1
|
Cullot G, Aird EJ, Schlapansky MF, Yeh CD, van de Venn L, Vykhlyantseva I, Kreutzer S, Mailänder D, Lewków B, Klermund J, Montellese C, Biserni M, Aeschimann F, Vonarburg C, Gehart H, Cathomen T, Corn JE. Genome editing with the HDR-enhancing DNA-PKcs inhibitor AZD7648 causes large-scale genomic alterations. Nat Biotechnol 2024:10.1038/s41587-024-02488-6. [PMID: 39604565 DOI: 10.1038/s41587-024-02488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The DNA-PKcs inhibitor AZD7648 enhances CRISPR-Cas9-directed homology-directed repair efficiencies, with potential for clinical utility, but its possible on-target consequences are unknown. We found that genome editing with AZD7648 causes frequent kilobase-scale and megabase-scale deletions, chromosome arm loss and translocations. These large-scale chromosomal alterations evade detection through typical genome editing assays, prompting caution in deploying AZD7648 and reinforcing the need to investigate multiple types of potential editing outcomes.
Collapse
Affiliation(s)
- Grégoire Cullot
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| | - Eric J Aird
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Moritz F Schlapansky
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Charles D Yeh
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Lilly van de Venn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Iryna Vykhlyantseva
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Susanne Kreutzer
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Dominic Mailänder
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Bohdan Lewków
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christian Montellese
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Martina Biserni
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Florian Aeschimann
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Cédric Vonarburg
- CSL Behring Research, Bern, Switzerland
- Swiss Institute for Translational Medicine sitem-insel, Bern, Switzerland
| | - Helmuth Gehart
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center - University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacob E Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Zeglinski K, Montellese C, Ritchie ME, Alhamdoosh M, Vonarburg C, Bowden R, Jordi M, Gouil Q, Aeschimann F, Hsu A. An optimized protocol for quality control of gene therapy vectors using nanopore direct RNA sequencing. Genome Res 2024; 34:1966-1975. [PMID: 39467647 PMCID: PMC11610601 DOI: 10.1101/gr.279405.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
Despite recent advances made toward improving the efficacy of lentiviral gene therapies, a sizeable proportion of produced vector contains an incomplete and thus potentially nonfunctional RNA genome. This can undermine gene delivery by the lentivirus as well as increase manufacturing costs and must be improved to facilitate the widespread clinical implementation of lentiviral gene therapies. Here, we compare three long-read sequencing technologies for their ability to detect issues in vector design and determine nanopore direct RNA sequencing to be the most powerful. We show how this approach identifies and quantifies incomplete RNA caused by cryptic splicing and polyadenylation sites, including a potential cryptic polyadenylation site in the widely used Woodchuck Hepatitis Virus Posttranscriptional Regulatory Element (WPRE). Using artificial polyadenylation of the lentiviral RNA, we also identify multiple hairpin-associated truncations in the analyzed lentiviral vectors (LVs), which account for most of the detected RNA fragments. Finally, we show that these insights can be used for the optimization of LV design. In summary, nanopore direct RNA sequencing is a powerful tool for the quality control and optimization of LVs, which may help to improve lentivirus manufacturing and thus the development of higher quality lentiviral gene therapies.
Collapse
Affiliation(s)
- Kathleen Zeglinski
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia;
| | - Christian Montellese
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Matthew E Ritchie
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Monther Alhamdoosh
- Research Data Science Group, R&D, CSL, Parkville, Victoria 3000, Australia
| | - Cédric Vonarburg
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Rory Bowden
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Monika Jordi
- CSL Behring, Research, CH-3014 Bern, Switzerland
| | - Quentin Gouil
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | - Florian Aeschimann
- CSL Behring, Research, CH-3014 Bern, Switzerland
- Swiss Institute for Translational Medicine, sitem-insel, 3010 Bern, Switzerland
| | - Arthur Hsu
- Research Data Science Group, R&D, CSL, Parkville, Victoria 3000, Australia
| |
Collapse
|
3
|
Klimpel M, Terrao M, Ching N, Climenti V, Noll T, Pirzas V, Laux H. Development of a perfusion process for continuous lentivirus production using stable suspension producer cell lines. Biotechnol Bioeng 2023; 120:2622-2638. [PMID: 37148430 DOI: 10.1002/bit.28413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
The large-scale production of clinical-grade lentiviral vectors (LVs) for gene therapy applications is a remaining challenge. The use of adherent cell lines and methods like transient transfection are cost-intensive and hamper process scalability as well as reproducibility. This study describes the use of two suspension-adapted stable packaging cell lines, called GPRGs and GPRTGs, for the development of a scalable and serum-free LV production process. Both stable packaging cell lines are based on an inducible Tet-off system, thus requiring doxycycline removal for initiation of the virus production. Therefore, we compared different methods for doxycycline removal and inoculated three independent 5 L bioreactors using a scalable induction method by dilution, an acoustic cell washer and manual centrifugation. The bioreactors were inoculated with a stable producer cell line encoding for a LV carrying a clinically relevant gene. LV production was performed in perfusion mode using a cell retention device based on acoustic wave separation. Comparable cell-specific productivities were obtained with all three methods and cumulative functional yields up to 6.36 × 1011 transducing units per bioreactor were generated in a 234-h long process, demonstrating the usability of stable Tet-off cell lines for an easily scalable suspension process. Remarkably, cell viabilities >90% were maintained at high cell densities without compromising productivity throughout the whole process, allowing to further extend the process time. Given its low effects of toxicity during virus production, the presented cell lines are excellent candidates to develop a fully continuous LV production process to overcome the existing bottlenecks in LV manufacturing.
Collapse
Affiliation(s)
- Maximilian Klimpel
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Monica Terrao
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Nilakshi Ching
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Vanessa Climenti
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Thomas Noll
- Chair for Cell Culture Technology, University of Bielefeld, Bielefeld, Germany
| | - Vicky Pirzas
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| | - Holger Laux
- Biopharmaceutical Product Development, CSL Behring Innovation GmbH, Marburg, Germany
| |
Collapse
|
4
|
Broussau S, Lytvyn V, Simoneau M, Guilbault C, Leclerc M, Nazemi-Moghaddam N, Coulombe N, Elahi SM, McComb S, Gilbert R. Packaging cells for lentiviral vectors generated using the cumate and coumermycin gene induction systems and nanowell single-cell cloning. Mol Ther Methods Clin Dev 2023; 29:40-57. [PMID: 36936448 PMCID: PMC10018046 DOI: 10.1016/j.omtm.2023.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Lentiviral vectors (LVs) are important for cell therapy because of their capacity to stably modify the genome after integration. This study describes a novel and relatively simple approach to generate packaging cells and producer clones for self-inactivating (SIN) LVs pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). A novel gene regulation system, based on the combination of the cumate and coumermycin induction systems, was developed to ensure tight control for the expression of cytotoxic packaging elements. To accelerate clone isolation and ensure monoclonality, the packaging genes were transfected simultaneously into human embryonic kidney cells (293SF-3F6) previously engineered with the induction system, and clones were isolated after limiting dilution into nanowell arrays using a robotic cell picking instrument with scanning capability. The method's effectiveness to isolate colonies derived from single cells was demonstrated using mixed populations of cells labeled with two different fluorescent markers. Because the recipient cell line grew in suspension culture, and all the procedures were performed without serum, the resulting clones were readily adaptable to serum-free suspension culture. The best producer clone produced LVs expressing GFP at a titer of 2.3 × 108 transduction units (TU)/mL in the culture medium under batch mode without concentration.
Collapse
Affiliation(s)
- Sophie Broussau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Simoneau
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Claire Guilbault
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Mélanie Leclerc
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Nathalie Coulombe
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
| | - Scott McComb
- Department of Immunology, Human Health Therapeutics Research Centre, National Research Council, Canada, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Rénald Gilbert
- Department of Production Platforms & Analytics, Human Health Therapeutics Research Centre, National Research Council Canada, Montreal, QC H4P 2R2, Canada
- Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada
- Département de Génie chimique, Université Laval, Québec, QC G1V 0A6, Canada
- Corresponding author: Rénald Gilbert, National Research Council Canada, Building Montreal, 6100 Avenue Royalmount, Montreal, QC H4P 2R2, Canada.
| |
Collapse
|
5
|
High level of fetal-globin reactivation by designed transcriptional activator-like effector. Blood Adv 2021; 4:687-695. [PMID: 32084259 DOI: 10.1182/bloodadvances.2019000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 01/27/2020] [Indexed: 12/15/2022] Open
Abstract
The fetal-to-adult hemoglobin switch has been a focus of a long-standing effort to potentially treat sickle cell disease and β thalassemia by induction of fetal hemoglobin. In a continuation of this effort, we designed specific transcriptional activator-like effectors (TALEs) to target both the Gγ and Aγ-globin promoters. We fused the TALEs to a LIM domain binding protein (Ldb1) dimerization domain, followed by a T2A green fluorescent protein (GFP) cassette, which were assembled into a lentiviral vector. To prevent deletions caused by the repeats of TALEs during the lentivirus packing process, we changed the TALE encoding DNA by codon optimization. Intriguingly, 5 of 14 TALEs showed forced reactivation of fetal-globin expression in human umbilical cord blood-derived erythroid progenitor (HUDEP-2) cells, with a significant increase in the γ-globin mRNA level by more than 70-fold. We also observed a more than 50% reduction of β-globin mRNA. High-performance liquid chromatography analysis revealed more than 30% fetal globin in TALE-induced cells compared with the control of 2%. Among several promoters studied, the β-globin gene promoter with the locus control region (LCR) enhancer showed the highest TALE expression during CD34 erythroid differentiation. At day 19 of differentiation, 2 TALEs increased fetal-globin expression more than 40-fold in the mRNA level and up to 70% of the total globin protein. These TALEs have potential for clinical translation.
Collapse
|
6
|
Perry C, Rayat ACME. Lentiviral Vector Bioprocessing. Viruses 2021; 13:268. [PMID: 33572347 PMCID: PMC7916122 DOI: 10.3390/v13020268] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022] Open
Abstract
Lentiviral vectors (LVs) are potent tools for the delivery of genes of interest into mammalian cells and are now commonly utilised within the growing field of cell and gene therapy for the treatment of monogenic diseases and adoptive therapies such as chimeric antigen T-cell (CAR-T) therapy. This is a comprehensive review of the individual bioprocess operations employed in LV production. We highlight the role of envelope proteins in vector design as well as their impact on the bioprocessing of lentiviral vectors. An overview of the current state of these operations provides opportunities for bioprocess discovery and improvement with emphasis on the considerations for optimal and scalable processing of LV during development and clinical production. Upstream culture for LV generation is described with comparisons on the different transfection methods and various bioreactors for suspension and adherent producer cell cultivation. The purification of LV is examined, evaluating different sequences of downstream process operations for both small- and large-scale production requirements. For scalable operations, a key focus is the development in chromatographic purification in addition to an in-depth examination of the application of tangential flow filtration. A summary of vector quantification and characterisation assays is also presented. Finally, the assessment of the whole bioprocess for LV production is discussed to benefit from the broader understanding of potential interactions of the different process options. This review is aimed to assist in the achievement of high quality, high concentration lentiviral vectors from robust and scalable processes.
Collapse
Affiliation(s)
- Christopher Perry
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Andrea C. M. E. Rayat
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, Gower St, London WC1E 6BT, UK;
| |
Collapse
|
7
|
Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6:53. [PMID: 33558455 PMCID: PMC7868676 DOI: 10.1038/s41392-021-00487-6] [Citation(s) in RCA: 697] [Impact Index Per Article: 174.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 01/30/2023] Open
Abstract
Throughout its 40-year history, the field of gene therapy has been marked by many transitions. It has seen great strides in combating human disease, has given hope to patients and families with limited treatment options, but has also been subject to many setbacks. Treatment of patients with this class of investigational drugs has resulted in severe adverse effects and, even in rare cases, death. At the heart of this dichotomous field are the viral-based vectors, the delivery vehicles that have allowed researchers and clinicians to develop powerful drug platforms, and have radically changed the face of medicine. Within the past 5 years, the gene therapy field has seen a wave of drugs based on viral vectors that have gained regulatory approval that come in a variety of designs and purposes. These modalities range from vector-based cancer therapies, to treating monogenic diseases with life-altering outcomes. At present, the three key vector strategies are based on adenoviruses, adeno-associated viruses, and lentiviruses. They have led the way in preclinical and clinical successes in the past two decades. However, despite these successes, many challenges still limit these approaches from attaining their full potential. To review the viral vector-based gene therapy landscape, we focus on these three highly regarded vector platforms and describe mechanisms of action and their roles in treating human disease.
Collapse
Affiliation(s)
- Jote T Bulcha
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic medical sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Hong Ma
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | - Phillip W L Tai
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- VIDE Program, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA.
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
8
|
Ferreira MV, Cabral ET, Coroadinha AS. Progress and Perspectives in the Development of Lentiviral Vector Producer Cells. Biotechnol J 2020; 16:e2000017. [PMID: 32686901 DOI: 10.1002/biot.202000017] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Indexed: 12/12/2022]
Abstract
After two decades of clinical trials, gene therapy demonstrated effectiveness in the treatment of a series of diseases. Currently, several gene therapy products are approved and used in the clinic. Lentiviral vectors (LVs) are one of the most used transfer vehicles to deliver genetic material and the vector of choice to modify hematopoietic cells to correct primary immunodeficiencies, hemoglobinopathies, and leukodystrophies. LVs are also widely used to modify T cells to treat cancers in immunotherapies (e.g., chimeric antigen receptors T cell therapies, CAR-T). In genome editing, LVs are used to deliver sequence-specific designer nucleases and DNA templates. The approval LV gene therapy products (e.g., Kymriah, for B-cell Acute lymphoblastic leukemia treatment; LentiGlobin, for β-thalassemia treatment) reinforced the need to improve their bioprocess manufacturing. The production has been mostly dependent on transient transfection. Production from stable cell lines facilitate GMP compliant processes, providing an easier scale-up, reproducibility and cost-effectiveness. The establishment of stable LV producer cell lines presents, however, several difficulties, with the cytotoxicity of some of the vector proteins being a major challenge. Genome editing technologies pose additional challenges to LV producer cells. Herein the major bottlenecks, recent achievements, and perspectives in the development of LV stable cell lines are revised.
Collapse
Affiliation(s)
- Mariana V Ferreira
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Elisa T Cabral
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Ana Sofia Coroadinha
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,The Discoveries centre for Regenerative and Precision Medicine, Nova University Lisbon, Oeiras Campus, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
9
|
Bauler M, Roberts JK, Wu CC, Fan B, Ferrara F, Yip BH, Diao S, Kim YI, Moore J, Zhou S, Wielgosz MM, Ryu B, Throm RE. Production of Lentiviral Vectors Using Suspension Cells Grown in Serum-free Media. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 17:58-68. [PMID: 31890741 PMCID: PMC6931067 DOI: 10.1016/j.omtm.2019.11.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/15/2019] [Indexed: 02/09/2023]
Abstract
Lentiviral vectors are increasingly utilized in cell and gene therapy applications because they efficiently transduce target cells such as hematopoietic stem cells and T cells. Large-scale production of current Good Manufacturing Practices-grade lentiviral vectors is limited because of the adherent, serum-dependent nature of HEK293T cells used in the manufacturing process. To optimize large-scale clinical-grade lentiviral vector production, we developed an improved production scheme by adapting HEK293T cells to grow in suspension using commercially available and chemically defined serum-free media. Lentiviral vectors with titers equivalent to those of HEK293T cells were produced from SJ293TS cells using optimized transfection conditions that reduced the required amount of plasmid DNA by 50%. Furthermore, purification of SJ293TS-derived lentiviral vectors at 1 L yielded a recovery of 55% ± 14% (n = 138) of transducing units in the starting material, more than a 2-fold increase over historical yields from adherent HEK293T serum-dependent lentiviral vector preparations. SJ293TS cells were stable to produce lentiviral vectors over 4 months of continuous culture. SJ293TS-derived lentiviral vectors efficiently transduced primary hematopoietic stem cells and T cells from healthy donors. Overall, our SJ293TS cell line enables high-titer vector production in serum-free conditions while reducing the amount of input DNA required, resulting in a highly efficient manufacturing option.
Collapse
Affiliation(s)
- Matthew Bauler
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jessica K Roberts
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Chang-Chih Wu
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Baochang Fan
- Therapeutics Production and Quality, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Francesca Ferrara
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Bon Ham Yip
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shiyong Diao
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Young-In Kim
- Experimental Cell Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jennifer Moore
- Experimental Cell Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Sheng Zhou
- Experimental Cell Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Matthew M Wielgosz
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Byoung Ryu
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robert E Throm
- Vector Development and Production Laboratory, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
10
|
Ghorashian S, Amrolia P, Veys P. Open access? Widening access to chimeric antigen receptor (CAR) therapy for ALL. Exp Hematol 2018; 66:5-16. [DOI: 10.1016/j.exphem.2018.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/07/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022]
|
11
|
Tijani M, Munis AM, Perry C, Sanber K, Ferraresso M, Mukhopadhyay T, Themis M, Nisoli I, Mattiuzzo G, Collins MK, Takeuchi Y. Lentivector Producer Cell Lines with Stably Expressed Vesiculovirus Envelopes. Mol Ther Methods Clin Dev 2018; 10:303-312. [PMID: 30182034 PMCID: PMC6118154 DOI: 10.1016/j.omtm.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/30/2018] [Indexed: 01/19/2023]
Abstract
Retroviral and lentiviral vectors often use the envelope G protein from the vesicular stomatitis virus Indiana strain (VSVind.G). However, lentivector producer cell lines that stably express VSVind.G have not been reported, presumably because of its cytotoxicity, preventing simple scale-up of vector production. Interestingly, we showed that VSVind.G and other vesiculovirus G from the VSV New Jersey strain (VSVnj), Cocal virus (COCV), and Piry virus (PIRYV) could be constitutively expressed and supported lentivector production for up to 10 weeks. All G-enveloped particles were robust, allowing concentration and freeze-thawing. COCV.G and PIRYV.G were resistant to complement inactivation, and, using chimeras between VSVind.G and COCV.G, the determinant for complement inactivation of VSVind.G was mapped to amino acid residues 136-370. Clonal packaging cell lines using COCV.G could be generated; however, during attempts to establish LV producer cells, vector superinfection was observed following the introduction of a lentivector genome. This could be prevented by culturing the cells with the antiviral drug nevirapine. As an alternative countermeasure, we demonstrated that functional lentivectors could be reconstituted by admixing supernatant from stable cells producing unenveloped virus with supernatant containing envelopes harvested from cells stably expressing VSVind.G, COCV.G, or PIRYV.G.
Collapse
Affiliation(s)
- Maha Tijani
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Altar M. Munis
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Christopher Perry
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Khaled Sanber
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Marta Ferraresso
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Tarit Mukhopadhyay
- Department of Biochemical Engineering, University College London, London WC1H 0AH, UK
| | - Michael Themis
- Department of Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ilaria Nisoli
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| | - Giada Mattiuzzo
- Division of Virology, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
| | - Mary K. Collins
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
- Okinawa Institute of Science and Technology, Okinawa 904-0412, Japan
| | - Yasuhiro Takeuchi
- Division of Advanced Therapies, National Institute for Biological Standards and Control, South Mimms EN6 3QG, UK
- Division of Infection and Immunity, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Lewis G, Christiansen L, McKenzie J, Luo M, Pasackow E, Smurnyy Y, Harrington S, Gregory P, Veres G, Negre O, Bonner M. Staurosporine Increases Lentiviral Vector Transduction Efficiency of Human Hematopoietic Stem and Progenitor Cells. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2018; 9:313-322. [PMID: 30038935 PMCID: PMC6054695 DOI: 10.1016/j.omtm.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/01/2018] [Indexed: 11/19/2022]
Abstract
Lentiviral vector (LVV)-mediated transduction of human CD34+ hematopoietic stem and progenitor cells (HSPCs) holds tremendous promise for the treatment of monogenic hematological diseases. This approach requires the generation of a sufficient proportion of gene-modified cells. We identified staurosporine, a serine/threonine kinase inhibitor, as a small molecule that could be added to the transduction process to increase the proportion of genetically modified HSPCs by overcoming a LVV entry barrier. Staurosporine increased vector copy number (VCN) approximately 2-fold when added to mobilized peripheral blood (mPB) CD34+ cells prior to transduction. Limited staurosporine treatment did not affect viability of cells post-transduction, and there was no difference in in vitro colony formation compared to vehicle-treated cells. Xenotransplantation studies identified a statistically significant increase in VCN in engrafted human cells in mouse bone marrow at 4 months post-transplantation compared to vehicle-treated cells. Prostaglandin E2 (PGE2) is known to increase transduction efficiency of HSPCs through a different mechanism. Combining staurosporine and PGE2 resulted in further enhancement of transduction efficiency, particularly in short-term HSPCs. The combinatorial use of small molecules, such as staurosporine and PGE2, to enhance LVV transduction of human CD34+ cells is a promising method to improve transduction efficiency and subsequent potential therapeutic benefit of gene therapy drug products.
Collapse
Affiliation(s)
- Gretchen Lewis
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
| | | | | | - Min Luo
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
| | - Eli Pasackow
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
| | - Yegor Smurnyy
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
| | | | - Philip Gregory
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
| | - Gabor Veres
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
| | - Olivier Negre
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
| | - Melissa Bonner
- bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA
- Corresponding author: Melissa Bonner, bluebird bio, Inc., 60 Binney St., Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2018. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
14
|
Manceur AP, Kim H, Misic V, Andreev N, Dorion-Thibaudeau J, Lanthier S, Bernier A, Tremblay S, Gélinas AM, Broussau S, Gilbert R, Ansorge S. Scalable Lentiviral Vector Production Using Stable HEK293SF Producer Cell Lines. Hum Gene Ther Methods 2017; 28:330-339. [PMID: 28826344 PMCID: PMC5734158 DOI: 10.1089/hgtb.2017.086] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lentiviral vectors (LV) represent a key tool for gene and cell therapy applications. The production of these vectors in sufficient quantities for clinical applications remains a hurdle, prompting the field toward developing suspension processes that are conducive to large-scale production. This study describes a LV production strategy using a stable inducible producer cell line. The HEK293 cell line employed grows in suspension, thus offering direct scalability, and produces a green fluorescent protein (GFP)-expressing lentiviral vector in the 106 transduction units (TU)/mL range without optimization. The stable producer cell line, called clone 92, was derived by stable transfection from a packaging cell line with a plasmid encoding the transgene GFP. The packaging cell line expresses all the other necessary components to produce LV upon induction with cumate and doxycycline. First, the study demonstrated that LV production using clone 92 is scalable from 20 mL shake flasks to 3 L bioreactors. Next, two strategies were developed for high-yield LV production in perfusion mode using acoustic cell filter technology in 1–3 L bioreactors. The first approach uses a basal commercial medium and perfusion mode both pre- and post-induction for increasing cell density and LV recovery. The second approach makes use of a fortified medium formulation to achieve target cell density for induction in batch mode, followed by perfusion mode after induction. Using these perfusion-based strategies, the titer was improved to 3.2 × 107 TU/mL. As a result, cumulative functional LV titers were increased by up to 15-fold compared to batch mode, reaching a cumulative total yield of 8 × 1010 TU/L of bioreactor culture. This approach is easily amenable to large-scale production and commercial manufacturing.
Collapse
Affiliation(s)
- Aziza P Manceur
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Howard Kim
- 2 BridGE, Centre for Commercialization of Regenerative Medicine , Toronto, Canada
| | - Vanja Misic
- 2 BridGE, Centre for Commercialization of Regenerative Medicine , Toronto, Canada
| | - Nadejda Andreev
- 2 BridGE, Centre for Commercialization of Regenerative Medicine , Toronto, Canada
| | | | - Stéphane Lanthier
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Alice Bernier
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Sonia Tremblay
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Anne-Marie Gélinas
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Sophie Broussau
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Rénald Gilbert
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| | - Sven Ansorge
- 1 Human Health Therapeutics, National Research Council Canada , Montreal, Canada
| |
Collapse
|
15
|
Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J Clin Immunol 2017; 38:13-27. [PMID: 29086100 DOI: 10.1007/s10875-017-0453-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 10/13/2017] [Indexed: 02/07/2023]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder originally described by Dr. Alfred Wiskott in 1937 and Dr. Robert Aldrich in 1954 as a familial disease characterized by infections, bleeding tendency, and eczema. Today, it is well recognized that the syndrome has a wide clinical spectrum ranging from mild, isolated thrombocytopenia to full-blown presentation that can be complicated by life-threatening hemorrhages, immunodeficiency, atopy, autoimmunity, and cancer. The pathophysiology of classic and emerging features is being elucidated by clinical studies, but remains incompletely defined, which hinders the application of targeted therapies. At the same time, progress of hematopoietic stem cell transplantation and gene therapy offer optimistic prospects for treatment options aimed at the replacement of the defective lymphohematopoietic system that have the potential to provide a cure for this rare and polymorphic disease.
Collapse
|
16
|
Zhao HF, Abraham A, Kim YS, Wang YD, Pestina T, Zhan J, Humphries K, Nienhuis AW, Persons DA. Lentiviral Transfer of γ-Globin with Fusion Gene NUP98-HOXA10HD Expands Hematopoietic Stem Cells and Ameliorates Murine β-Thalassemia. Mol Ther 2017; 25:593-605. [PMID: 28190779 DOI: 10.1016/j.ymthe.2017.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/19/2016] [Accepted: 01/06/2017] [Indexed: 11/27/2022] Open
Abstract
Recently, an engineered Homeobox-nucleoporin fusion gene, NUP98-HOXA10HD or NA10HD, was reported to expand and maintain murine hematopoietic stem cells (HSCs). We postulated that NA10HD would increase the number of human γ-globin-expressing cells to therapeutic levels. We developed a double gene lentiviral vector encoding both human γ-globin and NA10HD, which was used to transduce human peripheral blood CD34+ cells and increased engraftment 2- to 2.5-fold at 15 weeks post-transplantation in immunodeficient mice. In β-thalassemic mice transplanted with β-thalassemic HSCs transduced with the γ-globin/NA10HD vector, the number of fetal hemoglobin (HbF)-expressing cells was significantly increased after 3 months, leading to resolution of the anemia. Furthermore, the increases in HbF were maintained at 6 months and persisted after secondary transplantation. In addition, NA10HD enrichment of transduced HSCs led to HbF increases without affecting homeostasis of the white blood cell lineages. Our results suggest that NA10HD increases the number of γ-globin-transduced HSCs that engraft, leading to an elevated number of fetal hemoglobin-containing red cells. These effects of NA10HD provide an improved platform for testing of the therapeutic efficacy of novel globin vectors and provide further impetus to develop safe and effective methods for selective expansion of genetically modified cells.
Collapse
Affiliation(s)
- Hui Fen Zhao
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Allistair Abraham
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yoon-Sang Kim
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Tamara Pestina
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jun Zhan
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Keith Humphries
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Arthur W Nienhuis
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Derek A Persons
- Division of Experimental Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
17
|
Singh S, Khan I, Khim S, Seymour B, Sommer K, Wielgosz M, Norgaard Z, Kiem HP, Adair J, Liggitt D, Nienhuis A, Rawlings DJ. Safe and Effective Gene Therapy for Murine Wiskott-Aldrich Syndrome Using an Insulated Lentiviral Vector. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:1-16. [PMID: 28344987 PMCID: PMC5363182 DOI: 10.1016/j.omtm.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/15/2016] [Indexed: 12/18/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is a life-threatening immunodeficiency caused by mutations within the WAS gene. Viral gene therapy to restore WAS protein (WASp) expression in hematopoietic cells of patients with WAS has the potential to improve outcomes relative to the current standard of care, allogeneic bone marrow transplantation. However, the development of viral vectors that are both safe and effective has been problematic. While use of viral transcriptional promoters may increase the risk of insertional mutagenesis, cellular promoters may not achieve WASp expression levels necessary for optimal therapeutic effect. Here we evaluate a self-inactivating (SIN) lentiviral vector combining a chromatin insulator upstream of a viral MND (MPSV LTR, NCR deleted, dl587 PBS) promoter driving WASp expression. Used as a gene therapeutic in Was−/− mice, this vector resulted in stable WASp+ cells in all hematopoietic lineages and rescue of T and B cell defects with a low number of viral integrations per cell, without evidence of insertional mutagenesis in serial bone marrow transplants. In a gene transfer experiment in non-human primates, the insulated MND promoter (driving GFP expression) demonstrated long-term polyclonal engraftment of GFP+ cells. These observations demonstrate that the insulated MND promoter safely and efficiently reconstitutes clinically effective WASp expression and should be considered for future WAS therapy.
Collapse
Affiliation(s)
- Swati Singh
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Iram Khan
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Socheath Khim
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Brenda Seymour
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Karen Sommer
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Matthew Wielgosz
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zachary Norgaard
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pathology, University of Washington, Seattle, WA 98105, USA
| | - Jennifer Adair
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medical Oncology, University of Washington, Seattle, WA 98105, USA
| | - Denny Liggitt
- Department of Comparative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Arthur Nienhuis
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Immunology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
18
|
Zhou S, Fatima S, Ma Z, Wang YD, Lu T, Janke LJ, Du Y, Sorrentino BP. Evaluating the Safety of Retroviral Vectors Based on Insertional Oncogene Activation and Blocked Differentiation in Cultured Thymocytes. Mol Ther 2016; 24:1090-1099. [PMID: 26957223 PMCID: PMC4923324 DOI: 10.1038/mt.2016.55] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/24/2016] [Indexed: 12/20/2022] Open
Abstract
Insertional oncogenesis due to retroviral (RV) vector integration has caused recurrent leukemia in multiple gene therapy trials, predominantly due to vector integration effects at the LMO2 locus. While currently available preclinical safety models have been used for evaluating vector safety, none have predicted or reproduced the recurrent LMO2 integrations seen in previous X-linked severe combined immunodeficiency (X-SCID) and Wiskott-Aldrich clinical gene therapy trials. We now describe a new assay for assessing vector safety that recapitulates naturally occurring insertions into Lmo2 and other T-cell proto-oncogenes leading to a preleukemic developmental arrest in primary murine thymocytes cultured in vitro. This assay was used to compare the relative oncogenic potential of a variety of gamma-RV and lentiviral vectors and to assess the risk conferred by various transcriptional elements contained in these genomes. Gamma-RV vectors that contained full viral long-terminal repeats were most prone to causing double negative 2 (DN2) arrest and led to repeated cases of Lmo2 pathway activation, while lentiviral vectors containing these same elements were significantly less prone to activate proto-oncogenes or cause DN2 arrest. This work provides a new preclinical assay that is especially relevant for assessing safety in SCID disorders and provides a new tool for designing safer RV vectors.
Collapse
Affiliation(s)
- Sheng Zhou
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Soghra Fatima
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Zhijun Ma
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Yong-Dong Wang
- Department of Computational Biology, Memphis, Tennessee, USA
| | - Taihe Lu
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yang Du
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian P Sorrentino
- Division of Experimental Hematology, Department of Hematology, Memphis, Tennessee, USA.
| |
Collapse
|
19
|
RD-MolPack technology for the constitutive production of self-inactivating lentiviral vectors pseudotyped with the nontoxic RD114-TR envelope. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16033. [PMID: 27222840 PMCID: PMC4863723 DOI: 10.1038/mtm.2016.33] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/05/2016] [Accepted: 03/21/2016] [Indexed: 01/09/2023]
Abstract
To date, gene therapy with transiently derived lentivectors has been very successful to cure rare infant genetic diseases. However, transient manufacturing is unfeasible to treat adult malignancies because large vector lots are required. By contrast, stable manufacturing is the best option for high-incidence diseases since it reduces the production cost, which is the major current limitation to scale up the transient methods. We have previously developed the proprietary RD2-MolPack technology for the stable production of second-generation lentivectors, based on the RD114-TR envelope. Of note, opposite to vesicular stomatitis virus glycoprotein (VSV-G) envelope, RD114-TR does not need inducible expression thanks to lack of toxicity. Here, we present the construction of RD2- and RD3-MolPack cells for the production of self-inactivating lentivectors expressing green fluorescent protein (GFP) as a proof-of-concept of the feasibility and safety of this technology before its later therapeutic exploitation. We report that human T lymphocytes transduced with self-inactivating lentivectors derived from RD3-MolPack cells or with self-inactivating VSV-G pseudotyped lentivectors derived from transient transfection show identical T-cell memory differentiation phenotype and comparable transduction efficiency in all T-cell subsets. RD-MolPack technology represents, therefore, a straightforward tool to simplify and standardize lentivector manufacturing to engineer T-cells for frontline immunotherapy applications.
Collapse
|
20
|
Merten OW, Hebben M, Bovolenta C. Production of lentiviral vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16017. [PMID: 27110581 PMCID: PMC4830361 DOI: 10.1038/mtm.2016.17] [Citation(s) in RCA: 194] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022]
Abstract
Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented.
Collapse
Affiliation(s)
| | | | - Chiara Bovolenta
- New Technologies Unit, Research Division, MolMed S.p.A. , Milan, Italy
| |
Collapse
|
21
|
Humbert O, Gisch DW, Wohlfahrt ME, Adams AB, Greenberg PD, Schmitt TM, Trobridge GD, Kiem HP. Development of Third-generation Cocal Envelope Producer Cell Lines for Robust Lentiviral Gene Transfer into Hematopoietic Stem Cells and T-cells. Mol Ther 2016; 24:1237-46. [PMID: 27058824 DOI: 10.1038/mt.2016.70] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/04/2016] [Indexed: 12/19/2022] Open
Abstract
Lentiviral vectors (LVs) pseudotyped with vesicular stomatitis virus envelope glycoprotein (VSV-G) have demonstrated great promise in gene therapy trials employing hematopoietic stem cell and T-cells. The VSV-G envelope confers broad tropism and stability to the vector but is toxic when constitutively expressed, which has impeded efforts to generate stable producer cell lines. We previously showed that cocal pseudotyped LVs offer an excellent alternative to VSV-G vectors because of their broad tropism and resistance to human serum inactivation. In this study, we demonstrate that cocal LVs transduce CD34(+) and CD4(+) T-cells more efficiently than VSV-G LVs and share the same receptor(s) for cell entry. 293T-cells stably expressing the cocal envelope produced significantly higher LV titers than VSV-G expressing cells. We developed cocal pseudotyped, third-generation, self-inactivating LV producer cell lines for a GFP reporter and for a WT1 tumor-specific T-cell receptor, which achieved concentrated titers above 10(8) IU/ml and were successfully adapted for growth in suspension, serum-free culture. The resulting LVs were at least as effective as standard LVs in transducing CD34(+) and CD4(+) T-cells. Our stable cocal LV producer cell lines should facilitate the production of large-scale, high titer clinical grade vectors.
Collapse
Affiliation(s)
- Olivier Humbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Don W Gisch
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Martin E Wohlfahrt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Amie B Adams
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Phil D Greenberg
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Clinical Research Division, Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Immunology, University of Washington, Seattle, Washington, USA.,Department of Medicine, Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Tom M Schmitt
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Grant D Trobridge
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington, USA.,School of Molecular Biosciences, Washington State University, Pullman, Washington, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA.,Department of Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|