1
|
Pyne NK, Bagel J, Shyng C, Odonnell P, Miyadera K, Srnak J, Swain G, Pesayco JP, Shelton GD, Assenmacher CA, Dickson P, Stern JA, Flanagan-Steet H, Gray SJ, Bradbury AM. Age-sensitive response of systemic AAV-mediated gene therapy in a newly characterized feline model of mucolipidosis II. Mol Ther 2025:S1525-0016(25)00309-0. [PMID: 40285357 DOI: 10.1016/j.ymthe.2025.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/20/2024] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Mucolipidosis II (MLII) is a lysosomal storage disorder (LSD) caused by mutations in GNPTAB and loss of mannose 6-phosphate-dependent targeting of lysosomal enzymes. Affected children exhibit cognitive deficits, skeletal dysplasia, and cardiopulmonary disease, with death typically occurring before age 10. A naturally occurring feline model of MLII results from a nonsense mutation in GNPTAB; cats develop elevated lysosomal enzyme activities, growth retardation, skeletal deformities, blindness, cardiomegaly, and die prematurely. Most LSDs exhibit central nervous system disease, which is a primary contributor to morbidity and mortality. Therefore, we evaluated nervous system disease in feline MLII. MLII cats lived to approximately 5 months of age, had impairments in hearing and sensory nerve conduction, hydrocephalus, and increased expression of lysosomal associated membrane protein 1. Quantification of cytokines and chemokines revealed dysregulation, elucidating potential pathomechanisms and non-invasive biomarkers. We then evaluated adeno-associated virus (AAV)-mediated gene therapy. MLII cats were treated with AAV9 encoding feline GNPTAB. High-dose AAV9-fGNPTAB intervention in the first week of life was fatal; however, delaying treatment to 4 weeks was tolerated. Correction was not complete, however, the highest dose resulted in the greatest correction of ophthalmic, skeletal, and cardiac disease associated with MLII.
Collapse
Affiliation(s)
- Nettie K Pyne
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA
| | - Jessica Bagel
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Shyng
- Gene Therapy Center, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patricia Odonnell
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keiko Miyadera
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gary Swain
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jill P Pesayco
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - G Diane Shelton
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charles-Antoine Assenmacher
- Comparative Pathology Core, Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia Dickson
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Joshua A Stern
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA
| | | | - Steven J Gray
- Gene Therapy Center, University of North Carolina - Chapel Hill, Chapel Hill, NC 27599, USA
| | - Allison M Bradbury
- Center for Gene Therapy, Nationwide Children's Hospital, Columbus, OH 43215, USA; Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pediatrics, The Ohio State University, Columbus, OH 43215, USA.
| |
Collapse
|
2
|
Hunter JE, Vite CH, Molony CM, O'Donnell PA, Wolfe JH. Intracisternal vs intraventricular injection of AAV1 result in comparable, widespread transduction of the dog brain. Gene Ther 2024:10.1038/s41434-024-00510-9. [PMID: 39653737 DOI: 10.1038/s41434-024-00510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/13/2024] [Accepted: 11/28/2024] [Indexed: 03/29/2025]
Abstract
Widespread distribution of transduced brain cells following delivery of AAV vectors into the cerebrospinal fluid (CSF) of the cisterna magna (CM) has been demonstrated in large animal brains. In humans, intraventricular injection is preferred to intracisternal injection for CSF delivery due to the risk of brain stem injury. One study in the dog reported adverse reactions to AAV vectors expressing GFP injected into the lateral ventricle but not when injected into the CM. In contrast, AAV expressing mammalian genes in diseased animals have not triggered adverse responses since many genetic diseases also have compromised immune systems. Differences in circulation of CSF from each site could potentially affect vector spread within the brain, but a direct comparison has not been made using both a mammalian gene and immunologically normal animals. In this study we evaluated the dopamine-2-receptor (D2R) variant D2R80A, which is inactivated for intracellular signaling and has been used as a reporter gene in large animal brains. No adverse reactions to the D2R80A gene were observed from either injection route in normal dogs and both routes resulted in comparable distribution of D2R80A within the brain.
Collapse
Affiliation(s)
- Jacqueline E Hunter
- Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Charles H Vite
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | - Caitlyn M Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patricia A O'Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John H Wolfe
- Research Institute of Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Hou WC, Massey LA, Rhoades D, Wu Y, Ren W, Frank C, Overkleeft HS, Kelly JW. A PIKfyve modulator combined with an integrated stress response inhibitor to treat lysosomal storage diseases. Proc Natl Acad Sci U S A 2024; 121:e2320257121. [PMID: 39150784 PMCID: PMC11348278 DOI: 10.1073/pnas.2320257121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/19/2024] [Indexed: 08/18/2024] Open
Abstract
Lysosomal degradation pathways coordinate the clearance of superfluous and damaged cellular components. Compromised lysosomal degradation is a hallmark of many degenerative diseases, including lysosomal storage diseases (LSDs), which are caused by loss-of-function mutations within both alleles of a lysosomal hydrolase, leading to lysosomal substrate accumulation. Gaucher's disease, characterized by <15% of normal glucocerebrosidase function, is the most common LSD and is a prominent risk factor for developing Parkinson's disease. Here, we show that either of two structurally distinct small molecules that modulate PIKfyve activity, identified in a high-throughput cellular lipid droplet clearance screen, can improve glucocerebrosidase function in Gaucher patient-derived fibroblasts through an MiT/TFE transcription factor that promotes lysosomal gene translation. An integrated stress response (ISR) antagonist used in combination with a PIKfyve modulator further improves cellular glucocerebrosidase activity, likely because ISR signaling appears to also be slightly activated by treatment by either small molecule at the higher doses employed. This strategy of combining a PIKfyve modulator with an ISR inhibitor improves mutant lysosomal hydrolase function in cellular models of additional LSD.
Collapse
Affiliation(s)
- William C. Hou
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Lynée A. Massey
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Derek Rhoades
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Yin Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA92122
| | - Wen Ren
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Chiara Frank
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| | - Herman S. Overkleeft
- Department of Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden University, Leiden2333 CC, The Netherlands
| | - Jeffrey W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA92122
| |
Collapse
|
4
|
Hunter JE, Molony CM, Bagel JH, O’Donnell P, Vite CH, Chawla S, Poptani H, Wolfe JH. Widespread correction of brain pathology in feline alpha-mannosidosis by dose escalation of intracisternal AAV vector injection. Mol Ther Methods Clin Dev 2024; 32:101272. [PMID: 38946937 PMCID: PMC11214173 DOI: 10.1016/j.omtm.2024.101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 07/02/2024]
Abstract
Alpha-mannosidosis is caused by a genetic deficiency of lysosomal alpha-mannosidase, leading to the widespread presence of storage lesions in the brain and other tissues. Enzyme replacement therapy is available but is not approved for treating the CNS, since the enzyme does not penetrate the blood-brain barrier. However, intellectual disability is a major manifestation of the disease; thus, a complimentary treatment is needed. While enzyme replacement therapy into the brain is technically feasible, it requires ports and frequent administration over time that are difficult to manage medically. Infusion of adeno-associated viral vectors into the cerebrospinal fluid is an attractive route for broadly targeting brain cells. We demonstrate here the widespread post-symptomatic correction of the globally distributed storage lesions by infusion of a high dose of AAV1-feline alpha-mannosidase (fMANB) into the CSF via the cisterna magna in the gyrencephalic alpha-mannosidosis cat brain. Significant improvements in clinical parameters occurred, and widespread global correction was documented pre-mortem by non-invasive magnetic resonance imaging. Postmortem analysis demonstrated high levels of MANB activity and reversal of lysosomal storage lesions throughout the brain. Thus, CSF treatment by adeno-associated viral vector gene therapy appears to be a suitable complement to systemic enzyme replacement therapy to potentially treat the whole patient.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles H. Vite
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Chen X, Lim DA, Lawlor MW, Dimmock D, Vite CH, Lester T, Tavakkoli F, Sadhu C, Prasad S, Gray SJ. Biodistribution of Adeno-Associated Virus Gene Therapy Following Cerebrospinal Fluid-Directed Administration. Hum Gene Ther 2023; 34:94-111. [PMID: 36606687 DOI: 10.1089/hum.2022.163] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Adeno-associated virus (AAV)-based gene therapies, exemplified by the approved therapy for spinal muscular atrophy, have the potential to deliver disease-course-altering treatments for central nervous system (CNS) indications. However, several clinical trials have reported severe adverse events, including patient deaths following high-dose systemic administration for muscle-directed gene transfer, highlighting the need to explore approaches utilizing lower doses when targeting the CNS. Animal models of disease provide insight into the response to new AAV therapies. However, translation from small to larger animals and eventually to humans is hampered by anatomical and biological differences across the species and their impact on AAV delivery. We performed a literature review of preclinical studies of AAV gene therapy biodistribution following cerebrospinal fluid (CSF) delivery (intracerebroventricular, intra-cisterna magna, and intrathecal lumbar). The reviewed literature varies greatly in the reported biodistribution of AAV following administration into the CSF. Differences between studies, including animal model, vector serotype used, method used to assess biodistribution, and route of administration, among other variables, contribute to differing outcomes and difficulties in translating these preclinical results. For example, only half of the published AAV-based gene therapy studies report vector copy number, the most direct readout following administration of a vector; none of these studies reported details such as the empty:full capsid ratio and quality of encapsidated genome. Analysis of the last decade's literature focusing on AAV-based gene therapies targeting the CNS underscores limitations of the body of knowledge and room for continued research. In particular, there is a need to understand the biodistribution achieved by different CSF-directed routes of administration and determining if specific cell types/structures of interest will be transduced. Our findings point to a clear need for a more systematic approach across the field to align the assessments and elements reported in preclinical research to enable more reliable translation across animal models and into human studies.
Collapse
Affiliation(s)
- Xin Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel A Lim
- Department of Neurological Surgery, Eli and Edythe Broad Center for Regeneration Medicine, and the Weill Institute for Neurosciences, University of California San Francisco School of Medicine, San Francisco, California, USA
| | - Michael W Lawlor
- Medical College of Wisconsin and Diverge Translational Science Laboratory, Milwaukee, Wisconsin, USA
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, San Diego, California, USA
| | - Charles H Vite
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; and
| | | | | | | | | | - Steven J Gray
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Hunter JE, Molony CM, Bagel JH, O’Donnell PA, Kaler SG, Wolfe JH. Transduction characteristics of alternative adeno-associated virus serotypes in the cat brain by intracisternal delivery. Mol Ther Methods Clin Dev 2022; 26:384-393. [PMID: 36034772 PMCID: PMC9391516 DOI: 10.1016/j.omtm.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
Multiple studies have examined the transduction characteristics of different AAV serotypes in the mouse brain, where they can exhibit significantly different patterns of transduction. The pattern of transduction also varies with the route of administration. Much less information exists for the transduction characteristics in large-brained animals. Large animal models have brains that are closer in size and organization to the human brain, such as being gyrencephalic compared to the lissencephalic rodent brains, pathway organization, and certain electrophysiologic properties. Large animal models are used as translational intermediates to develop gene therapies to treat human diseases. Various AAV serotypes and routes of delivery have been used to study the correction of pathology in the brain in lysosomal storage diseases. In this study, we evaluated the ability of selected AAV serotypes to transduce cells in the cat brain when delivered into the cerebrospinal fluid via the cisterna magna. We previously showed that AAV1 transduced significantly greater numbers of cells than AAV9 in the cat brain by this route. In the present study, we evaluated serotypes closely related to AAVs 1 and 9 (AAVs 6, AS, hu32) that may mediate more extensive transduction, as well as AAVs 4 and 5, which primarily transduce choroid plexus epithelial (CPE) and ependymal lining cells in the rodent brain. The related serotypes tended to have similar patterns of transduction but were divergent in some specific brain structures.
Collapse
Affiliation(s)
- Jacqueline E. Hunter
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Caitlyn M. Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica H. Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patricia A. O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - John H. Wolfe
- Research Institute of Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA,Corresponding author John H. Wolfe, Children’s Hospital of Philadelphia, 502-G Abramson Research Center, 3615 Civic Center Boulevard, Philadelphia, PA 19104-4399, USA.
| |
Collapse
|
7
|
Gross AL, Gray-Edwards HL, Bebout CN, Ta NL, Nielsen K, Brunson BL, Mercado KRL, Osterhoudt DE, Batista AR, Maitland S, Seyfried TN, Sena-Esteves M, Martin DR. Intravenous delivery of adeno-associated viral gene therapy in feline GM1 gangliosidosis. Brain 2021; 145:655-669. [PMID: 34410345 DOI: 10.1093/brain/awab309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 11/14/2022] Open
Abstract
GM1 gangliosidosis is a fatal neurodegenerative disease caused by a deficiency of lysosomal β-galactosidase. In its most severe form, GM1 gangliosidosis causes death by 4 years of age, and no effective treatments exist. Previous work has shown that injection of the brain parenchyma with an adeno-associated viral vector provides pronounced therapeutic benefit in a feline GM1 model. To develop a less invasive treatment for the brain and increase systemic biodistribution, intravenous injection of AAV9 was evaluated. AAV9 expressing feline β-galactosidase was intravenously administered at 1.5x1013 vector genomes/kilogram body weight to six GM1 cats at approximately 1 month of age. The animals were divided into two cohorts: 1) a long-term group, which was followed to humane endpoint, and 2) a short-term group, which was analyzed 16-weeks post treatment. Clinical assessments included neurological exams, cerebrospinal fluid and urine biomarkers, and 7-Telsa magnetic resonance imaging and spectroscopy. Postmortem analysis included β-galactosidase and virus distribution, histological analysis, and ganglioside content. Untreated GM1 animals survived 8.0 ± 0.6 months while intravenous treatment increased survival to an average of 3.5 years (n = 2) with substantial improvements in quality of life and neurologic function. Neurological abnormalities, which in untreated animals progress to the inability to stand and debilitating neurological disease by 8 months of age, were mild in all treated animals. Cerebrospinal fluid biomarkers were normalized, indicating decreased central nervous system cell damage in the treated animals. Urinary glycosaminoglycans decreased to normal levels in the long-term cohort. Magnetic resonance imaging and spectroscopy showed partial preservation of the brain in treated animals, which was supported by postmortem histological evaluation. β-galactosidase activity was increased throughout the central nervous system, reaching carrier levels in much of the cerebrum and normal levels in the cerebellum, spinal cord and cerebrospinal fluid. Ganglioside accumulation was significantly reduced by treatment. Peripheral tissues such as heart, skeletal muscle, and sciatic nerve also had normal β-galactosidase activity in treated GM1 cats. GM1 histopathology was largely corrected with treatment. There was no evidence of tumorigenesis or toxicity. Restoration of β-galactosidase activity in the central nervous system and peripheral organs by intravenous gene therapy led to profound increases in lifespan and quality of life in GM1 cats. This data supports the promise of intravenous gene therapy as a safe, effective treatment for GM1 gangliosidosis.
Collapse
Affiliation(s)
- Amanda L Gross
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Cassie N Bebout
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Nathan L Ta
- Biology Department, Boston College, Chestnut Hill, MA 02467 USA
| | - Kayly Nielsen
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Brandon L Brunson
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| | - Kalajan R Lopez Mercado
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Devin E Osterhoudt
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA
| | - Ana Rita Batista
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Stacy Maitland
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | | | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester MA 01605 USA.,Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester MA 01605 USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL 36849 USA.,Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, AL 36849 USA
| |
Collapse
|
8
|
Adeno-Associated Vector-Delivered CRISPR/ SaCas9 System Reduces Feline Leukemia Virus Production In Vitro. Viruses 2021; 13:v13081636. [PMID: 34452500 PMCID: PMC8402633 DOI: 10.3390/v13081636] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/16/2022] Open
Abstract
Feline leukemia virus (FeLV) is a retrovirus of cats worldwide. High viral loads are associated with progressive infection and the death of the host, due to FeLV-associated disease. In contrast, low viral loads, an effective immune response, and a better clinical outcome can be observed in cats with regressive infection. We hypothesize that by lowering viral loads in progressively infected cats, using CRISPR/SaCas9-assisted gene therapy, the cat’s immune system may be permitted to direct the infection towards a regressive outcome. In a step towards this goal, the present study evaluates different adeno-associated vectors (AAVs) for their competence in delivering a gene editing system into feline cells, followed by investigations of the CRISPR/SaCas9 targeting efficiency for different sites within the FeLV provirus. Nine natural AAV serotypes, two AAV hybrid strains, and Anc80L65, an in silico predicted AAV ancestor, were tested for their potential to infect different feline cell lines and feline primary cells. AAV-DJ revealed superior infection efficiency and was thus employed in subsequent transduction experiments. The introduction of double-strand breaks, using the CRISPR/SaCas9 system targeting 12 selected FeLV provirus sites, was confirmed by T7 endonuclease 1 (T7E1), as well as Tracking of Indels by Decomposition (TIDE) analysis. The highest percentage (up to 80%) of nonhomologous end-joining (NHEJ) was found in the highly conserved gag and pol regions. Subsequent transduction experiments, using AAV-DJ, confirmed indel formation and showed a significant reduction in FeLV p27 antigen for some targets. The targeting of the FeLV provirus was efficient when using the CRISPR/SaCas9 approach in vitro. Whether the observed extent of provirus targeting will be sufficient to provide progressively FeLV-infected cats with the means to overcome the infection needs to be further investigated in vivo.
Collapse
|
9
|
Graceffa V. Clinical Development of Cell Therapies to Halt Lysosomal Storage Diseases: Results and Lessons Learned. Curr Gene Ther 2021; 22:191-213. [PMID: 34323185 DOI: 10.2174/1566523221666210728141924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 11/22/2022]
Abstract
Although cross-correction was discovered more than 50 years ago, and held the promise of drastically improving disease management, still no cure exists for lysosomal storage diseases (LSDs). Cell therapies hold the potential to halt disease progression: either a subset of autologous cells can be ex vivo/ in vivo transfected with the functional gene or allogenic wild type stem cells can be transplanted. However, majority of cell-based attempts have been ineffective, due to the difficulties in reversing neuronal symptomatology, in finding appropriate gene transfection approaches, in inducing immune tolerance, reducing the risk of graft versus host disease (GVHD) when allogenic cells are used and that of immune response when engineered viruses are administered, coupled with a limited secretion and uptake of some enzymes. In the last decade, due to advances in our understanding of lysosomal biology and mechanisms of cross-correction, coupled with progresses in gene therapy, ongoing pre-clinical and clinical investigations have remarkably increased. Even gene editing approaches are currently under clinical experimentation. This review proposes to critically discuss and compare trends and advances in cell-based and gene therapy for LSDs. Systemic gene delivery and transplantation of allogenic stem cells will be initially discussed, whereas proposed brain targeting methods will be then critically outlined.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland
| |
Collapse
|
10
|
Massaro G, Geard AF, Liu W, Coombe-Tennant O, Waddington SN, Baruteau J, Gissen P, Rahim AA. Gene Therapy for Lysosomal Storage Disorders: Ongoing Studies and Clinical Development. Biomolecules 2021; 11:611. [PMID: 33924076 PMCID: PMC8074255 DOI: 10.3390/biom11040611] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Rare monogenic disorders such as lysosomal diseases have been at the forefront in the development of novel treatments where therapeutic options are either limited or unavailable. The increasing number of successful pre-clinical and clinical studies in the last decade demonstrates that gene therapy represents a feasible option to address the unmet medical need of these patients. This article provides a comprehensive overview of the current state of the field, reviewing the most used viral gene delivery vectors in the context of lysosomal storage disorders, a selection of relevant pre-clinical studies and ongoing clinical trials within recent years.
Collapse
Affiliation(s)
- Giulia Massaro
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Amy F. Geard
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
| | - Wenfei Liu
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Oliver Coombe-Tennant
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| | - Simon N. Waddington
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa;
- Gene Transfer Technology Group, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK
| | - Julien Baruteau
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 1EH, UK;
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, National Institute of Health Research, University College London, London WC1N 1EH, UK;
| | - Ahad A. Rahim
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK; (A.F.G.); (W.L.); (O.C.-T.); (A.A.R.)
| |
Collapse
|
11
|
Yoon SY, Hunter JE, Chawla S, Clarke DL, Molony C, O’Donnell PA, Bagel JH, Kumar M, Poptani H, Vite CH, Wolfe JH. Global CNS correction in a large brain model of human alpha-mannosidosis by intravascular gene therapy. Brain 2020; 143:2058-2072. [PMID: 32671406 PMCID: PMC7363495 DOI: 10.1093/brain/awaa161] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 12/15/2022] Open
Abstract
Intravascular injection of certain adeno-associated virus vector serotypes can cross the blood-brain barrier to deliver a gene into the CNS. However, gene distribution has been much more limited within the brains of large animals compared to rodents, rendering this approach suboptimal for treatment of the global brain lesions present in most human neurogenetic diseases. The most commonly used serotype in animal and human studies is 9, which also has the property of being transported via axonal pathways to distal neurons. A small number of other serotypes share this property, three of which were tested intravenously in mice compared to 9. Serotype hu.11 transduced fewer cells in the brain than 9, rh8 was similar to 9, but hu.32 mediated substantially greater transduction than the others throughout the mouse brain. To evaluate the potential for therapeutic application of the hu.32 serotype in a gyrencephalic brain of larger mammals, a hu.32 vector expressing the green fluorescent protein reporter gene was evaluated in the cat. Transduction was widely distributed in the cat brain, including in the cerebral cortex, an important target since mental retardation is an important component of many of the human neurogenetic diseases. The therapeutic potential of a hu.32 serotype vector was evaluated in the cat homologue of the human lysosomal storage disease alpha-mannosidosis, which has globally distributed lysosomal storage lesions in the brain. Treated alpha-mannosidosis cats had reduced severity of neurological signs and extended life spans compared to untreated cats. The extent of therapy was dose dependent and intra-arterial injection was more effective than intravenous delivery. Pre-mortem, non-invasive magnetic resonance spectroscopy and diffusion tensor imaging detected differences between the low and high doses, and showed normalization of grey and white matter imaging parameters at the higher dose. The imaging analysis was corroborated by post-mortem histological analysis, which showed reversal of histopathology throughout the brain with the high dose, intra-arterial treatment. The hu.32 serotype would appear to provide a significant advantage for effective treatment of the gyrencephalic brain by systemic adeno-associated virus delivery in human neurological diseases with widespread brain lesions.
Collapse
Affiliation(s)
- Sea Young Yoon
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Jacqueline E Hunter
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, USA
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Dana L Clarke
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Caitlyn Molony
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Patricia A O’Donnell
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jessica H Bagel
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Manoj Kumar
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Harish Poptani
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Charles H Vite
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - John H Wolfe
- Research Institute of Children’s Hospital of Philadelphia, Philadelphia, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
12
|
Gurda BL, Vite CH. Large animal models contribute to the development of therapies for central and peripheral nervous system dysfunction in patients with lysosomal storage diseases. Hum Mol Genet 2020; 28:R119-R131. [PMID: 31384936 DOI: 10.1093/hmg/ddz127] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/16/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a group of 70 monogenic disorders characterized by the lysosomal accumulation of a substrate. As a group, LSDs affect ~1 in 5000 live births; however, each individual storage disease is rare, limiting the ability to perform natural history studies or to perform clinical trials. Perhaps in no other biomedical field have naturally occurring large animal (canine, feline, ovine, caprine, and bovine) models been so essential for understanding the fundamentals of disease pathogenesis and for developing safe and effective therapies. These models were critical for the development of hematopoietic stem cell transplantation in α- and β- mannosidosis, fucosidosis, and the mucopolysaccharidoses; enzyme replacement therapy for fucosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis; and small molecule therapy in Niemann-Pick type C disease. However, their most notable contributions to the biomedical field are in the development of gene therapy for LSDs. Adeno-associated viral vectors to treat nervous system disease have been evaluated in the large animal models of α-mannosidosis, globoid cell leukodystrophy, GM1 and GM2 gangliosidosis, the mucopolysaccharidoses, and neuronal ceroid lipofuscinosis. This review article will summarize the large animal models available for study as well as their contributions to the development of central and peripheral nervous system dysfunction in LSDs.
Collapse
Affiliation(s)
- Brittney L Gurda
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Zielonka M, Garbade SF, Kölker S, Hoffmann GF, Ries M. Ultra-orphan lysosomal storage diseases: A cross-sectional quantitative analysis of the natural history of alpha-mannosidosis. J Inherit Metab Dis 2019; 42:975-983. [PMID: 31222755 DOI: 10.1002/jimd.12138] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/10/2019] [Accepted: 06/18/2019] [Indexed: 12/31/2022]
Abstract
Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disorder caused by a deficiency of the enzyme alpha-mannosidase. Recently, enzyme replacement therapy was approved in the European Union for the treatment of alpha-mannosidosis, but evaluation regarding long-term efficacy and safety is hard to assess due to missing quantitative natural history data, in particular survival. We performed a quantitative analysis of published cases (N = 111) with alpha-mannosidosis. Main outcome measures were age of disease onset, diagnostic delay and survival (overall and by subgroup exploration). Residual alpha-mannosidase activity and age of onset were explored as potential predictors of survival. STROBE criteria were respected. Median age of onset was 12 months. Median diagnostic delay was 6 years. At the age of 41 years 72.3% of patients were alive (N = 111). Residual alpha-mannosidase activity (N = 34) predicted survival: Patients with a residual alpha-mannosidase activity below or equal to 4.5% of normal in fibroblasts had a median survival of 3.5 years, whereas patients with alpha-mannosidase activity above this threshold all survived during the observation period reported. Patients with age of onset above 7 years survived significantly longer than patients with age of onset below or equal to 7 years. Patient distribution was panethnic with hotspots in the United States and Germany. We defined age of onset, diagnostic delay, and survival characteristics in a global cohort of 111 patients with alpha-mannosidosis by retrospective quantitative natural history modeling. These data expand the quantitative understanding of the clinical phenotype.
Collapse
Affiliation(s)
- Matthias Zielonka
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Heidelberg Research Center for Molecular Medicine (HRCMM), Heidelberg, Germany
- Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F Garbade
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Markus Ries
- Division of Pediatric Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
- Center for Rare Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Center for Virtual Patients, Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
14
|
Hunter JE, Gurda BL, Yoon SY, Castle MJ, Wolfe JH. In Situ Hybridization for Detection of AAV-Mediated Gene Expression. Methods Mol Biol 2019; 1950:107-122. [PMID: 30783970 DOI: 10.1007/978-1-4939-9139-6_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Techniques to localize vector transgenes in cells and tissues are essential in order to fully characterize gene therapy outcomes. In situ hybridization (ISH) uses synthesized complementary RNA or DNA nucleotide probes to localize and detect sequences of interest in fixed cells, tissue sections, or whole tissue mounts. Variations in techniques include adding labels to probes, such as fluorophores, which can allow for the simultaneous visualization of multiple targets. Here we provide the steps necessary to: (1) label probes for colorimetric visualization and (2) perform ISH on OCT cryo-preserved fixed frozen tissues.
Collapse
Affiliation(s)
- Jacqueline E Hunter
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brittney L Gurda
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sea Young Yoon
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Castle
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - John H Wolfe
- Research Institute of the Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Katz N, Goode T, Hinderer C, Hordeaux J, Wilson JM. Standardized Method for Intra-Cisterna Magna Delivery Under Fluoroscopic Guidance in Nonhuman Primates. Hum Gene Ther Methods 2018; 29:212-219. [PMID: 30032644 DOI: 10.1089/hgtb.2018.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Intrathecal delivery of adeno-associated virus vectors and other therapeutics are currently being evaluated for the treatment of central nervous system sequelae of lysosomal storage diseases, motor neuron diseases, and neurodegenerative diseases. As products transition from preclinical to clinical studies, a standardized and clinically relevant method of intrathecal delivery is increasingly germane. Here, we describe a method of intrathecal delivery via suboccipital puncture into the cisterna magna under fluoroscopic guidance in nonhuman primates. This procedure is suitable for use in good laboratory practice compliant studies, has an excellent safety profile, and is highly similar to the procedure currently being explored for use in humans.
Collapse
Affiliation(s)
- Nathan Katz
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Tamara Goode
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Christian Hinderer
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Juliette Hordeaux
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| | - James M Wilson
- Gene Therapy Program, Department of Medicine, University of Pennsylvania , Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Gurda BL, Bradbury AM, Vite CH. Canine and Feline Models of Human Genetic Diseases and Their Contributions to Advancing Clinical Therapies
. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2017; 90:417-431. [PMID: 28955181 PMCID: PMC5612185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For many lethal or debilitating genetic disorders in patients there are no satisfactory therapies. Several barriers exist that hinder the developments of effective therapies including the limited availability of clinically relevant animal models that faithfully recapitulate human genetic disease. In 1974, the Referral Center for Animal Models of Human Genetic Disease (RCAM) was established by Dr. Donald F. Patterson and continued by Dr. Mark E. Haskins at the University of Pennsylvania with the mission to discover, understand, treat, and maintain breeding colonies of naturally occurring hereditary disorders in dogs and cats that are orthologous to those found in human patients. Although non-human primates, sheep, and pig models are also available within the medical community, naturally occurring diseases are rarely identified in non-human primates, and the vast behavioral, clinicopathological, physiological, and anatomical knowledge available regarding dogs and cats far surpasses what is available in ovine and porcine species. The canine and feline models that are maintained at RCAM are presented here with a focus on preclinical therapy data. Clinical studies that have been generated from preclinical work in these models are also presented.
Collapse
Affiliation(s)
| | | | - Charles H. Vite
- To whom all correspondence should be addressed: Dr. Charles H. Vite, 209 Rosenthal Building, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, Tel: 215-898-9473, .
| |
Collapse
|
17
|
Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice. J Neurosci 2017; 36:12425-12435. [PMID: 27927959 DOI: 10.1523/jneurosci.2016-16.2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/07/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022] Open
Abstract
Passive immunization with anti-tau monoclonal antibodies has been shown by several laboratories to reduce age-dependent tau pathology and neurodegeneration in mutant tau transgenic mice. These studies have used repeated high weekly doses of various tau antibodies administered systemically for several months and have reported reduced tau pathology of ∼40-50% in various brain regions. Here we show that direct intrahippocampal administration of the adeno-associated virus (AAV)-vectored anti-phospho-tau antibody PHF1 to P301S tau transgenic mice results in high and durable antibody expression, primarily in neurons. Hippocampal antibody levels achieved after AAV delivery were ∼50-fold more than those reported following repeated systemic administration. In contrast to systemic passive immunization, we observed markedly reduced (≥80-90%) hippocampal insoluble pathological tau species and neurofibrillary tangles following a single dose of AAV-vectored PHF1 compared with mice treated with an AAV-IgG control vector. Moreover, the hippocampal atrophy observed in untreated P301S mice was fully rescued by treatment with the AAV-vectored PHF1 antibody. Vectored passive immunotherapy with an anti-tau monoclonal antibody may represent a viable therapeutic strategy for treating or preventing such tauopathies as frontotemporal dementia, progressive supranuclear palsy, or Alzheimer's disease. SIGNIFICANCE STATEMENT We have used an adeno-associated viral (AAV) vector to deliver the genes encoding an anti-phospho-tau monoclonal antibody, PHF1, directly to the brain of mice that develop neurodegeneration due to a tau mutation that causes frontotemporal dementia (FTD). When administered systemically, PHF1 has been shown to modestly reduce tau pathology and neurodegeneration. Since such antibodies do not readily cross the blood-brain barrier, we used an AAV vector to deliver antibody directly to the hippocampus and observed much higher antibody levels and a much greater reduction in tau pathology. Using AAV vectors to deliver antibodies like PHF1 directly to brain may constitute a novel approach to treating various neurodegenerative disorders, such as FTD and Alzheimer's disease.
Collapse
|
18
|
Tasegian A, Paciotti S, Ceccarini MR, Codini M, Moors T, Chiasserini D, Albi E, Winchester B, van de Berg WDJ, Parnetti L, Beccari T. Origin of α-mannosidase activity in CSF. Int J Biochem Cell Biol 2017; 87:34-37. [PMID: 28359775 DOI: 10.1016/j.biocel.2017.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/20/2017] [Accepted: 03/24/2017] [Indexed: 12/27/2022]
Abstract
The α-mannosidase activity in human frontal gyrus, cerebrospinal fluid and plasma has been analyzed by DEAE-cellulose chromatography to investigate the origin of the α-mannosidase activity in cerebrospinal fluid (CSF). The profile of α-mannosidase isoenzymes obtained in CSF was similar to that in the frontal gyrus but different from that in human plasma. In particular the two characteristic peaks of lysosomal α-mannosidase, A and B, which have a pH-optimum of 4.5 and are found in human tissues, were present in both the frontal gyrus and CSF. In contrast the majority of α-mannosidase activity in human plasma was due to the so called intermediate form, which has a pH-optimum of 5.5. The results suggest that the intermediate form of α-mannosidase in plasma does not cross the blood-brain barrier and that the α-mannosidase activity present in the cerebrospinal fluid is of lysosomal type and of brain origin. Thus the α-mannosidase activity in cerebrospinal fluid might mirror the brain pathological changes linked to neurodegenerative disorders such as Parkinson's disease.
Collapse
Affiliation(s)
- Anna Tasegian
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | - Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Tim Moors
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Davide Chiasserini
- Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Bryan Winchester
- Biochemistry Research Group, UCL Institute of Child Health, University College London, UK
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine, Section of Neurology, University of Perugia, Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
19
|
Golebiowski D, van der Bom IMJ, Kwon CS, Miller AD, Petrosky K, Bradbury AM, Maitland S, Kühn AL, Bishop N, Curran E, Silva N, GuhaSarkar D, Westmoreland SV, Martin DR, Gounis MJ, Asaad WF, Sena-Esteves M. Direct Intracranial Injection of AAVrh8 Encoding Monkey β-N-Acetylhexosaminidase Causes Neurotoxicity in the Primate Brain. Hum Gene Ther 2017; 28:510-522. [PMID: 28132521 DOI: 10.1089/hum.2016.109] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
GM2 gangliosidoses, including Tay-Sachs disease and Sandhoff disease, are lysosomal storage disorders caused by deficiencies in β-N-acetylhexosaminidase (Hex). Patients are afflicted primarily with progressive central nervous system (CNS) dysfunction. Studies in mice, cats, and sheep have indicated safety and widespread distribution of Hex in the CNS after intracranial vector infusion of AAVrh8 vectors encoding species-specific Hex α- or β-subunits at a 1:1 ratio. Here, a safety study was conducted in cynomolgus macaques (cm), modeling previous animal studies, with bilateral infusion in the thalamus as well as in left lateral ventricle of AAVrh8 vectors encoding cm Hex α- and β-subunits. Three doses (3.2 × 1012 vg [n = 3]; 3.2 × 1011 vg [n = 2]; or 1.1 × 1011 vg [n = 2]) were tested, with controls infused with vehicle (n = 1) or transgene empty AAVrh8 vector at the highest dose (n = 2). Most monkeys receiving AAVrh8-cmHexα/β developed dyskinesias, ataxia, and loss of dexterity, with higher dose animals eventually becoming apathetic. Time to onset of symptoms was dose dependent, with the highest-dose cohort producing symptoms within a month of infusion. One monkey in the lowest-dose cohort was behaviorally asymptomatic but had magnetic resonance imaging abnormalities in the thalami. Histopathology was similar in all monkeys injected with AAVrh8-cmHexα/β, showing severe white and gray matter necrosis along the injection track, reactive vasculature, and the presence of neurons with granular eosinophilic material. Lesions were minimal to absent in both control cohorts. Despite cellular loss, a dramatic increase in Hex activity was measured in the thalamus, and none of the animals presented with antibody titers against Hex. The high overexpression of Hex protein is likely to blame for this negative outcome, and this study demonstrates the variations in safety profiles of AAVrh8-Hexα/β intracranial injection among different species, despite encoding for self-proteins.
Collapse
Affiliation(s)
- Diane Golebiowski
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Imramsjah M J van der Bom
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Churl-Su Kwon
- 5 Department of Neurosurgery, Massachusetts General Hospital , Boston, Massachusetts
| | - Andrew D Miller
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Keiko Petrosky
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Allison M Bradbury
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Stacy Maitland
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Anna Luisa Kühn
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Nina Bishop
- 9 Department of Animal Medicine, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Elizabeth Curran
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Nilsa Silva
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Dwijit GuhaSarkar
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Susan V Westmoreland
- 6 New England Primate Research Center, Harvard Medical School , Southborough, Massachusetts
| | - Douglas R Martin
- 7 Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University , Alabama.,8 Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University , Alabama
| | - Matthew J Gounis
- 3 Department of Radiology, University of Massachusetts Medical School , Worcester, Massachusetts.,4 New England Center for Stroke Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Wael F Asaad
- 10 Department of Neurosurgery, Alpert Medical School, Brown University , Providence, Rhode Island.,11 Brown Institute for Brain Science, Brown University , Providence, Rhode Island.,12 Rhode Island Hospital , Providence, Rhode Island
| | - Miguel Sena-Esteves
- 1 Department of Neurology, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts
| |
Collapse
|
20
|
Choudhury SR, Fitzpatrick Z, Harris AF, Maitland SA, Ferreira JS, Zhang Y, Ma S, Sharma RB, Gray-Edwards HL, Johnson JA, Johnson AK, Alonso LC, Punzo C, Wagner KR, Maguire CA, Kotin RM, Martin DR, Sena-Esteves M. In Vivo Selection Yields AAV-B1 Capsid for Central Nervous System and Muscle Gene Therapy. Mol Ther 2016; 24:1247-57. [PMID: 27117222 PMCID: PMC5088762 DOI: 10.1038/mt.2016.84] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/12/2016] [Indexed: 12/12/2022] Open
Abstract
Adeno-associated viral (AAV) vectors have shown promise as a platform for gene therapy of neurological disorders. Achieving global gene delivery to the central nervous system (CNS) is key for development of effective therapies for many of these diseases. Here we report the isolation of a novel CNS tropic AAV capsid, AAV-B1, after a single round of in vivo selection from an AAV capsid library. Systemic injection of AAV-B1 vector in adult mice and cat resulted in widespread gene transfer throughout the CNS with transduction of multiple neuronal subpopulations. In addition, AAV-B1 transduces muscle, β-cells, pulmonary alveoli, and retinal vasculature at high efficiency. This vector is more efficient than AAV9 for gene delivery to mouse brain, spinal cord, muscle, pancreas, and lung. Together with reduced sensitivity to neutralization by antibodies in pooled human sera, the broad transduction profile of AAV-B1 represents an important improvement over AAV9 for CNS gene therapy.
Collapse
Affiliation(s)
- Sourav R Choudhury
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zachary Fitzpatrick
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne F Harris
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Stacy A Maitland
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jennifer S Ferreira
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yuanfan Zhang
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Shan Ma
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rohit B Sharma
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Heather L Gray-Edwards
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Jacob A Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Aime K Johnson
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Laura C Alonso
- Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Claudio Punzo
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kathryn R Wagner
- The Hugo W. Moser Research Institute, Kennedy Krieger Institute and Departments of Neurology and Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Casey A Maguire
- Department of Neurology, Massachusetts General Hospital and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert M Kotin
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Voyager Therapeutics, Cambridge, Massachusetts, USA
| | - Douglas R Martin
- Scott-Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- Department of Anatomy, Physiology & Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Miguel Sena-Esteves
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
21
|
Hocquemiller M, Giersch L, Audrain M, Parker S, Cartier N. Adeno-Associated Virus-Based Gene Therapy for CNS Diseases. Hum Gene Ther 2016; 27:478-96. [PMID: 27267688 PMCID: PMC4960479 DOI: 10.1089/hum.2016.087] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 06/07/2016] [Indexed: 12/11/2022] Open
Abstract
Gene therapy is at the cusp of a revolution for treating a large spectrum of CNS disorders by providing a durable therapeutic protein via a single administration. Adeno-associated virus (AAV)-mediated gene transfer is of particular interest as a therapeutic tool because of its safety profile and efficiency in transducing a wide range of cell types. The purpose of this review is to describe the most notable advancements in preclinical and clinical research on AAV-based CNS gene therapy and to discuss prospects for future development based on a new generation of vectors and delivery.
Collapse
Affiliation(s)
| | | | - Mickael Audrain
- Université Paris Descartes, Paris, France
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| | | | - Nathalie Cartier
- INSERM UMR1169, Université Paris-Sud,Université Paris-Saclay, Orsay, France
- CEA, DSV, IBM, MIRCen, Fontenay-aux-Roses, France
| |
Collapse
|
22
|
Transduction Profile of the Marmoset Central Nervous System Using Adeno-Associated Virus Serotype 9 Vectors. Mol Neurobiol 2016; 54:1745-1758. [DOI: 10.1007/s12035-016-9777-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 02/03/2016] [Indexed: 01/22/2023]
|