1
|
Manta A, Georganta A, Roumpou A, Zoumpourlis V, Spandidos DA, Rizos E, Peppa M. Metabolic syndrome in patients with schizophrenia: Underlying mechanisms and therapeutic approaches (Review). Mol Med Rep 2025; 31:114. [PMID: 40017113 PMCID: PMC11894597 DOI: 10.3892/mmr.2025.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
Schizophrenia (SCZ) represents a considerable health concern, not only due to its impact on cognitive and psychiatric domains, but also because of its association with metabolic abnormalities. Individuals with SCZ face an increased risk of developing metabolic syndrome (MS), which contributes to the increased cardiovascular burden and reduced life expectancy observed in this population. Metabolic alterations are associated with both the SCZ condition itself and extrinsic factors, particularly the use of antipsychotic medications. Additionally, the link between SCZ and MS seems to be guided by distinct genetic parameters. The present narrative review summarizes the relationship between SCZ and MS and emphasizes the various therapeutic approaches for managing its components in patients with these conditions. Recommended therapeutic approaches include lifestyle modifications as the primary strategy, with a focus on behavioral lifestyle programs, addressing dietary patterns and physical activity. Pharmacological interventions include administering common antidiabetic medications and the selection of less metabolically harmful antipsychotics. Alternative interventions with limited clinical application are also discussed. Ultimately, a personalized therapeutic approach encompassing both the psychological and metabolic aspects is essential for the effective management of MS in patients with SCZ.
Collapse
Affiliation(s)
- Aspasia Manta
- Endocrine Unit, Second Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anastasia Georganta
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Afroditi Roumpou
- Endocrine Unit, Second Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation (NHRF), 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12641 Athens, Greece
| | - Melpomeni Peppa
- Endocrine Unit, Second Propaedeutic Department of Internal Medicine, Research Institute and Diabetes Center, Attikon University Hospital, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
- Third Department of Internal Medicine, Sotiria General Hospital for Chest Diseases, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
2
|
Dang X, Teng Z, Yang Y, Li W, Liu J, Hui L, Zhou D, Gong D, Dai SS, Li Y, Li X, Lv L, Zeng Y, Yuan Y, Ma X, Liu Z, Li T, Luo XJ. Gene-level analysis reveals the genetic aetiology and therapeutic targets of schizophrenia. Nat Hum Behav 2025; 9:609-624. [PMID: 39753749 DOI: 10.1038/s41562-024-02091-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/18/2024] [Indexed: 03/27/2025]
Abstract
Genome-wide association studies (GWASs) have reported multiple risk loci for schizophrenia (SCZ). However, the majority of the associations were from populations of European ancestry. Here we conducted a large-scale GWAS in Eastern Asian populations (29,519 cases and 44,392 controls) and identified ten Eastern Asian-specific risk loci, two of which have not been previously reported. A further cross-ancestry GWAS meta-analysis (96,806 cases and 492,818 controls) including populations from diverse ancestries identified 61 previously unreported risk loci. Systematic variant-level analysis, including fine mapping, functional genomics and expression quantitative trait loci, prioritized potential causal variants. Gene-level analyses, including transcriptome-wide association study, proteome-wide association study and Mendelian randomization, nominated the potential causal genes. By integrating evidence from layers of different analyses, we prioritized the most plausible causal genes for SCZ, such as ACE, CNNM2, SNAP91, ABCB9 and GATAD2A. Finally, drug repurposing showed that ACE, CA14, MAPK3 and MAPT are potential therapeutic targets for SCZ. Our study not only showed the power of cross-ancestry GWAS in deciphering the genetic aetiology of SCZ, but also uncovered new genetic risk loci, potential causal variants and genes and therapeutic targets for SCZ.
Collapse
Affiliation(s)
- Xinglun Dang
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Zhaowei Teng
- The Second Affiliated Hospital of Kunming Medical University, Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, Kunming, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorders, Xinxiang Medical University, Xinxiang, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorders, Xinxiang Medical University, Xinxiang, China
| | - Jiewei Liu
- Department of Psychiatry, Wuhan Mental Health Center, Wuhan, China
| | - Li Hui
- Research Center of Biological Psychiatry, Suzhou Guangji Hospital, Suzhou Medical College of Soochow University, Suzhou, China
| | - Dongsheng Zhou
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo, China
| | - Daohua Gong
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Shan-Shan Dai
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Yifan Li
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xingxing Li
- Department of Psychiatry, Affiliated Kangning Hospital of Ningbo University (Ningbo Kangning Hospital), Ningbo, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorders, Xinxiang Medical University, Xinxiang, China
| | - Yong Zeng
- The Second Affiliated Hospital of Kunming Medical University, Key Laboratory of Neurological and Psychiatric Disease Research of Yunnan Province, Kunming, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Tao Li
- Affiliated Mental Health Center and Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Xiong-Jian Luo
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Jiangsu Provincial Key Laboratory of Brain Science and Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, China.
| |
Collapse
|
3
|
Li L, Wu D, Zhang C, Lai X, Zhang R, Hu S, Ye Y. A cross-tissue transcriptome-wide association study identifies new susceptibility genes for insomnia. J Neurophysiol 2025; 133:572-581. [PMID: 39745514 DOI: 10.1152/jn.00490.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/26/2025] Open
Abstract
Despite a significant genetic component to insomnia (heritability: 22%-25%), the genetic loci that modulate insomnia risk remain limited. We used the Unified Test for Molecular Markers (UTMOST) for transcriptome-wide association studies (TWAS) across various tissues, integrating summary statistics from a Genome-Wide Association Study (GWAS) of 462,341 European participants with gene expression data from the Genotype-Tissue Expression (GTEx) project. Three validation methods (FUSION, FOCUS, and MAGMA) were used to confirm important genes. Tissue and functional enrichment analyses of insomnia-related single-nucleotide polymorphisms (SNPs) were conducted with MAGMA. Conditional and joint analyses, along with fine mapping, were used to enhance our understanding of insomnia's genetic architecture. Mendelian randomization was used to assess causal associations between significant genes and insomnia. Two novel susceptibility genes, VRK2 and MMRN1, were identified as linked to insomnia risk using four TWAS approaches. Mendelian randomization analysis suggests VRK2 increases the risk of insomnia. Tissue enrichment analyses indicated that insomnia-related SNPs were enriched in specific brain regions, including the cerebellum, frontal cortex (BA9), hypothalamus, and hippocampus. Conditional and joint analyses identified two genomic regions (2p16.1 and 4q22.1). Functional enrichment analyses showed that pathways related to insomnia involve the SMAD2/3 pathway, synaptic function, and oxidative stress. This study identifies two new candidate genes, VRK2 and MMRN1, that may contribute to insomnia risk through neurodevelopment, neuroinflammation, and synaptic function, suggesting potential therapeutic targets.NEW & NOTEWORTHY This study identifies VRK2 and MMRN1 as novel susceptibility genes for insomnia through transcriptome-wide association studies (TWAS). Mendelian randomization confirms a causal link between VRK2 and insomnia. Key brain regions, including the cerebellum and frontal cortex, and critical pathways like SMAD2/3 signaling and oxidative stress are implicated. These findings provide new insights into the genetic basis of insomnia.
Collapse
Affiliation(s)
- Li Li
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Dongjin Wu
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Cuiping Zhang
- Department of Anesthesia Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Xiaokun Lai
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
- Department of Anesthesiology, the Hospital of Traditional Chinese Medicine of Dehua, Quanzhou, People's Republic of China
| | - Ruolan Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Shuhui Hu
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| | - Yifeng Ye
- Department of Anesthesiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
4
|
Huang CC, Wang YG, Hsu CL, Yeh TC, Chang WC, Singh AB, Yeh CB, Hung YJ, Hung KS, Chang HA. Identification of Schizophrenia Susceptibility Loci in the Urban Taiwanese Population. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1271. [PMID: 39202552 PMCID: PMC11356138 DOI: 10.3390/medicina60081271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Genomic studies have identified several SNP loci associated with schizophrenia in East Asian populations. Environmental factors, particularly urbanization, play a significant role in schizophrenia development. This study aimed to identify schizophrenia susceptibility loci and characterize their biological functions and molecular pathways in Taiwanese urban Han individuals. Materials and Methods: Participants with schizophrenia were recruited from the Taiwan Precision Medicine Initiative at Tri-Service General Hospital. Genotype-phenotype association analysis was performed, with significant variants annotated and analyzed for functional relevance. Results: A total of 137 schizophrenia patients and 26,129 controls were enrolled. Ten significant variants (p < 1 × 10-5) and 15 expressed genes were identified, including rs1010840 (SOWAHC and RGPD6), rs11083963 (TRPM4), rs11619878 (LINC00355 and LINC01052), rs117010638 (AGBL1 and MIR548AP), rs1170702 (LINC01680 and LINC01720), rs12028521 (KAZN and PRDM2), rs12859097 (DMD), rs1556812 (ATP11A), rs78144262 (LINC00977), and rs9997349 (ENPEP). These variants and associated genes are involved in immune response, blood pressure regulation, muscle function, and the cytoskeleton. Conclusions: Identified variants and associated genes suggest a potential genetic predisposition to schizophrenia in the Taiwanese urban Han population, highlighting the importance of potential comorbidities, considering population-specific genetic and environmental interactions.
Collapse
Affiliation(s)
- Chih-Chung Huang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.H.); (Y.-G.W.); (T.-C.Y.); (C.-B.Y.)
| | - Yi-Guang Wang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.H.); (Y.-G.W.); (T.-C.Y.); (C.-B.Y.)
| | - Chun-Lun Hsu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan;
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.H.); (Y.-G.W.); (T.-C.Y.); (C.-B.Y.)
| | - Wei-Chou Chang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Ajeet B. Singh
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, VIC 3220, Australia;
| | - Chin-Bin Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.H.); (Y.-G.W.); (T.-C.Y.); (C.-B.Y.)
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei 114, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (C.-C.H.); (Y.-G.W.); (T.-C.Y.); (C.-B.Y.)
| |
Collapse
|
5
|
Tesfaye M, Spindola LM, Stavrum AK, Shadrin A, Melle I, Andreassen OA, Le Hellard S. Sex effects on DNA methylation affect discovery in epigenome-wide association study of schizophrenia. Mol Psychiatry 2024; 29:2467-2477. [PMID: 38503926 PMCID: PMC11412896 DOI: 10.1038/s41380-024-02513-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Sex differences in the epidemiology and clinical characteristics of schizophrenia are well-known; however, the molecular mechanisms underlying these differences remain unclear. Further, the potential advantages of sex-stratified meta-analyses of epigenome-wide association studies (EWAS) of schizophrenia have not been investigated. Here, we performed sex-stratified EWAS meta-analyses to investigate whether sex stratification improves discovery, and to identify differentially methylated regions (DMRs) in schizophrenia. Peripheral blood-derived DNA methylation data from 1519 cases of schizophrenia (male n = 989, female n = 530) and 1723 controls (male n = 997, female n = 726) from three publicly available datasets, and the TOP cohort were meta-analyzed to compare sex-specific, sex-stratified, and sex-adjusted EWAS. The predictive power of each model was assessed by polymethylation score (PMS). The number of schizophrenia-associated differentially methylated positions identified was higher for the sex-stratified model than for the sex-adjusted one. We identified 20 schizophrenia-associated DMRs in the sex-stratified analysis. PMS from sex-stratified analysis outperformed that from sex-adjusted analysis in predicting schizophrenia. Notably, PMSs from the sex-stratified and female-only analyses, but not those from sex-adjusted or the male-only analyses, significantly predicted schizophrenia in males. The findings suggest that sex-stratified EWAS meta-analyses improve the identification of schizophrenia-associated epigenetic changes and highlight an interaction between sex and schizophrenia status on DNA methylation. Sex-specific DNA methylation may have potential implications for precision psychiatry and the development of stratified treatments for schizophrenia.
Collapse
Affiliation(s)
- Markos Tesfaye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Leticia M Spindola
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Anne-Kristin Stavrum
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Alexey Shadrin
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Stephanie Le Hellard
- NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway.
- Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
6
|
Wang F, Huang ZH, Ye Y, He XY, Wang SB, Jia FJ, Hou CL. Genome-wide association exploratory studies in individuals with ultra-high risk for schizophrenia in Chinese Han nationality in two years follow-up: A subpopulation study. Asian J Psychiatr 2024; 97:104071. [PMID: 38810489 DOI: 10.1016/j.ajp.2024.104071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/27/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Although ultra-high risk for schizophrenia (UHR) is related to both genetic and environment factors, the precise pathogenesis is still unknow. To date, few studies have explored the Genome-Wide Association Studies (GWAS) in UHR or HR individuals especially in Han population in China. METHODS In this study, a GWAS analysis for 36 participants with UHR and 43 with HR were performed, and all deletion variations in 22q11 region were also compared. RESULTS Sixteen individuals with UHR (44.4%) and none with HR converted into schizophrenia in follow-up after two years. Six loci including neurexin-1(NRXN1) (rs1045881), dopamine D1 receptor (DRD1) (rs686, rs4532), chitinase-3-like protein 1 (CHI3L1) (rs4950928), velocardiofacial syndrome (ARVCF) (rs165815), dopamine D2 receptor (DRD2) (rs1076560) were identified higher expression with significant difference in individuals converted into schizophrenia after two years. The Family with Sequence Similarity 230 Member H (FAM230H) gene in the 22q11 region were also found high expression in UHR group. CONCLUSIONS Further expansion of sample size and validation studies are needed to explore the pathogenesis of these risk loci in UHR conversion into schizophrenia in the future.
Collapse
Affiliation(s)
- Fei Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhuo-Hui Huang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Ye Ye
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Xiao-Yan He
- Wuxi Mental Health Center, Jiangsu Province 214151, China
| | - Shi-Bin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Fu-Jun Jia
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Cai-Lan Hou
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
7
|
Lawn T, Giacomel A, Martins D, Veronese M, Howard M, Turkheimer FE, Dipasquale O. Normative modelling of molecular-based functional circuits captures clinical heterogeneity transdiagnostically in psychiatric patients. Commun Biol 2024; 7:689. [PMID: 38839931 PMCID: PMC11153627 DOI: 10.1038/s42003-024-06391-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/27/2024] [Indexed: 06/07/2024] Open
Abstract
Advanced methods such as REACT have allowed the integration of fMRI with the brain's receptor landscape, providing novel insights transcending the multiscale organisation of the brain. Similarly, normative modelling has allowed translational neuroscience to move beyond group-average differences and characterise deviations from health at an individual level. Here, we bring these methods together for the first time. We used REACT to create functional networks enriched with the main modulatory, inhibitory, and excitatory neurotransmitter systems and generated normative models of these networks to capture functional connectivity deviations in patients with schizophrenia, bipolar disorder (BPD), and ADHD. Substantial overlap was seen in symptomatology and deviations from normality across groups, but these could be mapped into a common space linking constellations of symptoms through to underlying neurobiology transdiagnostically. This work provides impetus for developing novel biomarkers that characterise molecular- and systems-level dysfunction at the individual level, facilitating the transition towards mechanistically targeted treatments.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Alessio Giacomel
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Division of Adult Psychiatry, Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Information Engineering, University of Padua, Padua, Italy
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- Department of Research & Development Advanced Applications, Olea Medical, La Ciotat, France.
| |
Collapse
|
8
|
Chen S, Tang D, Deng L, Xu S. Asian-European differentiation of schizophrenia-associated genes driven by admixture and natural selection. iScience 2024; 27:109560. [PMID: 38638564 PMCID: PMC11024917 DOI: 10.1016/j.isci.2024.109560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/29/2023] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
The European-centered genome-wide association studies of schizophrenia (SCZ) may not be well applied to non-European populations. We analyzed 1,592 reported SCZ-associated genes using the public genome data and found an overall higher Asian-European differentiation on the SCZ-associated variants than at the genome-wide level. Notable examples included 15 missense variants, a regulatory variant SLC5A10-rs1624825, and a damaging variant TSPAN18-rs1001292. Independent local adaptations in recent 25,000 years, after the Asian-European divergence, could have contributed to such genetic differentiation, as were identified at a missense mutation LTN1-rs57646126-A in Asians, and a non-risk allele ZSWIM6-rs72761442-G in Europeans. Altai-Neanderthal-derived alleles may have opposite effects on SCZ susceptibility between ancestries. Furthermore, adaptive introgression was detected on the non-risk haplotype at 1q21.2 in Europeans, while in Asians it was observed on the SCZ risk haplotype at 3p21.31 which is also potentially ultra-violet protective. This study emphasizes the importance of including more representative Asian samples in future SCZ studies.
Collapse
Affiliation(s)
- Sihan Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Die Tang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lian Deng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Center for Evolutionary Biology, School of Life Sciences, Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Nibuya M, Kezuka D, Kanno Y, Wakamatsu S, Suzuki E. Behavioral stress and antidepressant treatments altered hippocampal expression of Nogo signal-related proteins in rats. J Psychiatr Res 2024; 170:207-216. [PMID: 38157668 DOI: 10.1016/j.jpsychires.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
Some immune molecules including neurite outgrowth inhibitor (Nogo) ligands and their receptor(Nogo receptor-1: NgR1)are expressed at the neuronal synaptic sites. Paired immunoglobulin-like receptor B (PirB) is another Nogo receptor that also binds to major histocompatibility complex I and β-amyloid and suppresses dendritic immune cell functions and neuronal plasticity in the central nervous system. Augmenting structural and functional neural plasticity by manipulating the Nogo signaling pathway is a novel promising strategy for treating brain ischemia and degenerative processes such as Alzheimer's disease. In recent decades psychiatric research using experimental animals has focused on the attenuation of neural plasticity by stress loadings and on the enhanced resilience by psychopharmacological treatments. In the present study, we examined possible expressional alterations in Nogo signal-related proteins in the rat hippocampus after behavioral stress loadings and antidepressant treatments. To validate the effectiveness of the procedures, previously reported increase in brain-derived neurotrophic factor (BDNF) by ECS or ketamine administration and decrease of BDNF by stress loadings are also shown in the present study. Significant increases in hippocampal NgR1 and PirB expression were observed following chronic variable stress, and a significant increase in NgR1 expression was observed under a single prolonged stress paradigm. These results indicate a possible contribution of enhanced Nogo signaling to the attenuation of neural plasticity in response to stressful experiences. Additionally, the suppression of hippocampal NgR1 expression using electroconvulsive seizure treatment and administration of subanesthetic dose of ketamine supported the increased neural plasticity induced by the antidepressant treatments.
Collapse
Affiliation(s)
- Masashi Nibuya
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan.
| | - Dai Kezuka
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Yoshihiko Kanno
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Shunosuke Wakamatsu
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| | - Eiji Suzuki
- Division of Psychiatry, Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino, Sendai City, Miyagi, 983-8536, Japan
| |
Collapse
|
10
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Yin MY, Guo L, Zhao LJ, Zhang C, Liu WP, Zhang CY, Huo JH, Wang L, Li SW, Zheng CB, Xiao X, Li M, Wang C, Chang H. Reduced Vrk2 expression is associated with higher risk of depression in humans and mediates depressive-like behaviors in mice. BMC Med 2023; 21:256. [PMID: 37452335 PMCID: PMC10349461 DOI: 10.1186/s12916-023-02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have reported single-nucleotide polymorphisms (SNPs) in the VRK serine/threonine kinase 2 gene (VRK2) showing genome-wide significant associations with major depression, but the regulation effect of the risk SNPs on VRK2 as well as their roles in the illness are yet to be elucidated. METHODS Based on the summary statistics of major depression GWAS, we conducted population genetic analyses, epigenome bioinformatics analyses, dual luciferase reporter assays, and expression quantitative trait loci (eQTL) analyses to identify the functional SNPs regulating VRK2; we also carried out behavioral assessments, dendritic spine morphological analyses, and phosphorylated 4D-label-free quantitative proteomics analyses in mice with Vrk2 repression. RESULTS We identified a SNP rs2678907 located in the 5' upstream of VRK2 gene exhibiting large spatial overlap with enhancer regulatory marks in human neural cells and brain tissues. Using luciferase reporter gene assays and eQTL analyses, the depression risk allele of rs2678907 decreased enhancer activities and predicted lower VRK2 mRNA expression, which is consistent with the observations of reduced VRK2 level in the patients with major depression compared with controls. Notably, Vrk2-/- mice exhibited depressive-like behaviors compared to Vrk2+/+ mice and specifically repressing Vrk2 in the ventral hippocampus using adeno-associated virus (AAV) lead to consistent and even stronger depressive-like behaviors in mice. Compared with Vrk2+/+ mice, the density of mushroom and thin spines in the ventral hippocampus was significantly altered in Vrk2-/- mice, which is in line with the phosphoproteomic analyses showing dysregulated synapse-associated proteins and pathways in Vrk2-/- mice. CONCLUSIONS Vrk2 deficiency mice showed behavioral abnormalities that mimic human depressive phenotypes, which may serve as a useful murine model for studying the pathophysiology of depression.
Collapse
Affiliation(s)
- Mei-Yu Yin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lei Guo
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, China
| | - Li-Juan Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen Zhang
- Clinical Research Center & Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China.
| | - Wei-Peng Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jin-Hua Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Shi-Wu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China.
| | - Chuang Wang
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, China.
| | - Hong Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China.
| |
Collapse
|
12
|
Dang X, Song M, Lv L, Yang Y, Luo XJ. Proteome-wide Mendelian randomization reveals the causal effects of immune-related plasma proteins on psychiatric disorders. Hum Genet 2023; 142:809-818. [PMID: 37085628 DOI: 10.1007/s00439-023-02562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/17/2023] [Indexed: 04/23/2023]
Abstract
Immune dysregulation has been consistently reported in psychiatric disorders, however, the causes and mechanisms underlying immune dysregulation in psychiatric disorders remain largely unclear. Here we conduct a Mendelian randomization study by integrating plasma proteome and GWASs of schizophrenia, bipolar disorder and depression. The primate-specific immune-related protein BTN3A3 showed the most significant associations with all three psychiatric disorders. In addition, other immune-related proteins, including AIF1, FOXO3, IRF3, CFHR4, IGLON5, FKBP2, and PI3, also showed significant associations with psychiatric disorders. Our study showed that a proportion of psychiatric risk variants may contribute to disease risk by regulating immune-related plasma proteins, providing direct evidence that connect the genetic risk of psychiatric disorders to immune system.
Collapse
Affiliation(s)
- Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, 453002, Henan, China.
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, 453002, Henan, China.
| | - Xiong-Jian Luo
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
13
|
Dang X, Liu J, Zhang Z, Luo XJ. Mendelian Randomization Study Using Dopaminergic Neuron-Specific eQTL Identifies Novel Risk Genes for Schizophrenia. Mol Neurobiol 2023; 60:1537-1546. [PMID: 36517655 DOI: 10.1007/s12035-022-03160-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Multiple integrative studies have been performed to identify the potential target genes of the non-coding schizophrenia (SCZ) risk variants. However, all the integrative studies used expression quantitative trait loci (eQTL) data from bulk tissues. Considering the cell type-specific regulatory effect of many genetic variants, it is important to conduct integrative studies using cell type-specific eQTL data. Here, we conduct a Mendelian randomization (MR) study by integrating genome-wide associations of SCZ (74,776 cases and 101,023 controls) and eQTL data (N = 215) from dopaminergic neurons, which were differentiated from human-induced pluripotent stem cell (iPSC) lines. For eQTL from young post-mitotic dopaminergic neurons (differentiation of iPSC for 30 days, D30), we identified 34 genes whose genetically regulated expression in dopaminergic neurons may have a causal role in SCZ. Among which, ARL3 showed the most significant associations with SCZ. For eQTL from more mature dopaminergic neurons (D52), we identified 37 potential SCZ causal genes, and ARL3 and GNL3 showed the most significant associations. Only 12 genes showed significant associations with SCZ in both D30 and D52 eQTL datasets, indicating the time point-specific genetic regulatory effects in young post-mitotic dopaminergic neurons and more mature dopaminergic neurons. Comparing the results from dopaminergic neurons with bulk brain tissues prioritized 2 high-confidence risk genes, including DDHD2 and GALNT10. Our study identifies multiple risk genes whose genetically regulated expression in dopaminergic neurons may have a causal role in SCZ. Further mechanistic investigation will provide pivotal insights into SCZ pathophysiology.
Collapse
Affiliation(s)
- Xinglun Dang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhijun Zhang
- Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Xiong-Jian Luo
- Zhongda Hospital, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
- Department of Neurology, School of Medicine, Affiliated Zhongda Hospital, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, Jiangsu Province, China.
| |
Collapse
|
14
|
Soheili-Nezhad S, Sprooten E, Tendolkar I, Medici M. Exploring the Genetic Link Between Thyroid Dysfunction and Common Psychiatric Disorders: A Specific Hormonal or a General Autoimmune Comorbidity. Thyroid 2023; 33:159-168. [PMID: 36463425 PMCID: PMC10133968 DOI: 10.1089/thy.2022.0304] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Background: The hypothalamus-pituitary-thyroid axis coordinates brain development and postdevelopmental function. Thyroid hormone (TH) variations, even within the normal range, have been associated with the risk of developing common psychiatric disorders, although the underlying mechanisms remain poorly understood. Methods: To get new insight into the potentially shared mechanisms underlying thyroid dysfunction and psychiatric disorders, we performed a comprehensive analysis of multiple phenotypic and genotypic databases. We investigated the relationship of thyroid disorders with depression, bipolar disorder (BIP), and anxiety disorders (ANXs) in 497,726 subjects from U.K. Biobank. We subsequently investigated genetic correlations between thyroid disorders, thyrotropin (TSH), and free thyroxine (fT4) levels, with the genome-wide factors that predispose to psychiatric disorders. Finally, the observed global genetic correlations were furthermore pinpointed to specific local genomic regions. Results: Hypothyroidism was positively associated with an increased risk of major depressive disorder (MDD; OR = 1.31, p = 5.29 × 10-89), BIP (OR = 1.55, p = 0.0038), and ANX (OR = 1.16, p = 6.22 × 10-8). Hyperthyroidism was associated with MDD (OR = 1.11, p = 0.0034) and ANX (OR = 1.34, p = 5.99 × 10-⁶). Genetically, strong coheritability was observed between thyroid disease and both major depressive (rg = 0.17, p = 2.7 × 10-⁴) and ANXs (rg = 0.17, p = 6.7 × 10-⁶). This genetic correlation was particularly strong at the major histocompatibility complex locus on chromosome 6 (p < 10-⁵), but further analysis showed that other parts of the genome also contributed to this global effect. Importantly, neither TSH nor fT4 levels were genetically correlated with mood disorders. Conclusions: Our findings highlight an underlying association between autoimmune hypothyroidism and mood disorders, which is not mediated through THs and in which autoimmunity plays a prominent role. While these findings could shed new light on the potential ineffectiveness of treating (minor) variations in thyroid function in psychiatric disorders, further research is needed to identify the exact underlying molecular mechanisms.
Collapse
Affiliation(s)
- Sourena Soheili-Nezhad
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Emma Sprooten
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Indira Tendolkar
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marco Medici
- Department of Internal Medicine, Academic Center for Thyroid Diseases, Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, the Netherlands
- Division of Endocrinology, Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| |
Collapse
|
15
|
Gene Expression and Epigenetic Regulation in the Prefrontal Cortex of Schizophrenia. Genes (Basel) 2023; 14:genes14020243. [PMID: 36833173 PMCID: PMC9957055 DOI: 10.3390/genes14020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Schizophrenia pathogenesis remains challenging to define; however, there is strong evidence that the interaction of genetic and environmental factors causes the disorder. This paper focuses on transcriptional abnormalities in the prefrontal cortex (PFC), a key anatomical structure that determines functional outcomes in schizophrenia. This review summarises genetic and epigenetic data from human studies to understand the etiological and clinical heterogeneity of schizophrenia. Gene expression studies using microarray and sequencing technologies reported the aberrant transcription of numerous genes in the PFC in patients with schizophrenia. Altered gene expression in schizophrenia is related to several biological pathways and networks (synaptic function, neurotransmission, signalling, myelination, immune/inflammatory mechanisms, energy production and response to oxidative stress). Studies investigating mechanisms driving these transcriptional abnormalities focused on alternations in transcription factors, gene promoter elements, DNA methylation, posttranslational histone modifications or posttranscriptional regulation of gene expression mediated by non-coding RNAs.
Collapse
|
16
|
Liu D, Wu L, Wei H, Zhu C, Tian R, Zhu W, Xu Q. The SFT2D2 gene is associated with the autoimmune pathology of schizophrenia in a Chinese population. Front Neurol 2022; 13:1037777. [PMID: 36619926 PMCID: PMC9810986 DOI: 10.3389/fneur.2022.1037777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022] Open
Abstract
Background The relative risk of GWAS-confirmed loci strongly associated with schizophrenia may be underestimated due to the decay of linkage disequilibrium between index SNPs and causal variants. This study is aimed to investigate schizophrenia-associated signals detected in the 1q24-25 region in order to identify a causal variant in LD with GWAS index SNPs, and the potential biological functions of the risk gene. Methods Re-genotyping analysis was performed in the 1q24-25 region that harbors three GWAS index SNPs associated with schizophrenia (rs10489202, rs11586522, and rs6670165) in total of 9801 case-control subjects of Chinese Han origin. Circulating autoantibody levels were assessed using an in-house ELISA against a protein derived fragment encoded by SFT2D2 in total of 682 plasma samples. Results A rare variant (rs532193193) in the SFT2D2 locus was identified to be strongly associated with schizophrenia. Compared with control subjects, patients with schizophrenia showed increased anti-SFT2D2 IgG levels. Receiver operating characteristic (ROC) analysis revealed an area under the ROC curve (AUC) of 0.803 with sensitivity of 28.57% against specificity of 95% for the anti-SFT2D2 IgG assay. Discussion Our findings indicate that SFT2D2 is a novel gene for risk of schizophrenia, while endogenous anti-SFT2D2 IgG may underlie the pathophysiology of the immunological aspects of schizophrenia.
Collapse
Affiliation(s)
- Duilin Liu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Wu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Laboratory of Molecular Diagnostics, Beijing Boren Hospital, Beijing, China
| | - Hui Wei
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Caiyun Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Runhui Tian
- Mental Health Center, The First Bethune Hospital of Jilin University, Changchun, China
| | - Wanwan Zhu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Xu
- State Key Laboratory of Medical Molecular Biology, School of Basic Medicine Peking Union Medical College, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Beijing, China,Neuroscience Center, Chinese Academy of Medical Sciences, Beijing, China,*Correspondence: Qi Xu
| |
Collapse
|
17
|
Lv H, Li J, Gao K, Zeng L, Xue R, Liu X, Zhou C, Yue W, Yu H. Identification of genetic loci that overlap between schizophrenia and metabolic syndrome. Psychiatry Res 2022; 318:114947. [PMID: 36399892 DOI: 10.1016/j.psychres.2022.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Patients with schizophrenia (SCZ) frequently exhibit an elevated risk of metabolic syndrome (MetS), which may lead to a worse clinical outcome. Even though these two phenotypes are genetically linked, little is known about their shared genetic determinants. Here, we investigated whether SCZ and MetS share genetic risk factors. To examine the genetic overlap between the two disorders, we applied a comprehensive genetic overlap analysis by integrating GWAS data for SCZ (n = 320,404) and MetS (n = 291,107) at the genome, genetic variants, and gene levels. At the genome level, we observed polygenic overlap between SCZ and MetS by utilizing LDSC (rg=-0.09, P = 1 × 10-4) and GNOVA (rho=-0.04, P = 1.39 × 10-8) analysis. At the SNP level, we performed conjunctional FDR (conjFDR) analysis to identify genetic variants simultaneously associated with two phenotypes. Based on conjFDR < 0.05, we identified 22 loci shared between SCZ and MetS. At the gene level, we further demonstrated that SCZ- and MetS-inferred gene expression overlapped across 49 GTEx tissues and highlighted the PCCB and KCTD13 genes as putative mediators of the genetic association. Overall, these findings shed novel light on the association between SCZ and MetS, and potentially enhance our knowledge of the high comorbidity and genetic processes that overlap between the two disorders.
Collapse
Affiliation(s)
- Honggang Lv
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Juan Li
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Kai Gao
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China
| | - Lingsi Zeng
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Ranran Xue
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Xia Liu
- Department of Psychiatry, Shandong Daizhuang Hospital, Jining, Shandong 272051, China
| | - Cong Zhou
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China
| | - Weihua Yue
- National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China; PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| | - Hao Yu
- Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China.
| |
Collapse
|
18
|
Howes OD, Shatalina E. Integrating the Neurodevelopmental and Dopamine Hypotheses of Schizophrenia and the Role of Cortical Excitation-Inhibition Balance. Biol Psychiatry 2022; 92:501-513. [PMID: 36008036 DOI: 10.1016/j.biopsych.2022.06.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/16/2022] [Accepted: 06/04/2022] [Indexed: 12/23/2022]
Abstract
The neurodevelopmental and dopamine hypotheses are leading theories of the pathoetiology of schizophrenia, but they were developed in isolation. However, since they were originally proposed, there have been considerable advances in our understanding of the normal neurodevelopmental refinement of synapses and cortical excitation-inhibition (E/I) balance, as well as preclinical findings on the interrelationship between cortical and subcortical systems and new in vivo imaging and induced pluripotent stem cell evidence for lower synaptic density markers in patients with schizophrenia. Genetic advances show that schizophrenia is associated with variants linked to genes affecting GABA (gamma-aminobutyric acid) and glutamatergic signaling as well as neurodevelopmental processes. Moreover, in vivo studies on the effects of stress, particularly during later development, show that it leads to synaptic elimination. We review these lines of evidence as well as in vivo evidence for altered cortical E/I balance and dopaminergic dysfunction in schizophrenia. We discuss mechanisms through which frontal cortex circuitry may regulate striatal dopamine and consider how frontal E/I imbalance may cause dopaminergic dysregulation to result in psychotic symptoms. This integrated neurodevelopmental and dopamine hypothesis suggests that overpruning of synapses, potentially including glutamatergic inputs onto frontal cortical interneurons, disrupts the E/I balance and thus underlies cognitive and negative symptoms. It could also lead to disinhibition of excitatory projections from the frontal cortex and possibly other regions that regulate mesostriatal dopamine neurons, resulting in dopamine dysregulation and psychotic symptoms. Together, this explains a number of aspects of the epidemiology and clinical presentation of schizophrenia and identifies new targets for treatment and prevention.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom; Department of Psychosis, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom.
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, United Kingdom
| |
Collapse
|
19
|
Yue W, Huang H, Duan J. Potential diagnostic biomarkers for schizophrenia. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:385-416. [PMID: 37724326 PMCID: PMC10388817 DOI: 10.1515/mr-2022-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 09/20/2023]
Abstract
Schizophrenia (SCH) is a complex and severe mental disorder with high prevalence, disability, mortality and carries a heavy disease burden, the lifetime prevalence of SCH is around 0.7%-1.0%, which has a profound impact on the individual and society. In the clinical practice of SCH, key problems such as subjective diagnosis, experiential treatment, and poor overall prognosis are still challenging. In recent years, some exciting discoveries have been made in the research on objective biomarkers of SCH, mainly focusing on genetic susceptibility genes, metabolic indicators, immune indices, brain imaging, electrophysiological characteristics. This review aims to summarize the biomarkers that may be used for the prediction and diagnosis of SCH.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University) and Chinese Academy of Medical Sciences Research Unit, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University Health System, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Wang J, Li S, Li X, Liu J, Yang J, Li Y, Li W, Yang Y, Li J, Chen R, Li K, Huang D, Liu Y, Lv L, Li M, Xiao X, Luo XJ. Functional variant rs2270363 on 16p13.3 confers schizophrenia risk by regulating NMRAL1. Brain 2022; 145:2569-2585. [PMID: 35094059 PMCID: PMC9612800 DOI: 10.1093/brain/awac020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 12/28/2023] Open
Abstract
Recent genome-wide association studies have reported multiple schizophrenia risk loci, yet the functional variants and their roles in schizophrenia remain to be characterized. Here we identify a functional single nucleotide polymorphism (rs2270363: G>A) at the schizophrenia risk locus 16p13.3. rs2270363 lies in the E-box element of the promoter of NMRAL1 and disrupts binding of the basic helix-loop-helix leucine zipper family proteins, including USF1, MAX and MXI1. We validated the regulatory effects of rs2270363 using reporter gene assays and electrophoretic mobility shift assay. Besides, expression quantitative trait loci analysis showed that the risk allele (A) of rs2270363 was significantly associated with elevated NMRAL1 expression in the human brain. Transcription factors knockdown and CRISPR-Cas9-mediated editing further confirmed the regulatory effects of the genomic region containing rs2270363 on NMRAL1. Intriguingly, NMRAL1 was significantly downregulated in the brain of schizophrenia patients compared with healthy subjects, and knockdown of Nmral1 expression affected proliferation and differentiation of mouse neural stem cells, as well as genes and pathways associated with brain development and synaptic transmission. Of note, Nmral1 knockdown resulted in significant decrease of dendritic spine density, revealing the potential pathophysiological mechanisms of NMRAL1 in schizophrenia. Finally, we independently confirmed the association between rs2270363 and schizophrenia in the Chinese population and found that the risk allele of rs2270363 was the same in European and Chinese populations. These lines of evidence suggest that rs2270363 may confer schizophrenia risk by regulating NMRAL1, a gene whose expression dysregulation might be involved in the pathogenesis of schizophrenia by affecting neurodevelopment and synaptic plasticity.
Collapse
Affiliation(s)
- Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Southeast University, Nanjing, Jiangsu 210096, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
21
|
Phenotypes, mechanisms and therapeutics: insights from bipolar disorder GWAS findings. Mol Psychiatry 2022; 27:2927-2939. [PMID: 35351989 DOI: 10.1038/s41380-022-01523-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022]
Abstract
Genome-wide association studies (GWAS) have reported substantial genomic loci significantly associated with clinical risk of bipolar disorder (BD), and studies combining techniques of genetics, neuroscience, neuroimaging, and pharmacology are believed to help tackle clinical problems (e.g., identifying novel therapeutic targets). However, translating findings of psychiatric genetics into biological mechanisms underlying BD pathogenesis remains less successful. Biological impacts of majority of BD GWAS risk loci are obscure, and the involvement of many GWAS risk genes in this illness is yet to be investigated. It is thus necessary to review the progress of applying BD GWAS risk genes in the research and intervention of the disorder. A comprehensive literature search found that a number of such risk genes had been investigated in cellular or animal models, even before they were highlighted in BD GWAS. Intriguingly, manipulation of many BD risk genes (e.g., ANK3, CACNA1C, CACNA1B, HOMER1, KCNB1, MCHR1, NCAN, SHANK2 etc.) resulted in altered murine behaviors largely restoring BD clinical manifestations, including mania-like symptoms such as hyperactivity, anxiolytic-like behavior, as well as antidepressant-like behavior, and these abnormalities could be attenuated by mood stabilizers. In addition to recapitulating phenotypic characteristics of BD, some GWAS risk genes further provided clues for the neurobiology of this illness, such as aberrant activation and functional connectivity of brain areas in the limbic system, and modulated dendritic spine morphogenesis as well as synaptic plasticity and transmission. Therefore, BD GWAS risk genes are undoubtedly pivotal resources for modeling this illness, and might be translational therapeutic targets in the future clinical management of BD. We discuss both promising prospects and cautions in utilizing the bulk of useful resources generated by GWAS studies. Systematic integrations of findings from genetic and neuroscience studies are called for to promote our understanding and intervention of BD.
Collapse
|
22
|
Li Y, Ma C, Li S, Wang J, Li W, Yang Y, Li X, Liu J, Yang J, Liu Y, Li K, Li J, Huang D, Chen R, Lv L, Xiao X, Li M, Luo X. Regulatory Variant rs2535629 in ITIH3 Intron Confers Schizophrenia Risk By Regulating CTCF Binding and SFMBT1 Expression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104786. [PMID: 34978167 PMCID: PMC8867204 DOI: 10.1002/advs.202104786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/16/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies have identified 3p21.1 as a robust risk locus for schizophrenia. However, the underlying molecular mechanisms remain elusive. Here a functional regulatory variant (rs2535629) is identified that disrupts CTCF binding at 3p21.1. It is confirmed that rs2535629 is also significantly associated with schizophrenia in Chinese population and the regulatory effect of rs2535629 is validated. Expression quantitative trait loci analysis indicates that rs2535629 is associated with the expression of three distal genes (GLT8D1, SFMBT1, and NEK4) in the human brain, and CRISPR-Cas9-mediated genome editing confirmed the regulatory effect of rs2535629 on GLT8D1, SFMBT1, and NEK4. Interestingly, differential expression analysis of GLT8D1, SFMBT1, and NEK4 suggested that rs2535629 may confer schizophrenia risk by regulating SFMBT1 expression. It is further demonstrated that Sfmbt1 regulates neurodevelopment and dendritic spine density, two key pathological characteristics of schizophrenia. Transcriptome analysis also support the potential role of Sfmbt1 in schizophrenia pathogenesis. The study identifies rs2535629 as a plausibly causal regulatory variant at the 3p21.1 risk locus and demonstrates the regulatory mechanism and biological effect of this functional variant, indicating that this functional variant confers schizophrenia risk by altering CTCF binding and regulating expression of SFMBT1, a distal gene which plays important roles in neurodevelopment and synaptic morphogenesis.
Collapse
Affiliation(s)
- Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Changguo Ma
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases & Yunnan Stem Cell Translational Research CenterKunming UniversityKunmingYunnan650214China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Wenqiang Li
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Yongfeng Yang
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Key Laboratory of Intelligent Computing and Signal Processing of Ministry of EducationInstitutes of Physical Science and Information TechnologyAnhui UniversityHefeiAnhui230601China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Jinfeng Yang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Yixing Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Jiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Rui Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
| | - Luxian Lv
- Henan Mental HospitalThe Second Affiliated Hospital of Xinxiang Medical UniversityXinxiangHenan453002China
- Henan Key Lab of Biological PsychiatryInternational Joint Research Laboratory for Psychiatry and Neuroscience of HenanXinxiang Medical UniversityXinxiangHenan453002China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| | - Xiong‐Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan ProvinceKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnan650204China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunmingYunnan650204China
- KIZ‐CUHK Joint Laboratory of Bioresources and Molecular Research in Common DiseasesKunming Institute of ZoologyChinese Academy of SciencesKunmingYunnan650204China
| |
Collapse
|
23
|
Barki M, Xue H. GABRB2, a key player in neuropsychiatric disorders and beyond. Gene 2022; 809:146021. [PMID: 34673206 DOI: 10.1016/j.gene.2021.146021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 01/11/2023]
Abstract
The GABA receptors represent the main inhibitory system in the central nervous system that ensure synaptogenesis, neurogenesis, and the regulation of neuronal plasticity and learning. GABAA receptors are pentameric in structure and belong to the Cys-loop superfamily. The GABRB2 gene, located on chromosome 5q34, encodes the β2 subunit that combines with the α and γ subunits to form the major subtype of GABAA receptors, which account for 43% of all GABAA receptors in the mammalian brain. Each subunit probably consists of an extracellular N-terminal domain, four membrane-spanning segments, a large intracellular loop between TM3 and TM4, and an extracellular C-terminal domain. Alternative splicing of the RNA transcript of the GABRB2 gene gives rise at least to four long and short isoforms with dissimilar electrophysiological properties. Furthermore, GABRB2 is imprinted and subjected to epigenetic regulation and positive selection. It has been associated with schizophrenia first in Han Chinese, and subsequently validated in other populations. Gabrb2 knockout mice also exhibited schizophrenia-like behavior and neuroinflammation that were ameliorated by the antipsychotic drug risperidone. GABRB2 was also associated with other neuropsychiatric disorders including bipolar disorder, epilepsy, autism spectrum disorder, Alzheimer's disease, frontotemporal dementia, substance dependence, depression, internet gaming disorder, and premenstrual dysphoric disorder. Recently, it has been postulated that GABRB2 might be a potential marker for different cancer types. As GABRB2 has a pivotal role in the central nervous system and is increasingly recognized to contribute to human diseases, further understanding of its structure and function may expedite the generation of new therapeutic approaches.
Collapse
Affiliation(s)
- Manel Barki
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hong Xue
- Center for Cancer Genomics, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China; Division of Life Science and Applied Genomics Center, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
24
|
Umeda R, Teranishi H, Hada K, Shimizu N, Shiraishi H, Urushibata H, Shaohong L, Shide M, Apolinario MEC, Higa R, Shikano K, Shin T, Mimata H, Hikida T, Hanada T, Hanada R. Vrk2 deficiency elicits aggressive behavior in female zebrafish. Genes Cells 2022; 27:254-265. [DOI: 10.1111/gtc.12924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ryohei Umeda
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Hitoshi Teranishi
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kazumasa Hada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Nobuyuki Shimizu
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Hiroshi Shiraishi
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | | | - Lai Shaohong
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Masahito Shide
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | | | - Ryoko Higa
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Kenshiro Shikano
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| | - Toshitaka Shin
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Hiromitsu Mimata
- Department of Urology Faculty of Medicine Oita University Oita Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions Institute for Protein Research Osaka University Osaka Japan
| | - Toshikatsu Hanada
- Department of Cell Biology Faculty of Medicine Oita University Oita Japan
| | - Reiko Hanada
- Department of Neurophysiology Faculty of Medicine Oita University Oita Japan
| |
Collapse
|
25
|
Rao S, Tian L, Cao H, Baranova A, Zhang F. Involvement of the long intergenic non-coding RNA LINC00461 in schizophrenia. BMC Psychiatry 2022; 22:59. [PMID: 35081922 PMCID: PMC8790831 DOI: 10.1186/s12888-022-03718-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE LINC00461 is a highly conserved intergenic non-protein coding RNA that was implicated in schizophrenia at the genome-wide level. We aim to explore potential mechanisms underlying the involvement of LINC00461 in schizophrenia. METHODS We performed a meta-analysis to investigate the association of LINC00461 rs410216 with schizophrenia, and evaluate the effects of the rs410216 on hippocampal volume and function using the functional magnetic resonance imaging (fMRI) analysis. We utilized the GTEx dataset to profile the expression distribution of LINC00461 across different brain regions, and to investigate the potential impact of the risk SNPs on the expression of LINC00461 and other nearby genes. We compared blood expression levels of LINC00461 between schizophrenia patients and controls. RESULTS Here we show that single-nucleotide polymorphisms (SNPs) located in regulatory elements spanning the LINC00461 region are significantly associated with schizophrenia (index SNP rs410216, Pmeta = 1.43E-05); subjects carrying the risk allele of rs410216 showed decreased hippocampal volume. However, no significant association of the rs410216 variant with hippocampal activation was observed. Moreover, the expression level of LINC00461 mRNA was significantly lower in first-onset schizophrenia patients, and the risk allele also predicts a lower transcriptional level of LINC00461 in the hippocampus. CONCLUSION Together, these convergent lines of evidence implicate inadequate LINC00461 expression in the hippocampus in the development of schizophrenia, providing novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- grid.461843.cState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Lin Tian
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA
| | - Ancha Baranova
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA ,grid.415876.9Research Centre for Medical Genetics, Moscow, 115478 Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
26
|
Zhu Y, Wang MJ, Crawford KM, Ramírez-Tapia JC, Lussier AA, Davis KA, de Leeuw C, Takesian AE, Hensch TK, Smoller JW, Dunn EC. Sensitive period-regulating genetic pathways and exposure to adversity shape risk for depression. Neuropsychopharmacology 2022; 47:497-506. [PMID: 34689167 PMCID: PMC8674315 DOI: 10.1038/s41386-021-01172-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/23/2021] [Accepted: 08/30/2021] [Indexed: 01/03/2023]
Abstract
Animal and human studies have documented the existence of developmental windows (or sensitive periods) when experience can have lasting effects on brain structure or function, behavior, and disease. Although sensitive periods for depression likely arise through a complex interplay of genes and experience, this possibility has not yet been explored in humans. We examined the effect of genetic pathways regulating sensitive periods, alone and in interaction with common childhood adversities, on depression risk. Guided by a translational approach, we: (1) performed association analyses of three gene sets (60 genes) shown in animal studies to regulate sensitive periods using summary data from a genome-wide association study of depression (n = 807,553); (2) evaluated the developmental expression patterns of these genes using data from BrainSpan (n = 31), a transcriptional atlas of postmortem brain samples; and (3) tested gene-by-development interplay (dGxE) by analyzing the combined effect of common variants in sensitive period genes and time-varying exposure to two types of childhood adversity within a population-based birth cohort (n = 6254). The gene set regulating sensitive period opening associated with increased depression risk. Notably, 6 of the 15 genes in this set showed developmentally regulated gene-level expression. We also identified a statistical interaction between caregiver physical or emotional abuse during ages 1-5 years and genetic risk for depression conferred by the opening genes. Genes involved in regulating sensitive periods are differentially expressed across the life course and may be implicated in depression vulnerability. Our findings about gene-by-development interplay motivate further research in large, more diverse samples to further unravel the complexity of depression etiology through a sensitive period lens.
Collapse
Affiliation(s)
- Yiwen Zhu
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Min-Jung Wang
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | - Alexandre A Lussier
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Kathryn A Davis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Christiaan de Leeuw
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Department of Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anne E Takesian
- Eaton-Peabody Laboratories, Massachusetts Eye & Ear and Department of Otorhinolaryngology and Head/Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Takao K Hensch
- Center for Brain Science, Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jordan W Smoller
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Erin C Dunn
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Stanley Center for Psychiatric Research, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Center on the Developing Child, Cambridge, MA, USA.
| |
Collapse
|
27
|
Li W, Zhang CY, Liu J, Guan F, Shao M, Zhang L, Liu Q, Yang Y, Su X, Zhang Y, Xiao X, Luo XJ, Li M, Lv L. Identification of a Risk Locus at 7p22.3 for Schizophrenia and Bipolar Disorder in East Asian Populations. Front Genet 2021; 12:789512. [PMID: 34976021 PMCID: PMC8719163 DOI: 10.3389/fgene.2021.789512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 12/03/2022] Open
Abstract
Background: Shared psychopathological features and mechanisms have been observed between schizophrenia (SZ) and bipolar disorder (BD), but their common risk genes and full genetic architectures remain to be fully characterized. The genome-wide association study (GWAS) datasets offer the opportunity to explore this scientific question using combined genetic data from enormous samples, ultimately allowing a better understanding of the onset and development of these illnesses. Methods: We have herein performed a genome-wide meta-analysis in two GWAS datasets of SZ and BD respectively (24,600 cases and 40,012 controls in total, discovery sample), followed by replication analyses in an independent sample of 4,918 SZ cases and 5,506 controls of Han Chinese origin (replication sample). The risk SNPs were then explored for their correlations with mRNA expression of nearby genes in multiple expression quantitative trait loci (eQTL) datasets. Results: The single nucleotide polymorphisms (SNPs) rs1637749 and rs3800908 at 7p22.3 region were significant in both discovery and replication samples, and exhibited genome-wide significant associations when combining all East Asian SZ and BD samples (29,518 cases and 45,518 controls). The risk SNPs were also significant in GWAS of SZ and BD among Europeans. Both risk SNPs significantly predicted lower expression of MRM2 in the whole blood and brain samples in multiple datasets, which was consistent with its reduced mRNA level in the brains of SZ patients compared with normal controls. The risk SNPs were also associated with MAD1L1 expression in the whole blood sample. Discussion: We have identified a novel genome-wide risk locus associated with SZ and BD in East Asians, adding further support for the putative common genetic risk of the two illnesses. Our study also highlights the necessity and importance of mining public datasets to explore risk genes for complex psychiatric diseases.
Collapse
Affiliation(s)
- Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine and Forensics, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Ming Li, ; Luxian Lv,
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, China
- Henan Province People’s Hospital, Zhengzhou, China
- *Correspondence: Ming Li, ; Luxian Lv,
| |
Collapse
|
28
|
Camarena B, Atkinson EG, Baker M, Becerra-Palars C, Chibnik LB, Escamilla-Orozco R, Jiménez-Pavón J, Koenig Z, Márquez-Luna C, Martin AR, Morales-Cedillo IP, Olivares AM, Ortega-Ortiz H, Rodriguez-Ramírez AM, Saracco-Alvarez R, Basaldua RE, Sena BF, Koenen KC. Neuropsychiatric Genetics of Psychosis in the Mexican Population: A Genome-Wide Association Study Protocol for Schizophrenia, Schizoaffective, and Bipolar Disorder Patients and Controls. Complex Psychiatry 2021; 7:60-70. [PMID: 36017067 PMCID: PMC8740081 DOI: 10.1159/000518926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/03/2021] [Indexed: 11/12/2023] Open
Abstract
No large-scale genome-wide association studies (GWASs) of psychosis have been conducted in Mexico or Latin America to date. Schizophrenia and bipolar disorder in particular have been found to be highly heritable and genetically influenced. However, understanding of the biological basis of psychosis in Latin American populations is limited as previous genomic studies have almost exclusively relied on participants of Northern European ancestry. With the goal of expanding knowledge on the genomic basis of psychotic disorders within the Mexican population, the National Institute of Psychiatry Ramón de la Fuente Muñiz (INPRFM), the Harvard T.H. Chan School of Public Health, and the Broad Institute's Stanley Center for Psychiatric Research launched the Neuropsychiatric Genetics Research of Psychosis in Mexican Populations (NeuroMex) project to collect and analyze case-control psychosis samples from 5 states across Mexico. This article describes the planned sample collection and GWAS protocol for the NeuroMex study. The 4-year study will span from April 2018 to 2022 and aims to recruit 9,208 participants: 4,604 cases and 4,604 controls. Study sites across Mexico were selected to ensure collected samples capture the genomic diversity within the Mexican population. Blood samples and phenotypic data will be collected during the participant interview process and will contribute to the development of a local biobank in Mexico. DNA extraction will be done locally and genetic analysis will take place at the Broad Institute in Cambridge, MA. We will collect extensive phenotypic information using several clinical scales. All study materials including phenotypic instruments utilized are openly available in Spanish and English. The described study represents a long-term collaboration of a number of institutions from across Mexico and the Boston area, including clinical psychiatrists, clinical researchers, computational biologists, and managers at the 3 collaborating institutions. The development of relevant data management, quality assurance, and analysis plans are the primary considerations in this protocol article. Extensive management and analysis processes were developed for both the phenotypic and genetic data collected. Capacity building, partnerships, and training between and among the collaborating institutions are intrinsic components to this study and its long-term success.
Collapse
Affiliation(s)
- Beatriz Camarena
- Pharmacogenetics Department, National Institute of Psychiatry Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Elizabeth G. Atkinson
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
- Analytical and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Mark Baker
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
| | - Claudia Becerra-Palars
- National Institute of Psychiatry Ramón de la Fuente Muñiz, Clinical Services Direction, Mexico City, Mexico
| | - Lori B. Chibnik
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
- Analytical and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Raúl Escamilla-Orozco
- National Institute of Psychiatry Ramón de la Fuente Muñiz, Clinical Services Direction, Mexico City, Mexico
| | - Joanna Jiménez-Pavón
- National Institute of Psychiatry Ramón de la Fuente Muñiz, Clinical Services Direction, Mexico City, Mexico
| | - Zan Koenig
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Carla Márquez-Luna
- Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alicia R. Martin
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
- Analytical and Translational Genetics Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Ana Maria Olivares
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
| | - Hiram Ortega-Ortiz
- National Institute of Psychiatry Ramón de la Fuente Muñiz, Clinical Services Direction, Mexico City, Mexico
| | | | - Ricardo Saracco-Alvarez
- National Institute of Psychiatry Ramon de la Fuente Muñiz, Clinical Research Sub-direction, Mexico City, Mexico
| | - Rebecca E. Basaldua
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Brena F. Sena
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Karestan C. Koenen
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
29
|
Fan X, Chen Y, Lu J, Li W, Li X, Guo H, Chen Q, Yang Y, Xia H. AS3MT Polymorphism: A Risk Factor for Epilepsy Susceptibility and Adverse Drug Reactions to Valproic Acid and Oxcarbazepine Treatment in Children From South China. Front Neurosci 2021; 15:705297. [PMID: 34899152 PMCID: PMC8661122 DOI: 10.3389/fnins.2021.705297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a common neurologic disorder characterized by intractable seizures, involving genetic factors. There is a need to develop reliable genetic markers to predict the risk of epilepsy and design effective therapies. Arsenite methyltransferase (AS3MT) catalyzes the biomethylation of arsenic and hence regulates arsenic metabolism. AS3MT variation has been linked to the progression of various diseases including schizophrenia and attention deficit or hyperactivity disorder. Whether genetic polymorphism of AS3MT contributes to epilepsy remains unclear. In this study, we investigated the association of AS3MT gene polymorphism with susceptibility to epilepsy in children from south China. We also explored the effect of AS3MT variation on the safety of antiepileptic drugs. Genotypic analysis for AS3MT rs7085104 was performed using samples from a Chinese cohort of 200 epileptic children and 244 healthy individuals. The results revealed a genetic association of AS3MT rs7085104 with susceptibility to pediatric epilepsy. Mutant homozygous GG genotype exhibited a lower susceptibility to childhood epilepsy than AA genotype. Carriers of AS3MT rs7085104 AA genotype exhibited a higher risk of digestive adverse drug reactions (dADRs) in children when treated with valproic acid (VPA) or oxcarbazepine (OXC). Additionally, bioinformatics analysis identified eight AS3MT target genes related to epilepsy and three AS3MT-associated genes in VPA-related dADRs. The effects of AS3MT on epilepsy might involve multiple targets including CNNM2, CACNB2, TRIM26, MTHFR, GSTM1, CYP17A1, NT5C2, and YBX3. This study reveals that AS3MT may be a new gene contributing to epileptogenesis. Hence, analysis of AS3MT polymorphisms will help to evaluate susceptibility to pediatric epilepsy and drug safety.
Collapse
Affiliation(s)
- Xiaomei Fan
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Yuna Chen
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Jieluan Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wenzhou Li
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Xi Li
- Shenzhen Nanshan District Shekou People’s Hospital, Shenzhen, China
| | - Huijuan Guo
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Qing Chen
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Yanxia Yang
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| | - Hanbing Xia
- Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
30
|
Ni G, Tan J, Wang M, Ping N, Liu M, He Y. Polymorphisms of the AS3MT gene are associated with arsenic methylation capacity and damage to the P21 gene in arsenic trioxide plant workers. Toxicol Ind Health 2021; 37:727-736. [PMID: 34730462 DOI: 10.1177/07482337211013321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Epidemiological evidence suggests that the metabolic profiles of each individual exposed to arsenic (As) are related to the risk of cancer, coronary heart disease, and diabetes. The arsenite methyltransferase (AS3MT) gene plays a key role in As metabolism. Several single nucleotide polymorphisms in the AS3MT gene may affect both enzyme activity and gene transcription. AS3MT polymorphisms are associated with the proportions of monomethylarsenic acid (MMA) and dimethylarsenic acid (DMA) in urine as well as the incidence of cancer. P21 protein is a cyclin-dependent kinase inhibitor. Mutations of the P21 gene have been found in cancer patients. In our study, we investigate whether polymorphisms of the AS3MT gene alter As methylation capacity and adversely affect the P21 gene in arsenic trioxide plant workers. The DNA damage was examined by the quantitative polymerase chain reaction. Restriction fragment length polymorphism was used to analyze the genotype of the AS3MT gene. The results showed that DNA damage in P21 gene fragments was greater in those individuals exposed to high levels of As. There was a strong positive correlation between the DNA damage to P21 gene fragments and the percentage of MMA in urine. However, DNA damage in P21 gene fragments was negatively associated with the percentage of DMA in urine (%uDMA), primary methylation index (PMI), and secondary methylation index. We found that subjects with the rs7085104 GG or GA allele were associated with higher %uDMA and PMI and less DNA damage. The subjects with the rs11191454 GG+GA or GA allele were also associated with higher %uDMA and PMI and less DNA damage. Our results suggest that rs1191454 and rs7085104 in the AS3MT gene affect the As-induced DNA damage by altering individual metabolic efficiency.
Collapse
Affiliation(s)
- Guanghui Ni
- School of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Mengjie Wang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Nina Ping
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Min Liu
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
31
|
Wu X, Huai C, Shen L, Li M, Yang C, Zhang J, Chen L, Zhu W, Fan L, Zhou W, Xing Q, He L, Wan C, Qin S. Genome-wide study of copy number variation implicates multiple novel loci for schizophrenia risk in Han Chinese family trios. iScience 2021; 24:102894. [PMID: 34401673 PMCID: PMC8358640 DOI: 10.1016/j.isci.2021.102894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 01/22/2023] Open
Abstract
Schizophrenia (SCZ) is a severe neuropsychiatric disorder that affects 1% of the global population. Copy number variations (CNVs) have been shown to play a critical role in its pathophysiology; however, only case-control studies on SCZ susceptibility CNVs have been conducted in Han Chinese. Here, we performed an array comparative genomic hybridization-based genome-wide CNV analysis in 100 Chinese family trios with SCZ. Burden test suggested that the SCZ probands carried more duplications than their healthy parents and unrelated healthy controls. Besides, five CNV loci were firstly reported to be associated with SCZ here, including both unbalanced transmitted CNVs and enriched de novo CNVs. Moreover, two genes (CTDSPL and MGAM) in these CNVs showed significant SCZ relevance in the expression level. Our findings support the crucial role of CNVs in the etiology of SCZ and provide new insights into the underlying mechanism of SCZ pathogenesis.
Collapse
Affiliation(s)
- Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Cong Huai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Lu Shen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Mo Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Chao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Juan Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Luan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Wenli Zhu
- The Fourth People's Hospital of Wuhu, Wuhu, Anhui, 241000, China
| | - Lingzi Fan
- Zhumadian Psychiatric Hospital, Zhumadian, Henan, 463000, China
| | - Wei Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Qinghe Xing
- Children's Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Corresponding author
| | - Chunling Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Corresponding author
| | - Shengying Qin
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Corresponding author
| |
Collapse
|
32
|
Liu J, Li S, Li X, Li W, Yang Y, Guo S, Lv L, Xiao X, Yao YG, Guan F, Li M, Luo XJ. Genome-wide association study followed by trans-ancestry meta-analysis identify 17 new risk loci for schizophrenia. BMC Med 2021; 19:177. [PMID: 34380480 PMCID: PMC8359304 DOI: 10.1186/s12916-021-02039-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/17/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Over 200 schizophrenia risk loci have been identified by genome-wide association studies (GWASs). However, the majority of risk loci were identified in populations of European ancestry (EUR), potentially missing important biological insights. It is important to perform 5 GWASs in non-European populations. METHODS To identify novel schizophrenia risk loci, we conducted a GWAS in Han Chinese population (3493 cases and 4709 controls). We then performed a large-scale meta-analysis (a total of 143,438 subjects) through combining our results with previous GWASs conducted in EAS and EUR. In addition, we also carried out comprehensive post-GWAS analysis, including heritability partitioning, enrichment of schizophrenia associations in tissues and cell types, trancscriptome-wide association study (TWAS), expression quantitative trait loci (eQTL) and differential expression analysis. RESULTS We identified two new schizophrenia risk loci, including associations in SHISA9 (rs7192086, P = 4.92 × 10-08) and PES1 (rs57016637, P = 2.33 × 10-11) in Han Chinese population. A fixed-effect meta-analysis (a total of 143,438 subjects) with summary statistics from EAS and EUR identifies 15 novel genome-wide significant risk loci. Heritability partitioning with linkage disequilibrium score regression (LDSC) reveals a significant enrichment of schizophrenia heritability in conserved genomic regions, promoters, and enhancers. Tissue and cell-type enrichment analyses show that schizophrenia associations are significantly enriched in human brain tissues and several types of neurons, including cerebellum neurons, telencephalon inhibitory, and excitatory neurons. Polygenic risk score profiling reveals that GWAS summary statistics from trans-ancestry meta-analysis (EAS + EUR) improves prediction performance in predicting the case/control status of our sample. Finally, transcriptome-wide association study (TWAS) identifies risk genes whose cis-regulated expression change may have a role in schizophrenia. CONCLUSIONS Our study identifies 17 novel schizophrenia risk loci and highlights the importance and necessity of conducting genetic study in different populations. These findings not only provide new insights into genetic etiology of schizophrenia, but also facilitate to delineate the pathophysiology of schizophrenia and develop new therapeutic targets.
Collapse
Affiliation(s)
- Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Suqin Guo
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453002, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, 453002, Henan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, Yunnan, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
33
|
Zhao W, Zhang Q, Chen X, Li Y, Li X, Du B, Deng X, Ji F, Wang C, Xiang YT, Dong Q, Chen C, Li J. The VNTR of the AS3MT gene is associated with brain activations during a memory span task and their training-induced plasticity. Psychol Med 2021; 51:1927-1932. [PMID: 32308175 PMCID: PMC8381288 DOI: 10.1017/s0033291720000720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 01/10/2020] [Accepted: 03/11/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Arsenic (+3 oxidation state) methyltransferase (AS3MT) gene has been identified as a top risk gene for schizophrenia in several large-scale genome-wide association studies. A variable number tandem repeat (VNTR) of this gene is the most significant expression quantitative trait locus, but its role in brain activity in vivo is still unknown. METHODS We first performed a functional magnetic resonance imaging (fMRI) scan of 101 healthy subjects during a memory span task, trained all subjects on an adaptive memory span task for 1 month, and finally performed another fMRI scan after the training. After excluding subjects with excessive head movements for one or more scanning sessions, data from 93 subjects were included in the final analyses. RESULTS The VNTR was significantly associated with both baseline brain activation and training-induced changes in multiple regions including the prefrontal cortex and the anterior and posterior cingulate cortex. Additionally, it was associated with baseline brain activation in the striatum and the parietal cortex. All these results were corrected based on the family-wise error rate method across the whole brain at the peak level. CONCLUSIONS This study sheds light on the role of AS3MT gene variants in neural plasticity related to memory span training.
Collapse
Affiliation(s)
- Wan Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Qiumei Zhang
- School of Public Health, Jining Medical University, 45# Jianshe South Road, Jining272013, Shandong Province, P.R. China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Yang Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Xiaohong Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Boqi Du
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Xiaoxiang Deng
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Feng Ji
- School of Mental Health, Jining Medical University, 45# Jianshe South Road, Jining272013, Shandong Province, P.R. China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders & the Advanced Innovation Center for Human Brain Protection, Beijing Anding Hospital, School of Mental Health, Capital Medical University, Beijing100088, China
| | - Yu-Tao Xiang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA92697, USA
| | - Jun Li
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, P.R. China
| |
Collapse
|
34
|
Yao Y, Guo W, Zhang S, Yu H, Yan H, Zhang H, Sanders AR, Yue W, Duan J. Cell type-specific and cross-population polygenic risk score analyses of MIR137 gene pathway in schizophrenia. iScience 2021; 24:102785. [PMID: 34308291 PMCID: PMC8283158 DOI: 10.1016/j.isci.2021.102785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/18/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
Cell type-specific pathway-based polygenic risk scores (PRSs) may better inform disease biology and improve the precision of PRS-based clinical prediction. For microRNA-137 (MIR137), a leading neuropsychiatric risk gene and a post-transcriptional master regulator, we conducted a cell type-specific gene set PRS analysis in both European and Han Chinese schizophrenia (SZ) samples. We found that the PRS of neuronal MIR137-target genes better explains SZ risk than PRS derived from MIR137-target genes in iPSC or from the reported gene sets showing MIR137-altered expression. Compared with the PRS derived from the whole genome or the target genes of TCF4, the PRS of neuronal MIR137-target genes explained a disproportionally larger (relative to SNP number) SZ risk in the European sample, but with a more modest advantage in the Han Chinese sample. Our study demonstrated a cell type-specific polygenic contribution of MIR137-target genes to SZ risk, highlighting the value of cell type-specific pathway-based PRS analysis for uncovering disease-relevant biological features. PRS of neural MIR137 target genes better explains schizophrenia (SZ) risk variance SZ risk and SNP heritability explained by MIR137 target genes is cell type-specific MIR137 target genes explain a disproportionally larger SZ risk than genomic control PRS of MIR137 target genes better explains SZ risk in Europeans than in Han Chinese
Collapse
Affiliation(s)
- Yin Yao
- Department of Computational Biology, Life Science Institutes and School of Life Science and Human Phenomics Institute, Fudan University, Shanghai 200438, China
| | - Wei Guo
- Genetic Epidemiology Research Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Siwei Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Hao Yu
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,Department of Psychiatry, Jining Medical University, Jining, Shandong 272067, China.,Shandong Key Laboratory of Behavioral Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Hao Yan
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA.,Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| | - Weihua Yue
- Peking University Sixth Hospital (Institute of Mental Health), Beijing 100191, China.,National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100191, China
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, IL 60201, USA.,Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
35
|
Zhang L, Li Z, Liu Q, Shao M, Sun F, Su X, Song M, Zhang Y, Ding M, Lu Y, Liu J, Yang Y, Li M, Li W, Lv L. Weak Association Between the Glutamate Decarboxylase 1 Gene (GAD1) and Schizophrenia in Han Chinese Population. Front Neurosci 2021; 15:677153. [PMID: 34234640 PMCID: PMC8255988 DOI: 10.3389/fnins.2021.677153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/26/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives Schizophrenia (SZ) is a complex psychiatric disorder with high heritability, and genetic components are thought to be pivotal risk factors for this illness. The glutamate decarboxylase 1 gene (GAD1) was hypothesized to be a candidate risk locus for SZ given its crucial role in the GABAergic neurotransmission system, and previous studies have examined the associations of single nucleotide polymorphisms (SNPs) spanning the GAD1 gene with SZ. However, inconsistent results were obtained. We hence examined the associations between GAD1 SNPs and SZ in two independent case-control samples of Han Chinese ancestry. Materials and Methods Two Han Chinese SZ case-control samples, referred as the discovery sample and the replication sample, respectively, were recruited for the current study. The discovery sample comprised of 528 paranoid SZ cases (with age of first onset ≥ 18) and 528 healthy controls; the independent replication sample contained 1,256 early onset SZ cases (with age of first onset < 18) and 2,661 healthy controls. Logistic regression analysis was performed to examine the associations between GAD1 SNPs and SZ. Results Ten SNPs covering GAD1 gene were analyzed in the discovery sample, and two SNPs showed nominal associations with SZ (rs2241165, P = 0.0181, OR = 1.261; rs2241164, P = 0.0225, OR = 1.219). SNP rs2241164 was also nominally significant in the independent replication sample (P = 0.0462, OR = 1.110), and the significance became stronger in a subsequent meta-analysis combining both discovery and replication samples (P = 0.00398, OR = 1.138). Nevertheless, such association could not survive multiple corrections, although the effect size of rs2241164 was comparable with other SZ risk loci identified in genome-wide association studies (GWAS) in Han Chinese population. We also examined the associations between GAD1 SNPs and SZ in published datasets of SZ GWAS in East Asians and Europeans, and no significant associations were observed. Conclusion We observed weak associations between GAD1 SNPs and risk of SZ in Han Chinese populations. Further analyses in larger Han Chinese samples with more detailed phenotyping are necessary to elucidate the genetic correlation between GAD1 SNPs and SZ.
Collapse
Affiliation(s)
- Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Zhen Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minglong Shao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Fuping Sun
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xi Su
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Meng Song
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Minli Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yanli Lu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Ming Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.,Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
36
|
Genetic underpinnings of affective temperaments: a pilot GWAS investigation identifies a new genome-wide significant SNP for anxious temperament in ADGRB3 gene. Transl Psychiatry 2021; 11:337. [PMID: 34075027 PMCID: PMC8169753 DOI: 10.1038/s41398-021-01436-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Although recently a large-sample GWASs identified significant loci in the background of depression, the heterogeneity of the depressive phenotype and the lack of accurate phenotyping hinders applicability of findings. We carried out a pilot GWAS with in-depth phenotyping of affective temperaments, considered as subclinical manifestations and high-risk states for affective disorders, in a general population sample of European origin. Affective temperaments were measured by TEMPS-A. SNP-level association was assessed by linear regression models, assuming an additive genetic effect, using PLINK1.9. Gender, age, the first ten principal components (PCs) and the other four temperaments were included in the regression models as covariates. SNP-level relevances (p-values) were aggregated to gene level using the PEGASUS method1. In SNP-based tests, a Bonferroni-corrected significance threshold of p ≤ 5.0 × 10-8 and a suggestive significance threshold of p ≤ 1.0 × 10-5, whereas in gene-based tests a Bonferroni-corrected significance of 2.0 × 10-6 and a suggestive significance of p ≤ 4.0 × 10-4 was established. To explore known functional effects of the most significant SNPs, FUMA v1.3.5 was used. We identified 1 significant and 21 suggestively significant SNPs in ADGRB3, expressed in the brain, for anxious temperament. Several other brain-relevant SNPs and genes emerged at suggestive significance for the other temperaments. Functional analyses reflecting effect on gene expression and participation in chromatin interactions also pointed to several genes expressed in the brain with potentially relevant phenotypes regulated by our top SNPs. Our findings need to be tested in larger GWA studies and candidate gene analyses in well-phenotyped samples in relation to affective disorders and related phenotypes.
Collapse
|
37
|
Guo S, Liu J, Li W, Yang Y, Lv L, Xiao X, Li M, Guan F, Luo XJ. Genome wide association study identifies four loci for early onset schizophrenia. Transl Psychiatry 2021; 11:248. [PMID: 33907183 PMCID: PMC8079394 DOI: 10.1038/s41398-021-01360-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/26/2021] [Accepted: 04/09/2021] [Indexed: 12/14/2022] Open
Abstract
Early onset schizophrenia (EOS, defined as first onset of schizophrenia before age 18) is a rare form of schizophrenia (SCZ). Though genome-wide association studies (GWASs) have identified multiple risk variants for SCZ, most of the cases included in these GWASs were not stratified according to their first age at onset. To date, the genetic architecture of EOS remains largely unknown. To identify the risk variants and to uncover the genetic basis of EOS, we conducted a two-stage GWAS of EOS in populations of Han Chinese ancestry in this study. We first performed a GWAS using 1,256 EOS cases and 2,661 healthy controls (referred as discovery stage). The genetic variants with a P < 1.0 × 10-04 in discovery stage were replicated in an independent sample (903 EOS cases and 3,900 controls). We identified four genome-wide significant risk loci for EOS in the combined samples (2,159 EOS cases and 6,561 controls), including 1p36.22 (rs1801133, Pmeta = 4.03 × 10-15), 1p31.1 (rs1281571, Pmeta = 4.14 × 10-08), 3p21.31 (rs7626288, Pmeta = 1.57 × 10-09), and 9q33.3 (rs592927, Pmeta = 4.01 × 10-11). Polygenic risk scoring (PRS) analysis revealed substantial genetic overlap between EOS and SCZ. These discoveries shed light on the genetic basis of EOS. Further functional characterization of the identified risk variants and genes will help provide potential targets for therapeutics and diagnostics.
Collapse
Affiliation(s)
- Suqin Guo
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Wenqiang Li
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Yongfeng Yang
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Luxian Lv
- grid.412990.70000 0004 1808 322XHenan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002 China ,grid.412990.70000 0004 1808 322XHenan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan 453002 China
| | - Xiao Xiao
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Ming Li
- grid.9227.e0000000119573309Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223 China
| | - Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China. .,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| |
Collapse
|
38
|
Wang JY, Li XY, Li HJ, Liu JW, Yao YG, Li M, Xiao X, Luo XJ. Integrative Analyses Followed by Functional Characterization Reveal TMEM180 as a Schizophrenia Risk Gene. Schizophr Bull 2021; 47:1364-1374. [PMID: 33768244 PMCID: PMC8379544 DOI: 10.1093/schbul/sbab032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent large-scale integrative analyses (including Transcriptome-Wide Association Study [TWAS] and Summary-data-based Mendelian Randomization [SMR]) have identified multiple genes whose cis-regulated expression changes may confer risk of schizophrenia. Nevertheless, expression quantitative trait loci (eQTL) data and genome-wide associations used for integrative analyses were mainly from populations of European ancestry, resulting in potential missing of pivotal biological insights in other continental populations due to population heterogeneity. Here we conducted TWAS and SMR integrative analyses using blood eQTL (from 162 subjects) and GWAS data (22 778 cases and 35 362 controls) of schizophrenia in East Asian (EAS) populations. Both TWAS (P = 2.89 × 10-14) and SMR (P = 6.04 × 10-5) analyses showed that decreased TMEM180 mRNA expression was significantly associated with risk of schizophrenia. We further found that TMEM180 was significantly down-regulated in the peripheral blood of schizophrenia cases compared with controls (P = 8.63 × 10-4 in EAS sample), and its expression was also significantly lower in the brain tissues of schizophrenia cases compared with controls (P = 1.87 × 10-5 in European sample from PsychENCODE). Functional explorations suggested that Tmem180 knockdown affected neurodevelopment, ie, proliferation and differentiation of neural stem cells. RNA sequencing showed that pathways regulated by Tmem180 were significantly enriched in brain development and synaptic transmission. In conclusion, our study provides convergent lines of evidence for the involvement of TMEM180 in schizophrenia, and highlights the potential and importance of resource integration and sharing at this big data era in bio-medical research.
Collapse
Affiliation(s)
- Jun-Yang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiao-Yan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China,To whom correspondence should be addressed; Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; tel: +86-871-68125413, fax: +86-871-68125413, e-mail:
| |
Collapse
|
39
|
Li HJ, Zhang C, Hui L, Zhou DS, Li Y, Zhang CY, Wang C, Wang L, Li W, Yang Y, Qu N, Tang J, He Y, Zhou J, Yang Z, Li X, Cai J, Yang L, Chen J, Fan W, Tang W, Tang W, Jia QF, Liu W, Zhuo C, Song X, Liu F, Bai Y, Zhong BL, Zhang SF, Chen J, Xia B, Lv L, Liu Z, Hu S, Li XY, Liu JW, Cai X, Yao YG, Zhang Y, Yan H, Chang S, Zhao JP, Yue WH, Luo XJ, Chen X, Xiao X, Fang Y, Li M. Novel Risk Loci Associated With Genetic Risk for Bipolar Disorder Among Han Chinese Individuals: A Genome-Wide Association Study and Meta-analysis. JAMA Psychiatry 2021; 78:320-330. [PMID: 33263727 PMCID: PMC7711567 DOI: 10.1001/jamapsychiatry.2020.3738] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/16/2020] [Indexed: 12/14/2022]
Abstract
IMPORTANCE The genetic basis of bipolar disorder (BD) in Han Chinese individuals is not fully understood. OBJECTIVE To explore the genetic basis of BD in the Han Chinese population. DESIGN, SETTING, AND PARTICIPANTS A genome-wide association study (GWAS), followed by independent replication, was conducted to identify BD risk loci in Han Chinese individuals. Individuals with BD were diagnosed based on DSM-IV criteria and had no history of schizophrenia, mental retardation, or substance dependence; individuals without any personal or family history of mental illnesses, including BD, were included as control participants. In total, discovery samples from 1822 patients and 4650 control participants passed quality control for the GWAS analysis. Replication analyses of samples from 958 patients and 2050 control participants were conducted. Summary statistics from the European Psychiatric Genomics Consortium 2 (PGC2) BD GWAS (20 352 cases and 31 358 controls) were used for the trans-ancestry genetic correlation analysis, polygenetic risk score analysis, and meta-analysis to compare BD genetic risk between Han Chinese and European individuals. The study was performed in February 2020. MAIN OUTCOMES AND MEASURES Single-nucleotide variations with P < 5.00 × 10-8 were considered to show genome-wide significance of statistical association. RESULTS The Han Chinese discovery GWAS sample included 1822 cases (mean [SD] age, 35.43 [14.12] years; 838 [46%] male) and 4650 controls (mean [SD] age, 27.48 [5.97] years; 2465 [53%] male), and the replication sample included 958 cases (mean [SD] age, 37.82 [15.54] years; 412 [43%] male) and 2050 controls (mean [SD] age, 27.50 [6.00] years; 1189 [58%] male). A novel BD risk locus in Han Chinese individuals was found near the gene encoding transmembrane protein 108 (TMEM108, rs9863544; P = 2.49 × 10-8; odds ratio [OR], 0.650; 95% CI, 0.559-0.756), which is required for dendritic spine development and glutamatergic transmission in the dentate gyrus. Trans-ancestry genetic correlation estimation (ρge = 0.652, SE = 0.106; P = 7.30 × 10-10) and polygenetic risk score analyses (maximum liability-scaled Nagelkerke pseudo R2 = 1.27%; P = 1.30 × 10-19) showed evidence of shared BD genetic risk between Han Chinese and European populations, and meta-analysis identified 2 new GWAS risk loci near VRK2 (rs41335055; P = 4.98 × 10-9; OR, 0.849; 95% CI, 0.804-0.897) and RHEBL1 (rs7969091; P = 3.12 × 10-8; OR, 0.932; 95% CI, 0.909-0.956). CONCLUSIONS AND RELEVANCE This GWAS study identified several loci and genes involved in the heritable risk of BD, providing insights into its genetic architecture and biological basis.
Collapse
Affiliation(s)
- Hui-Juan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chen Zhang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dong-Sheng Zhou
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Yi Li
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Chu-Yi Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Chuang Wang
- Department of Pharmacology and Provincial Key Laboratory of Pathophysiology in Ningbo University School of Medicine, Ningbo, Zhejiang, China
| | - Lu Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
| | - Na Qu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ying He
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jun Zhou
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Zihao Yang
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xingxing Li
- Department of Psychiatry, Ningbo Kangning Hospital, Ningbo, Zhejiang, China
| | - Jun Cai
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Lu Yang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Chen
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weixing Fan
- Jinhua Second Hospital, Jinhua, Zhejiang, China
| | - Wei Tang
- Department of Psychiatry, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenxin Tang
- Hangzhou Seventh People’s Hospital, Hangzhou, Zhejiang, China
| | - Qiu-Fang Jia
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weiqing Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chuanjun Zhuo
- Department of Psychiatric-Neuroimaging-Genetics and Morbidity Laboratory (PNGC-Lab), Nankai University Affiliated Tianjin Anding Hospital, Tianjin Mental Health Center, Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Xueqin Song
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Liu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan Bai
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bao-Liang Zhong
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Shu-Fang Zhang
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Jing Chen
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Bin Xia
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Research Center for Psychological and Health Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
- Henan Key Lab of Biological Psychiatry, International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang Medical University, Xinxiang, Henan, China
- Henan Province People’s Hospital, Zhengzhou, Henan, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Key Laboratory of Mental Disorder Management in Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiao-Yan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Jie-Wei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xin Cai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Suhua Chang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Jing-Ping Zhao
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Wei-Hua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- National Health Commission (NHC) Key Laboratory of Mental Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
- Peking-Tsinghua Joint Center for Life Sciences and Peking University (PKU) International Data Group (IDG)/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xiaogang Chen
- Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Mental Disorders, Changsha, Hunan, China
- National Technology Institute of Mental Disorders, Changsha, Hunan, China
- Hunan Key Laboratory of Psychiatry and Mental Health, Changsha, Hunan, China
- Mental Health Institute of Central South University, Changsha, Hunan, China
- Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yiru Fang
- Clinical Research Center and Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
- Kunming Institute of Zoology–The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
40
|
Chen R, Chen J, Gao C, Wu C, Pan D, Zhang J, Zhou J, Wang K, Zhang Q, Yang Q, Jian X, Zhao Y, Wen Y, Wang Z, Shi Y, Li Z. Association analysis of potentially functional variants within 8p12 with schizophrenia in the Han Chinese population. World J Biol Psychiatry 2021; 22:27-33. [PMID: 32129128 DOI: 10.1080/15622975.2020.1738550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
OBJECTIVES Chromosome 8p12 was first identified as a schizophrenia (SCZ) risk locus in Chinese populations and replicated in European populations. However, the underlying functional variants still need to be further explored. In this study, we sought to identify plausible causal variants within this locus. METHODS A total of 386 potentially functional variants from 29 genes within the 8p12 locus were analysed in 2403 SCZ cases and 2594 control subjects in the Han Chinese population using Affymetrix customised genotyping assays. SHEsisplus was used for association analysis. A multiple testing corrected p value (false discovery rate (FDR)) < .05 was considered significant, and an unadjusted p value < .05 was considered nominal evidence of an association. RESULTS We did not find significant associations between the tested variants and SCZ. However, nominal associations were found for rs201292574 (unadjusted p = .033, FDR p = .571; 95% confidence interval (CI): 0.265-0.945; TACC1, NP_006274.2:p.Ala211Thr) and rs45563241 (unadjusted p = .039, FDR p = .571; 95% CI: 1.023-1.866; a synonymous mutation in ADRB3). CONCLUSIONS Our results provide limited evidence for the associations between variants from protein coding regions in 8p12 and SCZ in the Chinese population. Analyses of both coding and regulatory variants in larger sample sizes are required to further clarify the causal variants for SCZ with this risk locus.
Collapse
Affiliation(s)
- Ruirui Chen
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Chengwen Gao
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Chuanhong Wu
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Jinmai Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Zhang
- Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Xuemin Jian
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yalin Zhao
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongyong Shi
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiqiang Li
- School of Basic Medicine, Qingdao University, Qingdao, China.,Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, China.,Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China.,Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Identification of a functional SNP rs7304782 at schizophrenia risk locus 12q24.31 and validation of its association with schiz ophrenia in Chinese populations. Psychiatry Res 2020; 294:113491. [PMID: 33070109 DOI: 10.1016/j.psychres.2020.113491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified multiple schizophrenia-associated risk loci. However, the potential functional (or causal) variant remains largely unknown for each of the identified risk locus. In this study, we utilized different functional annotation approaches (i.e., CADD, Eigen, GWAVA, RegulomeDB and LINSIGHT) to prioritize the most possible functional variant at schizophrenia risk locus 12q24.31, a risk locus that showed genome-wide significant association with schizophrenia. We found that four functional annotation methods prioritized rs7304782 as a potential functional variant at 12q24.31, suggesting the potential functional consequence of rs7304782. Consistent with the functional annotation, reporter gene assays showed that different allele of rs7304782 affected the luciferase activity significantly, further supporting that rs7304782 is a functional variant. We further performed genetic association study and validated that rs7304782 is also associated with schizophrenia in Chinese population (N=4,291 cases and 7,847 controls), with the same risk allele as in European population. Expression quantitative trait loci (eQTL) analysis indicated that rs7304782 was significantly associated with the expression of OGFOD2 in human brain tissues. Of note, differential expression analysis indicated that OGFOD2 was significantly down-regulated in schizophrenia cases compared with controls. Our study identified a potential functional variant (i.e., rs7304782) at schizophrenia risk locus 12q24.31 and suggested that this functional variant may confer schizophrenia risk through regulating OGFOD2 expression.
Collapse
|
42
|
Zhu Z, Chen B, Na R, Fang W, Zhang W, Zhou Q, Zhou S, Lei H, Huang A, Chen T, Ni D, Gu Y, Liu J, Rao Y, Fang F. A genome-wide association study reveals a substantial genetic basis underlying the Ebbinghaus illusion. J Hum Genet 2020; 66:261-271. [PMID: 32939015 DOI: 10.1038/s10038-020-00827-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/09/2022]
Abstract
The Ebbinghaus illusion (EI) is an optical illusion of relative size perception that reflects the contextual integration ability in the visual modality. The current study investigated the genetic basis of two subtypes of EI, EI overestimation, and EI underestimation in humans, using quantitative genomic analyses. A total of 2825 Chinese adults were tested on their magnitudes of EI overestimation and underestimation using the method of adjustment, a standard psychophysical protocol. Heritability estimation based on common single nucleotide polymorphisms (SNPs) revealed a moderate heritability (34.3%) of EI overestimation but a nonsignificant heritability of EI underestimation. A meta-analysis of two phases (phase 1: n = 1986, phase 2: n = 839) of genome-wide association study (GWAS) discovered 1969 and 58 SNPs reaching genome-wide significance for EI overestimation and EI underestimation, respectively. Among these SNPs, 55 linkage-disequilibrium-independent SNPs were associated with EI overestimation in phase 1 with genome-wide significance and their associations could be confirmed in phase 2 cohort. Gene-based analyses found seven genes to be associated with EI overestimation at the genome-wide level, two from meta-analysis, and five from classical two-stage analysis. Overall, this study provided consistent evidence for a substantial genetic basis of the Ebbinghaus illusion.
Collapse
Affiliation(s)
- Zijian Zhu
- School of Psychology, Shaanxi Normal University, 710062, Xi'an, China
| | - Biqing Chen
- PKU-IDG/McGovern Institute for Brain Research, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.,Central Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, 210029, Nanjing, China
| | - Ren Na
- PKU-IDG/McGovern Institute for Brain Research, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Wan Fang
- PKU-IDG/McGovern Institute for Brain Research, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.,Beijing Innovative Center for Genomics, Peking University School of Life Sciences, and National Institute of Biological Sciences, 102206, Beijing, China
| | - Wenxia Zhang
- PKU-IDG/McGovern Institute for Brain Research, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Qin Zhou
- College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Shanbi Zhou
- University-Town Hospital of Chongqing Medical University, 401331, Chongqing, China
| | - Han Lei
- College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Ailong Huang
- College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Tingmei Chen
- College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Dongsheng Ni
- Division of Molecular Nephrology and Creative Training Center for Undergraduates, M.O.E. Key Laboratory of Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Yuping Gu
- Division of Molecular Nephrology and Creative Training Center for Undergraduates, M.O.E. Key Laboratory of Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Jianing Liu
- Division of Molecular Nephrology and Creative Training Center for Undergraduates, M.O.E. Key Laboratory of Medical Diagnostics, College of Laboratory Medicine, Chongqing Medical University, 400016, Chongqing, China
| | - Yi Rao
- PKU-IDG/McGovern Institute for Brain Research, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China. .,Beijing Innovative Center for Genomics, Peking University School of Life Sciences, and National Institute of Biological Sciences, 102206, Beijing, China.
| | - Fang Fang
- PKU-IDG/McGovern Institute for Brain Research, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China. .,School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, Peking University, 100871, Beijing, China.
| |
Collapse
|
43
|
Zhang Y, Li S, Li X, Yang Y, Li W, Xiao X, Li M, Lv L, Luo X. Convergent lines of evidence support NOTCH4 as a schizophrenia risk gene. J Med Genet 2020; 58:666-678. [PMID: 32900838 DOI: 10.1136/jmedgenet-2020-106830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 06/04/2020] [Accepted: 07/17/2020] [Indexed: 12/22/2022]
Abstract
The association between NOTCH4 and schizophrenia has been repeatedly reported. However, the results from different genetic studies are inconsistent, and the role of NOTCH4 in schizophrenia pathogenesis remains unknown. Here, we provide convergent lines of evidence that support NOTCH4 as a schizophrenia risk gene. We first performed a meta-analysis and found that a genetic variant (rs2071287) in NOTCH4 was significantly associated with schizophrenia (a total of 125 848 subjects, p=8.31×10-17), with the same risk allele across all tested samples. Expression quantitative trait loci (eQTL) analysis showed that rs2071287 was significantly associated with NOTCH4 expression (p=1.08×10-14) in human brain tissues, suggesting that rs2071287 may confer schizophrenia risk through regulating NOTCH4 expression. Sherlock integrative analysis using a large-scale schizophrenia GWAS and eQTL data from human brain tissues further revealed that NOTCH4 was significantly associated with schizophrenia (p=4.03×10-7 in CMC dataset and p=3.06×10-6 in xQTL dataset), implying that genetic variants confer schizophrenia risk through modulating NOTCH4 expression. Consistently, we found that NOTCH4 was significantly downregulated in brains of schizophrenia patients compared with controls (p=2.53×10-3), further suggesting that dysregulation of NOTCH4 may have a role in schizophrenia. Finally, we showed that NOTCH4 regulates proliferation, self-renewal, differentiation and migration of neural stem cells, suggesting that NOTCH4 may confer schizophrenia risk through affecting neurodevelopment. Our study provides convergent lines of evidence that support the involvement of NOTCH4 in schizophrenia. In addition, our study also elucidates a possible mechanism for the role of NOTCH4 in schizophrenia pathogenesis.
Collapse
Affiliation(s)
- Yan Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China.,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, China .,Henan Key Lab of Biological Psychiatry of Xinxiang Medical University, Xinxiang, Henan 453002, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, Henan 453002, China
| | - XiongJian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China .,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
44
|
Song Y, Jin D, Chen J, Liang W, Liu X. Effects of Arsenic (+3 Oxidation State) Methyltransferase Gene Polymorphisms and Expression on Bladder Cancer: Evidence from a Systematic Review, Meta-analysis and TCGA Dataset. Toxicol Sci 2020; 177:27-40. [PMID: 32539094 DOI: 10.1093/toxsci/kfaa087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Inorganic arsenic (iAs) is a recognized environment-related factor for bladder cancer (BCa). Arsenic (+3 oxidation state) methyltransferase (AS3MT) gene might influence BCa by regulating iAs metabolism. The aim of the present study was to explore whether AS3MT polymorphisms could affect BCa susceptibility. We systematically reviewed eligible case-control studies about AS3MT polymorphisms and BCa and to further compare the genotype distribution and allele distribution between BCa patients and controls by meta-analysis for humans. Besides, to clarify the effects of AS3MT expression on BCa clinical outcomes and survival time, we also conducted a series of analyses based on The Cancer Genome Atlas dataset. Databases were systematically retrieved and we applied Stata software to perform meta-analysis. The registration of this study protocol is at PROSPERO and ID is CRD42019133947. Five articles were recruited and pooled results demonstrated that rs3740393 and rs11191438 polymorphisms were related to BCa risk in overall population (p < .05) in the overall population. In addition, GG and GC genotypes in rs3740393 and GG genotype in rs11191438 might be the susceptibility genotypes for BCa. Results based on 168 BCa samples from TGCA indicated that patients with higher expression of AS3MT had poor overall survival time and AS3MT expression is an independent indicator for BCa survival. This study identified that AS3MT polymorphisms could affect BCa risk and AS3MT expression was pivotal in prognosis of BCa.
Collapse
Affiliation(s)
| | - Donghui Jin
- Department of Cardiothoracic Surgery, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jingyi Chen
- Institute of Clinical Molecular Biology and Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Wanfeng Liang
- School of Statics and Data Science, Nankai University, Tianjin 300071, China
| | | |
Collapse
|
45
|
Mirauta BA, Seaton DD, Bensaddek D, Brenes A, Bonder MJ, Kilpinen H, Stegle O, Lamond AI. Population-scale proteome variation in human induced pluripotent stem cells. eLife 2020; 9:e57390. [PMID: 32773033 PMCID: PMC7447446 DOI: 10.7554/elife.57390] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/08/2020] [Indexed: 12/12/2022] Open
Abstract
Human disease phenotypes are driven primarily by alterations in protein expression and/or function. To date, relatively little is known about the variability of the human proteome in populations and how this relates to variability in mRNA expression and to disease loci. Here, we present the first comprehensive proteomic analysis of human induced pluripotent stem cells (iPSC), a key cell type for disease modelling, analysing 202 iPSC lines derived from 151 donors, with integrated transcriptome and genomic sequence data from the same lines. We characterised the major genetic and non-genetic determinants of proteome variation across iPSC lines and assessed key regulatory mechanisms affecting variation in protein abundance. We identified 654 protein quantitative trait loci (pQTLs) in iPSCs, including disease-linked variants in protein-coding sequences and variants with trans regulatory effects. These include pQTL linked to GWAS variants that cannot be detected at the mRNA level, highlighting the utility of dissecting pQTL at peptide level resolution.
Collapse
Affiliation(s)
- Bogdan Andrei Mirauta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Daniel D Seaton
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Dalila Bensaddek
- Centre for Gene Regulation & Expression, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Alejandro Brenes
- Centre for Gene Regulation & Expression, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Marc Jan Bonder
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Helena Kilpinen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome CampusHinxtonUnited Kingdom
- European Molecular Biology Laboratory, Genome Biology UnitHeidelbergGermany
- Division of Computational Genomics and Systems Genetic, German Cancer Research CenterHeidelbergGermany
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
46
|
Kang K, Sun X, Wang L, Yao X, Tang S, Deng J, Wu X, Yang C, Chen G. Direct-to-consumer genetic testing in China and its role in GWAS discovery and replication. QUANTITATIVE BIOLOGY 2020. [DOI: 10.1007/s40484-020-0209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Ullah A, Long X, Mat WK, Hu T, Khan MI, Hui L, Zhang X, Sun P, Gao M, Wang J, Wang H, Li X, Sun W, Qiao M, Xue H. Highly Recurrent Copy Number Variations in GABRB2 Associated With Schizophrenia and Premenstrual Dysphoric Disorder. Front Psychiatry 2020; 11:572. [PMID: 32695026 PMCID: PMC7338560 DOI: 10.3389/fpsyt.2020.00572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/03/2020] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Although single-nucleotide polymorphisms in GABRB2, the gene encoding for GABAA receptors β2 subunit, have been associated with schizophrenia (SCZ), it is unknown whether there is any association of copy number variations (CNVs) in this gene with either SCZ or premenstrual dysphoric disorder (PMDD). METHODS In this study, the occurrences of the recurrent CNVs esv2730987 in Intron 6 and nsv1177513 in Exon 11 of GABRB2 in Chinese and German SCZ, and Chinese PMDD patients were compared to controls of same ethnicity and gender by quantitative PCR (qPCR). RESULTS The results demonstrated that copy-number-gains were enriched in both SCZ and PMDD patients with significant odds ratios (OR). For combined-gender SCZ patients versus controls, about two-fold increases were observed in both ethnic groups at both esv2730987 (OR = 2.15, p = 5.32E-4 in Chinese group; OR = 2.79, p = 8.84E-3 in German group) and nsv1177513 (OR = 3.29, p = 1.28E-11 in Chinese group; OR = 2.44, p = 6.17E-5 in German group). The most significant copy-number-gains were observed in Chinese females at nsv1177513 (OR = 3.41), and German females at esv2730987 (OR=3.96). Copy-number-gains were also enriched in Chinese PMDD patients versus controls at esv2730987 (OR = 10.53, p = 4.34E-26) and nsv1177513 (OR = 2.39, p = 3.19E-5). CONCLUSION These findings established for the first time the association of highly recurrent CNVs with SCZ and PMDD, suggesting the presence of an overlapping genetic basis with shared biomarkers for these two common psychiatric disorders.
Collapse
Affiliation(s)
- Ata Ullah
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Xi Long
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Wai-Kin Mat
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Taobo Hu
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Muhammad Ismail Khan
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
| | - Li Hui
- Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Xiangyang Zhang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Peng Sun
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingzhou Gao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jieqiong Wang
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haijun Wang
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xia Li
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenjun Sun
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mingqi Qiao
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Xue
- Applied Genomics Center and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Division of Life Science, Hong Kong, Hong Kong
- School of Basic Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
48
|
Wu Y, Cao H, Baranova A, Huang H, Li S, Cai L, Rao S, Dai M, Xie M, Dou Y, Hao Q, Zhu L, Zhang X, Yao Y, Zhang F, Xu M, Wang Q. Multi-trait analysis for genome-wide association study of five psychiatric disorders. Transl Psychiatry 2020; 10:209. [PMID: 32606422 PMCID: PMC7326916 DOI: 10.1038/s41398-020-00902-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/06/2020] [Accepted: 06/16/2020] [Indexed: 02/05/2023] Open
Abstract
We conducted a cross-trait meta-analysis of genome-wide association study on schizophrenia (SCZ) (n = 65,967), bipolar disorder (BD) (n = 41,653), autism spectrum disorder (ASD) (n = 46,350), attention deficit hyperactivity disorder (ADHD) (n = 55,374), and depression (DEP) (n = 688,809). After the meta-analysis, the number of genomic loci increased from 14 to 19 in ADHD, from 3 to 10 in ASD, from 45 to 57 in DEP, from 8 to 54 in BD, and from 64 to 87 in SCZ. We observed significant enrichment of overlapping genes among different disorders and identified a panel of cross-disorder genes. A total of seven genes were found being commonly associated with four out of five psychiatric conditions, namely GABBR1, GLT8D1, HIST1H1B, HIST1H2BN, HIST1H4L, KCNB1, and DCC. The SORCS3 gene was highlighted due to the fact that it was involved in all the five conditions of study. Analysis of correlations unveiled the existence of two clusters of related psychiatric conditions, SCZ and BD that were separate from the other three traits, and formed another group. Our results may provide a new insight for genetic basis of the five psychiatric disorders.
Collapse
Affiliation(s)
- Yulu Wu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hongbao Cao
- Department of Psychiatry, First Clinical Medical College/First Hospital of Shanxi Medical University, Taiyuan, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University (GMU), Fairfax, VA, USA
- Research Centre for Medical Genetics, Moscow, Russia
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Sheng Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, 1954 Huashan Road, Xuhui, 200030, Shanghai, China
| | - Lei Cai
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, 1954 Huashan Road, Xuhui, 200030, Shanghai, China
| | - Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Minhan Dai
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Min Xie
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yikai Dou
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qinjian Hao
- The Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ling Zhu
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiangrong Zhang
- Department of Geriatric Psychiatry, Nanjing Brain Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | - Yin Yao
- Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, China.
| | - Mingqing Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiaotong University, 1954 Huashan Road, Xuhui, 200030, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 South Wanping Road, Xuhui, 200030, Shanghai, China.
| | - Qiang Wang
- Mental Health Center and Psychiatric Laboratory, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
49
|
Li K, Li Y, Wang J, Huo Y, Huang D, Li S, Liu J, Li X, Liu R, Chen X, Yao YG, Chen C, Xiao X, Li M, Luo XJ. A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population. J Genet Genomics 2020; 47:233-248. [PMID: 32712163 DOI: 10.1016/j.jgg.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
The Psychiatric Genomics Consortium (PGC) has recently identified 10 potential functional coding variants for schizophrenia. However, how these coding variants confer schizophrenia risk remains largely unknown. Here, we investigate the associations between eight potential functional coding variants identified by PGC and schizophrenia in a large Han Chinese sample (n = 4022 cases and 9270 controls). Among the eight tested single nucelotide polymorphisms (SNPs), rs3617 (a missense variant, p.K315Q in the ITIH3 gene) showed genome-wide significant association with schizophrenia in the Han Chinese population (P = 8.36 × 10-16), with the same risk allele as in PGC. Interestingly, rs3617 is located in a genomic region that is highly evolutionarily conserved, and its schizophrenia risk allele (C allele) was associated with lower ITIH3 mRNA and protein expression. Intriguingly, mouse neural stem cells stably overexpressing ITIH3 with different alleles of rs3617 exhibited significant differences in proliferation, migration, and differentiation, suggesting the impact of rs3617 on neurodevelopment. Subsequent transcriptome analysis found that the differentially expressed genes in neural stem cells stably overexpressing different alleles of rs3617 were significantly enriched in schizophrenia-related pathways, including cell adhesion, synapse assembly, MAPK and PI3K-AKT pathways. Our study provides convergent lines of evidence suggesting that rs3617 in ITIH3 likely affects protein function and neurodevelopment and thereby confers risk of schizophrenia.
Collapse
Affiliation(s)
- Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaogang Chen
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
50
|
Guan F, Ni T, Han W, Lin H, Zhang B, Chen G, Zhu L, Liu D, Zhang T. Evaluation of the relationships of the WBP1L gene with schizophrenia and the general psychopathology scale based on a case-control study. Am J Med Genet B Neuropsychiatr Genet 2020; 183:164-171. [PMID: 31840934 DOI: 10.1002/ajmg.b.32773] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
Abstract
WBP1L is a target of microRNA 137 (miR-137) and has been considered a candidate gene for schizophrenia (SCZ). To investigate the relationships between WBP1L and SCZ and its related symptom scales, a total of 5,993 Chinese Han subjects, including 2,128 SCZ patients and 3,865 controls, were enrolled. In addition, an independent sample set for replication study including 1,052 SCZ patients and 2,124 controls were also recruited. Thirty-two tag single nucleotide polymorphisms (SNPs) located within gene region of WBP1L were selected for genotyping and analyzing. The expression quantitative trait loci (eQTL) effects for the targeted SNPs were investigated with gene expression data from multiple human tissues. Rs4147157 (OR = 0.84, p = 1.51 × 10-5 ) and rs284854 (OR = 1.14, p = 7.00 × 10-4 ) were significantly associated with SCZ disease status and these association signals were replicated in our replication sample. A significant association was identified between rs4147157 and the general (β = -.66, p = .001) and total (β = -.8, p = .0042) scores of positive and negative syndrome scale scores in SCZ patients. Both SNPs were significant eQTL for genes around WBP1L in human brain tissues including ARL3 and AS3MT. To conclude, SNPs rs4147157 and rs284854 were associated with SCZ in the Chinese Han population. Additionally, rs4147157 was significantly associated with specific symptom features of SCZ.
Collapse
Affiliation(s)
- Fanglin Guan
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tong Ni
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Wei Han
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Huali Lin
- Xi'an Mental Health Center, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Gang Chen
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Department of Forensic Pathology, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Li Zhu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Dan Liu
- Department of Forensic Psychiatry, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.,Key Laboratory of National Ministry of Health for Forensic Sciences, School of Medicine & Forensics, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| |
Collapse
|