , University of Leipzig , Leipzig , Germany
| | - Marianne Patt
- d Department of Nuclear Medicine , University of Leipzig , Leipzig , Germany
| | - Muriel Stoppe
- b Department of Neurology , University of Leipzig , Leipzig , Germany
- e Translational Centre for Regenerative Medicine , University of Leipzig , Leipzig , Germany
| | - Elisa Schmidt
- b Department of Neurology , University of Leipzig , Leipzig , Germany
| | - Klara Meyer
- b Department of Neurology , University of Leipzig , Leipzig , Germany
| | - Philipp M Meyer
- d Department of Nuclear Medicine , University of Leipzig , Leipzig , Germany
| | - Johannes Orthgieß
- b Department of Neurology , University of Leipzig , Leipzig , Germany
| | - Matthias Blüher
- f Department of Internal Medicine , University of Leipzig , Leipzig , Germany
| | - Jürgen Kratzsch
- g Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics , University of Leipzig , Leipzig , Germany
| | - Yu-Shin Ding
- h Departments of Radiology and Psychiatry , New York University School of Medicine , New York , USA
| | - Florian Then Bergh
- b Department of Neurology , University of Leipzig , Leipzig , Germany
- e Translational Centre for Regenerative Medicine , University of Leipzig , Leipzig , Germany
| | - Osama Sabri
- a Integrated Research and Treatment Center (IFB) Adiposity Diseases , Leipzig University Medical Center , Leipzig , Germany
- d Department of Nuclear Medicine , University of Leipzig , Leipzig , Germany
| |
Collapse
|
46
|
Rainville JR, Hodes GE. Inflaming sex differences in mood disorders. Neuropsychopharmacology 2019; 44:184-199. [PMID: 29955150 PMCID: PMC6235877 DOI: 10.1038/s41386-018-0124-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 02/06/2023]
Abstract
Men and women often experience different symptoms or rates of occurrence for a variety of mood disorders. Many of the symptoms of mood disorders overlap with autoimmune disorders, which also have a higher prevalence in women. There is a growing interest in exploring the immune system to provide biomarkers for diagnosis of mood disorders, along with new targets for developing treatments. This review examines known sex differences in the immune system and their relationship to mood disorders. We focus on immune alterations associated with unipolar depression, bipolar depression, and anxiety disorders. We describe work from both basic and clinical research examining potential immune mechanisms thought to contribute to stress susceptibility and associated mood disorders. We propose that sex and age are important, intertwined factors that need to be included in future experimental designs if we are going to harness the power of the immune system to develop a new wave of treatments for mood disorders.
Collapse
Affiliation(s)
- Jennifer R Rainville
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24060, USA
| | - Georgia E Hodes
- Department of Neuroscience, Virginia Polytechnic Institute and State University, 1981 Kraft Drive, Blacksburg, VA, 24060, USA.
| |
Collapse
|
47
|
Pan X, Kaminga AC, Wen SW, Liu A. Catecholamines in Post-traumatic Stress Disorder: A Systematic Review and Meta-Analysis. Front Mol Neurosci 2018; 11:450. [PMID: 30564100 PMCID: PMC6288600 DOI: 10.3389/fnmol.2018.00450] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/24/2022] Open
Abstract
Studies on the association between post-traumatic stress disorder (PTSD) and levels of catecholamines have yielded inconsistent results. The aim of this study was to conduct a systematic review and meta-analysis to assess whether concentrations of the catecholamines dopamine, norepinephrine, and epinephrine are associated with PTSD. This study searched relevant articles in the following databases: PubMed, Embase, Web of Science, and Psyc-ARTICLES. Each database was searched from its inception to September, 2018. Data related to catecholamine concentrations were extracted for patients with PTSD and the controls to calculate standardized mean differences and to evaluate effect sizes. A meta-analysis was then performed to compare the concentration of each catecholamine between the two groups in blood and/or urine samples. Heterogeneity was quantified using I2 and its significance was tested using the Q statistics. Subgroup analyses of the types of controls, PTSD assessment tools, and assayed methods used in the studies were performed to explore sources of heterogeneity among studies. Random-effects models were used to combine results from selected studies. A total of 1,388 articles were identified, of which 27 were included in the final analysis. Heterogeneity was high; hence random-effects models were used to combine results of selected studies. Results revealed significantly higher norepinephrine levels in people with PTSD than in the controls [standardized mean difference (SMD) = 0.35, 95% confidence interval (CI): 0.13 to 0.57, p = 0.002]. No difference was found in dopamine and epinephrine concentrations between the two groups. Elevated norepinephrine levels may be an important indicator for PTSD.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Obstetrics and Gynaecology and Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
48
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
49
|
Enman NM, Reyes BAS, Shi Y, Valentino RJ, Van Bockstaele EJ. Sex differences in morphine-induced trafficking of mu-opioid and corticotropin-releasing factor receptors in locus coeruleus neurons. Brain Res 2018; 1706:75-85. [PMID: 30391476 DOI: 10.1016/j.brainres.2018.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/24/2018] [Accepted: 11/01/2018] [Indexed: 01/18/2023]
Abstract
The locus coeruleus (LC)-norepinephrine (NE) system is a key nucleus in which endogenous opioid and stress systems intersect to regulate the stress response. LC neurons of male rats become sensitized to stress following chronic morphine administration. Whether sex dictates this pattern of opioid-induced plasticity has not been demonstrated. Delineating the neurobiological adaptations produced by chronic opioids will enhance our understanding of stress vulnerability in opioid-dependent individuals, and may reveal how stress negatively impacts addiction recovery. In the present study, the effect of chronic morphine on the subcellular distribution of mu-opioid (MOR) and CRF receptors (CRFR) was investigated in the LC of male and female rats using immunoelectron microscopy. Results showed that placebo-treated females exhibited higher MOR and CRFR cytoplasmic distribution ratio when compared to placebo-treated males. Chronic morphine exposure induced a shift in the distribution of MOR immunogold-silver particles from the plasma membrane to the cytoplasm selectively in male LC neurons. Interestingly, chronic morphine exposure induced CRFR recruitment to the plasma membrane of both male and female LC neurons. These findings provide a potential mechanism by which chronic opioid administration increases stress vulnerability in males and females via an increase in surface availability of CRFR in LC neurons. However, our results also support the notion that cellular adaptations to chronic opioids differ across the sexes as redistribution of MOR following morphine exposure was only observed in male LC neurons.
Collapse
Affiliation(s)
- Nicole M Enman
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Beverly A S Reyes
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| | - Yufan Shi
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA
| | - Rita J Valentino
- Department of Anesthesiology and Critical Care, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Elisabeth J Van Bockstaele
- Department of Pharmacology and Physiology, College of Medicine, Drexel University, Philadelphia, PA 19102, USA.
| |
Collapse
|
50
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|