1
|
Wang H, Pestre H, Tan EKN, Wedemann L, Schuhmacher JS, Schuhmacher M, Stellacci F. Facile lipid nanoparticle size engineering approach via controllable fusion induced by depletion forces. J Colloid Interface Sci 2025; 691:137334. [PMID: 40147373 DOI: 10.1016/j.jcis.2025.137334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
Lipid nanoparticles (LNPs) are among the most promising drug delivery carriers in research and development, with one major clinical application being messenger RNA (mRNA) vaccine. Current LNP production methods have the limit of generating low polydispersity index (PDI; PDI < 0.1) only for relatively small particles (<100 nm). It is known that larger LNPs have desirable properties, for example, particles with diameters in the 100 to 200 nm range have good immunogenicity. Yet, these larger particles' large PDI limits their clinical translation because of concerns about manufacturing reproducibility and possible side effects. We report here a facile approach to produce large and monodisperse (100-200 nm, PDI < 0.1) LNPs. The approach is based on adding 10 kDa polyethylene glycol (PEG) to a solution containing smaller LNPs. We show that PEG-induced depletion forces lead to the fusion of LNPs to form particles of approximately double the original size while keeping the same starting PDI. We discuss the fusion mechanism and show the parameters it depends on. In particular, we show that the fusion leads to a decrease in the fraction of empty LNPs. We show that the purification for PEG after fusion is simple and complete, thus, we believe that this is a method for the production of large LNP with low PDI that has a lot of potential to find industrial use.
Collapse
Affiliation(s)
- Heyun Wang
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Hugo Pestre
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Emie-Kim Ngo Tan
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Linda Wedemann
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Jan S Schuhmacher
- Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Milena Schuhmacher
- Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland; Institute of Bioengineering (IBI), École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland; Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
2
|
Bakrania A, Mo Y, Zheng G, Bhat M. RNA nanomedicine in liver diseases. Hepatology 2025; 81:1847-1877. [PMID: 37725757 PMCID: PMC12077345 DOI: 10.1097/hep.0000000000000606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The remarkable impact of RNA nanomedicine during the COVID-19 pandemic has demonstrated the expansive therapeutic potential of this field in diverse disease contexts. In recent years, RNA nanomedicine targeting the liver has been paradigm-shifting in the management of metabolic diseases such as hyperoxaluria and amyloidosis. RNA nanomedicine has significant potential in the management of liver diseases, where optimal management would benefit from targeted delivery, doses titrated to liver metabolism, and personalized therapy based on the specific site of interest. In this review, we discuss in-depth the different types of RNA and nanocarriers used for liver targeting along with their specific applications in metabolic dysfunction-associated steatotic liver disease, liver fibrosis, and liver cancers. We further highlight the strategies for cell-specific delivery and future perspectives in this field of research with the emergence of small activating RNA, circular RNA, and RNA base editing approaches.
Collapse
Affiliation(s)
- Anita Bakrania
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Yulin Mo
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Department of Medicine, Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Department of Medicine, Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, Division of Gastroenterology, University Health Network and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Sjöberg M, Olsén E, Mapar M, Parkkila P, Niederkofler S, Mohammadi S, Jing Y, Emilsson G, Lindfors L, Agnarsson B, Höök F. Multiparametric functional characterization of individual lipid nanoparticles using surface-sensitive light-scattering microscopy. Proc Natl Acad Sci U S A 2025; 122:e2426601122. [PMID: 40402247 DOI: 10.1073/pnas.2426601122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
The most efficient lipid nanoparticles (LNPs) for gene therapeutics rely on specific lipids that protect the oligonucleotide cargo and aid cellular uptake and subsequent endosomal escape. Yet, the efficacy of current state-of-the-art LNP formulations remains low, a few percent at best. A deeper understanding of how LNP cargo, lipid composition, stoichiometry, size, structure, and pH-induced conformational changes influence their efficiency is therefore necessary for improved design. Given the variability of these properties, preferred screening methods should offer single-particle-resolved multiparametric characterization. In this work, we employ combined surface-sensitive fluorescence and label-free scattering microscopy with single LNP resolution, which when integrated with microfluidics for liquid exchange between media of varying refractive index, enables quantification of LNP size, refractive index, and cargo content. We investigate two LNP formulations that, while similar in size and mRNA content, exhibit differences in functional mRNA delivery. Correlating size with the content of Cy5-labeled mRNA revealed that the cargo scaled with LNP volume for both types of LNPs, while the refractive index varied marginally across LNP size. While this multiparametric fingerprinting alone could not distinguish the two LNP formulations, we use the same experimental platform to show that their difference in fusogenicity to a supporting lipid bilayer under early endosomal conditions (drop in pH from 7.4 to 6.0) correlates with observed differences in in vitro cellular data. This highlights a limitation of the current state-of-the-art toolbox for in situ LNP characterization, which generally focuses on structural properties of suspended LNPs, which may not adequately capture functional performance.
Collapse
Affiliation(s)
- Mattias Sjöberg
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
- Nanolyze, Gothenburg 431 83, Sweden
| | - Erik Olsén
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Mokhtar Mapar
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Petteri Parkkila
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Simon Niederkofler
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Sara Mohammadi
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Yujia Jing
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Gustav Emilsson
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Lennart Lindfors
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg 431 83, Sweden
| | - Björn Agnarsson
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Fredrik Höök
- Division of Nano and Biophysics, Department of Physics, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
4
|
Boutros J, Li Z, Wright L, Falconer RJ. Formation of RNA lipid nanoparticles: an equilibrium process with a liquid intermediate stage. SOFT MATTER 2025; 21:4063-4068. [PMID: 40308163 DOI: 10.1039/d5sm00023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
This paper presents evidence that RNA-lipid nanoparticles (LNPs) can be assembled using a slow, thermodynamically controlled process. The lipid mixture used in the Spikevax vaccine was dissolved in 52% (v/v) ethanol and titrated into a solution containing tRNA. The titration was conducted using an isothermal titration calorimeter (ITC) and consisted of 40 injections with enough time between each injection so that equilibrium was reached before the next injection. Liquid phase separation occurred where the RNA-lipid complex had a lipid amine to RNA phosphate (N/P) ratio around 1 : 1. The liquid droplets had a mean hydrodynamic diameter of 1020 ± 150 nm measured using dynamic light scattering (DLS) and were clearly observable by light microscopy. At a N/P ratio of 6 : 1 the LNPs were 109 ± 0 nm and LNPs were observed using transmission electron microscopy. The mechanism for conversion of the liquid intermediate into LNPs is likely to be spontaneous emulsification driven by negative surface tension. This equilibrium process for making RNA-LNPs is very different from current manufacture strategies using rapid single step mixing in a microfluidic device. This approach provides a low shear alternative process that could be adapted to a stirred tank.
Collapse
Affiliation(s)
- Jessica Boutros
- School of Chemical Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Ziyue Li
- School of Chemical Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Leah Wright
- School of Chemical Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Robert J Falconer
- School of Chemical Engineering, University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| |
Collapse
|
5
|
Saeki R, Koide H, Song F, Yonezawa S, Hashimoto M, Toyota H, Oku N, Asai T. Prediction and control of the particle size of polyethylene glycol-free lipid nanoparticles using a design of experiment. Biochem Biophys Res Commun 2025; 761:151718. [PMID: 40184793 DOI: 10.1016/j.bbrc.2025.151718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Rigorous control of the properties of lipid nanoparticles (LNPs) such as the particle size, polydispersity index (PdI), ζ-potential, and encapsulation efficiency of small interfering RNA (siRNA) with good reproducibility is important for LNP-based siRNA delivery. In this study, polyethylene glycol (PEG)-free LNPs containing a dioleoylglycerophosphate-diethylenediamine conjugate (DOP-DEDA), which is a pH-responsive lipid derivative, were prepared by using a microfluidic technology to construct a predictive model for particle size control using the design of experiment (DoE). PEG-free DOP-DEDA-based LNPs (DEDA LNPs) encapsulating siRNA, which were prepared by using a microfluidic technology, formed uniform particles and triggered effective gene silencing. The effects of the preparation conditions such as the total flow rate, lipid concentration, and lipid solution ratio on the LNP properties were investigated, and results indicated that the lipid solution ratio is the most important parameter to control the particle size and PdI of DEDA LNPs. Conversely, the ζ-potential and siRNA encapsulation efficiency of DEDA LNPs were not affected by the preparation conditions. The predictive model constructed using the DoE data showed that the particle size of the prepared DEDA LNPs was consistent with that predicted. Therefore, our approach using the DoE will contribute to the rigorous prediction and control of the particle size of PEG-free LNPs for nucleic acid delivery.
Collapse
Affiliation(s)
- Ryoko Saeki
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Furan Song
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sei Yonezawa
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Masahiro Hashimoto
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyasu Toyota
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Naoto Oku
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
6
|
Tanaka H, Sato Y, Nakabayashi T, Tanaka A, Nishio K, Matsumoto C, Matsumaru A, Yamakawa T, Ishizaki K, Ueda K, Higashi K, Moribe K, Nakai Y, Tange K, Akita H. A Post-Encapsulation Method for the Preparation of mRNA-LNPs via the Nucleic Acid-Bridged Fusion of mRNA-Free LNPs. NANO LETTERS 2025; 25:6445-6453. [PMID: 40219988 PMCID: PMC12023019 DOI: 10.1021/acs.nanolett.4c06643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Lipid nanoparticles with encapsulated mRNA (mRNA-LNPs) have become key modalities for personalized medicines and RNA vaccines. Once the platform technology is established, the mRNA-LNPs could be applicable to a variety of protein-based therapeutic strategies. A post-encapsulation method, in which the mRNA solution is incubated with preformed mRNA-free LNPs to prepare the mRNA-LNPs, would accelerate the development of RNA-based therapeutics since even nonexperts could manufacture the mRNA-LNPs. In this study, we describe that the post-encapsulation of mRNA into mRNA-free LNPs is accompanied by "nucleic acid-bridged fusion" of them. The adsorption of mRNA onto mRNA-free LNPs via electrostatic interactions and the internalization of mRNA into the LNPs via particle-to-particle fusion are two steps that occur at different levels of pH. To complete post-encapsulation using only one-step mixing, the pH must be controlled within a limited region where both processes occur simultaneously. The size of the mRNA-free LNPs determines the effectiveness of mRNA loading.
Collapse
Affiliation(s)
- Hiroki Tanaka
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan
- Center
for Advanced Modalities and DDS, Osaka University, Suita 565-0871 Osaka, Japan
| | - Yuka Sato
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba city, Chiba 260-0856, Japan
| | - Tomoya Nakabayashi
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan
| | - Akari Tanaka
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan
| | - Kazuma Nishio
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan
| | - Chika Matsumoto
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan
| | - Atsuya Matsumaru
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan
| | - Takuma Yamakawa
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba city, Chiba 260-0856, Japan
| | - Kota Ishizaki
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba city, Chiba 260-0856, Japan
| | - Keisuke Ueda
- Laboratory
of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba city, Chiba 260-0856, Japan
| | - Kenjirou Higashi
- Laboratory
of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba city, Chiba 260-0856, Japan
| | - Kunikazu Moribe
- Laboratory
of Pharmaceutical Technology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba city, Chiba 260-0856, Japan
| | - Yuta Nakai
- Life
Science Research Laboratory, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki city, Kanagawa 210-0865, Japan
| | - Kota Tange
- Life
Science Research Laboratory, NOF Corporation, 3-3 Chidori-cho, Kawasaki-ku, Kawasaki city, Kanagawa 210-0865, Japan
| | - Hidetaka Akita
- Laboratory
of DDS Design and Drug Disposition, Graduate School of Pharmaceutical
Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai city, Miyagi 980-8578, Japan
- Center
for Advanced Modalities and DDS, Osaka University, Suita 565-0871 Osaka, Japan
| |
Collapse
|
7
|
Hinojosa-Ventura G, Acosta-Cuevas JM, Velázquez-Carriles CA, Navarro-López DE, López-Alvarez MÁ, Ortega-de la Rosa ND, Silva-Jara JM. From Basic to Breakthroughs: The Journey of Microfluidic Devices in Hydrogel Droplet Generation. Gels 2025; 11:309. [PMID: 40422329 DOI: 10.3390/gels11050309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/28/2025] Open
Abstract
Hydrogel particles are essential in biological applications because of their distinctive capacity to retain water and encapsulate active molecules within their three-dimensional structure. Typical particle sizes range from nanometers (10-500 nm) to micrometers (1-500 µm), depending on the specific application and method of preparation. These characteristics render them optimal carriers for the administration of active compounds, facilitating the regulated and prolonged release of pharmaceuticals, including anticancer agents, antibiotics, and therapeutic proteins. Hydrogel particles can exhibit various morphologies, including spherical, rod-shaped, disk-shaped, and core-shell structures. Each shape offers distinct advantages, such as improved circulation time, targeted drug delivery, or enhanced cellular uptake. Additionally, hydrogel particles can be engineered to respond to various stimuli, such as temperature, pH, light, magnetic fields, and biochemical signals. Furthermore, their biocompatibility and capacity to acclimate to many biological conditions make them appropriate for sophisticated applications, including gene treatments, tissue regeneration, and cell therapies. Microfluidics has transformed the creation of hydrogel particles, providing precise control over their dimensions, morphology, and stability. This technique facilitates reproducible and highly efficient production, reducing reagent waste and optimizing drug encapsulation. The integration of microfluidics with hydrogels provides opportunities for the advancement of creative and effective solutions in contemporary medicine.
Collapse
Affiliation(s)
- Gabriela Hinojosa-Ventura
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
- Departamento de Innovación Tecnológica, Centro Universitario de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga 45641, Mexico
| | - José Manuel Acosta-Cuevas
- Departamento de Ingeniería Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| | - Carlos Arnulfo Velázquez-Carriles
- Departamento de Ingeniería Biológica, Sintética y de Materiales, Centro Universitairo de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga 45641, Mexico
| | | | | | - Néstor D Ortega-de la Rosa
- Departamento de Ingeniería Biológica, Sintética y de Materiales, Centro Universitairo de Tlajomulco, Universidad de Guadalajara, Tlajomulco de Zúñiga 45641, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico
| |
Collapse
|
8
|
Huayamares SG, Lian L, Rab R, Hou Y, Radmand A, Kim H, Zenhausern R, Achyut BR, Gilbert Ross M, Lokugamage MP, Loughrey D, Peck HE, Echeverri ES, Da Silva Sanchez AJ, Shajii A, Li A, Tiegreen KE, Santangelo PJ, Sorscher EJ, Dahlman JE. Nanoparticle delivery of a prodrug-activating bacterial enzyme leads to anti-tumor responses. Nat Commun 2025; 16:3490. [PMID: 40221395 PMCID: PMC11993580 DOI: 10.1038/s41467-025-58548-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Most cancer patients diagnosed with late-stage head and neck squamous cell carcinoma are treated with chemoradiotherapy, which can lead to toxicity. One potential alternative is tumor-limited conversion of a prodrug into its cytotoxic form. We reason this could be achieved by transient and tumor-specific expression of purine nucleoside phosphorylase (PNP), an Escherichia coli enzyme that converts fludarabine into 2-fluoroadenine, a potent cytotoxic drug. To efficiently express bacterial PNP in tumors, we evaluate 44 chemically distinct lipid nanoparticles (LNPs) using species-agnostic DNA barcoding in tumor-bearing mice. Our lead LNP, designated LNP intratumoral (LNPIT), delivers mRNA that leads to PNP expression in vivo. Additionally, in tumor cells transfected with LNPIT, we observe upregulated pathways related to RNA and protein metabolism, providing insight into the tumor cell response to LNPs in vivo. When mice are treated with LNPIT-PNP, then subsequently given fludarabine phosphate, we observe anti-tumor responses. These data are consistent with an approach in which LNP-mRNA expression of a bacterial enzyme activates a prodrug in solid tumors.
Collapse
Affiliation(s)
- Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Regina Rab
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Yuning Hou
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Bhagelu R Achyut
- Department of Pediatrics, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | | | - Melissa P Lokugamage
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alejandro J Da Silva Sanchez
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Karen E Tiegreen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Eric J Sorscher
- Department of Pediatrics, Emory University, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
9
|
Choi AS, Moon TJ, Bhalotia A, Rajan A, Ogunnaike L, Hutchinson DW, Hwang I, Gokhale A, Kim JN, Ma T, Karathanasis E. Lipid Nanoparticles and PEG: Time Frame of Immune Checkpoint Blockade Can Be Controlled by Adjusting the Rate of Cellular Uptake of Nanoparticles. Mol Pharm 2025; 22:1859-1868. [PMID: 40035231 PMCID: PMC11975481 DOI: 10.1021/acs.molpharmaceut.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The engineerability of lipid nanoparticles (LNPs) and their ability to deliver nucleic acids make LNPs attractive tools for cancer immunotherapy. LNP-based gene delivery can be employed for various approaches in cancer immunotherapy, including encoding tumor-associated antigens and silencing of negative immune checkpoint proteins. For example, LNPs carrying small interfering RNAs can offer several advantages, including sustained and durable inhibition of an immune checkpoint protein. Due to their tunable design, modifying the lipid composition of LNPs can regulate the rate of their uptake by immune cells and the rate of gene silencing. Controlling the kinetics of LNP uptake provides additional flexibility and strategies to generate appropriate immunomodulation in the tumor microenvironment. Here, we evaluated the effects of polyethylene glycol (PEG) content ranging from 0.5 to 6 mol % on the cellular uptake of LNPs by immune cells and gene silencing of PD-L1 after intratumoral administration. We evaluated the cellular uptake and PD-L1 blockade in vitro in cell studies and in vivo using the YUMM1.7 melanoma tumor model. Cell studies showed that the rate of cell uptake was inversely correlated to an increasing mol % of PEG in a linear relationship. In the in vivo studies, 0.5% PEG LNP initiated an immediate effect in the tumor with a significant decrease in the PD-L1 expression of immune cells observed within 24 h. In comparison, the gene silencing effect of 6% PEG LNP was delayed, with a significant decrease of PD-L1 expression in immune cell subsets being observed 72 h after administration. Notably, performance of the 6% PEG LNP at 72 h was comparable to that of the 0.5% PEG LNP at 24 h. Overall, this study suggests that PEG modifications and intratumoral administration of LNPs can be a promising strategy for an effective antitumor immune response.
Collapse
Affiliation(s)
- Andrew S Choi
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Taylor J Moon
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Anubhuti Bhalotia
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Aarthi Rajan
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Laolu Ogunnaike
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Diarmuid W Hutchinson
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Inga Hwang
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Aaditya Gokhale
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Justin N Kim
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Timothy Ma
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Efstathios Karathanasis
- Department of Biomedical engineering, School of Medicine, Case Western Reserve University, Cleveland, OH
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
10
|
Li M, Schroder R, Ozuguzel U, Corts TM, Liu Y, Zhao Y, Xu W, Ling J, Templeton AC, Chaudhuri B, Gindy M, Wagner A, Su Y. Molecular Insight into Lipid Nanoparticle Assembly from NMR Spectroscopy and Molecular Dynamics Simulation. Mol Pharm 2025; 22:2193-2212. [PMID: 40135901 DOI: 10.1021/acs.molpharmaceut.4c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Lipid nanoparticles (LNPs) have emerged as the premier drug delivery system for oligonucleotide vaccines and therapeutics in recent years. Despite their prosperous advancement in research and clinical applications, there is a significant lack of mechanistic understanding of the assembly of lipid particles at the molecular level. In our study, we utilized a combination of solution and solid-state NMR, together with molecular dynamics simulations, to elucidate local structures and interactions of chemical components across multiple motional regimes. Our results comprehensively evaluated the impact of formulation components and engineering process factors on the particle formation and identified the interplay of phospholipids (DSPC), poly(ethylene glycol) (PEG) lipid conjugates, and cholesterol in governing the particle size and lipid dynamics from a structural perspective, using static 31P NMR techniques. These studies provide novel insights into the impact of particle engineering on the molecular properties of the LNP envelope membrane. Additionally, molecular interactions and compositional distribution play a critical role in particle engineering and the consequent stability and potency. In this study, we have identified intermolecular contacts among the lipid components using one-dimensional 1H-13C cross-polarization magic angle spinning experiments, 1H relaxation measurements, and two-dimensional 1H-1H correlation methods, providing a structural basis for the lipid assembly. Interestingly, the cationic and ionizable lipids, conventionally regarded as stabilizing agents primarily located within the core of LNPs, were found to interact with PEG lipids and coexist in the outer layer of the particles. We suggest that LNPs examined here are comprised of an outer layer rich in lipid components surrounding a core region. Our high-resolution findings offer insightful structural and dynamic details pertaining to the individual chemical components in the lipid particles and their interactions influence lipid complex structure and stability in particle engineering.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ryan Schroder
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Umut Ozuguzel
- Department of Chemistry, University of Connecticut, Stamford, Connecticut 06901, United States
| | - Tyler M Corts
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yong Liu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yuejie Zhao
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wei Xu
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Bodhisattwa Chaudhuri
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269, United States
- Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Marian Gindy
- Small Molecule Science and Technology, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Angela Wagner
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Analytical Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
11
|
Ojansivu M, Barriga HMG, Holme MN, Morf S, Doutch JJ, Andaloussi SEL, Kjellman T, Johnsson M, Barauskas J, Stevens MM. Formulation and Characterization of Novel Ionizable and Cationic Lipid Nanoparticles for the Delivery of Splice-Switching Oligonucleotides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419538. [PMID: 40091434 PMCID: PMC12038542 DOI: 10.1002/adma.202419538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Despite increasing knowledge about the mechanistic aspects of lipid nanoparticles (LNPs) as oligonucleotide carriers, the structure-function relationship in LNPs has been generally overlooked. Understanding this correlation is critical in the rational design of LNPs. Here, a materials characterization approach is utilized, applying structural information from small-angle X-ray scattering experiments to design novel LNPs focusing on distinct lipid organizations with a minimal compositional variation. The lipid phase structures are characterized in these LNPs and their corresponding bulk lipid mixtures with small-angle scattering techniques, and the LNP-cell interactions in vitro with respect to cytotoxicity, hemolysis, cargo delivery, cell uptake, and lysosomal swelling. An LNP is identified that outperforms Onpattro lipid composition using lipid components and molar ratios which differ from the gold standard clinical LNPs. The base structure of these LNPs has an inverse micellar phase organization, whereas the LNPs with inverted hexagonal phases are not functional, suggesting that this phase formation may not be needed for LNP-mediated oligonucleotide delivery. The importance of stabilizer choice for the LNP function is demonstrated and super-resolution microscopy highlights the complexity of the delivery mechanisms, where lysosomal swelling for the majority of LNPs is observed. This study highlights the importance of advanced characterization for the rational design of LNPs to enable the study of structure-function relationships.
Collapse
Affiliation(s)
- Miina Ojansivu
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
| | - Hanna M. G. Barriga
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
- Present address:
Division of NanobiotechnologyDepartment of Protein ScienceSciLifeLab, KTH Royal Institute of TechnologySolnaSweden
| | - Margaret N. Holme
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
| | - Stefanie Morf
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
| | - James J. Doutch
- ISIS Neutron and Muon SourceRutherford Appleton LaboratoryHarwell CampusOxfordshireOX11 0QXUK
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular MedicineDepartment of Laboratory MedicineKarolinska InstituteHuddinge14152StockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University HospitalStockholm141 86Sweden
- Karolinska ATMP CenterKarolinska InstituteHuddinge14152StockholmSweden
| | | | | | | | - Molly M. Stevens
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteHuddingeStockholm171 77Sweden
- Department of Physiology, Anatomy and GeneticsDepartment of Engineering ScienceKavli Institute for Nanoscience DiscoveryUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
12
|
Yun Y, An J, Kim HJ, Choi HK, Cho HY. Recent advances in functional lipid-based nanomedicines as drug carriers for organ-specific delivery. NANOSCALE 2025; 17:7617-7638. [PMID: 40026004 DOI: 10.1039/d4nr04778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Lipid-based nanoparticles have emerged as promising drug delivery systems for a wide range of therapeutic agents, including plasmids, mRNA, and proteins. However, these nanoparticles still encounter various challenges in drug delivery, including drug leakage, poor solubility, and inadequate target specificity. In this comprehensive review, we present an in-depth investigation of four distinct drug delivery methods: liposomes, lipid nanoparticle formulations, solid lipid nanoparticles, and nanoemulsions. Moreover, we explore recent advances in lipid-based nanomedicines (LBNs) for organ-specific delivery, employing ligand-functionalized particles that specifically target receptors in desired organs. Through this strategy, LBNs enable direct and efficient drug delivery to the intended organs, leading to superior DNA or mRNA expression outcomes compared to conventional approaches. Importantly, the development of novel ligands and their judicious combination holds promise for minimizing the side effects associated with nonspecific drug delivery. By leveraging the unique properties of lipid-based nanoparticles and optimizing their design, researchers can overcome the limitations associated with current drug delivery systems. In this review, we aim to provide valuable insights into the advancements, challenges, and future directions of lipid-based nanoparticles in the field of drug delivery, paving the way for enhanced therapeutic strategies with improved efficacy and reduced adverse effects.
Collapse
Affiliation(s)
- Yeochan Yun
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Jeongmin An
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hyun Joong Kim
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| | - Hye Kyu Choi
- Department of Chemistry and Chemical Biology, Rutgers University, the State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, USA
| | - Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea.
| |
Collapse
|
13
|
Mo Y, Keszei AFA, Kothari S, Liu H, Pan A, Kim P, Bu J, Kamanzi A, Dai DL, Mazhab-Jafari MT, Chen J, Leslie S, Zheng G. Lipid-siRNA Organization Modulates the Intracellular Dynamics of Lipid Nanoparticles. J Am Chem Soc 2025; 147:10430-10445. [PMID: 40068204 PMCID: PMC11951082 DOI: 10.1021/jacs.4c18308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Lipid nanoparticles (LNPs) are widely used for delivering therapeutic nucleic acids, yet the relationship between their internal structure and intracellular behavior, particularly before RNA release, remains unclear. Here, we elucidate how lipid-siRNA organization within LNPs can modulate their intracellular delivery dynamics. We use cryo-electron microscopy and photochemical assays to reveal that increased siRNA loading can reduce helper lipids' distribution to the LNP surface, while siRNA consistently localizes near the surface. These alterations in lipid-siRNA organization affect LNP membrane fluidity, enhancing LNP fusion with cellular membranes and promoting cytosolic siRNA delivery, primarily via macropinocytosis. Using photosensitive lipids and live cell imaging, we demonstrate that lipid-siRNA organization regulates LNP responsiveness to external stimuli, significantly affecting siRNA endosomal escape efficiency upon light activation. We further confirm this observation using convex lens-induced confinement microscopy and single-particle imaging. Overall, our findings provide critical insights into how lipid-siRNA organization shapes LNP intracellular dynamics, offering rational design principles for optimizing LNP-based RNA therapeutics.
Collapse
Affiliation(s)
- Yulin Mo
- Institute
of Medical Science, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Alexander F. A. Keszei
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Shagun Kothari
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Heyi Liu
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Anni Pan
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Paige Kim
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Jiachuan Bu
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Albert Kamanzi
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David L. Dai
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Mohammad T. Mazhab-Jafari
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| | - Juan Chen
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
| | - Sabrina Leslie
- Michael
Smith Laboratories and Department of Physics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Gang Zheng
- Institute
of Medical Science, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 1L7, Canada
- Department
of Medical Biophysics, University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
14
|
Zou Y, Zhang J, Chen L, Xu Q, Yao S, Chen H. Targeting Neuroinflammation in Central Nervous System Diseases by Oral Delivery of Lipid Nanoparticles. Pharmaceutics 2025; 17:388. [PMID: 40143051 PMCID: PMC11944764 DOI: 10.3390/pharmaceutics17030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Neuroinflammation within the central nervous system (CNS) is a primary characteristic of CNS diseases, such as Parkinson's disease, Alzheimer's disease (AD), amyotrophic lateral sclerosis, and mental disorders. The excessive activation of immune cells results in the massive release of pro-inflammatory cytokines, which subsequently induce neuronal death and accelerate the progression of neurodegeneration. Therefore, mitigating excessive neuroinflammation has emerged as a promising strategy for the treatment of CNS diseases. Despite advancements in drug discovery and the development of novel therapeutics, the effective delivery of these agents to the CNS remains a serious challenge due to the restrictive nature of the blood-brain barrier (BBB). This underscores the need to develop a novel drug delivery system. Recent studies have identified oral lipid nanoparticles (LNPs) as a promising approach to efficiently deliver drugs across the BBB and treat neurological diseases. This review aims to comprehensively summarize the recent advancements in the development of LNPs designed for the controlled delivery and therapeutic modulation of CNS diseases through oral administration. Furthermore, this review addresses the mechanisms by which these LNPs overcome biological barriers and evaluate their clinical implications and therapeutic efficacy in the context of oral drug delivery systems. Specifically, it focuses on LNP formulations that facilitate oral administration, exploring their potential to enhance bioavailability, improve targeting precision, and alleviate or manage the symptoms associated with a range of CNS diseases.
Collapse
Affiliation(s)
- Yuan Zou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (S.Y.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jing Zhang
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430074, China; (J.Z.); (Q.X.)
| | - Longmin Chen
- Department of Rheumatology and Immunology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Qianqian Xu
- Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, NHC Key Laboratory for Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430074, China; (J.Z.); (Q.X.)
| | - Sheng Yao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (S.Y.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China; (Y.Z.); (S.Y.)
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Alshehry Y, Liu X, Li W, Wang Q, Cole J, Zhu G. Lipid Nanoparticles for mRNA Delivery in Cancer Immunotherapy. AAPS J 2025; 27:66. [PMID: 40102316 DOI: 10.1208/s12248-025-01051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Cancer immunotherapy is poised to be one of the major modalities for cancer treatment. Messenger RNA (mRNA) has emerged as a versatile and promising platform for the development of effective cancer immunotherapy. Delivery systems for mRNA therapeutics are pivotal for their optimal therapeutic efficacy and minimal adverse side effects. Lipid nanoparticles (LNPs) have demonstrated a great success for mRNA delivery. Numerous LNPs have been designed and optimized to enhance mRNA stability, facilitate transfection, and ensure intracellular delivery for subsequent processing. Nevertheless, challenges remain to, for example, improve the efficiency of endosomal escape and passive targeting. This review highlights key advancements in the development of mRNA LNPs for cancer immunotherapy. We delve into the design of LNPs for mRNA delivery, encompassing the chemical structures, characterization, and structure-activity relationships (SAR) of LNP compositions. We discuss the key factors influencing the transfection efficiency, passive targeting, and tropism of mRNA-loaded LNPs. We also review the preclinical and clinical applications of mRNA LNPs in cancer immunotherapy. This review can enhance our understanding in the design and application of LNPs for mRNA delivery in cancer immunotherapy.
Collapse
Affiliation(s)
- Yasir Alshehry
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 31441, Dammam, Saudi Arabia
| | - Xiang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Wenhua Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Qiyan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America
| | - Janét Cole
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Guizhi Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, United States of America.
- Bioinnovations in Brain Cancer, Biointerfaces Institute, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI, 48109, United States of America.
| |
Collapse
|
16
|
Li L, Luo M, Zhou L, Wang Y, Jiao Y, Wang C, Gong C, Cen X, Yao S. Glucocorticoid pre-administration improves LNP-mRNA mediated protein replacement and genome editing therapies. Int J Pharm 2025; 672:125282. [PMID: 39880143 DOI: 10.1016/j.ijpharm.2025.125282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) are among the most promising non-viral mRNA delivery systems for gene therapeutic applications. However, the in vivo delivery of LNP-mRNA remains challenging due to multiple intrinsic barriers that hinder LNPs from reaching their target cells. In this study, we sought to enhance LNP delivery by manipulating intrinsic regulatory mechanisms involved in their metabolism. We demonstrated that activation of the glucocorticoid pathway significantly increased the systemic delivery of LNP-mRNA in both mice and monkeys, achieving up to a fourfold improvement. This enhancement was primarily attributed to the glucocorticoid-mediated inhibition of macrophage phagocytosis in circulation and the liver, which resulted in higher LNP accumulation in hepatocytes. Consequently, glucocorticoid activation improved the therapeutic efficacy of LNP-based protein replacement and CRISPR/Cas9 genome editing therapies. Together, these findings establish a practical strategy to enhance the systemic delivery of RNA-based protein replacement and genome editing therapeutics, highlighting the potential of manipulating endogenous mechanisms to optimize exogenous gene delivery.
Collapse
Affiliation(s)
- Li Li
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Mei Luo
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Lifang Zhou
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Yanhong Wang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Yaoge Jiao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Chunting Wang
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Changyang Gong
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China
| | - Xiaobo Cen
- Mental Health Center and Center for Preclinical Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Shaohua Yao
- Laboratory of Biotherapy, National Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Renmin Nanlu 17, Chengdu 610041, Sichuan, China.
| |
Collapse
|
17
|
Hourdel L, Lebaz N, Peral F, Ripoll M, Briançon S, Bensaid F, Luthra S, Cogné C. Overview on LNP-mRNA encapsulation unit operation: Mixing technologies, scalability, and influence of formulation & process parameters on physico-chemical characteristics. Int J Pharm 2025; 672:125297. [PMID: 39900125 DOI: 10.1016/j.ijpharm.2025.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025]
Abstract
Nanoparticles carrying active drug substances have been used since the 70's and have undergone numerous improvements since then. Nowadays, the latest generation of nanoparticles, called lipid nanoparticles (LNPs), is used for different applications such as vaccines and cancer treatments and offer a versatile approach to delivering genetic materials like RNA. LNPs are non-viral delivery vehicles obtained by the self-assembly of lipids during the rapid mixing of an aqueous phase containing mRNA with an organic phase containing lipids. During this process, mRNA is encapsulated within the LNP due to electrostatic interaction with an ionizable lipid. Different methods to produce LNPs are described in the literature and, as of now, continuous methods are mostly used to produce LNP-encapsulated mRNA (LNP-mRNA). T-shaped mixers are commonly used to produce mRNA-LNPs. This technology can operate at two different scales: microfluidic chips which can range from tens to hundreds of microns in size, and millimetric tubing for production scale up. This review intends to describe LNP-mRNA characteristics and their production modes with a special focus on the challenges related to the mixing quality, especially during scale-up.
Collapse
Affiliation(s)
- Laurine Hourdel
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France; Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France.
| | - Noureddine Lebaz
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Florent Peral
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Manon Ripoll
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Stéphanie Briançon
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| | - Fethi Bensaid
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Sumit Luthra
- Sanofi, 1541 Avenue Marcel Mérieux, 69280 Marcy-l'Etoile, France
| | - Claudia Cogné
- Universite Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, 43 boulevard du 11 novembre 1918, F-69100 Villeurbanne, France
| |
Collapse
|
18
|
López RR, Ben El Khyat CZ, Chen Y, Tsering T, Dickinson K, Bustamante P, Erzingatzian A, Bartolomucci A, Ferrier ST, Douanne N, Mounier C, Stiharu I, Nerguizian V, Burnier JV. A synthetic model of bioinspired liposomes to study cancer-cell derived extracellular vesicles and their uptake by recipient cells. Sci Rep 2025; 15:8430. [PMID: 40069225 PMCID: PMC11897354 DOI: 10.1038/s41598-025-91873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
Extracellular vesicles (EVs) are secreted by most cell types and play a central role in cell-cell communication. These naturally occurring nanoparticles have been particularly implicated in cancer, but EV heterogeneity and lengthy isolation methods with low yield make them difficult to study. To circumvent the challenges in EV research, we aimed to develop a unique synthetic model by engineering bioinspired liposomes to study EV properties and their impact on cellular uptake. We produced EV-like liposomes mimicking the physicochemical properties as cancer EVs. First, using a panel of cancer and non-cancer cell lines, small EVs were isolated by ultracentrifugation and characterized by dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA). Cancer EVs ranged in mean size from 107.9 to 161 nm by NTA, hydrodynamic diameter from 152 to 355 nm by DLS, with a zeta potential ranging from - 25 to -6 mV. EV markers TSG101 and CD81 were positive on all EVs. Using a microfluidics bottom-up approach, liposomes were produced using the nanoprecipitation method adapted to micromixers developed by our group. A library of liposome formulations was created that mimicked the ranges of size (90-222 nm) and zeta potential (anionic [-47 mV] to neutral [-1 mV]) at a production throughput of up to 41 mL/h and yielding a concentration of 1 × 1012 particles per mL. EV size and zeta potential were reproduced by controlling the flow conditions and lipid composition set by a statistical model based on the response surface methodology. The model was fairly accurate with an R-squared > 70% for both parameters between the targeted EV and the obtained liposomes. Finally, the internalization of fluorescently labeled EV-like liposomes was assessed by confocal microscopy and flow cytometry, and correlated with decreasing liposome size and less negative zeta potential, providing insights into the effects of key EV physicochemical properties. Our data demonstrated that liposomes can be used as a powerful synthetic model of EVs. By mimicking cancer cell-derived EV properties, the effects on cellular internalization can be assessed individually and in combination. Taken together, we present a novel system that can accelerate research on the effects of EVs in cancer models.
Collapse
Affiliation(s)
- Rubén R López
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Chaymaa Zouggari Ben El Khyat
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Yunxi Chen
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Thupten Tsering
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Kyle Dickinson
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Prisca Bustamante
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Armen Erzingatzian
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Alexandra Bartolomucci
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Sarah Tadhg Ferrier
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Noélie Douanne
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Department of Pathology, McGill University, Quebec, Canada
| | - Catherine Mounier
- Department of biological sciences, Université du Québec à Montréal, 141 avenue du président Kennedy, Montreal, QC, H2X 1Y4, Canada
- Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, QC, H3G 1M8, Canada
| | - Ion Stiharu
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Montreal, QC, H4A 3T2, Canada
| | - Vahé Nerguizian
- Department of Electrical Engineering, École de Technologie supérieure, 1100 Notre Dame West, Montreal, QC, H3C 1K3, Canada
| | - Julia V Burnier
- Cancer Research Program, Research Institute of the McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Department of Pathology, McGill University, Quebec, Canada.
| |
Collapse
|
19
|
Liu M, Wang Y, Zhang Y, Hu D, Tang L, Zhou B, Yang L. Landscape of small nucleic acid therapeutics: moving from the bench to the clinic as next-generation medicines. Signal Transduct Target Ther 2025; 10:73. [PMID: 40059188 PMCID: PMC11891339 DOI: 10.1038/s41392-024-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 03/17/2025] Open
Abstract
The ability of small nucleic acids to modulate gene expression via a range of processes has been widely explored. Compared with conventional treatments, small nucleic acid therapeutics have the potential to achieve long-lasting or even curative effects via gene editing. As a result of recent technological advances, efficient small nucleic acid delivery for therapeutic and biomedical applications has been achieved, accelerating their clinical translation. Here, we review the increasing number of small nucleic acid therapeutic classes and the most common chemical modifications and delivery platforms. We also discuss the key advances in the design, development and therapeutic application of each delivery platform. Furthermore, this review presents comprehensive profiles of currently approved small nucleic acid drugs, including 11 antisense oligonucleotides (ASOs), 2 aptamers and 6 siRNA drugs, summarizing their modifications, disease-specific mechanisms of action and delivery strategies. Other candidates whose clinical trial status has been recorded and updated are also discussed. We also consider strategic issues such as important safety considerations, novel vectors and hurdles for translating academic breakthroughs to the clinic. Small nucleic acid therapeutics have produced favorable results in clinical trials and have the potential to address previously "undruggable" targets, suggesting that they could be useful for guiding the development of additional clinical candidates.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yusi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yibing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Die Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lin Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bailing Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
20
|
Yuan Y, Li Y, Li G, Lei L, Huang X, Li M, Yao Y. Intelligent Design of Lipid Nanoparticles for Enhanced Gene Therapeutics. Mol Pharm 2025; 22:1142-1159. [PMID: 39878334 DOI: 10.1021/acs.molpharmaceut.4c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Lipid nanoparticles (LNPs) are an effective delivery system for gene therapeutics. By optimizing their formulation, the physiochemical properties of LNPs can be tailored to improve tissue penetration, cellular uptake, and precise targeting. The application of these targeted delivery strategies within the LNP framework ensures efficient delivery of therapeutic agents to specific organs or cell types, thereby maximizing therapeutic efficacy. In the realm of genome editing, LNPs have emerged as a potent vehicle for delivering CRISPR/Cas components, offering significant advantages such as high in vivo efficacy. The incorporation of machine learning into the optimization of LNP platforms for gene therapeutics represents a significant advancement, harnessing its predictive capabilities to substantially accelerate the research and development process. This review highlights the dynamic evolution of LNP technology, which is expected to drive transformative progress in the field of gene therapy.
Collapse
Affiliation(s)
- Yichen Yuan
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- Research Center for Life Sciences Computing, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Ying Li
- Research Center for Space Computing System, Zhejiang Lab, Hangzhou, Zhejiang 311121, China
| | - Guo Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
| | - Liqun Lei
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Xingxu Huang
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China
| | - Ming Li
- Department of Dermatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201102, China
| | - Yuan Yao
- ZJU-Hangzhou Global Scientific and Technological Innovation Canter, Zhejiang University, Hangzhou, Zhejiang 311215, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang Key Laboratory of Intelligent Manufacturing for Functional Chemicals, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| |
Collapse
|
21
|
Zwolsman R, Darwish YB, Kluza E, van der Meel R. Engineering Lipid Nanoparticles for mRNA Immunotherapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2025; 17:e70007. [PMID: 40195623 PMCID: PMC11976204 DOI: 10.1002/wnan.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/11/2025] [Accepted: 03/15/2025] [Indexed: 04/09/2025]
Abstract
Over the last decades, messenger RNA (mRNA) has emerged as a promising therapeutic modality, enabling the delivery of genetic instructions to cells for producing therapeutic proteins or antigens. As such, mRNA-based therapies can be developed for a wide range of conditions, including infections, cancer, metabolic disorders, and genetic diseases. Nevertheless, using mRNA therapeutically requires chemical modifications to reduce immunostimulatory effects and nanotechnology to prevent degradation and ensure intracellular delivery. Lipid nanoparticles (LNPs) have become the most effective delivery platform for mRNA therapeutics, which are primarily employed for vaccine purposes following local administration and hepatic applications following systemic administration. Here, we review the state-of-the-art LNP-mRNA technology and discuss its potential for immunotherapy. We first outline the requirements for mRNA to be used therapeutically, including the role of LNP-mediated delivery. Next, we highlight LNP-mRNA immunotherapy approaches for vaccination, immuno-oncology, and autoimmune disorders. In addition, we discuss challenges that are limiting LNP-mRNA's widespread use, including tunable biodistribution and immunostimulatory effects. Finally, we provide an outlook on how implementing approaches such as library screening and machine learning will guide the development of next-generation mRNA therapeutics.
Collapse
Affiliation(s)
- Robby Zwolsman
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Youssef B. Darwish
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Ewelina Kluza
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| | - Roy van der Meel
- Laboratory of Chemical Biology, Department of Biomedical EngineeringEindhoven University of TechnologyEindhoventhe Netherlands
| |
Collapse
|
22
|
Vosoughi P, Naghib SM, Kangarshahi BM, Mozafari MR. A review of RNA nanoparticles for drug/gene/protein delivery in advanced therapies: Current state and future prospects. Int J Biol Macromol 2025; 295:139532. [PMID: 39765293 DOI: 10.1016/j.ijbiomac.2025.139532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Nanotechnology involves the utilization of materials with exceptional properties at the nanoscale. Over the past few years, nanotechnologies have demonstrated significant potential in improving human health, particularly in medical treatments. The self-assembly characteristic of RNA is a highly effective method for designing and constructing nanostructures using a combination of biological, chemical, and physical techniques from different fields. There is great potential for the application of RNA nanotechnology in therapeutics. This review explores various nano-based drug delivery systems and their unique features through the impressive progress of the RNA field and their significant therapeutic promises due to their unique performance in the COVID-19 pandemic. However, a significant hurdle in fully harnessing the power of RNA drugs lies in effectively delivering RNA to precise organs and tissues, a critical factor for achieving therapeutic effectiveness, minimizing side effects, and optimizing treatment outcomes. There have been many efforts to pursue targeting, but the clinical translation of RNA drugs has been hindered by the lack of clear guidelines and shared understanding. A comprehensive understanding of various principles is essential to develop vaccines using nucleic acids and nanomedicine successfully. These include mechanisms of immune responses, functions of nucleic acids, nanotechnology, and vaccinations. Regarding this matter, the aim of this review is to revisit the fundamental principles of the immune system's function, vaccination, nanotechnology, and drug delivery in relation to the creation and manufacturing of vaccines utilizing nanotechnology and nucleic acids. RNA drugs have demonstrated significant potential in treating a wide range of diseases in both clinical and preclinical research. One of the reasons is their capacity to regulate gene expression and manage protein production efficiently. Different methods, like modifying chemicals, connecting ligands, and utilizing nanotechnology, have been essential in enabling the effective use of RNA-based treatments in medical environments. The article reviews stimuli-responsive nanotechnologies for RNA delivery and their potential in RNA medicines. It emphasizes the notable benefits of these technologies in improving the effectiveness of RNA and targeting specific cells and organs. This review offers a comprehensive analysis of different RNA drugs and how they work to produce therapeutic benefits. Recent progress in using RNA-based drugs, especially mRNA treatments, has shown that targeted delivery methods work well in medical treatments.
Collapse
Affiliation(s)
- Pegah Vosoughi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran.
| | - Babak Mikaeeli Kangarshahi
- State Key Laboratory of Structure Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, China
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
23
|
Thomas MR, Badekila AK, Pai V, S N, Bhandary Y, Rai A, Kini S. Navigating Tumor Microenvironment Barriers with Nanotherapeutic Strategies for Targeting Metastasis. Adv Healthc Mater 2025; 14:e2403107. [PMID: 39840497 DOI: 10.1002/adhm.202403107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/20/2024] [Indexed: 01/23/2025]
Abstract
Therapeutic strategy for efficiently targeting cancer cells needs an in-depth understanding of the cellular and molecular interplay in the tumor microenvironment (TME). TME comprises heterogeneous cells clustered together to translate tumor initiation, migration, and proliferation. The TME mainly comprises proliferating tumor cells, stromal cells, blood vessels, lymphatic vessels, cancer-associated fibroblasts (CAFs), extracellular matrix (ECM), and cancer stem cells (CSC). The heterogeneity and genetic evolution of metastatic tumors can substantially impact the clinical effectiveness of therapeutic agents. Therefore, the therapeutic strategy shall target TME of all metastatic stages. Since the advent of nanotechnology, smart drug delivery strategies are employed to deliver effective drug formulations directly into tumors, ensuring controlled and sustained therapeutic efficacy. The state-of-the-art nano-drug delivery systems are shown to have innocuous modes of action in targeting the metastatic players of TME. Therefore, this review provides insight into the mechanism of cancer metastasis involving invasion, intravasation, systemic transport of circulating tumor cells (CTCs), extravasation, metastatic colonization, and angiogenesis. Further, the novel perspectives associated with current nanotherapeutic strategies are highlighted on different stages of metastasis.
Collapse
Affiliation(s)
- Mahima Rachel Thomas
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Anjana Kaveri Badekila
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Vishruta Pai
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Nijil S
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| | - Yashodhar Bhandary
- Cell Biology and Molecular Genetics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, Karnataka, 575 018, India
| | - Ankit Rai
- Medical Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Sudarshan Kini
- Nitte (Deemed to be University), Department of Bio & Nano Technology, Nitte University Centre for Science Education and Research, Mangalore, Karnataka, 575018, India
| |
Collapse
|
24
|
Idres YM, Idris A, Gao W. Preclinical testing of antiviral siRNA therapeutics delivered in lipid nanoparticles in animal models - a comprehensive review. Drug Deliv Transl Res 2025:10.1007/s13346-025-01815-x. [PMID: 40000558 DOI: 10.1007/s13346-025-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
The advent of RNA interference (RNAi) technology through the use of short-interfering RNAs (siRNAs) represents a paradigm shift in the fight against viral infections. siRNAs, with their ability to directly target and silence specific posttranscriptional genes, offer a novel mechanism of action distinct from that of traditional pharmacotherapeutics. This review delves into the growing field of siRNA therapeutics against viral infections, highlighting their critical role in contemporary antiviral strategies. Importantly, this review will solely focus on the use of lipid nanoparticles (LNPs) as the ideal antiviral siRNA delivery agent for use in vivo. We discuss the challenges of siRNA delivery and how LNPs have emerged as a pivotal solution to enhance antiviral efficacy. Specifically, this review focuses on work that have preclinically tested LNP formulated siRNA on virus infection animal models. Since the COVID-19 pandemic, we have witnessed a resurgence in the field of RNA-based therapies, including siRNAs against viruses including, SARS-CoV-2. Notably, the critical importance of LNPs as the ideal carrier for precious 'RNA cargo' can no longer be ignored with the advent of mRNA-LNP based COVID-19 vaccines. siRNA-based therapeutics represents an emerging class of anti-infective drugs with a foreseeable future as suitable antiviral agents.
Collapse
Affiliation(s)
- Yusuf M Idres
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wenqing Gao
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Mirkani A, Nabid MR, Pakian S. Manufacturing of Liposomes Using a Stainless-Steel Microfluidic Device: An Investigation into Design of Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3503-3515. [PMID: 39873290 DOI: 10.1021/acs.langmuir.4c04639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Liposomes are highly beneficial nanocarrier systems due to their biocompatibility, low toxicity, and exceptional inclusiveness, which lead to improved drug bioavailability. For biological applications, accurate control over these nanoparticles' mean size and size distribution is essential. Micromixers facilitate the continuous production of liposomes, enhancing the precision of size regulation and reproducibility. In this research, the performance of a stainless steel 316L micromixer was evaluated by using COMSOL Multiphysics simulations. The liposomes were precisely optimized using design of experiments techniques in a microfluidic setup, and then dexamethasone sodium phosphate (DSP) was successfully encapsulated in liposome nanoparticles. The physicochemical characteristics of liposomes, such as their ζ-potential, size, DSP loading capacity, encapsulation efficiency, and drug release, were assessed. Transmission electron microscopy and dynamic light scattering analysis were used to examine the structures of the liposomes. The drug release kinetics study was conducted to analyze the drug delivery system, and the Higuchi equation was determined to be the most suitable equation. The microfluidic chip was shown to be capable of creating small-sized liposomes with a size as small as 130 nm, exhibiting monodispersed characteristics and low polydispersity liposome populations.
Collapse
Affiliation(s)
- Ahmad Mirkani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran
| | - Mohammad Reza Nabid
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran
| | - Sarvenaz Pakian
- Department of Polymer and Materials Chemistry, Faculty of Chemistry & Petroleum Sciences, Shahid Beheshti University, P.O. Box 1983969411 Tehran, Iran
| |
Collapse
|
26
|
Henke L, Ghorbani A, Mole SE. The use of nanocarriers in treating Batten disease: A systematic review. Int J Pharm 2025; 670:125094. [PMID: 39694161 DOI: 10.1016/j.ijpharm.2024.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The neuronal ceroid lipofuscinoses, commonly known as Batten disease, are a group of lysosomal storage disorders affecting children. There is extensive central nervous system and retinal degeneration, resulting in seizures, vision loss and a progressive cognitive and motor decline. Enzyme replacement and gene therapies are being developed, and mRNA and oligonucleotide therapies are more recently being considered. Overcoming the challenges of the blood-brain barrier and blood-ocular barrier is crucial for effectively targeting the brain and eye, whatever the therapeutic approach. Nanoparticles and extracellular vesicles are small carriers that can encapsulate a cargo and pass through these cell barriers. They have been investigated as drug carriers for other pathologies and could be a promising treatment strategy for Batten disease. Their use in gene, enzyme, or mRNA replacement therapy of all lysosomal storage disorders, including Mucopolysaccharidoses, Niemann-Pick diseases, and Fabry disease, is investigated in this systematic review. Different nanocarriers can efficiently target the lysosome and cross the barriers into the brain and eyes. This supports continued exploration of nanocarriers as potential future treatment options for Batten disease.
Collapse
Affiliation(s)
- Larissa Henke
- Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ali Ghorbani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
27
|
Liu Y, Shen H, Zang H, Shi Y, Qiu S, Fu X, Zhang Y, Chen X, Zhou J, Wan X, Lin G. A study on the treatment of rheumatoid arthritis with lipid nanoparticles containing mRNA encoding heat shock protein 10. J Pharm Sci 2025; 114:1455-1463. [PMID: 39725228 DOI: 10.1016/j.xphs.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
In order to delay the progression of Rheumatoid Arthritis (RA) in patients, and to prevent further teratogenesis and irreversible bone erosion through drug intervention in the early stages of inflammation, this experiment used the mRNA encoding heat shock protein 10 (HSP10) (H-mRNA) as the main therapeutic drug and used Microfluidics technology to prepare lipid nanoparticles (LNP) (H-mRNA LNPs) containing H-mRNA, and the surface of H-mRNA-LNPs was modified using heparin particals to obtain the final formulation H-mRNA-LNPs @ heparin/ Protamine. Through the sequence modification and effect evaluation of H-mRNA, we explored the formulation screening, physical characterization, cytotoxicity in vitro, distribution in vivo, pharmacodynamics in vivo, and safety in vivo of the prepared lipid nanoparticles, which proved that this nano-preparation had good anti Rheumatoid Arthritis effects, and conducted a preliminary exploration for the application of nucleic acid drugs in the treatment of diseases outside of tumors. This research would provide new ideas for the treatment of RA.
Collapse
Affiliation(s)
- Yingying Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hua Shen
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Hengchang Zang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanbin Shi
- School of Mechanical and Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Shengnan Qiu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xianglei Fu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Yankun Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiangqin Chen
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Jiamin Zhou
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiaoyu Wan
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Guimei Lin
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
28
|
Onan D, Özder M, Sipahi Mİ, Poyraz N, Apaydın C, Erel-Akbaba G, Akbaba H. Microfluidics Based Particle and Droplet Generation for Gene and Drug Delivery Approaches. J Biomed Mater Res B Appl Biomater 2025; 113:e35530. [PMID: 39840932 DOI: 10.1002/jbm.b.35530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/28/2024] [Accepted: 12/26/2024] [Indexed: 01/23/2025]
Abstract
Microfluidics-based droplets have emerged as a powerful technology for biomedical research, offering precise control over droplet size and structure, optimal mixing of solutions, and prevention of cross-contamination. It is a major branch of microfluidic technology with applications in diagnostic testing, imaging, separation, and gene amplification. This review discusses the different aspects of microfluidic devices, droplet generation techniques, droplet types, and the production of micro/nano particles, along with their advantages and limitations. Passive and active methods for droplet formation are discussed, as well as the manipulation of droplet shape and content. This review also highlights the potential applications of droplet microfluidics in tissue engineering, cancer therapy, and drug delivery systems. The use of microfluidics in the production of lipid nanoparticles and polymeric microparticles is also presented, with emphasis on their potential in drug delivery and biomedical research. Finally, the contributions of microfluidics to vaccines, gene therapy, personalized medicine, and future perspectives are discussed, emphasizing the need for continuous innovation and integration with other technologies, such as AI and wearable devices, to further enhance its potential in personalized medicine and drug delivery. However, it is also noted that challenges in commercialization and widespread adoption still need to be addressed.
Collapse
Affiliation(s)
- Deniz Onan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Melike Özder
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Meryem İrem Sipahi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Nazlıcan Poyraz
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Ceylin Apaydın
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| | - Gülşah Erel-Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir, Turkey
| | - Hasan Akbaba
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
29
|
Choi GW, Kim JH, Kang DW, Cho HY. A journey into siRNA therapeutics development: A focus on Pharmacokinetics and Pharmacodynamics. Eur J Pharm Sci 2025; 205:106981. [PMID: 39643127 DOI: 10.1016/j.ejps.2024.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
siRNA therapeutics are emerging novel modalities targeting highly specific mRNA via RNA interference mechanism. Its unique pharmacokinetics (PKs) and pharmacodynamics (PDs) are significant challenges for clinical use. Furthermore, naked siRNA is a highly soluble macromolecule with a negative charge, making plasma membrane penetration a significant hurdle. It is also vulnerable to nuclease degradation. Therefore, advanced formulation technologies, such as lipid nanoparticles and N-acetylgalactosamine conjugation, have been developed and are now used in clinical practice to enhance target organ delivery and stability. The innate complex biological mechanisms of siRNA, along with its formulation, are major determinants of the PK/PD characteristics of siRNA products. To systematically and quantitatively understand these characteristics, it is essential to develop and utilize quantitative PK/PD models for siRNA therapeutics. In this review, the effects of formulation on the PKs and PK/PD models of approved siRNA products were presented, highlighting the importance of selecting appropriate biomarkers and understanding formulation, PKs, and PDs for quantitative interpreting the relationship between plasma concentration, organ concentration, biomarkers, and efficacy.
Collapse
Affiliation(s)
- Go-Wun Choi
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ju Hee Kim
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dong Wook Kang
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Hea-Young Cho
- College of Pharmacy, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea.
| |
Collapse
|
30
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
31
|
Oyama D, Okada M, Song F, Nitta C, Koide H, Yonezawa S, Asai T. Process Optimization of Charge-Reversible Lipid Nanoparticles for Cytosolic Protein Delivery Using the Design-of-Experiment Approach. Biol Pharm Bull 2025; 48:286-297. [PMID: 40128923 DOI: 10.1248/bpb.b24-00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
This study aimed to elucidate the manufacturing process parameters with optimal quality characteristics of protein-encapsulated dioleoylglycerophosphate-diethylenediamine (DOP-DEDA)-based lipid nanoparticles (LNPs) for intracellular protein drug delivery. DOP-DEDA is a pH-responsive and charge-reversible lipid for intracellular cargo delivery. In this study, bovine serum albumin (BSA) was used as a weakly acidic protein model, and LNPs were prepared using microfluidic technology, which has many advantages for practical applications. BSA-encapsulated DOP-DEDA-based LNPs showed pH-responsive charge reversibility and excellent quality characteristics for the intracellular delivery of proteins. A process optimization study was conducted by applying the Box-Behnken design in a design-of-experiment approach. The particle size, ζ-potential, and encapsulation efficiency were evaluated in response to the total flow rate, lipid concentration, and lipid solution ratio. The lipid solution ratio and total flow rate significantly affected the particle size and encapsulation efficiency, respectively. On the contrary, none of the process parameters affected the ζ-potential. Moreover, a map of the predicted values was constructed for the particle size and encapsulation efficiency using a multiple regression equation. In the predicted particle size range of 77-215 nm and encapsulation efficiency of 14-35%, the observed values were close to the predicted values, and 100-nm LNPs were reproduced with an encapsulation efficiency of 27%. Therefore, manufacturing process parameters were established to obtain protein-encapsulated DOP-DEDA-based LNPs with optimal quality characteristics.
Collapse
Affiliation(s)
- Dai Oyama
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- PPM JP1, CMC Product Management, Astellas Pharma Inc., 2-5-1 Nihonbashi-Honcho, Chuo-ku, Tokyo 103-8411, Japan
| | - Masako Okada
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Furan Song
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Chiori Nitta
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hiroyuki Koide
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sei Yonezawa
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Laboratory of Medical Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| |
Collapse
|
32
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
33
|
Zhao Z, Wang P, Li Z, Wei X, Li S, Lu X, Dai S, Huang B, Man Z, Li W. Targeted lipid nanoparticles distributed in hydrogel treat osteoarthritis by modulating cholesterol metabolism and promoting endogenous cartilage regeneration. J Nanobiotechnology 2024; 22:786. [PMID: 39707367 DOI: 10.1186/s12951-024-02965-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/31/2024] [Indexed: 12/23/2024] Open
Abstract
Osteoarthritis (OA) is the most common disease in aging joints and has characteristics of cartilage destruction and inflammation. It is currently considered a metabolic disease, and the CH25H-CYP7B1-RORα axis of cholesterol metabolism in chondrocytes plays a crucial catabolic regulatory role in its pathogenesis. Targeting of this axis in chondrocytes may provide a therapeutic approach for OA treatment. Here, in this study, we propose to use a combination of stem cell-recruiting hydrogels and lipid nanoparticles (LNPs) that modulate cholesterol metabolism to jointly promote a regenerative microenvironment. Specifically, we first developed an injectable, bioactive hydrogel composed of self-assembling peptide nanofibers that recruits endogenous synovial stem cells (SMSCs) and promotes their chondrogenic differentiation. At the same time, LNPs that regulate cholesterol metabolism are incorporated into the hydrogel and slowly released, thereby improving the inflammatory environment of OA. Enhancements were noted in the inflammatory conditions associated with OA, alongside the successful attraction of mesenchymal stem cells (MSCs) from the synovial membrane. These cells were then observed to differentiate into chondrocytes, contributing to effective cartilage restoration and chondrocyte regeneration, thereby offering a promising approach for OA treatment. In summary, this approach provides a feasible siRNA-based therapeutic option, offering a potential nonsurgical solution for treatment of OA.
Collapse
Affiliation(s)
- Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Ziyang Li
- Department of Sports Medicine & Orthopedic Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, People's Republic of China
| | - Xingchen Wei
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, People's Republic of China.
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, People's Republic of China.
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.
- College of Sports Medicine and Rehabilitation, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, People's Republic of China.
| |
Collapse
|
34
|
Arduino I, Di Fonte R, Sommonte F, Lopedota AA, Porcelli L, Li J, Serrati S, Bártolo R, Santos HA, Iacobazzi RM, Azzariti A, Denora N. Fabrication of Biomimetic Hybrid Liposomes via Microfluidic Technology: Homotypic Targeting and Antitumor Efficacy Studies in Glioma Cells. Int J Nanomedicine 2024; 19:13217-13233. [PMID: 39679250 PMCID: PMC11638480 DOI: 10.2147/ijn.s489872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The treatment of glioblastoma is hindered by the blood-brain barrier (BBB) and rapid drug clearance by the immune system. To address these challenges, we propose a novel drug delivery system using liposomes modified with cell membrane fragments. These modified liposomes can evade the immune system, cross the BBB, and accumulate in tumor tissue through homotypic targeting, thereby delivering drugs like paclitaxel and carboplatin more effectively. Methods In this work, the hybrid liposomes were synthesized using microfluidics and integrating 3D printing to produce the microfluidic devices. In vitro, we explored the homotypic targeting capability, BBB passing ability, and therapeutic efficacy of paclitaxel and carboplatin. Results The production of hybrid liposomes by microfluidics has been key to creating high-quality biomimetic nanoparticles, and the integration of 3D printing has simplified the production of microfluidic devices, making the process more efficient and economical. In vitro experiments have shown that these drug-loaded biomimetic hybrid liposomes are able to reach the homotypic target, cross the BBB, and maintain the efficacy of paclitaxel and carboplatin. Conclusions The development of biomimetic hybrid liposomes represents a promising approach for the treatment of glioblastoma. By combining the advantages of liposomal drug delivery with the stealth properties and targeting capabilities of cell membrane fragments, these nanoparticles can potentially overcome the challenges associated with traditional therapies.
Collapse
Affiliation(s)
- Ilaria Arduino
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, Bari, 70125, Italy
| | | | | | | | | | - Jiachen Li
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Groningen, AV, 9713, Netherlands
| | - Simona Serrati
- IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, 70124, Italy
| | - Raquel Bártolo
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Groningen, AV, 9713, Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), The Personalized Medicine Research Institute (PRECISION), University of Groningen, Groningen, AV, 9713, Netherlands
| | - Rosa Maria Iacobazzi
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, Bari, 70125, Italy
| | - Amalia Azzariti
- IRCCS Istituto Tumori “Giovanni Paolo II”, Bari, 70124, Italy
| | - Nunzio Denora
- Department of Pharmacy–Pharmaceutical Sciences, University of Bari, Bari, 70125, Italy
| |
Collapse
|
35
|
Haque MA, Shrestha A, Mikelis CM, Mattheolabakis G. Comprehensive analysis of lipid nanoparticle formulation and preparation for RNA delivery. Int J Pharm X 2024; 8:100283. [PMID: 39309631 PMCID: PMC11415597 DOI: 10.1016/j.ijpx.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/21/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Nucleic acid-based therapeutics are a common approach that is increasingly popular for a wide spectrum of diseases. Lipid nanoparticles (LNPs) are promising delivery carriers that provide RNA stability, with strong transfection efficiency, favorable and tailorable pharmacokinetics, limited toxicity, and established translatability. In this review article, we describe the lipid-based delivery systems, focusing on lipid nanoparticles, the need of their use, provide a comprehensive analysis of each component, and highlight the advantages and disadvantages of the existing manufacturing processes. We further summarize the ongoing and completed clinical trials utilizing LNPs, indicating important aspects/questions worth of investigation, and analyze the future perspectives of this significant and promising therapeutic approach.
Collapse
Affiliation(s)
- Md. Anamul Haque
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras 26504, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| |
Collapse
|
36
|
Dorsey PJ, Lau CL, Chang TC, Doerschuk PC, D'Addio SM. Review of machine learning for lipid nanoparticle formulation and process development. J Pharm Sci 2024; 113:3413-3433. [PMID: 39341497 DOI: 10.1016/j.xphs.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Lipid nanoparticles (LNPs) are a subset of pharmaceutical nanoparticulate formulations designed to encapsulate, stabilize, and deliver nucleic acid cargoes in vivo. Applications for LNPs include new interventions for genetic disorders, novel classes of vaccines, and alternate modes of intracellular delivery for therapeutic proteins. In the pharmaceutical industry, establishing a robust formulation and process to achieve target product performance is a critical component of drug development. Fundamental understanding of the processes for making LNPs and their interactions with biological systems have advanced considerably in the wake of the COVID-19 pandemic. Nevertheless, LNP formulation research remains largely empirical and resource intensive due to the multitude of input parameters and the complex physical phenomena that govern the processes of nanoparticle precipitation, self-assembly, structure evolution, and stability. Increasingly, artificial intelligence and machine learning (AI/ML) are being applied to improve the efficiency of research activities through in silico models and predictions, and to drive deeper fundamental understanding of experimental inputs to functional outputs. This review will identify current challenges and opportunities in the development of robust LNP formulations of nucleic acids, review studies that apply machine learning methods to experimental datasets, and provide discussion on associated data science challenges to facilitate collaboration between formulation and data scientists, aiming to accelerate the advancement of AI/ML applied to LNP formulation and process optimization.
Collapse
Affiliation(s)
- Phillip J Dorsey
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA; University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Christina L Lau
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Ti-Chiun Chang
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA
| | - Peter C Doerschuk
- Cornell University, School of Electrical and Computer Engineering, Ithaca, NY 14853, USA
| | - Suzanne M D'Addio
- Pharmaceutical Sciences & Clinical Supply, MRL, Merck & Co., Inc., Rahway, NJ 07065, USA.
| |
Collapse
|
37
|
Bader J, Brigger F, Leroux JC. Extracellular vesicles versus lipid nanoparticles for the delivery of nucleic acids. Adv Drug Deliv Rev 2024; 215:115461. [PMID: 39490384 DOI: 10.1016/j.addr.2024.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Extracellular vesicles (EVs) are increasingly investigated for delivering nucleic acid (NA) therapeutics, leveraging their natural role in transporting NA and protein-based cargo in cell-to-cell signaling. Their synthetic counterparts, lipid nanoparticles (LNPs), have been developed over the past decades as NA carriers, culminating in the approval of several marketed formulations such as patisiran/Onpattro® and the mRNA-1273/BNT162 COVID-19 vaccines. The success of LNPs has sparked efforts to develop innovative technologies to target extrahepatic organs, and to deliver novel therapeutic modalities, such as tools for in vivo gene editing. Fueled by the recent advancements in both fields, this review aims to provide a comprehensive overview of the basic characteristics of EV and LNP-based NA delivery systems, from EV biogenesis to structural properties of LNPs. It addresses the primary challenges encountered in utilizing these nanocarriers from a drug formulation and delivery perspective. Additionally, biodistribution profiles, in vitro and in vivo transfection outcomes, as well as their status in clinical trials are compared. Overall, this review provides insights into promising research avenues and potential dead ends for EV and LNP-based NA delivery systems.
Collapse
Affiliation(s)
- Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Finn Brigger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
38
|
Yuan Y, Li J, Chen M, Zhao Y, Zhang B, Chen X, Zhao J, Liang H, Chen Q. Nano-encapsulation of drugs to target hepatic stellate cells: Toward precision treatments of liver fibrosis. J Control Release 2024; 376:318-336. [PMID: 39413846 DOI: 10.1016/j.jconrel.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition triggered by hepatic stellate cells (HSCs). As central players in fibrosis progression, HSCs are the most important therapeutic targets for antifibrotic therapy. However, owing to the limitations of systemic drug administration, there is still no suitable and effective clinical treatment. In recent years, nanosystems have demonstrated expansive therapeutic potential and evolved into a clinical modality. In liver fibrosis, nanosystems have undergone a paradigm shift from targeting the whole liver to locally targeted modifying processes. Nanomedicine delivered to HSCs has significant potential in managing liver fibrosis, where optimal management would benefit from targeted delivery, personalized therapy based on the specific site of interest, and minor side effects. In this review, we present a brief overview of the role of HSCs in the pathogenesis of liver fibrosis, summarize the different types of nanocarriers and their specific delivery applications in liver fibrosis, and highlight the biological barriers associated with the use of nanosystems to target HSCs and approaches available to solve this issue. We further discuss in-depth all the molecular target receptors overexpressed during HSC activation in liver fibrosis and their corresponding ligands that have been used for drug or gene delivery targeting HSCs.
Collapse
Affiliation(s)
- Yue Yuan
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Jiaxuan Li
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Min Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Ying Zhao
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jianping Zhao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China; Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.
| | - Qian Chen
- Division of Gastroenterology, Department of Internal Medicine at Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China.
| |
Collapse
|
39
|
Kiarashi M, Yasamineh S. Albumin nanoparticles are a promising drug delivery system in dentistry. Biomed Eng Online 2024; 23:122. [PMID: 39605007 PMCID: PMC11600845 DOI: 10.1186/s12938-024-01318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024] Open
Abstract
Periodontal infection is a long-lasting inflammatory condition caused by the growth and development of an abnormal and harmful community of microorganisms. This destructive illness leads to the loss of the tissues that support the teeth, degradation of the bone surrounding the teeth, and eventually tooth loss. To treat oral infections, it is necessary to use nonsurgical methods such as antibiotics. However, the indiscriminate and incorrect use of antibiotics results in drug resistance. Among these alternate therapeutic options, using nanoparticles to treat infectious dental disease was particularly significant. Consequently, researchers have worked to develop an effective and satisfactory drug delivery method for treating periodontal and dental illnesses. Albumin nanoparticles serve a considerable function as carriers in the drug delivery of chemical and biomolecular medications, such as anticancer treatments; they have several advantages, including biocompatibility and biodegradability, and they are well-tolerated with no adverse effects. Albumin nanoparticles have several benefits over other nanomaterials. Protein nanocarriers provide advantages such as biocompatibility, biodegradability, reduced immunogenicity, and lower cytotoxicity. Furthermore, this nanoparticle demonstrated significant intrinsic antibacterial properties without being loaded with antibiotic medicines. As a medication and antibacterial nanoparticle delivery method, albumin nanoparticles have substantial applications in periodontal and dental infectious disorders such as periodontal infection, apical periodontitis, and peri-implantitis. As a result, in this article, we studied the usage of albumin nanoparticles in dental disorders.
Collapse
Affiliation(s)
- Mohammad Kiarashi
- College of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
40
|
Kim H, Zenhausern R, Gentry K, Lian L, Huayamares SG, Radmand A, Loughrey D, Podilapu AR, Hatit MZC, Ni H, Li A, Shajii A, Peck HE, Han K, Hua X, Jia S, Martinez M, Lee C, Santangelo PJ, Tarantal A, Dahlman JE. Lipid nanoparticle-mediated mRNA delivery to CD34 + cells in rhesus monkeys. Nat Biotechnol 2024:10.1038/s41587-024-02470-2. [PMID: 39578569 DOI: 10.1038/s41587-024-02470-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/15/2024] [Indexed: 11/24/2024]
Abstract
Transplantation of ex vivo engineered hematopoietic stem cells (HSCs) can lead to robust clinical responses but carries risks of adverse events from bone marrow mobilization, chemotherapy conditioning and other factors. HSCs have been modified in vivo using lipid nanoparticles (LNPs) decorated with targeting moieties, which increases manufacturing complexity. Here we screen 105 LNPs without targeting ligands for effective homing to the bone marrow in mouse. We report an LNP named LNP67 that delivers mRNA to murine HSCs in vivo, primary human HSCs ex vivo and CD34+ cells in rhesus monkeys (Macaca mulatta) in vivo at doses of 0.25 and 0.4 mg kg-1. Without mobilization and conditioning, LNP67 can mediate delivery of mRNA to HSCs and their progenitor cells (HSPCs), as well as to the liver in rhesus monkeys, without serum cytokine activation. These data support the hypothesis that in vivo delivery to HSCs and HSPCs in nonhuman primates is feasible without targeting ligands.
Collapse
Affiliation(s)
- Hyejin Kim
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ryan Zenhausern
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Kara Gentry
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Sebastian G Huayamares
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Afsane Radmand
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - David Loughrey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Ananda R Podilapu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Marine Z C Hatit
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Huanzhen Ni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Aram Shajii
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Hannah E Peck
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Keyi Han
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Xuanwen Hua
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Michele Martinez
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
| | - Charles Lee
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, Davis, CA, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA
| | - Alice Tarantal
- California National Primate Research Center, University of California, Davis, Davis, CA, USA
- Department of Pediatrics, University of California, Davis, Davis, CA, USA
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, USA
| | - James E Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
41
|
Garaizar A, Díaz-Oviedo D, Zablowsky N, Rissanen S, Köbberling J, Sun J, Steiger C, Steigemann P, Mann FA, Meier K. Toward understanding lipid reorganization in RNA lipid nanoparticles in acidic environments. Proc Natl Acad Sci U S A 2024; 121:e2404555121. [PMID: 39475644 PMCID: PMC11551392 DOI: 10.1073/pnas.2404555121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 10/02/2024] [Indexed: 11/13/2024] Open
Abstract
The use of lipid nanoparticles (LNPs) for therapeutic RNA delivery has gained significant interest, particularly highlighted by recent milestones such as the approval of Onpattro and two mRNA-based SARS-CoV-2 vaccines. However, despite substantial advancements in this field, our understanding of the structure and internal organization of RNA-LNPs -and their relationship to efficacy, both in vitro and in vivo- remains limited. In this study, we present a coarse-grained molecular dynamics (MD) approach that allows for the simulations of full-size LNPs. By analyzing MD-derived structural characteristics in conjunction with cellular experiments, we investigate the effect of critical parameters, such as pH and composition, on LNP structure and potency. Additionally, we examine the mobility and chemical environment within LNPs at a molecular level. Our findings highlight the significant impact that LNP composition and internal molecular mobility can have on key stages of LNP-based intracellular RNA delivery.
Collapse
Affiliation(s)
- Adiran Garaizar
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal42113, Germany
- Computational Life Science, Bayer Crop Science, Monheim am Rhein40789, Germany
| | - David Díaz-Oviedo
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal42113, Germany
| | - Nina Zablowsky
- Lead Discovery, Nuvisan Innovation Campus Berlin, Berlin13353, Germany
| | - Sami Rissanen
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Turku20210, Finland
| | | | - Jiawei Sun
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin13353, Germany
| | - Christoph Steiger
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin13353, Germany
| | | | - Florian A. Mann
- Chemical and Pharmaceutical Development, Bayer Pharmaceuticals, Berlin13353, Germany
| | - Katharina Meier
- Drug Discovery Sciences, Bayer Pharmaceuticals, Wuppertal42113, Germany
| |
Collapse
|
42
|
Zöller K, Haddadzadegan S, Lindner S, Veider F, Bernkop-Schnürch A. Design of charge converting lipid nanoparticles via a microfluidic coating technique. Drug Deliv Transl Res 2024; 14:3173-3185. [PMID: 38381318 PMCID: PMC11445316 DOI: 10.1007/s13346-024-01538-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2024] [Indexed: 02/22/2024]
Abstract
It was the aim of this study to design charge converting lipid nanoparticles (LNP) via a microfluidic mixing technique used for the preparation and coating of LNP. LNP consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, N-(carbonyl-methoxypolyethyleneglycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (MPEG-2000-DSPE), and various cationic surfactants were prepared at diverging flow rate ratios (FRR) via microfluidic mixing. Utilizing a second chip in the microfluidic set-up, LNP were coated with polyoxyethylene (9) nonylphenol monophosphate ester (PNPP). LNP were examined for their stability in different physiologically relevant media as well as for hemolytic and cytotoxic effects. Finally, phosphate release and charge conversion of PNPP-coated LNP were evaluated after incubation with alkaline phosphatase and on Caco2-cells. LNP produced at an FRR of 5:1 exhibited a size between 80 and 150 nm and a positive zeta potential. Coating with PNPP within the second chip led to LNP exhibiting a negative zeta potential. After incubation with 1 U/ml alkaline phosphatase for 4 h, zeta potential of the LNP containing 1,2-dioleoyloxy-3-trimethylammonium-propane chloride (DOTAP) as cationic component shifted from - 35 mV to approximately + 5 mV. LNP prepared with other cationic surfactants remained slightly negative after enzymatic phosphate cleavage. Manufacturing of LNP containing PNPP and DOTAP via connection of two chips in a microfluidic instrument proves to show efficient change in zeta potential from negative to positive after incubation with alkaline phosphatase.
Collapse
Affiliation(s)
- Katrin Zöller
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Soheil Haddadzadegan
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020, Innsbruck, Austria
| | - Sera Lindner
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020, Innsbruck, Austria
| | - Florina Veider
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
- Thiomatrix Forschungs- und Beratungs GmbH, Research Center Innsbruck, Trientlgasse 65, 6020, Innsbruck, Austria.
| |
Collapse
|
43
|
Vardin AP, Aksoy F, Yesiloz G. A Novel Acoustic Modulation of Oscillating Thin Elastic Membrane for Enhanced Streaming in Microfluidics and Nanoscale Liposome Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403463. [PMID: 39324290 PMCID: PMC11600698 DOI: 10.1002/smll.202403463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Liposomes are widely utilized in therapeutic nanosystems as promising drug carriers for cancer treatment, which requires a meticulous synthesis approach to control the nanoprecipitation process. Acoustofluidic platforms offer a favorable synthesis environment by providing robust agitation and rapid mixing. Here, a novel high-throughput acoustofluidic micromixer is presented for a solvent and solvent-free synthesis of ultra-small and size-tunable liposomes. The size-tunability is achieved by incorporating glycerol as a new technique into the synthesis reagents, serving as a size regulator. The proposed device utilizes the synergistic effects of vibrating trapped microbubbles and an oscillating thin elastic membrane to generate vigorous acoustic microstreaming. The working principle and mixing mechanism of the device are explored numerically and experimentally. The platform exhibits remarkable mixing efficacy for aqueous and viscous solutions at flow rates up to 8000 µL/h, which makes it unique for high-throughput liposome formation and preventing aggregation. As a proof of concept, this study investigates the impact of phospholipid type and concentration, flow rate, and glycerol on the size and size distribution of liposomes. The results reveal a significant size reduction, from ≈900 nm to 40 nm, achieved by merely introducing 75% glycerol into the synthesis reagents, highlighting an innovative approach toward size-tunable liposomes.
Collapse
Affiliation(s)
- Ali Pourabdollah Vardin
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| | - Faruk Aksoy
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| | - Gurkan Yesiloz
- National Nanotechnology Research Center (UNAM)‐ Bilkent UniversityCankaya‐Ankara06800Türkiye
- Institute of Material Science and NanotechnologyBilkent UniversityCankaya‐Ankara06800Türkiye
| |
Collapse
|
44
|
Taiedinejad E, Bausch C, Wittek J, Gül G, Erfle P, Schwarz N, Mozafari M, Baßler M, Dietzel A. Diffusive micromixing combined with dynamic in situ laser scattering allows shedding light on lipid nanoparticle precipitation. Sci Rep 2024; 14:24356. [PMID: 39420187 PMCID: PMC11487189 DOI: 10.1038/s41598-024-73721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Pharmaceutical formulations are increasingly based on drug nanoparticles or carrier nanoparticles encapsulating drugs or mRNA molecules. Sizes and monodispersity of the nanoparticles regulate bioavailability, pharmacokinetics and pharmacology. Microfluidic mixers promise unique conditions for their continuous preparation. A novel microfluidic antisolvent precipitation device was realized by two-photon-polymerization with a mixing channel in which the organic phase formed a sheet with a homogeneous thickness of down to 7 μm completely wrapped in the aqueous phase. Homogeneous diffusion through the sheet accelerates mixing. Optical access was implemented to allow in-situ dynamic light scattering. By centering the thin sheet in the microchannel cross-section, two important requirements are met. On the one hand, the organic phase never reaches the channel walls, avoiding fouling and unstable flow conditions. On the other hand, in the sheet positioned at the maximum of the parabolic flow profile the nanoparticle velocities are homogenized which enables flow-compensated Dynamic Light Scattering (flowDLS). These unique features allowed in-situ particle size determination for the first time. Monitoring of lipid nanoparticle precipitation was demonstrated for different rates of solvent and antisolvent flows. This breakthrough innovation will not only enable feedback control of nanoparticle production but also will provide new insights into the dynamics of nanoparticle precipitation.
Collapse
Affiliation(s)
- Ebrahim Taiedinejad
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.
| | - Cornelius Bausch
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Jörn Wittek
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Gökhan Gül
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Peer Erfle
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany
| | - Nicolai Schwarz
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Mohadeseh Mozafari
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany
| | - Michael Baßler
- Fraunhofer-Institut für Mikrotechnik und Mikrosysteme IMM, Carl-Zeiss-Str. 18-20, 55129, Mainz, Germany
| | - Andreas Dietzel
- Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
- Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.
| |
Collapse
|
45
|
Jeon HE, Lee S, Lee J, Roh G, Park HJ, Lee YS, Kim YJ, Kim HK, Shin JH, Lee YJ, Gil CO, Jeon ES, Nam JH, Lim BK. SARS-CoV2 mRNA vaccine intravenous administration induces myocarditis in chronic inflammation. PLoS One 2024; 19:e0311726. [PMID: 39388490 PMCID: PMC11469607 DOI: 10.1371/journal.pone.0311726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
The current COVID-19 mRNA vaccines were developed and applied for pandemic-emergent conditions. These vaccines use a small piece of the virus's genetic material (mRNA) to stimulate an immune response against COVID-19. However, their potential effects on individuals with chronic inflammatory conditions and vaccination routes remain questionable. Therefore, we investigated the effects of mRNA vaccines in a mouse model of chronic inflammation, focusing on their cardiac toxicity and immunogenicity dependent on the injection route. mRNA vaccine intravenous administration with or without chronic inflammation exacerbated cardiac pericarditis and myocarditis; immunization induced mild inflammation and inflammatory cytokine IL-1beta and IL-6 production in the heart. Further, IV mRNA vaccination induced cardiac damage in LPS chronic inflammation, particularly serum troponin I (TnI), which dramatically increased. IV vaccine administration may induce more cardiotoxicity in chronic inflammation. These findings highlight the need for further research to understand the underlying mechanisms of mRNA vaccines with chronic inflammatory conditions dependent on injection routes.
Collapse
Affiliation(s)
- Ha-Eun Jeon
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| | - Seonghyun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Jisun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Gahyun Roh
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Yeon-Jung Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hong-Ki Kim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| | - Ji-Hwa Shin
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| | - You-Jeung Lee
- Division of Cardiology, Samsung Medical Center, 50 Irwon Dong, Gangnam-gu, Seoul, Republic of Korea
| | - Chae-Ok Gil
- Division of Cardiology, Samsung Medical Center, 50 Irwon Dong, Gangnam-gu, Seoul, Republic of Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, 50 Irwon Dong, Gangnam-gu, Seoul, Republic of Korea
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
- SML Biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, Goesan-gun, Chungbuk, Republic of Korea
| |
Collapse
|
46
|
Cheng Y, Hay CD, Mahuttanatan SM, Hindley JW, Ces O, Elani Y. Microfluidic technologies for lipid vesicle generation. LAB ON A CHIP 2024; 24:4679-4716. [PMID: 39323383 PMCID: PMC11425070 DOI: 10.1039/d4lc00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/27/2024]
Abstract
Encapsulating biological and non-biological materials in lipid vesicles presents significant potential in both industrial and academic settings. When smaller than 100 nm, lipid vesicles and lipid nanoparticles are ideal vehicles for drug delivery, facilitating the delivery of payloads, improving pharmacokinetics, and reducing the off-target effects of therapeutics. When larger than 1 μm, vesicles are useful as model membranes for biophysical studies, as synthetic cell chassis, as bio-inspired supramolecular devices, and as the basis of protocells to explore the origin of life. As applications of lipid vesicles gain prominence in the fields of nanomedicine, biotechnology, and synthetic biology, there is a demand for advanced technologies for their controlled construction, with microfluidic methods at the forefront of these developments. Compared to conventional bulk methods, emerging microfluidic methods offer advantages such as precise size control, increased production throughput, high encapsulation efficiency, user-defined membrane properties (i.e., lipid composition, vesicular architecture, compartmentalisation, membrane asymmetry, etc.), and potential integration with lab-on-chip manipulation and analysis modules. We provide a review of microfluidic lipid vesicle generation technologies, focusing on recent advances and state-of-the-art techniques. Principal technologies are described, and key research milestones are highlighted. The advantages and limitations of each approach are evaluated, and challenges and opportunities for microfluidic engineering of lipid vesicles to underpin a new generation of therapeutics, vaccines, sensors, and bio-inspired technologies are presented.
Collapse
Affiliation(s)
- Yu Cheng
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Callum D Hay
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Suchaya M Mahuttanatan
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - James W Hindley
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Oscar Ces
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Yuval Elani
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK.
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
47
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
48
|
Kumar A, Ahmed B, Kaur IP, Saha L. Exploring dose and downregulation dynamics in lipid nanoparticles based siRNA therapy: Systematic review and meta-analysis. Int J Biol Macromol 2024; 277:133984. [PMID: 39053830 DOI: 10.1016/j.ijbiomac.2024.133984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Small interfering RNA (siRNA) holds promise as a therapeutic approach for various diseases, yet challenges persist in achieving efficient delivery, biodistribution, and minimizing off-target effects. Lipidic nanoformulations are being developed to address these hurdles, but the optimal dose for preclinical investigations remains unclear. This systematic review and meta-analysis aims to determine the optimal dose of nanoformulated siRNA and explore factors influencing dose and biodistribution, informing future research in this field. A comprehensive search across four electronic databases identified 25 potential studies, with 15 selected for meta-analysis after screening. Quality assessment was conducted using SYRCLE's risk of bias tool modified for animal studies based on research question. Study found an average siRNA dose of 1.513 ± 0.377 mg/kg with mean downregulation of 65.79 % achieved, with siRNA-LNPs mainly accumulating in the liver. While individual factors showed no significant correlation, a positive association between dose and downregulation was observed, alongside other influencing factors. Extrapolating intravenous doses to potential oral doses, we suggest an initial oral dose range of 1.5 to 8 mg/kg, considering siRNA-LNPs bioavailability. These findings contribute to advancing RNA interference research and encourage further exploration of siRNA-based treatments in personalized medicine.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India
| | - Bakr Ahmed
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab, India
| | - Indu Pal Kaur
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, Punjab, India.
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh 160012, India.
| |
Collapse
|
49
|
Brown DW, Wee P, Bhandari P, Bukhari A, Grin L, Vega H, Hejazi M, Sosnowski D, Ablack J, Clancy EK, Pink D, Kumar J, Solis Ares MP, Lamb S, Quevedo R, Rawal B, Elian F, Rana N, Morales L, Govindasamy N, Todd B, Delmage A, Gupta S, McMullen N, MacKenzie D, Beatty PH, Garcia H, Parmar M, Gyoba J, McAllister C, Scholz M, Duncan R, Raturi A, Lewis JD. Safe and effective in vivo delivery of DNA and RNA using proteolipid vehicles. Cell 2024; 187:5357-5375.e24. [PMID: 39260374 DOI: 10.1016/j.cell.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/08/2024] [Accepted: 07/12/2024] [Indexed: 09/13/2024]
Abstract
Genetic medicines show promise for treating various diseases, yet clinical success has been limited by tolerability, scalability, and immunogenicity issues of current delivery platforms. To overcome these, we developed a proteolipid vehicle (PLV) by combining features from viral and non-viral approaches. PLVs incorporate fusion-associated small transmembrane (FAST) proteins isolated from fusogenic orthoreoviruses into a well-tolerated lipid formulation, using scalable microfluidic mixing. Screening a FAST protein library, we identified a chimeric FAST protein with enhanced membrane fusion activity that improved gene expression from an optimized lipid formulation. Systemically administered FAST-PLVs showed broad biodistribution and effective mRNA and DNA delivery in mouse and non-human primate models. FAST-PLVs show low immunogenicity and maintain activity upon repeat dosing. Systemic administration of follistatin DNA gene therapy with FAST-PLVs raised circulating follistatin levels and significantly increased muscle mass and grip strength. These results demonstrate the promising potential of FAST-PLVs for redosable gene therapies and genetic medicines.
Collapse
Affiliation(s)
- Douglas W Brown
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Ping Wee
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Prakash Bhandari
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Amirali Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Liliya Grin
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Hector Vega
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Maryam Hejazi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Deborah Sosnowski
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jailal Ablack
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Eileen K Clancy
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Desmond Pink
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jitendra Kumar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | | | - Suellen Lamb
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Rodrigo Quevedo
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Bijal Rawal
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Fahed Elian
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Rana
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Luis Morales
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Natasha Govindasamy
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Brendan Todd
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Angela Delmage
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Somnath Gupta
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Nichole McMullen
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Duncan MacKenzie
- Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Perrin H Beatty
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Henry Garcia
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Manoj Parmar
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Jennifer Gyoba
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Chandra McAllister
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada
| | - Matthew Scholz
- Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA
| | - Roy Duncan
- Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; Department of Microbiology & Immunology, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Arun Raturi
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada.
| | - John D Lewis
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Entos Pharmaceuticals, 10230 Jasper Avenue, Suite 4550, Edmonton, AB T5J 4P6, Canada; OncoSenX, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA; Oisin Biotechnologies, 701 Fifth Avenue, Suite 4200, Seattle, WA 98104, USA.
| |
Collapse
|
50
|
Beckert N, Dietrich A, Hubbuch J. RP-CAD for Lipid Quantification: Systematic Method Development and Intensified LNP Process Characterization. Pharmaceuticals (Basel) 2024; 17:1217. [PMID: 39338379 PMCID: PMC11435201 DOI: 10.3390/ph17091217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Lipid nanoparticles (LNPs) and their versatile nucleic acid payloads bear great potential as delivery systems. Despite their complex lipid composition, their quality is primarily judged by particle characteristics and nucleic acid encapsulation. In this study, we present a holistic reversed-phase (RP)-charged aerosol detection (CAD)-based method developed for commonly used LNP formulations, allowing for intensified LNP and process characterization. We used an experimental approach for power function value (PFV) optimization termed exploratory calibration, providing a single PFV (1.3) in an appropriate linearity range for all six lipids. Followed by the procedure of method calibration and validation, linearity (10-400 ng, R2 > 0.996), precision, accuracy, and robustness were effectively proven. To complement the commonly determined LNP attributes and to evaluate the process performance across LNP processing, the developed RP-CAD method was applied in a process parameter study varying the total flow rate (TFR) during microfluidic mixing. The RP-CAD method revealed a constant lipid molar ratio across processing but identified deviations in the theoretical lipid content and general lipid loss, which were both, however, entirely TFR-independent. The deviations in lipid content could be successfully traced back to the lipid stock solution preparation. In contrast, the observed lipid loss was attributable to the small-scale dialysis following microfluidic mixing. Overall, this study establishes a foundation for employing RP-CAD for lipid quantification throughout LNP processing, and it highlights the potential to extend its applicability to other LNPs, process parameter studies, or processes such as cross-flow filtration.
Collapse
Affiliation(s)
| | | | - Jürgen Hubbuch
- Institute of Process Engineering in Life Sciences—Section IV: Biomolecular Separation Engineering, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany; (N.B.); (A.D.)
| |
Collapse
|