1
|
Gorriceta JH, Lopez Otbo A, Uehara G, Posadas Salas MA. BK viral infection: A review of management and treatment. World J Transplant 2023; 13:309-320. [PMID: 38174153 PMCID: PMC10758681 DOI: 10.5500/wjt.v13.i6.309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/15/2023] [Accepted: 11/30/2023] [Indexed: 12/15/2023] Open
Abstract
BK viral infection remains to be a challenging post-transplant infection, which can result in kidney dysfunction. The mainstay approach to BK infection is reduction of immunosuppression. Alterations in immunosuppressive regimen with minimization of calcineurin inhibitors, use of mechanistic target of rapamycin inhibitors, and leflunomide have been attempted with variable outcomes. Over the past few years, investigators have explored potential therapeutic options for BK infection. Fluoroquinolone prophylaxis and treatment was found to have no benefit in kidney transplant recipients. The utility of cidofovir is limited by its nephrotoxicity. Intravenous immunoglobulin is becoming a popular option for treatment and prophylaxis for BK infection, as it increases the neutralizing antibody titers against the most common BK virus serotypes. Virus-specific T cell therapy is an emerging treatment option for BK viremia. In this review, we will explore management and therapeutic options for BK infection and recent evidence available in literature.
Collapse
Affiliation(s)
| | - Amy Lopez Otbo
- Department of Medicine, St. Luke’s Medical Center, Quezon 1112, Philippines
| | - Genta Uehara
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Maria Aurora Posadas Salas
- Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC 29425, United States
| |
Collapse
|
2
|
Dasari V, McNeil LK, Beckett K, Solomon M, Ambalathingal G, Thuy TL, Panikkar A, Smith C, Steinbuck MP, Jakubowski A, Seenappa LM, Palmer E, Zhang J, Haqq CM, DeMuth PC, Khanna R. Lymph node targeted multi-epitope subunit vaccine promotes effective immunity to EBV in HLA-expressing mice. Nat Commun 2023; 14:4371. [PMID: 37553346 PMCID: PMC10409721 DOI: 10.1038/s41467-023-39770-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/28/2023] [Indexed: 08/10/2023] Open
Abstract
The recent emergence of a causal link between Epstein-Barr virus (EBV) and multiple sclerosis has generated considerable interest in the development of an effective vaccine against EBV. Here we describe a vaccine formulation based on a lymph node targeting Amphiphile vaccine adjuvant, Amphiphile-CpG, admixed with EBV gp350 glycoprotein and an engineered EBV polyepitope protein that includes 20 CD8+ T cell epitopes from EBV latent and lytic antigens. Potent gp350-specific IgG responses are induced in mice with titers >100,000 in Amphiphile-CpG vaccinated mice. Immunization including Amphiphile-CpG also induces high frequencies of polyfunctional gp350-specific CD4+ T cells and EBV-specific CD8+ T cells that are 2-fold greater than soluble CpG and are maintained for >7 months post immunization. This combination of broad humoral and cellular immunity against multiple viral determinants is likely to provide better protection against primary infection and control of latently infected B cells leading to protection against the development of EBV-associated diseases.
Collapse
Affiliation(s)
- Vijayendra Dasari
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| | | | - Kirrilee Beckett
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Matthew Solomon
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - George Ambalathingal
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - T Le Thuy
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Archana Panikkar
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | - Caitlyn Smith
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | | | - Jeff Zhang
- Elicio Therapeutics, Inc, Boston, MA, USA
| | | | | | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development, Tumour Immunology Laboratory, Infection and Inflammation Program, Berghofer Medical Research Institute, Brisbane, Australia.
| |
Collapse
|
3
|
Pathogen-specific T Cells: Targeting Old Enemies and New Invaders in Transplantation and Beyond. Hemasphere 2023; 7:e809. [PMID: 36698615 PMCID: PMC9831191 DOI: 10.1097/hs9.0000000000000809] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/07/2022] [Indexed: 01/27/2023] Open
Abstract
Adoptive immunotherapy with virus-specific cytotoxic T cells (VSTs) has evolved over the last three decades as a strategy to rapidly restore virus-specific immunity to prevent or treat viral diseases after solid organ or allogeneic hematopoietic cell-transplantation (allo-HCT). Since the early proof-of-principle studies demonstrating that seropositive donor-derived T cells, specific for the commonest pathogens post transplantation, namely cytomegalovirus or Epstein-Barr virus (EBV) and generated by time- and labor-intensive protocols, could effectively control viral infections, major breakthroughs have then streamlined the manufacturing process of pathogen-specific T cells (pSTs), broadened the breadth of target recognition to even include novel emerging pathogens and enabled off-the-shelf administration or pathogen-naive donor pST production. We herein review the journey of evolution of adoptive immunotherapy with nonengineered, natural pSTs against infections and virus-associated malignancies in the transplant setting and briefly touch upon recent achievements using pSTs outside this context.
Collapse
|
4
|
Isakova-Sivak I, Matyushenko V, Stepanova E, Matushkina A, Kotomina T, Mezhenskaya D, Prokopenko P, Kudryavtsev I, Kopeykin P, Sivak K, Rudenko L. Recombinant Live Attenuated Influenza Vaccine Viruses Carrying Conserved T-cell Epitopes of Human Adenoviruses Induce Functional Cytotoxic T-Cell Responses and Protect Mice against Both Infections. Vaccines (Basel) 2020; 8:E196. [PMID: 32344618 PMCID: PMC7349758 DOI: 10.3390/vaccines8020196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/17/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023] Open
Abstract
Human adenoviruses (AdVs) are one of the most common causes of acute respiratory viral infections worldwide. Multiple AdV serotypes with low cross-reactivity circulate in the human population, making the development of an effective vaccine very challenging. In the current study, we designed a cross-reactive AdV vaccine based on the T-cell epitopes conserved among various AdV serotypes, which were inserted into the genome of a licensed cold-adapted live attenuated influenza vaccine (LAIV) backbone. We rescued two recombinant LAIV-AdV vaccines by inserting the selected AdV T-cell epitopes into the open reading frame of full-length NA and truncated the NS1 proteins of the H7N9 LAIV virus. We then tested the bivalent vaccines for their efficacy against influenza and human AdV5 in a mouse model. The vaccine viruses were attenuated in C57BL/6J mice and induced a strong influenza-specific antibody and cell-mediated immunity, fully protecting the mice against virulent influenza virus infection. The CD8 T-cell responses induced by both LAIV-AdV candidates were functional and efficiently killed the target cells loaded either with influenza NP366 or AdV DBP418 peptides. In addition, high levels of recall memory T cells targeted to an immunodominant H2b-restricted CD8 T-cell epitope were detected in the immunized mice after the AdV5 challenge, and the magnitude of these responses correlated with the level of protection against pulmonary pathology caused by the AdV5 infection. Our findings suggest that the developed recombinant vaccines can be used for combined protection against influenza and human adenoviruses and warrant further evaluation on humanized animal models and subsequent human trials.
Collapse
Affiliation(s)
- Irina Isakova-Sivak
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Victoria Matyushenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Ekaterina Stepanova
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Anastasia Matushkina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Tatiana Kotomina
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Daria Mezhenskaya
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Polina Prokopenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Igor Kudryavtsev
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Pavel Kopeykin
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| | - Konstantin Sivak
- Smorodintsev Research Institute of Influenza, 197376 Saint Petersburg, Russia;
| | - Larisa Rudenko
- Institute of Experimental Medicine, 197376 Saint Petersburg, Russia; (V.M.); (E.S.); (A.M.); (T.K.); (D.M.); (P.P.); (I.K.); (P.K.); (L.R.)
| |
Collapse
|
5
|
Li XY, Moesta AK, Xiao C, Nakamura K, Casey M, Zhang H, Madore J, Lepletier A, Aguilera AR, Sundarrajan A, Jacoberger-Foissac C, Wong C, Dela Cruz T, Welch M, Lerner AG, Spatola BN, Soros VB, Corbin J, Anderson AC, Effern M, Hölzel M, Robson SC, Johnston RL, Waddell N, Smith C, Bald T, Geetha N, Beers C, Teng MWL, Smyth MJ. Targeting CD39 in Cancer Reveals an Extracellular ATP- and Inflammasome-Driven Tumor Immunity. Cancer Discov 2019; 9:1754-1773. [PMID: 31699796 DOI: 10.1158/2159-8290.cd-19-0541] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 01/24/2023]
Abstract
We explored the mechanism of action of CD39 antibodies that inhibit ectoenzyme CD39 conversion of extracellular ATP (eATP) to AMP and thus potentially augment eATP-P2-mediated proinflammatory responses. Using syngeneic and humanized tumor models, we contrast the potency and mechanism of anti-CD39 mAbs with other agents targeting the adenosinergic pathway. We demonstrate the critical importance of an eATP-P2X7-ASC-NALP3-inflammasome-IL18 pathway in the antitumor activity mediated by CD39 enzyme blockade, rather than simply reducing adenosine as mechanism of action. Efficacy of anti-CD39 activity was underpinned by CD39 and P2X7 coexpression on intratumor myeloid subsets, an early signature of macrophage depletion, and active IL18 release that facilitated the significant expansion of intratumor effector T cells. More importantly, anti-CD39 facilitated infiltration into T cell-poor tumors and rescued anti-PD-1 resistance. Anti-human CD39 enhanced human T-cell proliferation and Th1 cytokine production and suppressed human B-cell lymphoma in the context of autologous Epstein-Barr virus-specific T-cell transfer. SIGNIFICANCE: Overall, these data describe a potent and novel mechanism of action of antibodies that block mouse or human CD39, triggering an eATP-P2X7-inflammasome-IL18 axis that reduces intratumor macrophage number, enhances intratumor T-cell effector function, overcomes anti-PD-1 resistance, and potentially enhances the efficacy of adoptive T-cell transfer.This article is highlighted in the In This Issue feature, p. 1631.
Collapse
Affiliation(s)
- Xian-Yang Li
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Christos Xiao
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Kyohei Nakamura
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mika Casey
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Haiyan Zhang
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Jason Madore
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ailin Lepletier
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Amelia Roman Aguilera
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ashmitha Sundarrajan
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Celia Jacoberger-Foissac
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | | | - Megan Welch
- Tizona Therapeutics, San Francisco, California
| | | | | | | | - John Corbin
- Tizona Therapeutics, San Francisco, California
| | - Ana C Anderson
- Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts
| | - Maike Effern
- Unit of RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael Hölzel
- Unit of RNA Biology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Experimental Oncology (IEO), University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Simon C Robson
- Departments of Medicine and Anesthesia, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Rebecca L Johnston
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nicola Waddell
- Medical Genomics Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Corey Smith
- Translational and Human Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Tobias Bald
- Oncology and Cellular Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Nishamol Geetha
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | | | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
6
|
Chan S, Isbel NM, Hawley CM, Campbell SB, Campbell KL, Morrison M, Francis RS, Playford EG, Johnson DW. Infectious Complications Following Kidney Transplantation-A Focus on Hepatitis C Infection, Cytomegalovirus Infection and Novel Developments in the Gut Microbiota. ACTA ACUST UNITED AC 2019; 55:medicina55100672. [PMID: 31590269 PMCID: PMC6843315 DOI: 10.3390/medicina55100672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
The incidence of infectious complications, compared with the general population and the pre-transplant status of the recipient, increases substantially following kidney transplantation, causing significant morbidity and mortality. The potent immunosuppressive therapy given to prevent graft rejection in kidney transplant recipients results in an increased susceptibility to a wide range of opportunistic infections including bacterial, viral and fungal infections. Over the last five years, several advances have occurred that may have changed the burden of infectious complications in kidney transplant recipients. Due to the availability of direct-acting antivirals to manage donor-derived hepatitis C infection, this has opened the way for donors with hepatitis C infection to be considered in the donation process. In addition, there have been the development of medications targeting the growing burden of resistant cytomegalovirus, as well as the discovery of the potentially important role of the gastrointestinal microbiota in the pathogenesis of post-transplant infection. In this narrative review, we will discuss these three advances and their potential implications for clinical practice.
Collapse
Affiliation(s)
- Samuel Chan
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
- Correspondence: ; Tel.: +61-7-3176-5080
| | - Nicole M Isbel
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Carmel M Hawley
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
| | - Scott B Campbell
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Katrina L Campbell
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Centre for Applied Health Economics, Menzies Research Institute, Griffith University, Brisbane, QLD 4102, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, Faculty of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia;
| | - Ross S Francis
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - E Geoffrey Playford
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Infection Management Services, Department of Microbiology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
| | - David W Johnson
- Department of Nephrology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia; (N.M.I.); (C.M.H.); (S.B.C.); (R.S.F.); (D.W.J.)
- Australasian Kidney Trials Network, The University of Queensland, Brisbane, QLD 4102, Australia; (K.L.C.); (E.G.P.)
- Translational Research Institute, Brisbane, QLD 4102, Australia
| |
Collapse
|
7
|
An immunoinformatic approach to universal therapeutic vaccine design against BK virus. Vaccine 2019; 37:3457-3463. [PMID: 31097352 DOI: 10.1016/j.vaccine.2019.04.096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/10/2019] [Accepted: 04/30/2019] [Indexed: 12/28/2022]
Abstract
In kidney transplant recipients (KTRs) long-term immunosuppression leads to BK virus (BKV) reactivation, with an increased incidence of BKV-associated pathologies and allograft rejection. The current approaches to limit BKV infection include a reduction in immunosuppression and use of anti-BKV drugs, which are clinically sub-optimal and lead to undesirable therapeutic outcomes. Here, we adopted an immune-based approach to augment the endogenous BKV specific T-cells. Using reverse vaccinology based in silico analyses, we designed a peptide-based multi-epitope vaccine for BKV (MVBKV). A major advantage of our approach is that the selected epitopes show an affinity towards all the 12 superfamilies of HLA class I alleles and 27 reference alleles of HLA class II. This suggests MVBKV's universal nature and its potential effectiveness in a wide-population base. To improve MVBKV's immunogenic properties, a synthetic Toll-like Receptor (TLR) 4 peptide ligand (RS09) was added to the final vaccine construct. The sequences of the individual epitopes were molecularly linked to form a 3D-stable synthetic protein. Overall, our immunoinformatic-based approach led to the design of a new MVBKV vaccine, which remains to be validated experimentally.
Collapse
|
8
|
Krejci K, Tichy T, Bednarikova J, Zamboch K, Zadrazil J. BK virus-induced renal allograft nephropathy. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 162:165-177. [DOI: 10.5507/bp.2018.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
|
9
|
El Hennawy HM. BK Polyomavirus Immune Response With Stress on BK-Specific T Cells. EXP CLIN TRANSPLANT 2018; 16:376-385. [PMID: 29766776 DOI: 10.6002/ect.2017.0354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Polyomavirus-associated nephropathy is a pertinent cause of poor renal allograft survival. Absence of defensive immunity toward BK polyomavirus may favor the occurrence of BK polyomavirus-active infection and influence the progression to polyomavirus-associated nephropathy. Humoral immune responses may offer incomplete protection. In this review, available data on both humoral and cellular immunity were examined, with a concentration on BK polyomavirus-specific T cells; in addition, their roles in BK polyomavirus cellular immune response and immunotherapy were discussed. This traditional narrative review used PubMed and Medline searches for English language reports on BK polyomavirus immune response and BK-specific T cells published between January 1990 and November 2017. The search included the key words BK virus, BK polyomavirus, immune and response, and specific T cells. Monitoring BK polyomavirus-specific T cells has both therapeutic and prognostic value. Innovative cellular immunotherapy approaches, including development of vaccinations and infectious recombinant BK polyomavirus, could further contribute to the prevention of BK polyomavirus infection and related diseases.
Collapse
Affiliation(s)
- Hany M El Hennawy
- From the Transplant Surgery Section, Department of General Surgery, Armed Forces Hospital, Southern Region, Khamis Mushate, KSA
| |
Collapse
|
10
|
BK virus as a mediator of graft dysfunction following kidney transplantation. Curr Opin Organ Transplant 2018; 22:320-327. [PMID: 28538243 DOI: 10.1097/mot.0000000000000429] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW BK virus is a significant risk factor for kidney allograft dysfunction and loss among renal transplant recipients. Currently, there is no proven effective treatment except for the reduction of immunosuppression. In this review, we discuss diagnostic challenges and current treatment options for BK in kidney transplant recipients. RECENT FINDINGS Antiviral and antibiotic therapies have been employed for BK viraemia with variable efficacy. In addition, novel therapeutic regimens such as adoptive transfer of targeted T cells have been described as possible treatment options for recipients with BK nephropathy. BK can also be seen in the native kidneys of pancreas, heart, lung and liver transplant recipients, suggesting that BK screening measures should be employed to other solid organ transplant recipients. SUMMARY Early screening for BK combined with reduction of immunosuppression remains the mainstay of treatment for BK viraemia. New therapeutic advances demonstrate promise in vitro; however, the in-vivo efficacy will be demonstrated by future studies.
Collapse
|
11
|
A single point mutation in precursor protein VI doubles the mechanical strength of human adenovirus. J Biol Phys 2017; 44:119-132. [PMID: 29243050 PMCID: PMC5928017 DOI: 10.1007/s10867-017-9479-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 12/23/2022] Open
Abstract
Viruses are extensively studied as vectors for vaccine applications and gene therapies. For these applications, understanding the material properties of viruses is crucial for creating optimal functionality. Using atomic force microscopy (AFM) nanoindentation, we studied the mechanical properties of human adenovirus type 5 with the fiber of type 35 (Ad5F35) and compared it to viral capsids with a single point mutation in the protein VI precursor protein (pVI-S28C). Surprisingly, the pVI-S28C mutant turned out to be twice as stiff as the Ad5F35 capsids. We suggest that this major increase in strength is the result of the DNA crosslinking activity of precursor protein VII, as this protein was detected in the pVI-S28C mutant capsids. The infectivity was similar for both capsids, indicating that mutation did not affect the ability of protein VI to lyse the endosomal membrane. This study highlights that it is possible to increase the mechanical stability of a capsid even with a single point mutation while not affecting the viral life cycle. Such insight can help enable the development of more stable vectors for therapeutic applications.
Collapse
|
12
|
Clinical-Scale Rapid Autologous BK Virus-Specific T Cell Line Generation From Kidney Transplant Recipients With Active Viremia for Adoptive Immunotherapy. Transplantation 2017; 101:2713-2721. [DOI: 10.1097/tp.0000000000001698] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
13
|
Abstract
BK polyomavirus (BKV) causes frequent infections during childhood and establishes persistent infections within renal tubular cells and the uroepithelium, with minimal clinical implications. However, reactivation of BKV in immunocompromised individuals following renal or hematopoietic stem cell transplantation may cause serious complications, including BKV-associated nephropathy (BKVAN), ureteric stenosis, or hemorrhagic cystitis. Implementation of more potent immunosuppression and increased posttransplant surveillance has resulted in a higher incidence of BKVAN. Antiviral immunity plays a crucial role in controlling BKV replication, and our increasing knowledge about host-virus interactions has led to the development of improved diagnostic tools and clinical management strategies. Currently, there are no effective antiviral agents for BKV infection, and the mainstay of managing reactivation is reduction of immunosuppression. Development of immune-based therapies to combat BKV may provide new and exciting opportunities for the successful treatment of BKV-associated complications.
Collapse
|
14
|
Dasari V, Bhatt KH, Smith C, Khanna R. Designing an effective vaccine to prevent Epstein-Barr virus-associated diseases: challenges and opportunities. Expert Rev Vaccines 2017; 16:377-390. [PMID: 28276306 DOI: 10.1080/14760584.2017.1293529] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Epstein-Barr virus (EBV) is a ubiquitous herpesvirus associated with a number of clinical manifestations. Primary EBV infection in young adolescents often manifests as acute infectious mononucleosis and latent infection is associated with multiple lymphoid and epithelial cancers and autoimmune disorders, particularly multiple sclerosis. Areas covered: Over the last decade, our understanding of pathogenesis and immune regulation of EBV-associated diseases has provided an important platform for the development of novel vaccine formulations. In this review, we discuss developmental strategies for prophylactic and therapeutic EBV vaccines which have been assessed in preclinical and clinical settings. Expert commentary: Major roadblocks in EBV vaccine development include no precise understanding of the clinical correlates of protection, uncertainty about adjuvant selection and the unavailability of appropriate animal models. Recent development of new EBV vaccine formulations provides exciting opportunities for the formal clinical assessment of novel formulations.
Collapse
Affiliation(s)
- Vijayendra Dasari
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Kunal H Bhatt
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Corey Smith
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| | - Rajiv Khanna
- a QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology Laboratory , QIMR Berghofer Medical Research Institute , Brisbane , Australia
| |
Collapse
|