1
|
Del Hoyo Soriano L, Wagemann O, Bejanin A, Levin J, Fortea J. Sex-related differences in genetically determined Alzheimer's disease. Front Aging Neurosci 2025; 17:1522434. [PMID: 40103931 PMCID: PMC11913828 DOI: 10.3389/fnagi.2025.1522434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
We reviewed the literature on sex differences in genetically determined Alzheimer's disease (AD), focusing on autosomal dominant AD (ADAD), Down syndrome-associated AD (DSAD), and APOE4 homozygosity, particularly regarding disease penetrance, symptom onset and clinical progression, and trajectories for markers of amyloidosis (A), tau pathology (T) and neurodegeneration (N). Data suggests that sex differences in disease penetrance, symptom onset, and AT(N) biomarker trajectories are typically subtle for genetically determined AD populations. Noteworthy exceptions, such as increased neurodegeneration in later stages of the disease in females while similar cognitive outcomes, suggest a potential differential cognitive reserve that warrants further investigation. Additionally, the interaction between APOE genotype and sex reveals complex and multifaceted effects in DSAD, with potential implications for ADAD that remain underexplored. The smaller sex differences observed compared to sporadic AD offer insights into the different underlying disease mechanisms in genetically determined AD populations. Future research should prioritize sex-specific investigations in genetically determined AD, focusing on refining methodologies. This includes prioritizing longitudinal designs, adjustment for key confounders, and adherence to sex-specific guidelines.
Collapse
Affiliation(s)
- Laura Del Hoyo Soriano
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Olivia Wagemann
- Department of Neurology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
| | - Alexandre Bejanin
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
- German Center for Neurodegenerative Disease (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Juan Fortea
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Barcelona, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Barcelona Down Medical Center, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| |
Collapse
|
2
|
Sepulveda-Falla D, Villegas Lanau CA, White III C, Serrano GE, Acosta-Uribe J, Mejía-Cupajita B, Villalba-Moreno ND, Lu P, Glatzel M, Kofler JK, Ghetti B, Frosch MP, Restrepo FL, Kosik KS, Beach TG. Comorbidities in early-onset sporadic versus presenilin-1 mutation-associated Alzheimer disease dementia: Evidence for dependency on Alzheimer disease neuropathological changes. J Neuropathol Exp Neurol 2025; 84:104-113. [PMID: 39656832 PMCID: PMC11747142 DOI: 10.1093/jnen/nlae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024] Open
Abstract
Studying comorbidities in early onset Alzheimer disease (AD) may provide an advantageous perspective on their pathogenesis because aging factors may be largely inoperative for these subjects. We compared AD comorbidities between early-onset sporadic cases and American and Colombian cases with PSEN1 mutations. AD neuropathological changes (ADNC) were very severe in all groups but more severe in the PSEN1 groups. Lewy body disease and cerebral white matter rarefaction were the most common (up to 60%) of AD comorbidities, followed by arteriolosclerosis (up to 37%), and large-vessel atherosclerosis (up to 20%). Differences between the 3 groups included earlier age of onset in the American PSEN1 cases, shorter disease duration in sporadic cases, and more frequent large-vessel atherosclerosis and cerebral amyloid angiopathy in the Colombian PSEN1 cases. Logistic regression models adjusted for age and sex found the presence of a PSEN1 mutation, an apolipoprotein ε4 allele and TDP-43 pathology to predict an earlier age of onset; Hispanic ethnicity and multiracial subjects were predictive of severe CAA. Comorbidities are common in early onset AD and should be considered when planning clinical trials with such subjects. However, they may be at least partially dependent on ADNC and thus potentially addressable by anti-amyloid or and/anti-tau therapies.
Collapse
Affiliation(s)
- Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Charles White III
- Neuropathology Section, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, United States
| | - Juliana Acosta-Uribe
- Faculty of Medicine, Neuroscience Group of Antioquia, University of Antioquia, Medellin, Colombia
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Barbara Mejía-Cupajita
- Faculty of Medicine, Neuroscience Group of Antioquia, University of Antioquia, Medellin, Colombia
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | | | - Pinzhang Lu
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | | | - Kenneth S Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, United States
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, United States
| |
Collapse
|
3
|
Cocoș R, Popescu BO. Scrutinizing neurodegenerative diseases: decoding the complex genetic architectures through a multi-omics lens. Hum Genomics 2024; 18:141. [PMID: 39736681 DOI: 10.1186/s40246-024-00704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegenerative diseases present complex genetic architectures, reflecting a continuum from monogenic to oligogenic and polygenic models. Recent advances in multi-omics data, coupled with systems genetics, have significantly refined our understanding of how these data impact neurodegenerative disease mechanisms. To contextualize these genetic discoveries, we provide a comprehensive critical overview of genetic architecture concepts, from Mendelian inheritance to the latest insights from oligogenic and omnigenic models. We explore the roles of common and rare genetic variants, gene-gene and gene-environment interactions, and epigenetic influences in shaping disease phenotypes. Additionally, we emphasize the importance of multi-omics layers including genomic, transcriptomic, proteomic, epigenetic, and metabolomic data in elucidating the molecular mechanisms underlying neurodegeneration. Special attention is given to missing heritability and the contribution of rare variants, particularly in the context of pleiotropy and network pleiotropy. We examine the application of single-cell omics technologies, transcriptome-wide association studies, and epigenome-wide association studies as key approaches for dissecting disease mechanisms at tissue- and cell-type levels. Our review introduces the OmicPeak Disease Trajectory Model, a conceptual framework for understanding the genetic architecture of neurodegenerative disease progression, which integrates multi-omics data across biological layers and time points. This review highlights the critical importance of adopting a systems genetics approach to unravel the complex genetic architecture of neurodegenerative diseases. Finally, this emerging holistic understanding of multi-omics data and the exploration of the intricate genetic landscape aim to provide a foundation for establishing more refined genetic architectures of these diseases, enhancing diagnostic precision, predicting disease progression, elucidating pathogenic mechanisms, and refining therapeutic strategies for neurodegenerative conditions.
Collapse
Affiliation(s)
- Relu Cocoș
- Department of Medical Genetics, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
- Genomics Research and Development Institute, Bucharest, Romania.
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.
| |
Collapse
|
4
|
Park S, Kim D, Lee H, Hong CH, Son SJ, Roh HW, Kim D, Nam Y, Lee DG, Shin H, Woo HG. Plasma protein-based identification of neuroimage-driven subtypes in mild cognitive impairment via protein-protein interaction aware explainable graph propagational network. Comput Biol Med 2024; 183:109303. [PMID: 39503109 DOI: 10.1016/j.compbiomed.2024.109303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 11/20/2024]
Abstract
As an early indicator of dementia, mild cognitive impairment (MCI) requires specialized treatment according to its subtypes for the effective prevention and management of dementia progression. Based on the neuropathological characteristics, MCI can be classified into Alzheimer's disease (AD)-related cognitive impairment (ADCI) and subcortical vascular cognitive impairment (SVCI), being more likely to progress to AD and subcortical vascular dementia (SVD), respectively. For identifying MCI subtypes, plasma protein biomarkers are recently seen as promising tools due to their minimal invasiveness and cost-effectiveness in diagnostic procedures. Furthermore, the application of machine learning (ML) has led the preciseness in the biomarker discovery and the resulting diagnostics. Nevertheless, previous ML-based studies often fail to consider interactions between proteins, which are essential in complex neurodegenerative disorders such as MCI and dementia. Although protein-protein interactions (PPIs) have been employed in network models, these models frequently do not fully capture the diverse properties of PPIs due to their local awareness. This limitation increases the likelihood of overlooking critical components and amplifying the impact of noisy interactions. In this study, we introduce a new graph-based ML model for classifying MCI subtypes, called eXplainable Graph Propagational Network (XGPN). The proposed method extracts the globally interactive effects between proteins by propagating the independent effect of plasma proteins on the PPI network, and thereby, MCI subtypes are predicted by estimation of the risk effect of each protein. Moreover, the process of model training and the outcome of subtype classification are fully explainable due to the simplicity and transparency of XGPN's architecture. The experimental results indicated that the interactive effect between proteins significantly contributed to the distinct differences between MCI subtype groups, resulting in an enhanced classification performance with an average improvement of 10.0 % compared to existing methods, also identifying key biomarkers and their impact on ADCI and SVCI.
Collapse
Affiliation(s)
- Sunghong Park
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Doyoon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Heirim Lee
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Psychology, Duksung Women's University, Seoul, 01369, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yonghyun Nam
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Dong-Gi Lee
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyunjung Shin
- Department of Industrial Engineering, Ajou University, Suwon, 16499, Republic of Korea; Department of Artificial Intelligence, Ajou University, Suwon, 16499, Republic of Korea.
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea; Department of Biomedical Science, Graduate School of Ajou University, Suwon, 16499, Republic of Korea; Ajou Translational Omics Center, Research Institute for Innovative Medicine, Ajou University Medical Center, Suwon, 16499, Republic of Korea.
| |
Collapse
|
5
|
Langella S, Bonta K, Chen Y, Su Y, Vasquez D, Aguillon D, Acosta-Baena N, Baena AY, Garcia-Ospina G, Giraldo-Chica M, Tirado V, Muñoz C, Ríos-Romenets S, Guzman-Martínez C, Pruzin JJ, Ghisays V, Arboleda-Velasquez JF, Kosik KS, Tariot PN, Reiman EM, Lopera F, Quiroz YT. Impact of APOE ε4 and ε2 on plasma neurofilament light chain and cognition in autosomal dominant Alzheimer's disease. Alzheimers Res Ther 2024; 16:208. [PMID: 39354618 PMCID: PMC11443799 DOI: 10.1186/s13195-024-01572-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
BACKGROUND Apolipoprotein E (APOE) genotypes have been suggested to influence cognitive impairment and clinical onset in presenilin-1 (PSEN1) E280A carriers for autosomal dominant Alzheimer's disease (ADAD). Less is known about their impact on the trajectory of biomarker changes. Neurofilament light chain (NfL), a marker of neurodegeneration, begins to accumulate in plasma about 20 years prior to the clinical onset of ADAD. In this study we investigated the impact of APOE ε4 and ε2 variants on age-related plasma NfL increases and cognition in PSEN1 E280A mutation carriers. METHODS We analyzed cross-sectional data from PSEN1 E280A mutation carriers and non-carriers recruited from the Alzheimer's Prevention Initiative Registry of ADAD. All participants over 18 years with available APOE genotype, plasma NfL, and neuropsychological evaluation were included in this study. APOE genotypes and plasma NfL concentrations were characterized for each participant. Cubic spline models using a Hamiltonian Markov chain Monte Carlo method were used to characterize the respective impact of at least one APOE ε4 or ε2 allele on age-related log-transformed plasma NfL increases. Linear regression models were estimated to explore the impact of APOE ε4 and ε2 variants and plasma NfL on a composite cognitive test score in the ADAD mutation carrier and non-carrier groups. RESULTS Analyses included 788 PSEN1 E280A mutation carriers (169 APOE ε4 + , 114 ε2 +) and 650 mutation non-carriers (165 APOE ε4 + , 80 ε2 +), aged 18-75 years. APOE ε4 allele carriers were distinguished from ε4 non-carriers by greater age-related NfL elevations in the ADAD mutation carrier group, beginning about three years after the mutation carriers' estimated median age at mild cognitive impairment onset. APOE ε2 allele carriers had lower plasma NfL concentrations than ε2 non-carriers in both the ADAD mutation carrier and non-carrier groups, unrelated to age, and an attenuated relationship between higher NfL levels on cognitive decline in the ADAD mutation carrier group. CONCLUSIONS APOE ε4 accelerates age-related plasma NfL increases and APOE ε2 attenuates the relationship between higher plasma NfL levels and cognitive decline in ADAD. NfL may be a useful biomarker to assess clinical efficacy of APOE-modifying drugs with the potential to help in the treatment and prevention of ADAD.
Collapse
Affiliation(s)
- Stephanie Langella
- Massachusetts General Hospital, Harvard Medical School, 39 1st Avenue, Suite 101, Charlestown, Boston, MA, USA
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Daniel Vasquez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Ana Y Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Gloria Garcia-Ospina
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Margarita Giraldo-Chica
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Victoria Tirado
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Hospital Pablo Tobon Uribe, Medellin, Colombia
| | - Claudia Muñoz
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Silvia Ríos-Romenets
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Claudia Guzman-Martínez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | | | - Joseph F Arboleda-Velasquez
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology at Harvard Medical School, Boston, MA, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T Quiroz
- Massachusetts General Hospital, Harvard Medical School, 39 1st Avenue, Suite 101, Charlestown, Boston, MA, USA.
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| |
Collapse
|
6
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
7
|
Park S, Hong CH, Son SJ, Roh HW, Kim D, Shin H, Woo HG. Identification of molecular subtypes of dementia by using blood-proteins interaction-aware graph propagational network. Brief Bioinform 2024; 25:bbae428. [PMID: 39226887 PMCID: PMC11370639 DOI: 10.1093/bib/bbae428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
Plasma protein biomarkers have been considered promising tools for diagnosing dementia subtypes due to their low variability, cost-effectiveness, and minimal invasiveness in diagnostic procedures. Machine learning (ML) methods have been applied to enhance accuracy of the biomarker discovery. However, previous ML-based studies often overlook interactions between proteins, which are crucial in complex disorders like dementia. While protein-protein interactions (PPIs) have been used in network models, these models often fail to fully capture the diverse properties of PPIs due to their local awareness. This drawback increases the chance of neglecting critical components and magnifying the impact of noisy interactions. In this study, we propose a novel graph-based ML model for dementia subtype diagnosis, the graph propagational network (GPN). By propagating the independent effect of plasma proteins on PPI network, the GPN extracts the globally interactive effects between proteins. Experimental results showed that the interactive effect between proteins yielded to further clarify the differences between dementia subtype groups and contributed to the performance improvement where the GPN outperformed existing methods by 10.4% on average.
Collapse
Affiliation(s)
- Sunghong Park
- Department of Physiology, Ajou University School of Medicine, Worldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Chang Hyung Hong
- Department of Psychiatry, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Sang Joon Son
- Department of Psychiatry, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Hyun Woong Roh
- Department of Psychiatry, Ajou University School of Medicine, Woldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Doyoon Kim
- Department of Physiology, Ajou University School of Medicine, Worldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Worldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Hyunjung Shin
- Department of Industrial Engineering, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon, 16499, Republic of Korea
- Department of Artificial Intelligence, Ajou University, Worldcup-ro 206, Yeongtong-gu, Suwon, 16499, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Worldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
- Department of Biomedical Science, Graduate School, Ajou University, Worldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
- Ajou Translational Omics Center (ATOC), Research Institute for Innovative Medicine, Ajou University Medical Center, Worldcup-ro 164, Yeongtong-gu, Suwon, 16499, Republic of Korea
| |
Collapse
|
8
|
Valdez-Gaxiola CA, Rosales-Leycegui F, Gaxiola-Rubio A, Moreno-Ortiz JM, Figuera LE. Early- and Late-Onset Alzheimer's Disease: Two Sides of the Same Coin? Diseases 2024; 12:110. [PMID: 38920542 PMCID: PMC11202866 DOI: 10.3390/diseases12060110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/04/2024] [Accepted: 05/18/2024] [Indexed: 06/27/2024] Open
Abstract
Early-onset Alzheimer's disease (EOAD), defined as Alzheimer's disease onset before 65 years of age, has been significantly less studied than the "classic" late-onset form (LOAD), although EOAD often presents with a more aggressive disease course, caused by variants in the APP, PSEN1, and PSEN2 genes. EOAD has significant differences from LOAD, including encompassing diverse phenotypic manifestations, increased genetic predisposition, and variations in neuropathological burden and distribution. Phenotypically, EOAD can be manifested with non-amnestic variants, sparing the hippocampi with increased tau burden. The aim of this article is to review the different genetic bases, risk factors, pathological mechanisms, and diagnostic approaches between EOAD and LOAD and to suggest steps to further our understanding. The comprehension of the monogenic form of the disease can provide valuable insights that may serve as a roadmap for understanding the common form of the disease.
Collapse
Affiliation(s)
- César A. Valdez-Gaxiola
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Frida Rosales-Leycegui
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Maestría en Ciencias del Comportamiento, Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Abigail Gaxiola-Rubio
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Facultad de Medicina, Universidad Autónoma de Guadalajara, Zapopan 45129, Jalisco, Mexico
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (F.R.-L.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
9
|
Nicolas G. Lessons from genetic studies in Alzheimer disease. Rev Neurol (Paris) 2024; 180:368-377. [PMID: 38429159 DOI: 10.1016/j.neurol.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 12/27/2023] [Indexed: 03/03/2024]
Abstract
Research on Alzheimer disease (AD) genetics has provided critical advances to the knowledge of AD pathophysiological mechanisms. The etiology of AD can be divided into monogenic (autosomal dominant inheritance) and complex (multifactorial determinism). In monogenic AD, recent advances mainly concern mutation-associated mechanisms, presymptomatic clinical studies, and the search for modifiers of ages of onset that are still ongoing. In complex AD, genetic factors can be further categorized into three classes: (i) the APOE-ɛ4 and ɛ2 common alleles that represent a category by themselves as they are both common and with a strong impact on AD risk; (ii) common variants with a modest effect, identified in genome-wide association studies (GWAS); and (iii) rare variants with a moderate-to-strong effect, identified in case-control sequencing studies. Regarding APOE, odds ratios, available in multiple ethnicities, can now be converted into penetrance curves, although such curves remain to be performed in diverse ethnicities. In addition, advances in the understanding of mechanisms have been recently reported and rare APOE variants add to the complexity. In the GWAS category, novel loci have been discovered thanks to larger studies, doubling the number of hits as compared to the previous reference meta-analysis. However, such modest risk factors cannot be used in the clinic, neither individually, nor in genetic risk scores. In the category of rare variants, two novel genes, ABCA1 and ATP8B4 now add to the three main ones, TREM2, SORL1, and ABCA7. The study of such rare variants suggests oligogenic inheritance in some families, as also suggested by digenic penetrance curves for SORL1 loss-of-function variants with APOE-ɛ4. Cumulate frequencies of definite (so-called) rare risk factors are 2.3% to 3.6% (depending on thresholds on odds ratios) in control databases and many more remain to be classified and identified, showing how important these risk factors may be as part of the complex determinism of AD. A better understanding of these rare risk factors and their combined effects on each other, with common variants, and with environmental factors, should allow for a prediction of AD risk and, eventually, preventive medicine. Taken together, most genetic determinants of AD, in monogenic and in complex forms, point toward the aggregation of Aβ as a pivotal triggering factor, such that targeting it may be efficient as prevention in at-risk individuals. The role of neuroinflammation, microglia, and Tau pathology modulation are important sources of research for disease modification.
Collapse
Affiliation(s)
- G Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, 76000 Rouen, France.
| |
Collapse
|
10
|
Heo H, Park H, Lee MS, Kim J, Kim J, Jung SY, Kim SK, Lee S, Chang J. TRIM22 facilitates autophagosome-lysosome fusion by mediating the association of GABARAPs and PLEKHM1. Autophagy 2024; 20:1098-1113. [PMID: 38009729 PMCID: PMC11135824 DOI: 10.1080/15548627.2023.2287925] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
Tripartite motif (TRIM) proteins are a large family of E3 ubiquitin ligases implicated in antiviral defense systems, tumorigenesis, and protein quality control. TRIM proteins contribute to protein quality control by regulating the ubiquitin-proteasome system, endoplasmic reticulum-associated degradation, and macroautophagy/autophagy. However, the detailed mechanisms through which various TRIM proteins regulate downstream events have not yet been fully elucidated. Herein, we identified a novel function of TRIM22 in the regulation of autophagy. TRIM22 promotes autophagosome-lysosome fusion by mediating the association of GABARAP family proteins with PLEKHM1, thereby inducing the autophagic clearance of protein aggregates, independent of its E3 ubiquitin ligase activity. Furthermore, a TRIM22 variant associated with early-onset familial Alzheimer disease interferes with autophagosome-lysosome fusion and autophagic clearance. These findings suggest TRIM22 as a critical autophagic regulator that orchestrates autophagosome-lysosome fusion by scaffolding autophagy-related proteins, thus representing a potential therapeutic target in neurodegenerative diseases.Abbreviations: AD: Alzheimer disease; ADAOO: AD age of onset; AICD: APP intracellular domain; APP: amyloid beta precursor protein; BSA: bovine serum albumin; cDNAs: complementary DNAs; CQ: chloroquine; CTF: carboxyl-terminal fragment; EBSS: Earle's balanced salt solution; GABARAP: GABA type A receptor-associated protein; GST: glutathione S-transferase; HA: hemagglutinin; HOPS: homotypic fusion and protein sorting; IFN: interferon; IL1A/IL-1α: interleukin 1 alpha; KO: knockout; MTORC1: mechanistic target of rapamycin kinase complex 1; NFKBIA/IκBα: NFKB inhibitor alpha; NFE2L2/NRF2: NFE2 like bZIP transcription factor; PBS: phosphate-buffered saline; PI3K: class I phosphoinositide 3-kinase; PLA: proximity ligation assay; PLEKHM1: pleckstrin homology and RUN domain containing M1; PSEN1: presenilin 1; SEM: standard errors of the means; SNAREs: soluble N-ethylmaleimide-sensitive factor attachment protein receptors; SNCA: synuclein alpha; SNP: single nucleotide polymorphism; TBS: tris-buffered saline; TNF/TNF-α: tumor necrosis factor; TRIM: tripartite motif; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type.
Collapse
Affiliation(s)
- Hansol Heo
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyungsun Park
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Myung Shin Lee
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jongyoon Kim
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Juyeong Kim
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Soon-Young Jung
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Sun Kyeon Kim
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Seongju Lee
- Department of Anatomy, College of Medicine, and Program in Biomedical Science & Engineering, Inha University, Incheon, Republic of Korea
| | - Jaerak Chang
- Department of Biomedical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Brain Science, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
11
|
Sepulveda‐Falla D, Vélez JI, Acosta‐Baena N, Baena A, Moreno S, Krasemann S, Lopera F, Mastronardi CA, Arcos‐Burgos M. Genetic modifiers of cognitive decline in PSEN1 E280A Alzheimer's disease. Alzheimers Dement 2024; 20:2873-2885. [PMID: 38450831 PMCID: PMC11032577 DOI: 10.1002/alz.13754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Rate of cognitive decline (RCD) in Alzheimer's disease (AD) determines the degree of impairment for patients and of burden for caretakers. We studied the association of RCD with genetic variants in AD. METHODS RCD was evaluated in 62 familial AD (FAD) and 53 sporadic AD (SAD) cases, and analyzed by whole-exome sequencing for association with common exonic functional variants. Findings were validated in post mortem brain tissue. RESULTS One hundred seventy-two gene variants in FAD, and 227 gene variants in SAD associated with RCD. In FAD, performance decline of the immediate recall of the Rey-Osterrieth figure test associated with 122 genetic variants. Olfactory receptor OR51B6 showed the highest number of associated variants. Its expression was detected in temporal cortex neurons. DISCUSSION Impaired olfactory function has been associated with cognitive impairment in AD. Genetic variants in these or other genes could help to identify risk of faster memory decline in FAD and SAD patients.
Collapse
Affiliation(s)
- Diego Sepulveda‐Falla
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Jorge I. Vélez
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
- Universidad del NorteBarranquillaColombia
| | | | - Ana Baena
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Sonia Moreno
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Susanne Krasemann
- Institute of NeuropathologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Francisco Lopera
- Grupo de Neurociencias de AntioquiaUniversidad de AntioquiaMedellínColombia
| | - Claudio A. Mastronardi
- Genomics and Predictive Medicine GroupDepartment of Genome SciencesJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraAustralia
- INPAC Research Group, Fundación Universitaria SanitasBogotáColombia
| | - Mauricio Arcos‐Burgos
- Grupo de Investigación en Psiquiatría (GIPSI)Departamento de PsiquiatríaFacultad de MedicinaInstituto de Investigaciones MédicasUniversidad de AntioquiaMedellínColombia
| |
Collapse
|
12
|
Pappolla MA, Refolo L, Sambamurti K, Zambon D, Duff K. Hypercholesterolemia and Alzheimer's Disease: Unraveling the Connection and Assessing the Efficacy of Lipid-Lowering Therapies. J Alzheimers Dis 2024; 101:S371-S393. [PMID: 39422957 DOI: 10.3233/jad-240388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This article examines the relationship between cholesterol levels and Alzheimer's disease (AD), beginning with the early observation that individuals who died from heart attacks often had brain amyloid deposition. Subsequent animal model research proved that high cholesterol could hasten amyloid accumulation. In contrast, cholesterol-lowering treatments appeared to counteract this effect. Human autopsy studies reinforced the cholesterol-AD connection, revealing that higher cholesterol levels during midlife significantly correlated with higher brain amyloid pathology. This effect was especially pronounced in individuals aged 40 to 55. Epidemiological data supported animal research and human tissue observations and suggested that managing cholesterol levels in midlife could reduce the risk of developing AD. We analyze the main observational studies and clinical trials on the efficacy of statins. While observational data often suggest a potential protective effect against AD, clinical trials have not consistently shown benefit. The failure of these trials to demonstrate a clear advantage is partially attributed to multiple factors, including the timing of statin therapy, the type of statin and the appropriate selection of patients for treatment. Many studies failed to target individuals who might benefit most from early intervention, such as high-risk patients like APOE4 carriers. The review addresses how cholesterol is implicated in AD through various biological pathways, the potential preventive role of cholesterol management as suggested by observational studies, and the difficulties encountered in clinical trials, particularly related to statin use. The paper highlights the need to explore alternate therapeutic targets and mechanisms that escape statin intervention.
Collapse
Affiliation(s)
- Miguel A Pappolla
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Lorenzo Refolo
- Translational Research Branch, Division of Neuroscience, Bethesda, MD, USA
| | - Kumar Sambamurti
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA
| | - Daniel Zambon
- Universitat Internacional de Catalunya, Barcelona, Spain
| | - Karen Duff
- Karen Duff, UK Dementia Research Institute at University College London, London, UK
| |
Collapse
|
13
|
Valdez-Gaxiola CA, Maciel-Cruz EJ, Hernández-Peña R, Dumois-Petersen S, Rosales-Leycegui F, Gallegos-Arreola MP, Moreno-Ortiz JM, Figuera LE. Potential Modifying Effect of the APOEε4 Allele on Age of Onset and Clinical Manifestations in Patients with Early-Onset Alzheimer's Disease with and without a Pathogenic Variant in PSEN1 in a Sample of the Mexican Population. Int J Mol Sci 2023; 24:15687. [PMID: 37958671 PMCID: PMC10648484 DOI: 10.3390/ijms242115687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 11/15/2023] Open
Abstract
In Alzheimer's disease (AD), the age of onset (AoO) exhibits considerable variability, spanning from 40 to 90 years. Specifically, individuals diagnosed with AD and exhibiting symptoms prior to the age of 65 are typically classified as early onset (EOAD) cases. Notably, the apolipoprotein E (APOE) ε4 allele represents the most extensively studied genetic risk factor associated with AD. We clinically characterized and genotyped the APOEε4 allele from 101 individuals with a diagnosis of EOAD, and 69 of them were affected carriers of the autosomal dominant fully penetrant PSEN1 variant c.1292C>A (rs63750083, A431E) (PSEN1+ group), while there were 32 patients in which the genetic cause was unknown (PSEN1- group). We found a correlation between the AoO and the APOEε4 allele; patients carrying at least one APOEε4 allele showed delays, in AoO in patients in the PSEN1+ and PSEN1- groups, of 3.9 (p = 0.001) and 8.6 years (p = 0.012), respectively. The PSEN1+ group presented higher frequencies of gait disorders compared to PSEN1- group, and apraxia was more frequent with PSEN1+/APOE4+ than in the rest of the subgroup. This study shows what appears to be an inverse effect of APOEε4 in EOAD patients, as it delays AoO and modifies clinical manifestations.
Collapse
Affiliation(s)
- César A. Valdez-Gaxiola
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (E.J.M.-C.); (R.H.-P.); (S.D.-P.); (F.R.-L.); (M.P.G.-A.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Eric Jonathan Maciel-Cruz
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (E.J.M.-C.); (R.H.-P.); (S.D.-P.); (F.R.-L.); (M.P.G.-A.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Rubiceli Hernández-Peña
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (E.J.M.-C.); (R.H.-P.); (S.D.-P.); (F.R.-L.); (M.P.G.-A.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Sofía Dumois-Petersen
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (E.J.M.-C.); (R.H.-P.); (S.D.-P.); (F.R.-L.); (M.P.G.-A.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Frida Rosales-Leycegui
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (E.J.M.-C.); (R.H.-P.); (S.D.-P.); (F.R.-L.); (M.P.G.-A.)
- Maestría en Ciencias del Comportamiento, Instituto de Neurociencias, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Martha Patricia Gallegos-Arreola
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (E.J.M.-C.); (R.H.-P.); (S.D.-P.); (F.R.-L.); (M.P.G.-A.)
| | - José Miguel Moreno-Ortiz
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico
| | - Luis E. Figuera
- División de Genética, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara 44340, Jalisco, Mexico; (C.A.V.-G.); (E.J.M.-C.); (R.H.-P.); (S.D.-P.); (F.R.-L.); (M.P.G.-A.)
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
14
|
Cochran JN, Acosta-Uribe J, Esposito BT, Madrigal L, Aguillón D, Giraldo MM, Taylor JW, Bradley J, Fulton-Howard B, Andrews SJ, Acosta-Baena N, Alzate D, Garcia GP, Piedrahita F, Lopez HE, Anderson AG, Rodriguez-Nunez I, Roberts K, Dominantly Inherited Alzheimer Network, Absher D, Myers RM, Beecham GW, Reitz C, Rizzardi LF, Fernandez MV, Goate AM, Cruchaga C, Renton AE, Lopera F, Kosik KS. Genetic associations with age at dementia onset in the PSEN1 E280A Colombian kindred. Alzheimers Dement 2023; 19:3835-3847. [PMID: 36951251 PMCID: PMC10514237 DOI: 10.1002/alz.13021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 03/24/2023]
Abstract
INTRODUCTION Genetic associations with Alzheimer's disease (AD) age at onset (AAO) could reveal genetic variants with therapeutic applications. We present a large Colombian kindred with autosomal dominant AD (ADAD) as a unique opportunity to discover AAO genetic associations. METHODS A genetic association study was conducted to examine ADAD AAO in 340 individuals with the PSEN1 E280A mutation via TOPMed array imputation. Replication was assessed in two ADAD cohorts, one sporadic early-onset AD study and four late-onset AD studies. RESULTS 13 variants had p<1×10-7 or p<1×10-5 with replication including three independent loci with candidate associations with clusterin including near CLU. Other suggestive associations were identified in or near HS3ST1, HSPG2, ACE, LRP1B, TSPAN10, and TSPAN14. DISCUSSION Variants with suggestive associations with AAO were associated with biological processes including clusterin, heparin sulfate, and amyloid processing. The detection of these effects in the presence of a strong mutation for ADAD reinforces their potentially impactful role.
Collapse
Affiliation(s)
| | - Juliana Acosta-Uribe
- Neuroscience Research Institute, University of California, Santa Barbara, California, and Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, California, USA
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Bianca T Esposito
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lucia Madrigal
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - David Aguillón
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Margarita M Giraldo
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Jared W Taylor
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Joseph Bradley
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Brian Fulton-Howard
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shea J Andrews
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Diana Alzate
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Gloria P Garcia
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Francisco Piedrahita
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Hugo E Lopez
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | | | | | - Kevin Roberts
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Devin Absher
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Gary W Beecham
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Christiane Reitz
- Department of Epidemiology, Sergievsky Center, Taub Institute for Research on the Aging Brain, Columbia University, New York, New York, USA
| | | | | | - Alison M Goate
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alan E Renton
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia. School of Medicine. Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Kenneth S Kosik
- Neuroscience Research Institute, University of California, Santa Barbara, California, and Department of Molecular Cellular and Developmental Biology University of California, Santa Barbara, California, USA
| |
Collapse
|
15
|
Langella S, Barksdale NG, Vasquez D, Aguillon D, Chen Y, Su Y, Acosta-Baena N, Acosta-Uribe J, Baena AY, Garcia-Ospina G, Giraldo-Chica M, Tirado V, Muñoz C, Ríos-Romenets S, Guzman-Martínez C, Oliveira G, Yang HS, Vila-Castelar C, Pruzin JJ, Ghisays V, Arboleda-Velasquez JF, Kosik KS, Reiman EM, Lopera F, Quiroz YT. Effect of apolipoprotein genotype and educational attainment on cognitive function in autosomal dominant Alzheimer's disease. Nat Commun 2023; 14:5120. [PMID: 37612284 PMCID: PMC10447560 DOI: 10.1038/s41467-023-40775-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Autosomal dominant Alzheimer's disease (ADAD) is genetically determined, but variability in age of symptom onset suggests additional factors may influence cognitive trajectories. Although apolipoprotein E (APOE) genotype and educational attainment both influence dementia onset in sporadic AD, evidence for these effects in ADAD is limited. To investigate the effects of APOE and educational attainment on age-related cognitive trajectories in ADAD, we analyzed data from 675 Presenilin-1 E280A mutation carriers and 594 non-carriers. Here we show that age-related cognitive decline is accelerated in ADAD mutation carriers who also have an APOE e4 allele compared to those who do not and delayed in mutation carriers who also have an APOE e2 allele compared to those who do not. Educational attainment is protective and moderates the effect of APOE on cognition. Despite ADAD mutation carriers being genetically determined to develop dementia, age-related cognitive decline may be influenced by other genetic and environmental factors.
Collapse
Affiliation(s)
| | - N Gil Barksdale
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Vasquez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - David Aguillon
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Juliana Acosta-Uribe
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Ana Y Baena
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Gloria Garcia-Ospina
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Margarita Giraldo-Chica
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Victoria Tirado
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Claudia Muñoz
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Silvia Ríos-Romenets
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Claudia Guzman-Martínez
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Gabriel Oliveira
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyun-Sik Yang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | | | - Francisco Lopera
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Yakeel T Quiroz
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Grupo de Neurociencias de Antioquia, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.
| |
Collapse
|
16
|
Sepulveda-Falla D, Lanau CAV, White C, Serrano GE, Acosta-Uribe J, Mejía-Cupajita B, Villalba-Moreno ND, Lu P, Glatzel M, Kofler JK, Ghetti B, Frosch MP, Restrepo FL, Kosik KS, Beach TG. Comorbidities in Early-Onset Sporadic versus Presenilin-1 Mutation-Associated Alzheimer's Disease Dementia: Evidence for Dependency on Alzheimer's Disease Neuropathological Changes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.14.23294081. [PMID: 37646002 PMCID: PMC10462216 DOI: 10.1101/2023.08.14.23294081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Autopsy studies have demonstrated that comorbid neurodegenerative and cerebrovascular disease occur in the great majority of subjects with Alzheimer disease dementia (ADD), and are likely to additively alter the rate of decline or severity of cognitive impairment. The most important of these are Lewy body disease (LBD), TDP-43 proteinopathy and cerebrovascular disease, including white matter rarefaction (WMR) and cerebral infarcts. Comorbidities may interfere with ADD therapeutic trials evaluation of ADD clinical trials as they may not respond to AD-specific molecular therapeutics. It is possible, however, that at least some comorbidities may be, to some degree, secondary consequences of AD pathology, and if this were true then effective AD-specific therapeutics might also reduce the extent or severity of comorbid pathology. Comorbidities in ADD caused by autosomal dominant mutations such as those in the presenilin-1 (PSEN1) gene may provide an advantageous perspective on their pathogenesis, and deserve attention because these subjects are increasingly being entered into clinical trials. As ADD associated with PSEN1 mutations has a presumed single-cause etiology, and the average age at death is under 60, any comorbidities in this setting may be considered as at least partially secondary to the causative AD mechanisms rather than aging, and thus indicate whether effective ADD therapeutics may also be effective for comorbidities. In this study, we sought to compare the rates and types of ADD comorbidities between subjects with early-onset sporadic ADD (EOSADD; subjects dying under age 60) versus ADD associated with different types of PSEN1 mutations, the most common cause of early-onset autosomal dominant ADD. In particular, we were able to ascertain, for the first time, the prevalences of a fairly complete set of ADD comorbidities in United States (US) PSEN1 cases as well as the Colombian E280A PSEN1 kindred. Data for EOSADD and US PSEN1 subjects (with multiple different mutation types) was obtained from the National Alzheimer Coordinating Center (NACC). Colombian cases all had the E280A mutation and had a set of neuropathological observations classified, like the US cases according to the NACC NP10 definitions. Confirmatory of earlier reports, NACC-defined Alzheimer Disease Neuropathological Changes (ADNC) were consistently very severe in early-onset cases, whether sporadic or in PSEN1 cases, but were slightly less severe in EOSADD. Amyloid angiopathy was the only AD-associated pathology type with widely-differing severity scores between the 3 groups, with median scores of 3, 2 and 1 in the PSEN1 Colombia, PSEN1 US and EOSADD cases, respectively. Apoliprotein E genotype did not show significant proportional group differences for the possession of an E-4 or E-2 allele. Of ADD comorbidities, LBD was most common, being present in more than half of all cases in all 3 groups. For TDP-43 co-pathology, the Colombian PSEN1 group was the most affected, at about 27%, vs 16% and 11% for the US PSEN1 and sporadic US cases, respectively. Notably, hippocampal sclerosis and non-AD tau pathological conditions were not present in any of the US or Colombian PSEN1 cases, and was seen in only 3% of the EOSADD cases. Significant large-vessel atherosclerosis was present in a much larger percentage of Colombian PSEN1 cases, at almost 20% as compared to 0% and 3% of the US PSEN1 and EOSADD cases, respectively. Small-vessel disease, or arteriolosclerosis, was much more common than large vessel disease, being present in all groups between 18% and 37%. Gross and microscopic infarcts, however, as well as gross or microscopic hemorrhages, were generally absent or present at very low percentages in all groups. White matter rarefaction (WMR) was remarkably common, at almost 60%, in the US PSEN1 group, as compared to about 18% in the EOSADD cases, a significant difference. White matter rarefaction was not assessed in the Colombian PSEN1 cases. The results presented here, as well as other evidence, indicates that LBD, TDP-43 pathology and WMR, as common comorbidities with autosomal dominant and early-onset sporadic ADD, should be considered when planning clinical trials with such subjects as they may increase variability in response rates. However, they may be at least partially dependent on ADNC and thus potentially addressable by anti-amyloid or and/anti-tau therapies.
Collapse
Affiliation(s)
- Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52 20246 Hamburg, Gebäude Nord 27 / Raum 02.005
| | | | - Charles White
- Neuropathology Section, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Geidy E Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ 85351
| | - Juliana Acosta-Uribe
- Faculty of Medicine, Neuroscience Group of Antioquia, University of Antioquia, Medellin, Colombia
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara
| | - Barbara Mejía-Cupajita
- Faculty of Medicine, Neuroscience Group of Antioquia, University of Antioquia, Medellin, Colombia
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara
| | - Nelson David Villalba-Moreno
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52 20246 Hamburg, Gebäude Nord 27 / Raum 02.005
| | - Pinzhang Lu
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52 20246 Hamburg, Gebäude Nord 27 / Raum 02.005
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52 20246 Hamburg, Gebäude Nord 27 / Raum 02.005
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew P Frosch
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, 10515 W Santa Fe Drive, Sun City, AZ 85351
| |
Collapse
|
17
|
Quan M, Cao S, Wang Q, Wang S, Jia J. Genetic Phenotypes of Alzheimer's Disease: Mechanisms and Potential Therapy. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:333-349. [PMID: 37589021 PMCID: PMC10425323 DOI: 10.1007/s43657-023-00098-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 08/18/2023]
Abstract
Years of intensive research has brought us extensive knowledge on the genetic and molecular factors involved in Alzheimer's disease (AD). In addition to the mutations in the three main causative genes of familial AD (FAD) including presenilins and amyloid precursor protein genes, studies have identified several genes as the most plausible genes for the onset and progression of FAD, such as triggering receptor expressed on myeloid cells 2, sortilin-related receptor 1, and adenosine triphosphate-binding cassette transporter subfamily A member 7. The apolipoprotein E ε4 allele is reported to be the strongest genetic risk factor for sporadic AD (SAD), and it also plays an important role in FAD. Here, we reviewed recent developments in genetic and molecular studies that contributed to the understanding of the genetic phenotypes of FAD and compared them with SAD. We further reviewed the advancements in AD gene therapy and discussed the future perspectives based on the genetic phenotypes.
Collapse
Affiliation(s)
- Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shuman Cao
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
| | - Shiyuan Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053 China
- National Medical Center for Neurological Disorders and National Clinical Research Center for Geriatric Diseases, Beijing, 100053 China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053 China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053 China
- Center of Alzheimer’s Disease, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, 100053 China
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053 China
| |
Collapse
|
18
|
Lopera F, Custodio N, Rico-Restrepo M, Allegri RF, Barrientos JD, Garcia Batres E, Calandri IL, Calero Moscoso C, Caramelli P, Duran Quiroz JC, Jansen AM, Mimenza Alvarado AJ, Nitrini R, Parodi JF, Ramos C, Slachevsky A, Brucki SMD. A task force for diagnosis and treatment of people with Alzheimer's disease in Latin America. Front Neurol 2023; 14:1198869. [PMID: 37497015 PMCID: PMC10367107 DOI: 10.3389/fneur.2023.1198869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/21/2023] [Indexed: 07/28/2023] Open
Abstract
Alzheimer's disease (AD) represents a substantial burden to patients, their caregivers, health systems, and society in Latin America and the Caribbean (LAC). This impact is exacerbated by limited access to diagnosis, specialized care, and therapies for AD within and among nations. The region has varied geographic, ethnic, cultural, and economic conditions, which create unique challenges to AD diagnosis and management. To address these issues, the Americas Health Foundation convened a panel of eight neurologists, geriatricians, and psychiatrists from Argentina, Brazil, Colombia, Ecuador, Guatemala, Mexico, and Peru who are experts in AD for a three-day virtual meeting to discuss best practices for AD diagnosis and treatment in LAC and create a manuscript offering recommendations to address identified barriers. In LAC, several barriers hamper diagnosing and treating people with dementia. These barriers include access to healthcare, fragmented healthcare systems, limited research funding, unstandardized diagnosis and treatment, genetic heterogeneity, and varying social determinants of health. Additional training for physicians and other healthcare workers at the primary care level, region-specific or adequately adapted cognitive tests, increased public healthcare insurance coverage of testing and treatment, and dedicated search strategies to detect populations with gene variants associated with AD are among the recommendations to improve the landscape of AD.
Collapse
Affiliation(s)
- Francisco Lopera
- Grupo de Neurociencias de Antioquia, Universidad de Antioquia, Medellín, Colombia
| | - Nilton Custodio
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | | | - Ricardo F. Allegri
- Department of Cognitive Neurology, Instituto Neurológico Fleni, Buenos Aires, Argentina
| | | | - Estuardo Garcia Batres
- Geriatric Unit, New Hope, Interior Hospital Atención Medica Siloé, Ciudad de Guatemala, Guatemala
| | - Ismael L. Calandri
- Department of Cognitive Neurology, Instituto Neurológico Fleni, Buenos Aires, Argentina
| | - Cristian Calero Moscoso
- Department of Neurology, HCAM Memory and Behavior Unit, University of Hospital Carlos Andrade Marin HCAM, Quito, Ecuador
| | - Paulo Caramelli
- Behavioral and Cognitive Neurology Research Group, Faculty of Medicine, University of Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juan Carlos Duran Quiroz
- Faculty of Medicine, Department of Functional Sciences, Physiology Division, Universidad Mayor de San Andres, La Paz, Bolivia
| | | | - Alberto José Mimenza Alvarado
- Memory Disorders Clinic, Neurological Geriatrics Program, Department of Geriatrics, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Ricardo Nitrini
- Cognitive and Behavioral Neurology Group, Department of Neurology, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose F. Parodi
- Centro de Investigación del Envejecimiento, Facultad de Medicina, Universidad de San Martín de Porres, Lima, Peru
| | - Claudia Ramos
- Antioquia Neurosciences Group, University of Antioquia, Medellin, Colombia
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), University of Chile, Santiago, Chile
| | - Sonia María Dozzi Brucki
- Cognitive and Behavioral Neurology Group, Department of Neurology, Faculty of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Reiss AB, Muhieddine D, Jacob B, Mesbah M, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Alzheimer's Disease Treatment: The Search for a Breakthrough. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1084. [PMID: 37374288 PMCID: PMC10302500 DOI: 10.3390/medicina59061084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
As the search for modalities to cure Alzheimer's disease (AD) has made slow progress, research has now turned to innovative pathways involving neural and peripheral inflammation and neuro-regeneration. Widely used AD treatments provide only symptomatic relief without changing the disease course. The recently FDA-approved anti-amyloid drugs, aducanumab and lecanemab, have demonstrated unclear real-world efficacy with a substantial side effect profile. Interest is growing in targeting the early stages of AD before irreversible pathologic changes so that cognitive function and neuronal viability can be preserved. Neuroinflammation is a fundamental feature of AD that involves complex relationships among cerebral immune cells and pro-inflammatory cytokines, which could be altered pharmacologically by AD therapy. Here, we provide an overview of the manipulations attempted in pre-clinical experiments. These include inhibition of microglial receptors, attenuation of inflammation and enhancement of toxin-clearing autophagy. In addition, modulation of the microbiome-brain-gut axis, dietary changes, and increased mental and physical exercise are under evaluation as ways to optimize brain health. As the scientific and medical communities work together, new solutions may be on the horizon to slow or halt AD progression.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Dalia Muhieddine
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Berlin Jacob
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Michael Mesbah
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| | | | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Long Island School of Medicine, Mineola, NY 11501, USA; (D.M.); (B.J.); (M.M.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
20
|
Díaz-Zuluaga AM, Vélez JI, Cuartas M, Valencia J, Castaño M, Palacio JD, Arcos-Burgos M, López-Jaramillo C. Ancestry component as a major predictor of lithium response in the treatment of bipolar disorder. J Affect Disord 2023; 332:203-209. [PMID: 36997125 DOI: 10.1016/j.jad.2023.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND Bipolar Disorder (BD) represents the seventh major cause of disability life-years-adjusted. Lithium remains as a first-line treatment, but clinical improvement occurs only in 30 % of treated patients. Studies suggest that genetics plays a major role in shaping the individual response of BD patients to lithium. METHODS We used machine-learning techniques (Advance Recursive Partitioned Analysis, ARPA) to build a personalized prediction framework of BD lithium response using biological, clinical, and demographical data. Using the Alda scale, we classified 172 BD I-II patients as responders or non-responders to lithium treatment. ARPA methods were used to build individual prediction frameworks and to define variable importance. Two predictive models were evaluated: 1) demographic and clinical data, and 2) demographic, clinical and ancestry data. Model performance was assessed using Receiver Operating Characteristic (ROC) curves. RESULTS The predictive model including ancestry yield the best performance (sensibility = 84.6 %, specificity = 93.8 % and AUC = 89.2 %) compared to the model without ancestry (sensibility = 50 %, Specificity = 94.5 %, and AUC = 72.2 %). This ancestry component best predicted lithium individual response. Clinical variables such as disease duration, the number of depressive episodes, the total number of affective episodes, and the number of manic episodes were also important predictors. CONCLUSION Ancestry component is a major predictor and significantly improves the definition of individual Lithium response in BD patients. We provide classification trees with potential bench application in the clinical setting. While this prediction framework might be applied in specific populations, the used methodology might be of general use in precision and translational medicine.
Collapse
Affiliation(s)
- Ana M Díaz-Zuluaga
- Research Group in Psychiatry (GIPSI), Institute of Medical Research, Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Antioquia, Colombia
| | - Jorge I Vélez
- Department of Industrial Engineering, Universidad del Norte, Km 5 vía Puerto Colombia, 081007 Barranquilla, Colombia
| | - Mauricio Cuartas
- Research Group Studies in Psychology, School of Humanities, Department of Psychology, EAFIT University, Medellín, Antioquia, Colombia
| | - Johanna Valencia
- Research Group in Psychiatry (GIPSI), Institute of Medical Research, Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Antioquia, Colombia
| | - Mauricio Castaño
- Department of Mental Health and Human Behavior, Universidad de Caldas, Manizales, Caldas, Colombia
| | - Juan David Palacio
- Research Group in Psychiatry (GIPSI), Institute of Medical Research, Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Antioquia, Colombia
| | - Mauricio Arcos-Burgos
- Research Group in Psychiatry (GIPSI), Institute of Medical Research, Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Antioquia, Colombia
| | - Carlos López-Jaramillo
- Research Group in Psychiatry (GIPSI), Institute of Medical Research, Department of Psychiatry, Faculty of Medicine, University of Antioquia, Medellín, Antioquia, Colombia.
| |
Collapse
|
21
|
Advances in Molecular Psychiatry - March 2023: mitochondrial function, stress, neuroinflammation - bipolar disorder, psychosis, and Alzheimer's disease. Mol Psychiatry 2023; 28:968-971. [PMID: 36899214 DOI: 10.1038/s41380-023-01968-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 03/12/2023]
|
22
|
Kurkinen M, Fułek M, Fułek K, Beszłej JA, Kurpas D, Leszek J. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: Should We Change Our Thinking? Biomolecules 2023; 13:biom13030453. [PMID: 36979388 PMCID: PMC10046826 DOI: 10.3390/biom13030453] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
Old age increases the risk of Alzheimer’s disease (AD), the most common neurodegenerative disease, a devastating disorder of the human mind and the leading cause of dementia. Worldwide, 50 million people have the disease, and it is estimated that there will be 150 million by 2050. Today, healthcare for AD patients consumes 1% of the global economy. According to the amyloid cascade hypothesis, AD begins in the brain by accumulating and aggregating Aβ peptides and forming β-amyloid fibrils (Aβ42). However, in clinical trials, reducing Aβ peptide production and amyloid formation in the brain did not slow cognitive decline or improve daily life in AD patients. Prevention studies in cognitively unimpaired people at high risk or genetically destined to develop AD also have not slowed cognitive decline. These observations argue against the amyloid hypothesis of AD etiology, its development, and disease mechanisms. Here, we look at other avenues in the research of AD, such as the presenilin hypothesis, synaptic glutamate signaling, and the role of astrocytes and the glutamate transporter EAAT2 in the development of AD.
Collapse
Affiliation(s)
| | - Michał Fułek
- Department and Clinic of Internal Medicine, Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Katarzyna Fułek
- Department and Clinic of Otolaryngology, Head and Neck Surgery, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| | | | - Donata Kurpas
- Department of Family Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Jerzy Leszek
- Department and Clinic of Psychiatry, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Correspondence: (K.F.); (J.L.)
| |
Collapse
|
23
|
Lin X, Jiang S, Wu Y, Wei X, Han GW, Wu L, Liu J, Chen B, Zhang Z, Zhao S, Cherezov V, Xu F. The activation mechanism and antibody binding mode for orphan GPR20. Cell Discov 2023; 9:23. [PMID: 36849514 PMCID: PMC9971246 DOI: 10.1038/s41421-023-00520-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/02/2023] [Indexed: 03/01/2023] Open
Abstract
GPR20 is a class-A orphan G protein-coupled receptor (GPCR) and a potential therapeutic target for gastrointestinal stromal tumors (GIST) owing to its differentially high expression. An antibody-drug conjugate (ADC) containing a GPR20-binding antibody (Ab046) was recently developed in clinical trials for GIST treatment. GPR20 constitutively activates Gi proteins in the absence of any known ligand, but it remains obscure how this high basal activity is achieved. Here we report three cryo-EM structures of human GPR20 complexes including Gi-coupled GPR20 in the absence or presence of the Fab fragment of Ab046 and Gi-free GPR20. Remarkably, the structures demonstrate a uniquely folded N-terminal helix capping onto the transmembrane domain and our mutagenesis study suggests a key role of this cap region in stimulating the basal activity of GPR20. We also uncover the molecular interactions between GPR20 and Ab046, which may enable the design of tool antibodies with enhanced affinity or new functionality for GPR20. Furthermore, we report the orthosteric pocket occupied by an unassigned density which might be essential for exploring opportunities for deorphanization.
Collapse
Affiliation(s)
- Xi Lin
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Shan Jiang
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Xiaohu Wei
- grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Gye-Won Han
- grid.42505.360000 0001 2156 6853Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA USA
| | - Lijie Wu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Junlin Liu
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Bo Chen
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China
| | - Zhibin Zhang
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- grid.440637.20000 0004 4657 8879iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China ,grid.440637.20000 0004 4657 8879School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Vadim Cherezov
- grid.42505.360000 0001 2156 6853Departments of Chemistry and Biological Sciences, Bridge Institute, University of Southern California, Los Angeles, CA USA
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
24
|
Acosta-Baena N, Lopera-Gómez CM, Jaramillo-Elorza MC, Velilla-Jiménez L, Villegas-Lanau CA, Sepúlveda-Falla D, Arcos-Burgos M, Lopera F. Early Depressive Symptoms Predict Faster Dementia Progression in Autosomal-Dominant Alzheimer's Disease. J Alzheimers Dis 2023; 92:911-923. [PMID: 36847011 DOI: 10.3233/jad-221294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
BACKGROUND Depression is associated with Alzheimer's disease (AD). OBJECTIVE To evaluate the association between depressive symptoms and age of onset of cognitive decline in autosomal dominant AD, and to determine possible factors associated to early depressive symptoms in this population. METHODS We conducted a retrospective study to identify depressive symptoms among 190 presenilin 1 (PSEN1) E280A mutation carriers, subjected to comprehensive clinical evaluations in up to a 20-year longitudinal follow-up. We controlled for the following potential confounders: APOE, sex, hypothyroidism, education, marital status, residence, tobacco, alcohol, and drug abuse. RESULTS PSEN1 E280A carriers with depressive symptoms before mild cognitive impairment (MCI) develop dementia faster than E280A carriers without depressive symptoms (Hazard Ratio, HR = 1.95; 95% CI, 1.15-3.31). Not having a stable partner accelerated the onset of MCI (HR = 1.60; 95 % CI, 1.03-2.47) and dementia (HR = 1.68; 95 % CI, 1.09-2.60). E280A carriers with controlled hypothyroidism had later age of onset of depressive symptoms (HR = 0.48; 95 % CI, 0.25-0.92), dementia (HR = 0.43; 95 % CI, 0.21-0.84), and death (HR = 0.35; 95 % CI, 0.13-0.95). APOEɛ2 significantly affected AD progression in all stages. APOE polymorphisms were not associate to depressive symptoms. Women had a higher frequency and developed earlier depressive symptoms than men throughout the illness (HR = 1.63; 95 % CI, 1.14-2.32). CONCLUSION Depressive symptoms accelerated progress and faster cognitive decline of autosomal dominant AD. Not having a stable partner and factors associated with early depressive symptoms (e.g., in females and individuals with untreated hypothyroidism), could impact prognosis, burden, and costs.
Collapse
Affiliation(s)
- Natalia Acosta-Baena
- Grupo de Neurociencias de Antioquia (GNA), Universidad de Antioquia, Medellín, Colombia
- Grupo de Genética Molecular (GENMOL), Universidad de Antioquia, Medellín, Colombia
| | - Carlos M Lopera-Gómez
- Escuela de estadística, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Mario C Jaramillo-Elorza
- Escuela de estadística, Facultad de Ciencias, Universidad Nacional de Colombia, Medellín, Colombia
| | - Lina Velilla-Jiménez
- Grupo de Neurociencias de Antioquia (GNA), Universidad de Antioquia, Medellín, Colombia
| | | | - Diego Sepúlveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mauricio Arcos-Burgos
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- Grupo GIPSI, Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA), Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
25
|
Lozupone M, Imbimbo BP, Balducci C, Lo Vecchio F, Bisceglia P, Latino RR, Leone M, Dibello V, Solfrizzi V, Greco A, Daniele A, Watling M, Seripa D, Panza F. Does the imbalance in the apolipoprotein E isoforms underlie the pathophysiological process of sporadic Alzheimer's disease? Alzheimers Dement 2023; 19:353-368. [PMID: 35900209 DOI: 10.1002/alz.12728] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 01/18/2023]
Abstract
Human apolipoprotein E (apoE) is a 299-amino acid secreted glycoprotein binding cholesterol and phospholipids, and with three common isoforms (APOE ε2, APOE ε3, and APOE ε4). The exact mechanism by which APOE gene variants increase/decrease Alzheimer's disease (AD) risk is not fully understood, but APOE isoforms differently affect brain homeostasis and neuroinflammation, blood-brain barrier (BBB) permeability, glial function, synaptogenesis, oral/gut microbiota, neural networks, amyloid beta (Aβ) deposition, and tau-mediated neurodegeneration. In this perspective, we propose a comprehensive interpretation of APOE-mediated effects within AD pathophysiology, describing some specific cellular, biochemical, and epigenetic mechanisms and updating the different APOE-targeting approaches being developed as potential AD therapies. Intracisternal adeno-associated viral-mediated delivery of APOE ε2 is being tested in AD APOE ε4/ε4 carriers, while APOE mimetics are being used in subjects with perioperative neurocognitive disorders. Other approaches including APOE ε4 antisense oligonucleotides, anti-APOE ε4 monoclonal antibodies, APOE ε4 structure correctors, and APOE-Aβ interaction inhibitors produced positive results in transgenic AD mouse models.
Collapse
Affiliation(s)
- Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | | | - Claudia Balducci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milan, Italy
| | - Filomena Lo Vecchio
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Raffaela Rita Latino
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Maurizio Leone
- Complex Structure of Neurology, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Vittorio Dibello
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro, Bari, Italy
| | - Antonio Greco
- Research Laboratory, Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| | - Davide Seripa
- Hematology and Stem Cell Transplant Unit, "Vito Fazzi" Hospital, Lecce, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis,", Research Hospital, Castellana Grotte, Bari, Italy
| |
Collapse
|
26
|
Green R, Mayilsamy K, McGill AR, Martinez TE, Chandran B, Blair LJ, Bickford PC, Mohapatra SS, Mohapatra S. SARS-CoV-2 infection increases the gene expression profile for Alzheimer's disease risk. Mol Ther Methods Clin Dev 2022; 27:217-229. [PMID: 36187720 PMCID: PMC9508696 DOI: 10.1016/j.omtm.2022.09.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/21/2022] [Indexed: 02/02/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has caused over 600,000,000 infections globally thus far. Up to 30% of individuals with mild to severe disease develop long COVID, exhibiting diverse neurologic symptoms including dementias. However, there is a paucity of knowledge of molecular brain markers and whether these can precipitate the onset of Alzheimer's disease (AD). Herein, we report the brain gene expression profiles of severe COVID-19 patients showing increased expression of innate immune response genes and genes implicated in AD pathogenesis. The use of a mouse-adapted strain of SARS-CoV-2 (MA10) in an aged mouse model shows evidence of viral neurotropism, prolonged viral infection, increased expression of tau aggregator FKBP51, interferon-inducible gene Ifi204, and complement genes C4 and C5AR1. Brain histopathology shows AD signatures including increased tau-phosphorylation, tau-oligomerization, and α-synuclein expression in aged MA10 infected mice. The results of gene expression profiling of SARS-CoV-2-infected and AD brains and studies in the MA10 aged mouse model taken together, for the first time provide evidence suggesting that SARS-CoV-2 infection alters expression of genes in the brain associated with the development of AD. Future studies of common molecular markers in SARS-CoV-2 infection and AD could be useful for developing novel therapies targeting AD.
Collapse
Affiliation(s)
- Ryan Green
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Karthick Mayilsamy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Taylor E. Martinez
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Bala Chandran
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Laura J. Blair
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Byrd Alzheimer’s Research Institute, University of South Florida, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Paula C. Bickford
- Center of Excellence for Aging and Brain Repair, Departments of Neurosurgery and Brain Repair, and Molecular Pharmacology and Physiology, Morsani College of Medicine, Tampa, FL 33613, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Shyam S. Mohapatra
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- James A Haley VA Hospital, Tampa, FL 33612, USA
| |
Collapse
|
27
|
Caldwell AB, Liu Q, Zhang C, Schroth GP, Galasko DR, Rynearson KD, Tanzi RE, Yuan SH, Wagner SL, Subramaniam S. Endotype reversal as a novel strategy for screening drugs targeting familial Alzheimer's disease. Alzheimers Dement 2022; 18:2117-2130. [PMID: 35084109 PMCID: PMC9787711 DOI: 10.1002/alz.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
While amyloid-β (Aβ) plaques are considered a hallmark of Alzheimer's disease, clinical trials focused on targeting gamma secretase, an enzyme involved in aberrant Aβ peptide production, have not led to amelioration of AD symptoms or synaptic dysregulation. Screening strategies based on mechanistic, multi-omics approaches that go beyond pathological readouts can aid in the evaluation of therapeutics. Using early-onset Alzheimer's (EOFAD) disease patient lineage PSEN1A246E iPSC-derived neurons, we performed RNA-seq to characterize AD-associated endotypes, which are in turn used as a screening evaluation metric for two gamma secretase drugs, the inhibitor Semagacestat and the modulator BPN-15606. We demonstrate that drug treatment partially restores the neuronal state while concomitantly inhibiting cell cycle re-entry and dedifferentiation endotypes to different degrees depending on the mechanism of gamma secretase engagement. Our endotype-centric screening approach offers a new paradigm by which candidate AD therapeutics can be evaluated for their overall ability to reverse disease endotypes.
Collapse
Affiliation(s)
- Andrew B. Caldwell
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Qing Liu
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California, San DiegoLa JollaCalifornia92093USA
| | - Can Zhang
- Genetics and Aging Research Unit, Department of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Douglas R. Galasko
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Kevin D. Rynearson
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Shauna H. Yuan
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,N. Bud Grossman Center for Memory Research and CareDepartment of Neurology, University of Minnesota, Minneapolis, MN, USA; GRECC, Minneapolis VA Health Care SystemMinneapolisMNUSA
| | - Steven L. Wagner
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,VA San Diego Healthcare SystemLa JollaCaliforniaUSA
| | - Shankar Subramaniam
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Computer Science and EngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
28
|
Seabury CM, Lockwood MA, Nichols TA. Genotype by environment interactions for chronic wasting disease in farmed US white-tailed deer. G3 (BETHESDA, MD.) 2022; 12:jkac109. [PMID: 35536181 PMCID: PMC9258584 DOI: 10.1093/g3journal/jkac109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 04/25/2022] [Indexed: 11/21/2022]
Abstract
Despite implementation of enhanced management practices, chronic wasting disease in US white-tailed deer (Odocoileus virginianus) continues to expand geographically. Herein, we perform the largest genome-wide association analysis to date for chronic wasting disease (n = 412 chronic wasting disease-positive; n = 758 chronic wasting disease-nondetect) using a custom Affymetrix Axiom single-nucleotide polymorphism array (n = 121,010 single-nucleotide polymorphisms), and confirm that differential susceptibility to chronic wasting disease is a highly heritable (h2= 0.611 ± 0.056) polygenic trait in farmed US white-tailed deer, but with greater trait complexity than previously appreciated. We also confirm PRNP codon 96 (G96S) as having the largest-effects on risk (P ≤ 3.19E-08; phenotypic variance explained ≥ 0.025) across 3 US regions (Northeast, Midwest, South). However, 20 chronic wasting disease-positive white-tailed deer possessing codon 96SS genotypes were also observed, including one that was lymph node and obex positive. Beyond PRNP, we also detected 23 significant single-nucleotide polymorphisms (P-value ≤ 5E-05) implicating ≥24 positional candidate genes; many of which have been directly implicated in Parkinson's, Alzheimer's and prion diseases. Genotype-by-environment interaction genome-wide association analysis revealed a single-nucleotide polymorphism in the lysosomal enzyme gene ARSB as having the most significant regional heterogeneity of effects on chronic wasting disease (P ≤ 3.20E-06); with increasing copy number of the minor allele increasing susceptibility to chronic wasting disease in the Northeast and Midwest; but with opposite effects in the South. In addition to ARSB, 38 significant genotype-by-environment single-nucleotide polymorphisms (P-value ≤ 5E-05) were also detected, thereby implicating ≥ 36 positional candidate genes; the majority of which have also been associated with aspects of Parkinson's, Alzheimer's, and prion diseases.
Collapse
Affiliation(s)
- Christopher M Seabury
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX 77843, USA
| | | | - Tracy A Nichols
- USDA-APHIS-VS-Cervid Health Program, Fort Collins, CO 80526-8117, USA
| |
Collapse
|
29
|
Bagaria J, Moon Y, Bagyinszky E, Shim KH, An SSA, Kim S, Han SH. Whole Exome Sequencing Reveals a Novel APOE Mutation in a Patient With Sporadic Early-Onset Alzheimer's Disease. Front Neurol 2022; 13:899644. [PMID: 35756922 PMCID: PMC9226417 DOI: 10.3389/fneur.2022.899644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Apolipoprotein (APOE) is implicated and verified as the main risk factor for early-onset Alzheimer's disease (AD). APOE is a protein that binds to lipids and is involved in cholesterol stability. Our paper reports a case of a sporadic early-onset AD (sEOAD) patient of a 54-year-old Korean man, where a novel APOE Leu159Pro heterozygous mutation was revealed upon Whole Exome Sequence analysis. The proband's CSF showed downregulated levels of Aβ42, with unchanged Tau levels. The mutation is in the Low-Density Lipoprotein Receptor (LDLR) region of the APOE gene, which mediates the clearance of APOE lipoproteins. LDLR works as a high-affinity point for APOE. Studies suggest that APOE-LDLR interplay could have varying effects. The LDLR receptor pathway has been previously suggested as a therapeutic target to treat tauopathy. However, the APOE-LDLR interaction has also shown a significant correlation with memory retention. Leu159Pro could be an interesting mutation that could be responsible for a less damaging pattern of AD by suppressing tau-association neurodegeneration while affecting the patient's memory retention and cognitive performance.
Collapse
Affiliation(s)
- Jaya Bagaria
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - Yeonsil Moon
- Department of Neurology, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, South Korea
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam, South Korea
| | - Kyu Hwan Shim
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Gachon University, Seongnam-si, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Budang Hospital, Seongnam-si, South Korea
| | - Seol Heui Han
- Department of Neurology, Konkuk University School of Medicine and Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
30
|
Petit D, Fernández SG, Zoltowska KM, Enzlein T, Ryan NS, O'Connor A, Szaruga M, Hill E, Vandenberghe R, Fox NC, Chávez-Gutiérrez L. Aβ profiles generated by Alzheimer's disease causing PSEN1 variants determine the pathogenicity of the mutation and predict age at disease onset. Mol Psychiatry 2022; 27:2821-2832. [PMID: 35365805 PMCID: PMC9156411 DOI: 10.1038/s41380-022-01518-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
Familial Alzheimer's disease (FAD), caused by mutations in Presenilin (PSEN1/2) and Amyloid Precursor Protein (APP) genes, is associated with an early age at onset (AAO) of symptoms. AAO is relatively consistent within families and between carriers of the same mutations, but differs markedly between individuals carrying different mutations. Gaining a mechanistic understanding of why certain mutations manifest several decades earlier than others is extremely important in elucidating the foundations of pathogenesis and AAO. Pathogenic mutations affect the protease (PSEN/γ-secretase) and the substrate (APP) that generate amyloid β (Aβ) peptides. Altered Aβ metabolism has long been associated with AD pathogenesis, with absolute or relative increases in Aβ42 levels most commonly implicated in the disease development. However, analyses addressing the relationships between these Aβ42 increments and AAO are inconsistent. Here, we investigated this central aspect of AD pathophysiology via comprehensive analysis of 25 FAD-linked Aβ profiles. Hypothesis- and data-driven approaches demonstrate linear correlations between mutation-driven alterations in Aβ profiles and AAO. In addition, our studies show that the Aβ (37 + 38 + 40) / (42 + 43) ratio offers predictive value in the assessment of 'unclear' PSEN1 variants. Of note, the analysis of PSEN1 variants presenting additionally with spastic paraparesis, indicates that a different mechanism underlies the aetiology of this distinct clinical phenotype. This study thus delivers valuable assays for fundamental, clinical and genetic research as well as supports therapeutic interventions aimed at shifting Aβ profiles towards shorter Aβ peptides.
Collapse
Affiliation(s)
- Dieter Petit
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Sara Gutiérrez Fernández
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Katarzyna Marta Zoltowska
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Thomas Enzlein
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack Str. 10, 68163, Mannheim, Germany
| | - Natalie S Ryan
- UK Dementia Research Institute at UCL, Queen Square, WC1N 3BG, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Antoinette O'Connor
- UK Dementia Research Institute at UCL, Queen Square, WC1N 3BG, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Maria Szaruga
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Elizabeth Hill
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Herestraat 49 box 1027, 3000, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Nick C Fox
- UK Dementia Research Institute at UCL, Queen Square, WC1N 3BG, London, UK
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Lucía Chávez-Gutiérrez
- VIB-KU Leuven Center for Brain & Disease Research, Herestraat 49 box 602, 3000, Leuven, Belgium.
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Herestraat 49 box 602, 3000, Leuven, Belgium.
| |
Collapse
|
31
|
Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, Villemagne VL, Aisen P, Vendruscolo M, Iwatsubo T, Masters CL, Cho M, Lannfelt L, Cummings JL, Vergallo A. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021; 26:5481-5503. [PMID: 34456336 PMCID: PMC8758495 DOI: 10.1038/s41380-021-01249-0] [Citation(s) in RCA: 824] [Impact Index Per Article: 206.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in molecular medicine have positioned the amyloid-β (Aβ) pathway at the center of Alzheimer's disease (AD) pathophysiology. While the detailed molecular mechanisms of the pathway and the spatial-temporal dynamics leading to synaptic failure, neurodegeneration, and clinical onset are still under intense investigation, the established biochemical alterations of the Aβ cycle remain the core biological hallmark of AD and are promising targets for the development of disease-modifying therapies. Here, we systematically review and update the vast state-of-the-art literature of Aβ science with evidence from basic research studies to human genetic and multi-modal biomarker investigations, which supports a crucial role of Aβ pathway dyshomeostasis in AD pathophysiological dynamics. We discuss the evidence highlighting a differentiated interaction of distinct Aβ species with other AD-related biological mechanisms, such as tau-mediated, neuroimmune and inflammatory changes, as well as a neurochemical imbalance. Through the lens of the latest development of multimodal in vivo biomarkers of AD, this cross-disciplinary review examines the compelling hypothesis- and data-driven rationale for Aβ-targeting therapeutic strategies in development for the early treatment of AD.
Collapse
Affiliation(s)
- Harald Hampel
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Institute of Neurology, University College London, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Christopher Chen
- Memory Aging and Cognition Centre, Departments of Pharmacology and Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - George Perry
- Department of Biology and Neurosciences Institute, University of Texas at San Antonio (UTSA), San Antonio, TX, USA
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea; Cell Therapy Center, Hanyang University Hospital, Seoul, Republic of Korea
| | - Victor L Villemagne
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul Aisen
- USC Alzheimer's Therapeutic Research Institute, San Diego, CA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Colin L Masters
- Laureate Professor of Dementia Research, Florey Institute and The University of Melbourne, Parkville, VIC, Australia
| | - Min Cho
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA
| | - Lars Lannfelt
- Uppsala University, Department of of Public Health/Geriatrics, Uppsala, Sweden
- BioArctic AB, Stockholm, Sweden
| | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas (UNLV), Las Vegas, NV, USA
| | - Andrea Vergallo
- Eisai Inc., Neurology Business Group, Woodcliff Lake, NJ, USA.
| |
Collapse
|
32
|
Licinio J, Wong ML. Molecular Psychiatry special issue: advances in Alzheimer's disease. Mol Psychiatry 2021; 26:5467-5470. [PMID: 35027660 DOI: 10.1038/s41380-021-01434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Julio Licinio
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Ma-Li Wong
- State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
33
|
Brookhouser N, Raman S, Frisch C, Srinivasan G, Brafman DA. APOE2 mitigates disease-related phenotypes in an isogenic hiPSC-based model of Alzheimer's disease. Mol Psychiatry 2021; 26:5715-5732. [PMID: 33837271 PMCID: PMC8501163 DOI: 10.1038/s41380-021-01076-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aβ is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
Collapse
Affiliation(s)
- Nicholas Brookhouser
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
- Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sreedevi Raman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Carlye Frisch
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Gayathri Srinivasan
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - David A Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
34
|
Licinio J, Wong ML. Climate change and mental health: a commentary. DISCOVER MENTAL HEALTH 2021; 1:1. [PMID: 37861755 PMCID: PMC10498147 DOI: 10.1007/s44192-021-00001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Climate change represents a major global challenge. Some hallmarks of climate change that have been connected to human activity include an increase of 0.8-1.2 °C in global temperatures as well as the warming of upper ocean water. Importantly, approximately 500 million people worldwide face the consequences of desertification. Simultaneously, the world population has grown from 1.6 billion in 1900 to 7.7 billion today, greatly exacerbating the human toll of devastating environmental disasters, which result in increasingly larger and more common mass migrations that also fuel human trafficking and modern-day slavery. The mental health outcomes are staggering and include, in the context of chronic stress, addiction, anxiety disorders, post-traumatic stress disorder (PTSD), bipolar disorder, major depression, and suicidality. Mental health practitioners, healthcare systems, and governments across the world need to be prepared to address the mental health sequelae of climate change.
Collapse
Affiliation(s)
- Julio Licinio
- Precision Medicine Laboratory in Psychiatry (PMLP), SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave 3302, Syracuse, NY, 13203, USA.
| | - Ma-Li Wong
- Precision Medicine Laboratory in Psychiatry (PMLP), SUNY Upstate Medical University, Institute for Human Performance, 505 Irving Ave 3302, Syracuse, NY, 13203, USA
| |
Collapse
|
35
|
Acosta-López JE, Suárez I, Pineda DA, Cervantes-Henríquez ML, Martínez-Banfi ML, Lozano-Gutiérrez SG, Ahmad M, Pineda-Alhucema W, Noguera-Machacón LM, Hoz MDL, Mejía-Segura E, Jiménez-Figueroa G, Sánchez-Rojas M, Mastronardi CA, Arcos-Burgos M, Vélez JI, Puentes-Rozo PJ. Impulsive and Omission Errors: Potential Temporal Processing Endophenotypes in ADHD. Brain Sci 2021; 11:1218. [PMID: 34573239 PMCID: PMC8467181 DOI: 10.3390/brainsci11091218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022] Open
Abstract
Temporal processing (TP) is associated with functions such as perception, verbal skills, temporal perspective, and future planning, and is intercorrelated with working memory, attention, and inhibitory control, which are highly impaired in individuals with attention deficit hyperactivity disorder (ADHD). Here we evaluate TP measures as potential endophenotypes in Caribbean families ascertained from probands affected by ADHD. A total of 232 individuals were recruited and clinically evaluated using an extensive battery of neuropsychological tasks and reaction time (RT)-based task paradigms. Further, the heritability (genetic variance underpinning phenotype) was estimated as a measure of the genetics apportionment. A predictive framework for ADHD diagnosis was derived using these tasks. We found that individuals with ADHD differed from controls in neuropsychological tasks assessing mental control, visual-verbal memory, verbal fluency, verbal, and semantic fluency. In addition, TP measures such as RT, errors, and variability were also affected in individuals with ADHD. Moreover, we determined that only omission and commission errors had significant heritability. In conclusion, we have disentangled omission and commission errors as possible TP endophenotypes in ADHD, which can be suitable to assess the neurobiological and genetic basis of ADHD. A predictive model using these endophenotypes led to remarkable sensitivity, specificity, precision and classification rate for ADHD diagnosis, and may be a useful tool for patients' diagnosis, follow-up, and longitudinal assessment in the clinical setting.
Collapse
Affiliation(s)
- Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Isabel Suárez
- Universidad del Norte, Barranquilla 081007, Colombia;
| | - David A. Pineda
- Neuropsychology and Conduct Research Group, University of San Buenaventura, Medellín 050010, Colombia;
| | - Martha L. Cervantes-Henríquez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
- Universidad del Norte, Barranquilla 081007, Colombia;
| | - Martha L. Martínez-Banfi
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Semiramis G. Lozano-Gutiérrez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Mostapha Ahmad
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Wilmar Pineda-Alhucema
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Luz M. Noguera-Machacón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Moisés De La Hoz
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Elsy Mejía-Segura
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Giomar Jiménez-Figueroa
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
| | | | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | | | - Pedro J. Puentes-Rozo
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (M.L.C.-H.); (M.L.M.-B.); (S.G.L.-G.); (M.A.); (W.P.-A.); (L.M.N.-M.); (M.D.L.H.); (E.M.-S.); (G.J.-F.); (M.S.-R.); (P.J.P.-R.)
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 081007, Colombia
| |
Collapse
|
36
|
Angelopoulou E, Paudel YN, Papageorgiou SG, Piperi C. APOE Genotype and Alzheimer's Disease: The Influence of Lifestyle and Environmental Factors. ACS Chem Neurosci 2021; 12:2749-2764. [PMID: 34275270 DOI: 10.1021/acschemneuro.1c00295] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder with obscure pathogenesis and no disease-modifying therapy to date. AD is multifactorial disease that develops from the complex interplay of genetic factors and environmental exposures. The E4 allele of the gene encoding apolipoprotein E (APOE) is the most common genetic risk factor for AD, whereas the E2 allele acts in a protective manner. A growing amount of epidemiological evidence suggests that several lifestyle habits and environmental factors may interact with APOE alleles to synergistically affect the risk of AD development. Among them, physical exercise, dietary habits including fat intake and ketogenic diet, higher education, traumatic brain injury, cigarette smoking, coffee consumption, alcohol intake, and exposure to pesticides and sunlight have gained increasing attention. Although the current evidence is inconsistent, it seems that younger APOE4 carriers in preclinical stages may benefit mostly from preventive lifestyle interventions, whereas older APOE4 noncarriers with dementia may show the most pronounced effects. The large discrepancies between the epidemiological studies may be attributed to differences in the sample sizes, the demographic characteristics of the participants, including age and sex, the methodological design, and potential related exposures and comorbidities as possible cofounding factors. In this Review, we aim to discuss available evidence of the prominent APOE genotype-environment interactions in regard to cognitive decline with a focus on AD, providing an overview of the current landscape in this field and suggesting future directions.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Neurology, Eginition University Hospital, Medical School, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Yam Nath Paudel
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500 Selangor, Malaysia
| | - Sokratis G. Papageorgiou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
37
|
Vélez JI, Samper LA, Arcos-Holzinger M, Espinosa LG, Isaza-Ruget MA, Lopera F, Arcos-Burgos M. A Comprehensive Machine Learning Framework for the Exact Prediction of the Age of Onset in Familial and Sporadic Alzheimer's Disease. Diagnostics (Basel) 2021; 11:887. [PMID: 34067584 PMCID: PMC8156402 DOI: 10.3390/diagnostics11050887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Machine learning (ML) algorithms are widely used to develop predictive frameworks. Accurate prediction of Alzheimer's disease (AD) age of onset (ADAOO) is crucial to investigate potential treatments, follow-up, and therapeutic interventions. Although genetic and non-genetic factors affecting ADAOO were elucidated by other research groups and ours, the comprehensive and sequential application of ML to provide an exact estimation of the actual ADAOO, instead of a high-confidence-interval ADAOO that may fall, remains to be explored. Here, we assessed the performance of ML algorithms for predicting ADAOO using two AD cohorts with early-onset familial AD and with late-onset sporadic AD, combining genetic and demographic variables. Performance of ML algorithms was assessed using the root mean squared error (RMSE), the R-squared (R2), and the mean absolute error (MAE) with a 10-fold cross-validation procedure. For predicting ADAOO in familial AD, boosting-based ML algorithms performed the best. In the sporadic cohort, boosting-based ML algorithms performed best in the training data set, while regularization methods best performed for unseen data. ML algorithms represent a feasible alternative to accurately predict ADAOO with little human intervention. Future studies may include predicting the speed of cognitive decline in our cohorts using ML.
Collapse
Affiliation(s)
- Jorge I. Vélez
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081007, Colombia
| | - Luiggi A. Samper
- Department of Public Health, Universidad del Norte, Barranquilla 081007, Colombia;
| | - Mauricio Arcos-Holzinger
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Lady G. Espinosa
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá 111321, Colombia; (L.G.E.); (M.A.I.-R.)
| | - Mario A. Isaza-Ruget
- INPAC Research Group, Fundación Universitaria Sanitas, Bogotá 111321, Colombia; (L.G.E.); (M.A.I.-R.)
| | - Francisco Lopera
- Neuroscience Research Group, University of Antioquia, Medellín 050010, Colombia;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
38
|
Patel D, Zhang X, Farrell JJ, Chung J, Stein TD, Lunetta KL, Farrer LA. Cell-type-specific expression quantitative trait loci associated with Alzheimer disease in blood and brain tissue. Transl Psychiatry 2021; 11:250. [PMID: 33907181 PMCID: PMC8079392 DOI: 10.1038/s41398-021-01373-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Because regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1 Mb of genes was evaluated using linear regression models for unrelated subjects and linear-mixed models for related subjects. Cell-type-specific eQTL (ct-eQTL) models included an interaction term for the expression of "proxy" genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell types is supported by the observation that a large portion of GWS ct-eQTLs map within 1 Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type-specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type-specific analysis.
Collapse
Affiliation(s)
- Devanshi Patel
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Jaeyoon Chung
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology & Laboratory Medicine, Boston University School of Medicine, Boston, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Lindsay A Farrer
- Bioinformatics Graduate Program, Boston University, Boston, MA, USA.
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA, USA.
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
- Departments of Neurology and Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
39
|
Dehghani N, Bras J, Guerreiro R. How understudied populations have contributed to our understanding of Alzheimer's disease genetics. Brain 2021; 144:1067-1081. [PMID: 33889936 DOI: 10.1093/brain/awab028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022] Open
Abstract
The majority of genome-wide association studies have been conducted using samples with a broadly European genetic background. As a field, we acknowledge this limitation and the need to increase the diversity of populations studied. A major challenge when designing and conducting such studies is to assimilate large samples sizes so that we attain enough statistical power to detect variants associated with disease, particularly when trying to identify variants with low and rare minor allele frequencies. In this review, we aimed to illustrate the benefits to genetic characterization of Alzheimer's disease, in researching currently understudied populations. This is important for both fair representation of world populations and the translatability of findings. To that end, we conducted a literature search to understand the contributions of studies, on different populations, to Alzheimer's disease genetics. Using both PubMed and Alzforum Mutation Database, we systematically quantified the number of studies reporting variants in known disease-causing genes, in a worldwide manner, and discuss the contributions of research in understudied populations to the identification of novel genetic factors in this disease. Additionally, we compared the effects of genome-wide significant single nucleotide polymorphisms across populations by focusing on loci that show different association profiles between populations (a key example being APOE). Reports of variants in APP, PSEN1 and PSEN2 can initially determine whether patients from a country have been studied for Alzheimer's disease genetics. Most genome-wide significant associations in non-Hispanic white genome-wide association studies do not reach genome-wide significance in such studies of other populations, with some suggesting an opposite effect direction; this is likely due to much smaller sample sizes attained. There are, however, genome-wide significant associations first identified in understudied populations which have yet to be replicated. Familial studies in understudied populations have identified rare, high effect variants, which have been replicated in other populations. This work functions to both highlight how understudied populations have furthered our understanding of Alzheimer's disease genetics, and to help us gauge our progress in understanding the genetic architecture of this disease in all populations.
Collapse
Affiliation(s)
- Nadia Dehghani
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
40
|
Guven G, Samanci B, Gulec C, Hanagasi H, Gurvit H, Gokalp EE, Tepgec F, Guler S, Uyguner O, Bilgic B. A novel PSEN2 p.Ser175Phe variant in a family with Alzheimer's disease. Neurol Sci 2021; 42:2497-2504. [PMID: 33855622 DOI: 10.1007/s10072-021-05243-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/09/2021] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD) can be either sporadic or familial, and familial forms of AD accounts for only 5% of the cases. So far, autosomal dominantly inherited mutations in "Presenilin 1" (PSEN1), "Presenilin 2" (PSEN2), and "Amyloid precursor protein" (APP) genes were associated with familial AD. Amid the others, pathogenic mutations in the PSEN2 gene are less common. In this study, we describe a novel heterozygous PSEN2 (c.524C>T, p.Ser175Phe) alteration identified in a 58-year-old Turkish patient from a family with multiple dementia cases. This variant was further present in the patient's clinically affected maternal cousin as well as in the asymptomatic mother and two maternal aunts who were carriers of the APOE ε2/ε3 genotype. The variant is located in the conserved residue of transmembrane domain III encoded by exon 6 of the major transcript. In silico protein structure analyses predicted that this variant might change the architecture of interaction between the two alpha helixes of PSEN2. We propose that p.Ser175Phe may have a pathogenic effect on protein function and may play a significant role in the molecular pathways leading to Alzheimer's disease in this family.
Collapse
Affiliation(s)
- Gamze Guven
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Bedia Samanci
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cagri Gulec
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hakan Gurvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Ebru Erzurumluoglu Gokalp
- Department of Medical Genetics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fatih Tepgec
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Suleyman Guler
- Neurology Clinic, Mehmet Akif Inan Training and Research Hospital, University of Health Sciences, Sanliurfa, Turkey
| | - Oya Uyguner
- Department of Medical Genetics, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Basar Bilgic
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
41
|
Mentis AFA, Dardiotis E, Chrousos GP. Apolipoprotein E4 and meningeal lymphatics in Alzheimer disease: a conceptual framework. Mol Psychiatry 2021; 26:1075-1097. [PMID: 32355332 PMCID: PMC7985019 DOI: 10.1038/s41380-020-0731-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
Abstract
The potential existence and roles of the meningeal lymphatic system in normal and pathological brain function have been a long-standing enigma. Recent evidence suggests that meningeal lymphatic vessels are present in both the mouse and human brain; in mice, they seem to play a role in clearing toxic amyloid-beta peptides, which have been connected with Alzheimer disease (AD). Here, we review the evidence linking the meningeal lymphatic system with human AD. Novel findings suggest that the recently described meningeal lymphatic vessels could be linked to, and possibly drain, the efferent paravascular glial lymphatic (glymphatic) system carrying cerebrospinal fluid, after solute and immune cell exchange with brain interstitial fluid. In so doing, the glymphatic system could contribute to the export of toxic solutes and immune cells from the brain (an exported fluid we wish to describe as glymph, similarly to lymph) to the meningeal lymphatic system; the latter, by being connected with downstream anatomic regions, carries the glymph to the conventional cervical lymphatic vessels and nodes. Thus, abnormal function in the meningeal lymphatic system could, in theory, lead to the accumulation, in the brain, of amyloid-beta, cellular debris, and inflammatory mediators, as well as immune cells, resulting in damage of the brain parenchyma and, in turn, cognitive and other neurologic dysfunctions. In addition, we provide novel insights into APOE4-the leading genetic risk factor for AD-and its relation to the meningeal lymphatic system. In this regard, we have reanalyzed previously published RNA-Seq data to show that induced pluripotent stem cells (iPSCs) carrying the APOE4 allele (either as APOE4 knock-in or stemming from APOE4 patients) express lower levels of (a) genes associated with lymphatic markers, and (b) genes for which well-characterized missense mutations have been linked to peripheral lymphedema. Taking into account this evidence, we propose a new conceptual framework, according to which APOE4 could play a novel role in the premature shrinkage of meningeal lymphatic vessels (meningeal lymphosclerosis), leading to abnormal meningeal lymphatic functions (meningeal lymphedema), and, in turn, reduction in the clearance of amyloid-beta and other macromolecules and inflammatory mediators, as well as immune cells, from the brain, exacerbation of AD manifestations, and progression of the disease. Altogether, these findings and their potential interpretations may herald novel diagnostic tools and therapeutic approaches in patients with AD.
Collapse
Affiliation(s)
- Alexios-Fotios A Mentis
- Public Health Laboratories, Hellenic Pasteur Institute, Vas. Sofias Avenue 127, 115 21, Athens, Greece.
- Department of Microbiology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece.
| | - Efthimios Dardiotis
- Department of Neurology, University of Thessaly, Panepistimiou 3, Viopolis, 41 500, Larissa, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Medical School, Aghia Sophia Children's Hospital, Livadias 8, 115 27, Athens, Greece
- UNESCO Chair on Adolescent Health Care, Athens, Greece
| |
Collapse
|
42
|
Patel D, Zhang X, Farrell JJ, Lunetta KL, Farrer LA. Set-Based Rare Variant Expression Quantitative Trait Loci in Blood and Brain from Alzheimer Disease Study Participants. Genes (Basel) 2021; 12:419. [PMID: 33804025 PMCID: PMC7999141 DOI: 10.3390/genes12030419] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
Because studies of rare variant effects on gene expression have limited power, we investigated set-based methods to identify rare expression quantitative trait loci (eQTL) related to Alzheimer disease (AD). Gene-level and pathway-level cis rare-eQTL mapping was performed genome-wide using gene expression data derived from blood donated by 713 Alzheimer's Disease Neuroimaging Initiative participants and from brain tissues donated by 475 Religious Orders Study/Memory and Aging Project participants. The association of gene or pathway expression with a set of all cis potentially regulatory low-frequency and rare variants within 1 Mb of genes was evaluated using SKAT-O. A total of 65 genes expressed in the brain were significant targets for rare expression single nucleotide polymorphisms (eSNPs) among which 17% (11/65) included established AD genes HLA-DRB1 and HLA-DRB5. In the blood, 307 genes were significant targets for rare eSNPs. In the blood and the brain, GNMT, LDHC, RBPMS2, DUS2, and HP were targets for significant eSNPs. Pathway enrichment analysis revealed significant pathways in the brain (n = 9) and blood (n = 16). Pathways for apoptosis signaling, cholecystokinin receptor (CCKR) signaling, and inflammation mediated by chemokine and cytokine signaling were common to both tissues. Significant rare eQTLs in inflammation pathways included five genes in the blood (ALOX5AP, CXCR2, FPR2, GRB2, IFNAR1) that were previously linked to AD. This study identified several significant gene- and pathway-level rare eQTLs, which further confirmed the importance of the immune system and inflammation in AD and highlighted the advantages of using a set-based eQTL approach for evaluating the effect of low-frequency and rare variants on gene expression.
Collapse
Affiliation(s)
- Devanshi Patel
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA;
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA; (X.Z.); (J.J.F.)
| | - Xiaoling Zhang
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA; (X.Z.); (J.J.F.)
| | - John J. Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA; (X.Z.); (J.J.F.)
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA;
| | - Lindsay A. Farrer
- Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA;
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, Boston, MA 02118, USA; (X.Z.); (J.J.F.)
- Department of Biostatistics, Boston University School of Public Health, Boston, MA 02118, USA;
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
| |
Collapse
|
43
|
Sepulveda-Falla D, Chavez-Gutierrez L, Portelius E, Vélez JI, Dujardin S, Barrera-Ocampo A, Dinkel F, Hagel C, Puig B, Mastronardi C, Lopera F, Hyman BT, Blennow K, Arcos-Burgos M, de Strooper B, Glatzel M. A multifactorial model of pathology for age of onset heterogeneity in familial Alzheimer's disease. Acta Neuropathol 2021; 141:217-233. [PMID: 33319314 PMCID: PMC7847436 DOI: 10.1007/s00401-020-02249-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
Presenilin-1 (PSEN1) mutations cause familial Alzheimer's disease (FAD) characterized by early age of onset (AoO). Examination of a large kindred harboring the PSEN1-E280A mutation reveals a range of AoO spanning 30 years. The pathophysiological drivers and clinical impact of AoO variation in this population are unknown. We examined brains of 23 patients focusing on generation and deposition of beta-amyloid (Aβ) and Tau pathology profile. In 14 patients distributed at the extremes of AoO, we performed whole-exome capture to identify genotype-phenotype correlations. We also studied kinome activity, proteasome activity, and protein polyubiquitination in brain tissue, associating it with Tau phosphorylation profiles. PSEN1-E280A patients showed a bimodal distribution for AoO. Besides AoO, there were no clinical differences between analyzed groups. Despite the effect of mutant PSEN1 on production of Aβ, there were no relevant differences between groups in generation and deposition of Aβ. However, differences were found in hyperphosphorylated Tau (pTau) pathology, where early onset patients showed severe pathology with diffuse aggregation pattern associated with increased activation of stress kinases. In contrast, late-onset patients showed lesser pTau pathology and a distinctive kinase activity. Furthermore, we identified new protective genetic variants affecting ubiquitin-proteasome function in early onset patients, resulting in higher ubiquitin-dependent degradation of differentially phosphorylated Tau. In PSEN1-E280A carriers, altered γ-secretase activity and resulting Aβ accumulation are prerequisites for early AoO. However, Tau hyperphosphorylation pattern, and its degradation by the proteasome, drastically influences disease onset in individuals with otherwise similar Aβ pathology, hinting toward a multifactorial model of disease for FAD. In sporadic AD (SAD), a wide range of heterogeneity, also influenced by Tau pathology, has been identified. Thus, Tau-induced heterogeneity is a common feature in both AD variants, suggesting that a multi-target therapeutic approach should be used to treat AD.
Collapse
Affiliation(s)
- Diego Sepulveda-Falla
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia.
| | - Lucia Chavez-Gutierrez
- VIB Center for Brain and Disease Research, 3000, Leuven, Belgium
- Department of Neurology, KU Leuven, Leuven, Belgium
| | - Erik Portelius
- Institute of Neuroscience and Physiology, Dept. of Psychiatry and Neurochemistry, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden
| | - Jorge I Vélez
- Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Universidad del Norte, Barranquilla, Colombia
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, USA
| | - Alvaro Barrera-Ocampo
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Facultad de Ciencias Naturales, Departamento de Ciencias Farmaceuticas, Universidad Icesi, Grupo Natura, Calle 18 No. 122 -135, Cali, Colombia
| | - Felix Dinkel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Claudio Mastronardi
- Department of Genome Sciences, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- GIPSI Group, Department of Psychiatry, Medical Research Institute, University of Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Faculty of Medicine, University of Antioquia, Medellín, Colombia
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Charlestown, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Dept. of Psychiatry and Neurochemistry, The Sahlgrenska Academy At the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, 431 80, Mölndal, Sweden
| | - Mauricio Arcos-Burgos
- GIPSI Group, Department of Psychiatry, Medical Research Institute, University of Antioquia, Medellín, Colombia
| | - Bart de Strooper
- VIB Center for Brain and Disease Research, 3000, Leuven, Belgium
- Department of Neurology, KU Leuven, Leuven, Belgium
- UK Dementia Research Institute, University College London, Queen Square, London, WC1N 3BG, UK
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
44
|
Parra MA, Baez S, Sedeño L, Gonzalez Campo C, Santamaría‐García H, Aprahamian I, Bertolucci PHF, Bustin J, Camargos Bicalho MA, Cano‐Gutierrez C, Caramelli P, Chaves MLF, Cogram P, Beber BC, Court FA, de Souza LC, Custodio N, Damian A, de la Cruz M, Diehl Rodriguez R, Brucki SMD, Fajersztajn L, Farías GA, De Felice FG, Ferrari R, de Oliveira FF, Ferreira ST, Ferretti C, Figueredo Balthazar ML, Ferreira Frota NA, Fuentes P, García AM, Garcia PJ, de Gobbi Porto FH, Duque Peñailillo L, Engler HW, Maier I, Mata IF, Gonzalez‐Billault C, Lopez OL, Morelli L, Nitrini R, Quiroz YT, Guerrero Barragan A, Huepe D, Pio FJ, Suemoto CK, Kochhann R, Kochen S, Kumfor F, Lanata S, Miller B, Mansur LL, Hosogi ML, Lillo P, Llibre Guerra J, Lira D, Lopera F, Comas A, Avila‐Funes JA, Sosa AL, Ramos C, Resende EDPF, Snyder HM, Tarnanas I, Yokoyama J, Llibre J, Cardona JF, Possin K, Kosik KS, Montesinos R, Moguilner S, Solis PCL, Ferretti‐Rebustini REDL, Ramirez JM, Matallana D, Mbakile‐Mahlanza L, Marques Ton AM, Tavares RM, Miotto EC, Muniz‐Terrera G, Muñoz‐Nevárez LA, Orozco D, Okada de Oliveira M, Piguet O, Pintado Caipa M, Piña Escudero SD, Schilling LP, Rodrigues Palmeira AL, Yassuda MS, Santacruz‐Escudero JM, Serafim RB, Smid J, Slachevsky A, Serrano C, Soto‐Añari M, Takada LT, Grinberg LT, Teixeira AL, Barbosa MT, et alParra MA, Baez S, Sedeño L, Gonzalez Campo C, Santamaría‐García H, Aprahamian I, Bertolucci PHF, Bustin J, Camargos Bicalho MA, Cano‐Gutierrez C, Caramelli P, Chaves MLF, Cogram P, Beber BC, Court FA, de Souza LC, Custodio N, Damian A, de la Cruz M, Diehl Rodriguez R, Brucki SMD, Fajersztajn L, Farías GA, De Felice FG, Ferrari R, de Oliveira FF, Ferreira ST, Ferretti C, Figueredo Balthazar ML, Ferreira Frota NA, Fuentes P, García AM, Garcia PJ, de Gobbi Porto FH, Duque Peñailillo L, Engler HW, Maier I, Mata IF, Gonzalez‐Billault C, Lopez OL, Morelli L, Nitrini R, Quiroz YT, Guerrero Barragan A, Huepe D, Pio FJ, Suemoto CK, Kochhann R, Kochen S, Kumfor F, Lanata S, Miller B, Mansur LL, Hosogi ML, Lillo P, Llibre Guerra J, Lira D, Lopera F, Comas A, Avila‐Funes JA, Sosa AL, Ramos C, Resende EDPF, Snyder HM, Tarnanas I, Yokoyama J, Llibre J, Cardona JF, Possin K, Kosik KS, Montesinos R, Moguilner S, Solis PCL, Ferretti‐Rebustini REDL, Ramirez JM, Matallana D, Mbakile‐Mahlanza L, Marques Ton AM, Tavares RM, Miotto EC, Muniz‐Terrera G, Muñoz‐Nevárez LA, Orozco D, Okada de Oliveira M, Piguet O, Pintado Caipa M, Piña Escudero SD, Schilling LP, Rodrigues Palmeira AL, Yassuda MS, Santacruz‐Escudero JM, Serafim RB, Smid J, Slachevsky A, Serrano C, Soto‐Añari M, Takada LT, Grinberg LT, Teixeira AL, Barbosa MT, Trépel D, Ibanez A. Dementia in Latin America: Paving the way toward a regional action plan. Alzheimers Dement 2021; 17:295-313. [PMID: 33634602 PMCID: PMC7984223 DOI: 10.1002/alz.12202] [Show More Authors] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/12/2022]
Abstract
Across Latin American and Caribbean countries (LACs), the fight against dementia faces pressing challenges, such as heterogeneity, diversity, political instability, and socioeconomic disparities. These can be addressed more effectively in a collaborative setting that fosters open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking, and translational research) and align them to current global strategies to translate regional knowledge into transformative actions. Then we characterize key sources of complexity (genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions), map them to the above challenges, and provide the basic mosaics of knowledge toward a KtAF. Finally, we describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF.
Collapse
Affiliation(s)
- Mario Alfredo Parra
- School of Psychological Sciences and HealthGraham Hills BuildingGlasgow, G1 1QE, UK, Universidad Autónoma del CaribePrograma de PsicologíaUniversity of StrathclydeBarranquillaColombia
| | | | - Lucas Sedeño
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Buenos AiresArgentina
| | - Cecilia Gonzalez Campo
- Cognitive Neuroscience Center (CNC)Universidad de San AndresConsejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Buenos AiresArgentina
| | - Hernando Santamaría‐García
- Pontificia Universidad JaverianaMedical School, Physiology and Psychiatry DepartmentsMemory and Cognition Center IntellectusHospital Universitario San IgnacioBogotáColombia
| | - Ivan Aprahamian
- Department of Internal MedicineFaculty of Medicine of JundiaíGroup of Investigation on Multimorbidity and Mental Health in Aging (GIMMA)JundiaíState of São PauloBrazil
| | - Paulo HF Bertolucci
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo ‐ UNIFESPSão PauloBrazil
| | - Julian Bustin
- INECO FoundationInstitute of Cognitive and Translational Neuroscience (INCYT)Favaloro UniversityBuenos AiresArgentina
| | | | - Carlos Cano‐Gutierrez
- Medical SchoolGeriatric Unit, Memory and Cognition Center‐IntellectusAging InstituteHospital Universitario San IgnacioPontificia Universidad JaverianaBogotáColombia
| | - Paulo Caramelli
- Faculdade de MedicinaUniversidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Marcia L. F. Chaves
- Neurology ServiceHospital de Clínicas de Porto Alegre e Universidade Federal do Rio Grande do SulBrazil
| | - Patricia Cogram
- Laboratory of Molecular NeuropsychiatryINECO FoundationNational Scientific and Technical Research CouncilInstitute of Cognitive and Translational Neuroscience (INCyT)Favaloro UniversityBuenos AiresArgentina
| | - Bárbara Costa Beber
- Department of Speech and Language PathologyAtlantic Fellow for Equity in Brain HealthFederal University of Health Sciences of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Felipe A. Court
- Center for Integrative BiologyFaculty of SciencesFONDAP Center for GeroscienceBrain Health and Metabolism, Santiago, Chile, The Buck Institute for Research on AgingUniversidad Mayor, ChileNovatoCAUSA
| | | | - Nilton Custodio
- Unit Cognitive Impairment and Dementia PreventionCognitive Neurology CenterPeruvian Institute of NeurosciencesLimaPerú
| | - Andres Damian
- Centro Uruguayo de Imagenología Molecular (CUDIM)Centro de Medicina Nuclear e Imagenología MolecularHospital de ClínicasUniversidad de la RepúblicaMontevideoUruguay
| | - Myriam de la Cruz
- Global Brain Health Institute, University of CaliforniaSan FranciscoUSA
| | - Roberta Diehl Rodriguez
- Behavioral and Cognitive Neurology UnitDepartment of Neurology and LIM 22University of São PauloSão PauloBrazil
| | | | - Lais Fajersztajn
- Laboratory of Experimental Air Pollution (LIM05)Department of PathologySchool of MedicineGlobal Brain Health Institute, University of CaliforniaSan Francisco (UCSF)University of São PauloSão PauloSao PauloBrazil
| | - Gonzalo A. Farías
- Department Neurology and Neurosurgery North/Department of NeurosciencesCenter for Advanced Clinical Research (CICA)Faculty of MedicineUniversidad de ChileSantiagoChile
| | | | - Raffaele Ferrari
- Department of Neurodegenerative DiseaseUniversity College LondonLondonESUK
| | - Fabricio Ferreira de Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo ‐ UNIFESPSão PauloBrazil
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis & Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRJBrazil
| | - Ceres Ferretti
- Division of NeurologyUniversity of São PauloSão PauloBrazil
| | | | | | - Patricio Fuentes
- Geriatrics Section Clinical Hospital University of Chile, Santos Dumont 999 IndependenciaSantiagoChile
| | - Adolfo M. García
- Cognitive Neuroscience Center (CNC)Faculty of EducationNational University of Cuyo (UNCuyo)Universidad de San Andres. National Scientific and Technical Research Council (CONICET)MendozaArgentina
| | | | - Fábio Henrique de Gobbi Porto
- Laboratory of Psychiatric Neuroimaging (LIM‐21)Instituto de PsiquiatriaHospital das Clinicas HCFMUSPFaculdade de MedicinaUniversidade de Sao PauloSao PauloSao PauloBrazil
| | | | | | | | - Ignacio F. Mata
- Department of Genomic MedicineLerner Research InstituteCleveland ClinicOHUSA
| | - Christian Gonzalez‐Billault
- Center for GeroscienceBrain Health and Metabolism (GERO), Santiago, Chile, and Department of Biology, Faculty of SciencesUniversity of ChileSantiagoChile
| | - Oscar L. Lopez
- Alzheimer's Disease Research CenterUniversity of PittsburghPittsburghPAUSA
| | - Laura Morelli
- Fundacion Instituto Leloir‐IIBBA‐CONICET. AveArgentina
| | - Ricardo Nitrini
- Department of NeurologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | | | - Alejandra Guerrero Barragan
- Trinity College Dublin, Dublin, Departamento de Neurologia Hospital Occidente de KennedyGlobal Brain Health InstituteUniversidad de la SabanaBogotaColombia
| | - David Huepe
- Center for Social and Cognitive Neuroscience (CSCN)School of PsychologyUniversidad Adolfo IbañezSantiagoChile
| | - Fabricio Joao Pio
- Department of NeurologyHospital Governador Celso RamosFlorianopolisBrazil
| | | | - Renata Kochhann
- Graduate Program in PsychologySchool of Health SciencesHospital Moinhos de VentoPontifical Catholic University of Rio Grande do Sul—PUCRS and Researcher OfficePorto AlegreBrazil
| | - Silvia Kochen
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp, El Cruce “N. Kirchner”, Univ. National A, Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Fac. MedicineUniv Nacional de Buenos Aires (UBA)Buenos AiresArgentina
| | - Fiona Kumfor
- Brain and Mind Centre and School of PsychologyUniversity of SydneySydneyNSWAustralia
| | - Serggio Lanata
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | - Bruce Miller
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | | | - Mirna Lie Hosogi
- Behavioral and Cognitive Unit of Department of NeurologyUniversity of São Paulo School of MedicineSao PauloBrazil
| | - Patricia Lillo
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile, Departamento de Neurología Sur/Departamento de Neurociencia, Facultad de MedicinaUniversidad de ChileSantiagoChile
| | | | - David Lira
- Unit Cognitive Impairment and Dementia PreventionCognitive Neurology CenterPeruvian Institute of NeurosciencesLimaPerú
| | - Francisco Lopera
- Neuroscience Research GroupUniversidad de AntioquiaMedellínColombia
| | - Adelina Comas
- Department of Health Policy at the London School of Economics and Political ScienceLondonUK
| | | | - Ana Luisa Sosa
- Instituto Nacional de Neurología y NeurocirugíaCiudad de MéxicoMéxico
| | - Claudia Ramos
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | | | | | - Ioannis Tarnanas
- Global Brain Health Institute, University of CaliforniaSan FranciscoUSA
- Altoida Inc.HoustonTexasUSA
| | - Jenifer Yokoyama
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | | | | | - Kate Possin
- UCSF Department of NeurologyMemory and Aging CenterUCSFSan FranciscoCaliforniaUS
| | - Kenneth S. Kosik
- Neuroscience Research Institute and Dept of Molecular Cellular and Developmental BiologyUniversity of California SantaBarbaraCaliforniaUSA
| | - Rosa Montesinos
- Unit Cognitive Impairment and Dementia PreventionCognitive Neurology CenterPeruvian Institute of NeurosciencesLimaPerú
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | - Patricia Cristina Lourdes Solis
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hosp, El Cruce “N. Kirchner”, Univ. National A, Jauretche (UNAJ), F. Varela, Prov. Buenos Aires. Fac. MedicineUniv Nacional de Buenos Aires (UBA)Buenos AiresArgentina
| | | | - Jeronimo Martin Ramirez
- Departamen de Admision Continua Adultos Hospital General La Raza Instituto Mexicano del Seguro SocialGlobal Brain Health Institute, Trinity College Dublin, DublinCiudad de MexicoMexico
| | - Diana Matallana
- Medical SchoolAging Institute and Psychiatry DepartmentPontificia Universidad Javeriana. Memory and Cognition Center‐IntellectusHospital Universitario San IgnacioBogotáColombia
| | - Lingani Mbakile‐Mahlanza
- Global Brain Health InstituteUniversity of California San Francisco, University of BotswanaGaboroneBotswana
| | | | | | - Eliane C Miotto
- Department of NeurologyUniversity of Sao PauloSao PauloBrazil
| | | | | | - David Orozco
- Cognitive Neuroscience Development LaboratoryAxis NeurocienciasUniversidad Nacional del Sur, Cognitive Impairment and Behavior Disorders UnitBahía BlancaArgentina
| | - Maira Okada de Oliveira
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | - Olivier Piguet
- School of Psychology and Brain and Mind CentreUniversity of SydneyCamperdownNSWAustralia
| | - Maritza Pintado Caipa
- Global Brain Health Institute, University of California, San Francisco (UCSF)San FranciscoUSA
| | | | - Lucas Porcello Schilling
- Department of NeurologyPontificia Universidade Catolica do Rio Grande do Sul (PUCRS)Porto AlegreBrazil
| | - André Luiz Rodrigues Palmeira
- Santa Casa de Misericórdia de Porto Alegre, Serviço de Neurologia, Porto Alegre, BrazilHospital Ernesto DornellesServiço de Neurologia e NeurocirurgiaPorto AlegreBrazil
| | | | - Jose Manuel Santacruz‐Escudero
- Medical School and Psychiatry DepartmentMemory and Cognition Center‐ IntellectusPontificia Universidad JaverianaHospital Universitario San IgnacioBogotáColombia
| | | | - Jerusa Smid
- Department of NeurologyUniversity of Sao PauloSão PauloBrazil
| | - Andrea Slachevsky
- Neurology DepartmentGeroscience Center for Brain Health and Metabolism, Santiago, Chile, Laboratory of Neuropsychology and Clinical Neuroscience (LANNEC), Physiopathology Program‐ICBM, East Neurologic and Neurosciences Departments, Faculty of MedicineHospital del Salvador and Faculty of Medicine University of Chile. Servicio de NeurologíaDepartamento de MedicinaClínica Alemana—Universidad del DesarrolloUniversity of Chile, Neuropsychiatry and Memory Disorders clinic (CMYN)SantiagoChile
| | | | | | | | - Lea Tenenholz Grinberg
- Departments of NeurologyPathology and Global Brain Health InstituteUCSF ‐ USA, Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Antonio Lucio Teixeira
- Laboratório Interdisciplinar de Investigação MédicaFaculdade de MedicinaAv. Alfredo Balena, 110Universidade Federal de Minas GeraisBelo HorizonteBrazil
| | - Maira Tonidandel Barbosa
- Faculdade de Medicina da Universidade Federal de Minas Gerais e Faculdade deCiências Médicas de Minas GeraisBelo HorizonteBrazil
| | - Dominic Trépel
- Global Brain Health Institute (GBHI)Trinity College DublinDublin
| | - Agustin Ibanez
- Cognitive Neuroscience Center (CNC) Buenos Aires, Argentina; Universidad Autonoma del Caribe, Barranquilla, Colombia; Global Brain Health Institute (GBHI), USUniversidad de San AndresCONICETUniversidad Autonoma del CaribeUniversidad Adolfo IbanezUCSFUSA
| |
Collapse
|
45
|
Wong ML, Arcos-Burgos M, Liu S, Licinio AW, Yu C, Chin EWM, Yao WD, Lu XY, Bornstein SR, Licinio J. Rare Functional Variants Associated with Antidepressant Remission in Mexican-Americans: Short title: Antidepressant remission and pharmacogenetics in Mexican-Americans. J Affect Disord 2021; 279:491-500. [PMID: 33128939 PMCID: PMC7953425 DOI: 10.1016/j.jad.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Rare genetic functional variants can contribute to 30-40% of functional variability in genes relevant to drug action. Therefore, we investigated the role of rare functional variants in antidepressant response. METHOD Mexican-American individuals meeting the Diagnostic and Statistical Manual-IV criteria for major depressive disorder (MDD) participated in a prospective randomized, double-blind study with desipramine or fluoxetine. The rare variant analysis was performed using whole-exome genotyping data. Network and pathway analyses were carried out with the list of significant genes. RESULTS The Kernel-Based Adaptive Cluster method identified functional rare variants in 35 genes significantly associated with treatment remission (False discovery rate, FDR <0.01). Pathway analysis of these genes supports the involvement of the following gene ontology processes: olfactory/sensory transduction, regulation of response to cytokine stimulus, and meiotic cell cycleprocess. LIMITATIONS Our study did not have a placebo arm. We were not able to use antidepressant blood level as a covariate. Our study is based on a small sample size of only 65 Mexican-American individuals. Further studies using larger cohorts are warranted. CONCLUSION Our data identified several rare functional variants in antidepressant drug response in MDD patients. These have the potential to serve as genetic markers for predicting drug response. TRIAL REGISTRATION ClinicalTrials.gov NCT00265291.
Collapse
Affiliation(s)
- Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sha Liu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Alice W Licinio
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Chenglong Yu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Eunice W M Chin
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Hospital, Dresden University of Technology, Dresden, Germany
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| |
Collapse
|
46
|
Munford RS, Weiss JP, Lu M. Biochemical transformation of bacterial lipopolysaccharides by acyloxyacyl hydrolase reduces host injury and promotes recovery. J Biol Chem 2020; 295:17842-17851. [PMID: 33454018 DOI: 10.1074/jbc.rev120.015254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Indexed: 12/26/2022] Open
Abstract
Animals can sense the presence of microbes in their tissues and mobilize their own defenses by recognizing and responding to conserved microbial structures (often called microbe-associated molecular patterns (MAMPs)). Successful host defenses may kill the invaders, yet the host animal may fail to restore homeostasis if the stimulatory microbial structures are not silenced. Although mice have many mechanisms for limiting their responses to lipopolysaccharide (LPS), a major Gram-negative bacterial MAMP, a highly conserved host lipase is required to extinguish LPS sensing in tissues and restore homeostasis. We review recent progress in understanding how this enzyme, acyloxyacyl hydrolase (AOAH), transforms LPS from stimulus to inhibitor, reduces tissue injury and death from infection, prevents prolonged post-infection immunosuppression, and keeps stimulatory LPS from entering the bloodstream. We also discuss how AOAH may increase sensitivity to pulmonary allergens. Better appreciation of how host enzymes modify LPS and other MAMPs may help prevent tissue injury and hasten recovery from infection.
Collapse
Affiliation(s)
- Robert S Munford
- Laboratory of Clinical Immunology and Microbiology, NIAID, National Institutes of Health, Bethesda, Maryland, USA.
| | - Jerrold P Weiss
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
| | - Mingfang Lu
- Department of Immunology and Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
47
|
Brekk OR, Honey JR, Lee S, Hallett PJ, Isacson O. Cell type-specific lipid storage changes in Parkinson's disease patient brains are recapitulated by experimental glycolipid disturbance. Proc Natl Acad Sci U S A 2020; 117:27646-27654. [PMID: 33060302 PMCID: PMC7959493 DOI: 10.1073/pnas.2003021117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neurons are dependent on proper trafficking of lipids to neighboring glia for lipid exchange and disposal of potentially lipotoxic metabolites, producing distinct lipid distribution profiles among various cell types of the central nervous system. Little is known of the cellular distribution of neutral lipids in the substantia nigra (SN) of Parkinson's disease (PD) patients and its relationship to inflammatory signaling. This study aimed to determine human PD SN neutral lipid content and distribution in dopaminergic neurons, astrocytes, and microglia relative to age-matched healthy subject controls. The results show that while total neutral lipid content was unchanged relative to age-matched controls, the levels of whole SN triglycerides were correlated with inflammation-attenuating glycoprotein non-metastatic melanoma protein B (GPNMB) signaling in human PD SN. Histological localization of neutral lipids using a fluorescent probe (BODIPY) revealed that dopaminergic neurons and midbrain microglia significantly accumulated intracellular lipids in PD SN, while adjacent astrocytes had a reduced lipid load overall. This pattern was recapitulated by experimental in vivo inhibition of glucocerebrosidase activity in mice. Agents or therapies that restore lipid homeostasis among neurons, astrocytes, and microglia could potentially correct PD pathogenesis and disease progression.
Collapse
Affiliation(s)
- Oeystein Roed Brekk
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| | - Jonathan R Honey
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Seungil Lee
- Neuroregeneration Institute, McLean Hospital/Harvard Medical School, Belmont, MA 02478
| | - Penelope J Hallett
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| | - Ole Isacson
- Neuroregeneration Institute, McLean Hospital/Departments of Neurology and Psychiatry, Harvard Medical School, Belmont, MA 02478
| |
Collapse
|
48
|
Demirdjian L, Xu Y, Bahrami-Samani E, Pan Y, Stein S, Xie Z, Park E, Wu YN, Xing Y. Detecting Allele-Specific Alternative Splicing from Population-Scale RNA-Seq Data. Am J Hum Genet 2020; 107:461-472. [PMID: 32781045 PMCID: PMC7477012 DOI: 10.1016/j.ajhg.2020.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 07/10/2020] [Indexed: 12/20/2022] Open
Abstract
RNA sequencing (RNA-seq) is a powerful technology for studying human transcriptome variation. We introduce PAIRADISE (Paired Replicate Analysis of Allelic Differential Splicing Events), a method for detecting allele-specific alternative splicing (ASAS) from RNA-seq data. Unlike conventional approaches that detect ASAS events one sample at a time, PAIRADISE aggregates ASAS signals across multiple individuals in a population. By treating the two alleles of an individual as paired, and multiple individuals sharing a heterozygous SNP as replicates, we formulate ASAS detection using PAIRADISE as a statistical problem for identifying differential alternative splicing from RNA-seq data with paired replicates. PAIRADISE outperforms alternative statistical models in simulation studies. Applying PAIRADISE to replicate RNA-seq data of a single individual and to population-scale RNA-seq data across many individuals, we detect ASAS events associated with genome-wide association study (GWAS) signals of complex traits or diseases. Additionally, PAIRADISE ASAS analysis detects the effects of rare variants on alternative splicing. PAIRADISE provides a useful computational tool for elucidating the genetic variation and phenotypic association of alternative splicing in populations.
Collapse
|
49
|
Abstract
Alzheimer’s disease (AD) and frontotemporal dementia (FTD) are neurodegenerative
disorders that result in a significant burden to both patients and caregivers.
By 2050, the number of people with dementia in Latin America will increase
4-fold. A deep understanding of the relevant genetic factors of AD and FTD is
fundamental to tackle this reality through prevention. A review of different
genetic variants that cause AD or FTD in Latin America was conducted. We
searched Medline and PubMed databases using the keywords “Alzheimer’s disease,”
“frontotemporal dementia,” “mutation,” “America,” and “Latin America,” besides
specific Latin American countries. Forty-five items were chosen and analyzed.
PSEN1 mutations are the commonest cause of genetic
early-onset Alzheimer’s disease (EOAD), followed by PSEN2 and
APP mutations. Genetic FTD can be mainly explained by
GRN and MAPT mutations, as well as
C9orf72 G4C2 repeat expansion. APOE ε4 can
modify the prevalence and incidence of late-onset Alzheimer’s disease (LOAD), in
addition to the cognitive performance in affected carriers.
Collapse
Affiliation(s)
- Claudia Ramos
- Neurosciences Group of Antioquia, School of Medicine, Universidad de Antioquia - Medellín, Colombia
| | - David Aguillon
- Neurosciences Group of Antioquia, School of Medicine, Universidad de Antioquia - Medellín, Colombia
| | - Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco - San Francisco, CA, United States
| | - Francisco Lopera
- Neurosciences Group of Antioquia, School of Medicine, Universidad de Antioquia - Medellín, Colombia
| |
Collapse
|
50
|
Henson RL, Doran E, Christian BT, Handen BL, Klunk WE, Lai F, Lee JH, Rosas HD, Schupf N, Zaman SH, Lott IT, Fagan AM. Cerebrospinal fluid biomarkers of Alzheimer's disease in a cohort of adults with Down syndrome. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2020; 12:e12057. [PMID: 32671183 PMCID: PMC7346867 DOI: 10.1002/dad2.12057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/29/2020] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Virtually all individuals with Down syndrome (DS) will develop Alzheimer's disease (AD) pathology by age 40. Cerebrospinal fluid (CSF) biomarkers have characterized AD pathology in cohorts of late-onset AD (LOAD) and autosomal-dominant AD (ADAD). Few studies have evaluated such biomarkers in adults with DS. METHODS CSF concentrations of amyloid beta (Aβ)40, Aβ42, tau, phospho-tau181 (p-tau), neurofilament light chain (NfL), soluble triggering receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 (YKL-40), alpha synuclein (αSyn), neurogranin (Ng), synaptosomal-associated protein 25 (SNAP-25), and visinin-like protein 1 (VILIP-1) were assessed in CSF from 44 adults with DS from the Alzheimer's Biomarker Consortium-Down Syndrome study. Biomarker levels were evaluated by cognitive status, age, and apolipoprotein E gene (APOE) ε4 carrier status. RESULTS Biomarker abnormalities indicative of amyloid deposition, tauopathy, neurodegeneration, synaptic dysfunction, and neuroinflammation were associated with increased cognitive impairment. Age and APOE ε4 status influenced some biomarkers. DISCUSSION The profile of many established and emerging CSF biomarkers of AD in a cohort of adults with DS was similar to that reported in LOAD and ADAD, while some differences were observed.
Collapse
Affiliation(s)
- Rachel L. Henson
- Department of NeurologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Charles F. and Joanne Knight Alzheimer Disease Research CenterSt. LouisMissouriUSA
| | - Eric Doran
- Department of PediatricsUniversity of California‐Irvine School of MedicineIrvineCaliforniaUSA
| | - Bradley T. Christian
- Departments of Medical Physics and PsychiatryWaisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Benjamin L. Handen
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - William E. Klunk
- Department of PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Florence Lai
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Joseph H. Lee
- Gertrude H. Sergievsky CenterTaub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Departments of Epidemiology and NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - H. Diana Rosas
- Department of NeurologyMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Nicole Schupf
- Gertrude H. Sergievsky CenterTaub Institute for Research in Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
- Departments of Epidemiology and NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
- Department of PsychiatryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | | | - Ira T. Lott
- Department of PediatricsUniversity of California‐Irvine School of MedicineIrvineCaliforniaUSA
| | - Anne M. Fagan
- Department of NeurologyWashington University in St. Louis School of MedicineSt. LouisMissouriUSA
- Charles F. and Joanne Knight Alzheimer Disease Research CenterSt. LouisMissouriUSA
| |
Collapse
|