1
|
Schmid-Siegert E, Qin M, Tian H, Arpat B, Chen B, Xenarios I. Reference genomes for BALB/c Nude and NOD/SCID mouse models. G3 (BETHESDA, MD.) 2023; 13:jkad188. [PMID: 37594081 PMCID: PMC10542179 DOI: 10.1093/g3journal/jkad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023]
Abstract
Mouse xenograft models play a vital role in tumor studies for research as well as for screening of drugs for the pharmaceutical industry. In particular, models with compromised immunity are favorable to increase the success of transplantation, such as, e.g. NOD/SCID and BALB/c Nude strains. The genomic sequence and alterations of many of these models still remain elusive and might hamper a model's further optimization or proper adapted usage. This can be in respect to treatments (e.g. NOD/SCID sensitivity to radiation), experiments or analysis of derived sequencing data of such models. Here we present the genome assemblies for the NOD/SCID and BALB/c Nude strains to overcome this short-coming for the future and improve our understanding of these models in the process. We highlight as well first insights into observed genomic differences for these models compared to the C57BL/6 reference genome. Genome assemblies for both are close to full-chromosome representations and provided with liftover annotations from the GRCm39 reference genome.
Collapse
Affiliation(s)
- Emanuel Schmid-Siegert
- JSR Life Sciences, NGS-AI CH DivisionRoute de la Corniche 3, 1066 Epalinges, Switzerland
| | - Mengting Qin
- JSR Life Sciences, NGS-AI CN Division, Industrial Park, Suzhou, Jiangsu 215000, P.R. China
| | - Huan Tian
- JSR Life Sciences, NGS-AI CN Division, Industrial Park, Suzhou, Jiangsu 215000, P.R. China
| | - Bulak Arpat
- JSR Life Sciences, NGS-AI CH DivisionRoute de la Corniche 3, 1066 Epalinges, Switzerland
| | - Bonnie Chen
- JSR Life Sciences, NGS-AI CN Division, Industrial Park, Suzhou, Jiangsu 215000, P.R. China
| | - Ioannis Xenarios
- JSR Life Sciences, NGS-AI CH DivisionRoute de la Corniche 3, 1066 Epalinges, Switzerland
| |
Collapse
|
2
|
Holmes-Hampton GP, Kumar VP, Valenzia K, Ghosh SP. Sex as a Factor in Murine Radiation Research: Implications for Countermeasure Development. Cytogenet Genome Res 2023; 163:187-196. [PMID: 37348469 DOI: 10.1159/000531630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023] Open
Abstract
There is an increased threat of exposure to ionizing radiation; in the event of such exposure, the availability of medical countermeasures will be vital to ensure the protection of the population. Effective countermeasures should be efficacious across a varied population and most importantly amongst both males and females. Radiation research must be conducted in animal models which act as a surrogate for the human response. Here, we identify differences in survival in male and female C57BL/6 in both a total body irradiation (TBI) model using the Armed Forces Radiobiology Research Institute (AFRRI) 60Co source and a partial body irradiation (PBI) model using the AFRRI Linear Accelerator (LINAC) with 4 MV photons and 2.5% bone marrow shielding. In both models, we observed a higher degree of radioresistance in female animals and a corresponding radiosensitivity in males. One striking difference in male and female rodents is body size/weight and we investigated the role of pre-irradiation body weight on survivability for animals irradiated at the same dose of irradiation (8 Gy TBI, 14 Gy PBI). We found that weight does not influence survival in the TBI model and that heavier males but lighter females have increased survival in the PBI model. This incongruence in survival amongst the sexes should be taken into consideration in the course of developing radiation countermeasures for response to a mass casualty incident.
Collapse
Affiliation(s)
- Gregory P Holmes-Hampton
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Vidya P Kumar
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Kaylee Valenzia
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Sanchita P Ghosh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
3
|
McFarlan AR, Chou CYC, Watanabe A, Cherepacha N, Haddad M, Owens H, Sjöström PJ. The plasticitome of cortical interneurons. Nat Rev Neurosci 2023; 24:80-97. [PMID: 36585520 DOI: 10.1038/s41583-022-00663-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2022] [Indexed: 12/31/2022]
Abstract
Hebb postulated that, to store information in the brain, assemblies of excitatory neurons coding for a percept are bound together via associative long-term synaptic plasticity. In this view, it is unclear what role, if any, is carried out by inhibitory interneurons. Indeed, some have argued that inhibitory interneurons are not plastic. Yet numerous recent studies have demonstrated that, similar to excitatory neurons, inhibitory interneurons also undergo long-term plasticity. Here, we discuss the many diverse forms of long-term plasticity that are found at inputs to and outputs from several types of cortical inhibitory interneuron, including their plasticity of intrinsic excitability and their homeostatic plasticity. We explain key plasticity terminology, highlight key interneuron plasticity mechanisms, extract overarching principles and point out implications for healthy brain functionality as well as for neuropathology. We introduce the concept of the plasticitome - the synaptic plasticity counterpart to the genome or the connectome - as well as nomenclature and definitions for dealing with this rich diversity of plasticity. We argue that the great diversity of interneuron plasticity rules is best understood at the circuit level, for example as a way of elucidating how the credit-assignment problem is solved in deep biological neural networks.
Collapse
Affiliation(s)
- Amanda R McFarlan
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Christina Y C Chou
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Airi Watanabe
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Nicole Cherepacha
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Maria Haddad
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - Hannah Owens
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.,Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Medicine, The Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| |
Collapse
|
4
|
An extended catalogue of ncRNAs in Streptomyces coelicolor reporting abundant tmRNA, RNase-P RNA and RNA fragments derived from pre-ribosomal RNA leader sequences. Arch Microbiol 2022; 204:582. [PMID: 36042049 DOI: 10.1007/s00203-022-03203-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Streptomyces coelicolor is a model organism for studying streptomycetes. This genus possesses relevant medical and economical roles, because it produces many biologically active metabolites of pharmaceutical interest, including the majority of commercialized antibiotics. In this bioinformatic study, the transcriptome of S. coelicolor has been analyzed to identify novel RNA species and quantify the expression of both annotated and novel transcripts in solid and liquid growth medium cultures at different times. The major characteristics disclosed in this study are: (i) the diffuse antisense transcription; (ii) the great abundance of transfer-messenger RNAs (tmRNA); (iii) the abundance of rnpB transcripts, paramount for the RNase-P complex; and (iv) the presence of abundant fragments derived from pre-ribosomal RNA leader sequences of unknown biological function. Overall, this study extends the catalogue of ncRNAs in S. coelicolor and suggests an important role of non-coding transcription in the regulation of biologically active molecule production.
Collapse
|
5
|
Dong Y, Jin L, Liu X, Li D, Chen W, Huo H, Zhang C, Li S. IMPACT and OSBPL1A are two isoform-specific imprinted genes in bovines. Theriogenology 2022; 184:100-109. [DOI: 10.1016/j.theriogenology.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022]
|
6
|
Construction of stable mouse artificial chromosome from native mouse chromosome 10 for generation of transchromosomic mice. Sci Rep 2021; 11:20050. [PMID: 34625612 PMCID: PMC8501010 DOI: 10.1038/s41598-021-99535-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022] Open
Abstract
Mammalian artificial chromosomes derived from native chromosomes have been applied to biomedical research and development by generating cell sources and transchromosomic (Tc) animals. Human artificial chromosome (HAC) is a precedent chromosomal vector which achieved generation of valuable humanized animal models for fully human antibody production and human pharmacokinetics. While humanized Tc animals created by HAC vector have attained significant contributions, there was a potential issue to be addressed regarding stability in mouse tissues, especially highly proliferating hematopoietic cells. Mouse artificial chromosome (MAC) vectors derived from native mouse chromosome 11 demonstrated improved stability, and they were utilized for humanized Tc mouse production as a standard vector. In mouse, however, stability of MAC vector derived from native mouse chromosome other than mouse chromosome 11 remains to be evaluated. To clarify the potential of mouse centromeres in the additional chromosomes, we constructed a new MAC vector from native mouse chromosome 10 to evaluate the stability in Tc mice. The new MAC vector was transmitted through germline and stably maintained in the mouse tissues without any apparent abnormalities. Through this study, the potential of additional mouse centromere was demonstrated for Tc mouse production, and new MAC is expected to be used for various applications.
Collapse
|
7
|
Allais-Bonnet A, Hintermann A, Deloche MC, Cornette R, Bardou P, Naval-Sanchez M, Pinton A, Haruda A, Grohs C, Zakany J, Bigi D, Medugorac I, Putelat O, Greyvenstein O, Hadfield T, Jemaa SB, Bunevski G, Menzi F, Hirter N, Paris JM, Hedges J, Palhiere I, Rupp R, Lenstra JA, Gidney L, Lesur J, Schafberg R, Stache M, Wandhammer MD, Arbogast RM, Guintard C, Blin A, Boukadiri A, Rivière J, Esquerré D, Donnadieu C, Danchin-Burge C, Reich CM, Riley DG, Marle-Koster EV, Cockett N, Hayes BJ, Drögemüller C, Kijas J, Pailhoux E, Tosser-Klopp G, Duboule D, Capitan A. Analysis of Polycerate Mutants Reveals the Evolutionary Co-option of HOXD1 for Horn Patterning in Bovidae. Mol Biol Evol 2021; 38:2260-2272. [PMID: 33528505 PMCID: PMC8136503 DOI: 10.1093/molbev/msab021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the course of evolution, pecorans (i.e., higher ruminants) developed a remarkable diversity of osseous cranial appendages, collectively referred to as “headgear,” which likely share the same origin and genetic basis. However, the nature and function of the genetic determinants underlying their number and position remain elusive. Jacob and other rare populations of sheep and goats are characterized by polyceraty, the presence of more than two horns. Here, we characterize distinct POLYCERATE alleles in each species, both associated with defective HOXD1 function. We show that haploinsufficiency at this locus results in the splitting of horn bud primordia, likely following the abnormal extension of an initial morphogenetic field. These results highlight the key role played by this gene in headgear patterning and illustrate the evolutionary co-option of a gene involved in the early development of bilateria to properly fix the position and number of these distinctive organs of Bovidae.
Collapse
Affiliation(s)
- Aurélie Allais-Bonnet
- ALLICE, Paris, France.,Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Aurélie Hintermann
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Marie-Christine Deloche
- ALLICE, Paris, France.,Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Philippe Bardou
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France.,INRAE, Sigenae, Castanet-Tolosan, France
| | | | - Alain Pinton
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Ashleigh Haruda
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Cécile Grohs
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Jozsef Zakany
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Daniele Bigi
- Dipartimento di Scienza e Tecnologie Agro-Alimentari, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Olivier Putelat
- Archéologie Alsace, Sélestat, France.,UMR 7044, ARCHIMEDE, MISHA, Strasbourg, France
| | - Ockert Greyvenstein
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Tracy Hadfield
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Slim Ben Jemaa
- Laboratoire des Productions Animales et Fourragères, Institut National de la Recherche Agronomique de Tunisie, Université de Carthage, Ariana, Tunisia
| | - Gjoko Bunevski
- Livestock Department, Faculty of Agricultural Sciences and Food Institute of Animal Biotechnology, University Ss. Cyril and Methodius, Skopje, North Macedonia
| | - Fiona Menzi
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Nathalie Hirter
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Julia M Paris
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - John Hedges
- Manx Loaghtan Sheep Breeders' Group, Bassingbourn, Cambridgeshire, United Kingdom
| | - Isabelle Palhiere
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Rachel Rupp
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Louisa Gidney
- Rent a Peasant, Tow Law, Bishop Auckland, Durham County, United Kingdom
| | - Joséphine Lesur
- Unité Archéozoologie, Archéobotanique, Sociétés Pratiques et Environnements (AASPE), CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Renate Schafberg
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Michael Stache
- Central Natural Science Collections, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | - Claude Guintard
- Unité d'Anatomie Comparée, Ecole Nationale Vétérinaire de l'Agroalimentaire et de l'Alimentation, Nantes Atlantique-ONIRIS, Nantes, France.,Groupe d'Études Remodelage Osseux et bioMatériaux (GEROM), Université d'Angers, Unité INSERM 922, LHEA/IRIS-IBS, CHU d'Angers, Angers, France
| | - Amandine Blin
- Muséum National d'Histoire Naturelle, CNRS, UMS 2700 2AD, Paris, France
| | - Abdelhak Boukadiri
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| | - Julie Rivière
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France.,INRAE, Micalis Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Diane Esquerré
- INRAE, US, 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | | | | | - Coralie M Reich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| | - David G Riley
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | | | - Noelle Cockett
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Benjamin J Hayes
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Centre for Animal Science, University of Queensland, St. Lucia, QLD, Australia
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - James Kijas
- CSIRO Agriculture & Food, St. Lucia, QLD, Australia
| | - Eric Pailhoux
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | | | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland.,Swiss Cancer Research Institute, EPFL, Lausanne, Switzerland.,Collège de France, Paris, France
| | - Aurélien Capitan
- ALLICE, Paris, France.,Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
8
|
Neto T, Faustino-Rocha AI, Gil da Costa RM, Medeiros R, Oliveira PA. A quick and low-intensity method for oral administration to large numbers of mice: A possible alternative to oral gavage. Lab Anim 2021; 56:185-190. [PMID: 34338062 DOI: 10.1177/00236772211035250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oral administration of medication to experimental animals is a cause of significant stress. When coupled to animals who are already under strenuous circumstances due to the disease being modelled, there is a significant risk for increased morbidity and mortality, thus influencing the results. Faced with these constraints, a low-intensity method for oral administration was developed, based solely on the natural behaviour of the animals and minimal conditioning, in which precise doses of medication were administered in a locally available, standard wheat cookie fragment, providing both a palatable vehicle and an absorbent matrix for the medication. Fast administration to large numbers of animals was thus achieved, safeguarding the animals' welfare and ensuring ease of handling. This method is a promising alternative to oral gavage in pre-clinical drug studies with laboratory mice.
Collapse
Affiliation(s)
- Tiago Neto
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal.,Molecular Oncology and Viral Pathology Group, CI-IPOP, Portuguese Institute of Oncology (IPO), Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal
| | - Ana I Faustino-Rocha
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal.,Department of Zootechnics, School of Sciences and Technology, University of Évora, Portugal.,Comprehensive Health Research Centre (CHRC), University of Évora, Évora, Portugal
| | - Rui M Gil da Costa
- Molecular Oncology and Viral Pathology Group, CI-IPOP, Portuguese Institute of Oncology (IPO), Portugal.,Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal.,Postgraduate Programme in Adult Health (PPGSAD) and Tumour Biobank, Federal University of Maranhão (UFMA), Brazil
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, CI-IPOP, Portuguese Institute of Oncology (IPO), Portugal.,Faculty of Medicine, University of Porto, Portugal.,Virology Service, Portuguese Oncology Institute of Porto (IPO Porto), Portugal.,Biomedical Research Center (CEBIMED), Faculty of Health Sciences of the Fernando Pessoa University, Portugal.,Research Department, Portuguese League Against Cancer - Regional Nucleus of the North (Liga Portuguesa Contra o Cancro - Núcleo Regional do Norte), Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Portugal.,Department of Veterinary Sciences, UTAD, Portugal
| |
Collapse
|
9
|
Lim KRQ, Nguyen Q, Dzierlega K, Huang Y, Yokota T. CRISPR-Generated Animal Models of Duchenne Muscular Dystrophy. Genes (Basel) 2020; 11:genes11030342. [PMID: 32213923 PMCID: PMC7141101 DOI: 10.3390/genes11030342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked recessive neuromuscular disorder most commonly caused by mutations disrupting the reading frame of the dystrophin (DMD) gene. DMD codes for dystrophin, which is critical for maintaining the integrity of muscle cell membranes. Without dystrophin, muscle cells receive heightened mechanical stress, becoming more susceptible to damage. An active body of research continues to explore therapeutic treatments for DMD as well as to further our understanding of the disease. These efforts rely on having reliable animal models that accurately recapitulate disease presentation in humans. While current animal models of DMD have served this purpose well to some extent, each has its own limitations. To help overcome this, clustered regularly interspaced short palindromic repeat (CRISPR)-based technology has been extremely useful in creating novel animal models for DMD. This review focuses on animal models developed for DMD that have been created using CRISPR, their advantages and disadvantages as well as their applications in the DMD field.
Collapse
Affiliation(s)
- Kenji Rowel Q. Lim
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Quynh Nguyen
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Kasia Dzierlega
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Yiqing Huang
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; (K.R.Q.L.); (Q.N.); (K.D.); (Y.H.)
- The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research Chair, Edmonton, AB T6G 2H7, Canada
- Correspondence: ; Tel.: +1-780-492-1102
| |
Collapse
|
10
|
Liu H, Schaeffel F, Trier K, Feldkaemper M. Effects of 7-Methylxanthine on Deprivation Myopia and Retinal Dopamine Release in Chickens. Ophthalmic Res 2019; 63:347-357. [PMID: 31533122 DOI: 10.1159/000502529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Intake of 7-methylxanthine (7-MX), an adenosine receptor (AR) antagonist, has been shown to inhibit school myopia in children and deprivation myopia in rhesus monkeys, but the underlying mechanisms are not known. Also retinal dopamine seems to be involved in the control of eye growth, and in the brain, ARs and dopamine receptors interact widely by heteromerization. We have studied whether 7-MX can inhibit deprivation myopia also in chickens and whether inhibition may involve the retinal dopamine system. METHODS 7-MX was applied by either tube-feeding (100 µg/g body weight, twice a day) or intravitreal injection (12.5 µg, every other day). Forty-eight 2-week-old chicks wore unilateral diffusers and were randomly assigned to either the tube-feeding group (involving 7-MX, vehicle [xanthan gum], or no feeding, for 13 days) or the intravitreal injection group (involving 7-MX, vehicle, or DMSO, for 8 days). Refractions (REs), ocular biometry (AL, VCD), and scleral and choroidal thickness (ChT) were measured before and after treatment. Dopamine and dihydroxyphenylacetic acid (DOPAC) content were determined in retina and vitreous by HPLC at the end of the experiments. RESULTS No matter how 7-MX was applied, it did not inhibit deprivation myopia in chicks. No significant differences were observed in RE, VCD, AL, and scleral fibrous layer thickness. Feeding 7-MX produced more choroidal thinning in the open contralateral eye compared to control eyes in the vehicle-fed group (-40 ± 14 vs. -1 ± 7 µm, unpaired t test, p < 0.05). DOPAC and dopamine concentration in vitreous and DOPAC concentration in retina did not change with 7-MX. Vitreal dopamine content was significantly decreased in deprived eyes in the groups fed with the vehicle xanthan gum (paired t test, p < 0.01) but not in 7-MX-treated eyes, perhaps indicating a small effect of 7-MX on dopamine. CONCLUSIONS In our study, 7-MX had no effect on DM in chicks and only minor effects on ChT and retinal dopamine. It remains unclear whether 7-MX inhibits myopia through a retinal mechanism or whether it acts directly on choroid and sclera. In the latter case, the finding that myopia is suppressed in mammals but not birds might be explained by differences in scleral structure.
Collapse
Affiliation(s)
- Hong Liu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Institute for Ophthalmic Research, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Institute for Ophthalmic Research, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Klaus Trier
- Trier Research Laboratories, Hellerup, Denmark
| | - Marita Feldkaemper
- Institute for Ophthalmic Research, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany,
| |
Collapse
|
11
|
Titeca K, Lemmens I, Tavernier J, Eyckerman S. Discovering cellular protein-protein interactions: Technological strategies and opportunities. MASS SPECTROMETRY REVIEWS 2019; 38:79-111. [PMID: 29957823 DOI: 10.1002/mas.21574] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 01/03/2018] [Accepted: 06/04/2018] [Indexed: 05/09/2023]
Abstract
The analysis of protein interaction networks is one of the key challenges in the study of biology. It connects genotypes to phenotypes, and disruption often leads to diseases. Hence, many technologies have been developed to study protein-protein interactions (PPIs) in a cellular context. The expansion of the PPI technology toolbox however complicates the selection of optimal approaches for diverse biological questions. This review gives an overview of the binary and co-complex technologies, with the former evaluating the interaction of two co-expressed genetically tagged proteins, and the latter only needing the expression of a single tagged protein or no tagged proteins at all. Mass spectrometry is crucial for some binary and all co-complex technologies. After the detailed description of the different technologies, the review compares their unique specifications, advantages, disadvantages, and applicability, while highlighting opportunities for further advancements.
Collapse
Affiliation(s)
- Kevin Titeca
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Irma Lemmens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The establishment of mouse models of gallstones, and the contribution of mouse models to genetic studies of gallstone disease, as well as the latest advances in the pathophysiology of gallstones from mouse experiments are summarized. RECENT FINDINGS The combined uses of genomic strategies and phenotypic studies in mice have successfully led to the identification of many Lith genes, which pave the way for the discovery of human LITH genes. The physical-chemical, genetic, and molecular biological studies of gallstone disease in mice with knockout or transgene of specific target genes have provided many novel insights into the complex pathophysiological mechanisms of this very common hepatobiliary disease worldwide, showing that interactions of five primary defects play a critical role in the pathogenesis of cholesterol gallstones. Based on mouse studies, a new concept has been proposed that hepatic hypersecretion of biliary cholesterol is induced by multiple Lith genes, with insulin resistance as part of the metabolic syndrome interacting with cholelithogenic environmental factors to cause the phenotype. SUMMARY The mouse model of gallstones is crucial for elucidating the physical-chemical and genetic mechanisms of cholesterol crystallization and gallstone formation, which greatly increase our understanding of the pathogenesis of this disease in humans.
Collapse
Affiliation(s)
- Tony Y. Wang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Piero Portincasa
- Department of Biomedical Sciences and Human Oncology, Clinica Medica ‘A. Murri’, University of Bari ‘Aldo Moro’ Medical School, Bari, Italy
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David Q.-H. Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
13
|
Salina EA, Nesterov MA, Frenkel Z, Kiseleva AA, Timonova EM, Magni F, Vrána J, Šafář J, Šimková H, Doležel J, Korol A, Sergeeva EM. Features of the organization of bread wheat chromosome 5BS based on physical mapping. BMC Genomics 2018; 19:80. [PMID: 29504906 PMCID: PMC5836826 DOI: 10.1186/s12864-018-4470-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The IWGSC strategy for construction of the reference sequence of the bread wheat genome is based on first obtaining physical maps of the individual chromosomes. Our aim is to develop and use the physical map for analysis of the organization of the short arm of wheat chromosome 5B (5BS) which bears a number of agronomically important genes, including genes conferring resistance to fungal diseases. RESULTS A physical map of the 5BS arm (290 Mbp) was constructed using restriction fingerprinting and LTC software for contig assembly of 43,776 BAC clones. The resulting physical map covered ~ 99% of the 5BS chromosome arm (111 scaffolds, N50 = 3.078 Mb). SSR, ISBP and zipper markers were employed for anchoring the BAC clones, and from these 722 novel markers were developed based on previously obtained data from partial sequencing of 5BS. The markers were mapped using a set of Chinese Spring (CS) deletion lines, and F2 and RICL populations from a cross of CS and CS-5B dicoccoides. Three approaches have been used for anchoring BAC contigs on the 5BS chromosome, including clone-by-clone screening of BACs, GenomeZipper analysis, and comparison of BAC-fingerprints with in silico fingerprinting of 5B pseudomolecules of T. dicoccoides. These approaches allowed us to reach a high level of BAC contig anchoring: 96% of 5BS BAC contigs were located on 5BS. An interesting pattern was revealed in the distribution of contigs along the chromosome. Short contigs (200-999 kb) containing markers for the regions interrupted by tandem repeats, were mainly localized to the 5BS subtelomeric block; whereas the distribution of larger 1000-3500 kb contigs along the chromosome better correlated with the distribution of the regions syntenic to rice, Brachypodium, and sorghum, as detected by the Zipper approach. CONCLUSION The high fingerprinting quality, LTC software and large number of BAC clones selected by the informative markers in screening of the 43,776 clones allowed us to significantly increase the BAC scaffold length when compared with the published physical maps for other wheat chromosomes. The genetic and bioinformatics resources developed in this study provide new possibilities for exploring chromosome organization and for breeding applications.
Collapse
Affiliation(s)
- Elena A Salina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.
| | - Mikhail A Nesterov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Antonina A Kiseleva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina M Timonova
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jan Šafář
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Hana Šimková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | | | - Ekaterina M Sergeeva
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
14
|
Abstract
High-quality large molecular weight genomic DNA is important for genomic studies. Most commercial available genomic DNA purification kits have failed to generate high molecular weight DNA of sufficient quality from planarians. Here, we describe a simple and efficient genomic DNA isolation method, which has worked for several different planarian species, including Schmidtea mediterranea. This phenol-chloroform based method can be used to obtain genomic DNA of up to 150 kb and can be used for bacterial artificial chromosome (BAC) library construction, next-generation sequencing and PCR cloning.
Collapse
Affiliation(s)
- Shasha Zhang
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, Kansas City, MO, USA
| | | |
Collapse
|
15
|
Song M, Kim S, Kim T, Park S, Shin KH, Kang M, Park NH, Kim R. Development of a Direct Pulp-capping Model for the Evaluation of Pulpal Wound Healing and Reparative Dentin Formation in Mice. J Vis Exp 2017. [PMID: 28117776 DOI: 10.3791/54973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dental pulp is a vital organ of a tooth fully protected by enamel and dentin. When the pulp is exposed due to cariogenic or iatrogenic injuries, it is often capped with biocompatible materials in order to expedite pulpal wound healing. The ultimate goal is to regenerate reparative dentin, a physical barrier that functions as a "biological seal" and protects the underlying pulp tissue. Although this direct pulp-capping procedure has long been used in dentistry, the underlying molecular mechanism of pulpal wound healing and reparative dentin formation is still poorly understood. To induce reparative dentin, pulp capping has been performed experimentally in large animals, but less so in mice, presumably due to their small sizes and the ensuing technical difficulties. Here, we present a detailed, step-by-step method of performing a pulp-capping procedure in mice, including the preparation of a Class-I-like cavity, the placement of pulp-capping materials, and the restoration procedure using dental composite. Our pulp-capping mouse model will be instrumental in investigating the fundamental molecular mechanisms of pulpal wound healing in the context of reparative dentin in vivo by enabling the use of transgenic or knockout mice that are widely available in the research community.
Collapse
Affiliation(s)
- Minju Song
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry
| | - Sol Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry
| | - Terresa Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry
| | - Sil Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry
| | - Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry; UCLA Jonsson Comprehensive Cancer Center
| | - Mo Kang
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry; UCLA Jonsson Comprehensive Cancer Center
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry; UCLA Jonsson Comprehensive Cancer Center; David Geffen School of Medicine at UCLA
| | - Reuben Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, The UCLA School of Dentistry; UCLA Jonsson Comprehensive Cancer Center;
| |
Collapse
|
16
|
Ivancevic AM, Kortschak RD, Bertozzi T, Adelson DL. LINEs between Species: Evolutionary Dynamics of LINE-1 Retrotransposons across the Eukaryotic Tree of Life. Genome Biol Evol 2016; 8:3301-3322. [PMID: 27702814 PMCID: PMC5203782 DOI: 10.1093/gbe/evw243] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
LINE-1 (L1) retrotransposons are dynamic elements. They have the potential to cause great genomic change because of their ability to ‘jump’ around the genome and amplify themselves, resulting in the duplication and rearrangement of regulatory DNA. Active L1, in particular, are often thought of as tightly constrained, homologous and ubiquitous elements with well-characterized domain organization. For the past 30 years, model organisms have been used to define L1s as 6–8 kb sequences containing a 5′-UTR, two open reading frames working harmoniously in cis, and a 3′-UTR with a polyA tail. In this study, we demonstrate the remarkable and overlooked diversity of L1s via a comprehensive phylogenetic analysis of elements from over 500 species from widely divergent branches of the tree of life. The rapid and recent growth of L1 elements in mammalian species is juxtaposed against the diverse lineages found in other metazoans and plants. In fact, some of these previously unexplored mammalian species (e.g. snub-nosed monkey, minke whale) exhibit L1 retrotranspositional ‘hyperactivity’ far surpassing that of human or mouse. In contrast, non-mammalian L1s have become so varied that the current classification system seems to inadequately capture their structural characteristics. Our findings illustrate how both long-term inherited evolutionary patterns and random bursts of activity in individual species can significantly alter genomes, highlighting the importance of L1 dynamics in eukaryotes.
Collapse
Affiliation(s)
- Atma M Ivancevic
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - R Daniel Kortschak
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Terry Bertozzi
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Burford Reiskind MO, Coyle K, Daniels HV, Labadie P, Reiskind MH, Roberts NB, Roberts RB, Schaff J, Vargo EL. Development of a universal double-digest RAD sequencing approach for a group of nonmodel, ecologically and economically important insect and fish taxa. Mol Ecol Resour 2016; 16:1303-1314. [PMID: 27739656 DOI: 10.1111/1755-0998.12527] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 11/28/2022]
Abstract
The generation of genome-scale data is critical for a wide range of questions in basic biology using model organisms, but also in questions of applied biology in nonmodel organisms (agriculture, natural resources, conservation and public health biology). Using a genome-scale approach on a diverse group of nonmodel organisms and with the goal of lowering costs of the method, we modified a multiplexed, high-throughput genomic scan technique utilizing two restriction enzymes. We analysed several pairs of restriction enzymes and completed double-digestion RAD sequencing libraries for nine different species and five genera of insects and fish. We found one particular enzyme pair produced consistently higher number of sequence-able fragments across all nine species. Building libraries off this enzyme pair, we found a range of usable SNPs between 4000 and 37 000 SNPS per species and we found a greater number of usable SNPs using reference genomes than de novo pipelines in STACKS. We also found fewer reads in the Read 2 fragments from the paired-end Illumina Hiseq run. Overall, the results of this study provide empirical evidence of the utility of this method for producing consistent data for diverse nonmodel species and suggest specific considerations for sequencing analysis strategies.
Collapse
Affiliation(s)
- M O Burford Reiskind
- Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695, USA.
| | - K Coyle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - H V Daniels
- Department of Applied Ecology, North Carolina State University, Campus Box 7617, Raleigh, NC, 27695, USA
| | - P Labadie
- Department of Entomology, North Carolina State University, Raleigh, NC, 27695, USA
| | - M H Reiskind
- Department of Entomology, North Carolina State University, Raleigh, NC, 27695, USA
| | - N B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - R B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - J Schaff
- Genomic Sciences Laboratory, North Carolina State University, Raleigh, NC, 27695, USA
| | - E L Vargo
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
18
|
Pratas D, Silva RM, Pinho AJ, Ferreira PJ. An alignment-free method to find and visualise rearrangements between pairs of DNA sequences. Sci Rep 2015; 5:10203. [PMID: 25984837 PMCID: PMC4434998 DOI: 10.1038/srep10203] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/07/2015] [Indexed: 12/19/2022] Open
Abstract
Species evolution is indirectly registered in their genomic structure. The emergence and advances in sequencing technology provided a way to access genome information, namely to identify and study evolutionary macro-events, as well as chromosome alterations for clinical purposes. This paper describes a completely alignment-free computational method, based on a blind unsupervised approach, to detect large-scale and small-scale genomic rearrangements between pairs of DNA sequences. To illustrate the power and usefulness of the method we give complete chromosomal information maps for the pairs human-chimpanzee and human-orangutan. The tool by means of which these results were obtained has been made publicly available and is described in detail.
Collapse
|
19
|
|
20
|
A high resolution map of mammalian X chromosome fragile regions assessed by large-scale comparative genomics. Mamm Genome 2014; 25:618-35. [PMID: 25086724 DOI: 10.1007/s00335-014-9537-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/14/2014] [Indexed: 10/24/2022]
Abstract
Chromosomal evolution involves multiple changes at structural and numerical levels. These changes, which are related to the variation of the gene number and their location, can be tracked by the identification of syntenic blocks (SB). First reports proposed that ~180-280 SB might be shared by mouse and human species. More recently, further studies including additional genomes have identified up to ~1,400 SB during the evolution of eutherian species. A considerable number of studies regarding the X chromosome's structure and evolution have been undertaken because of its extraordinary biological impact on reproductive fitness and speciation. Some have identified evolutionary breakpoint regions and fragile sites at specific locations in the human X chromosome. However, mapping these regions to date has involved using low-to-moderate resolution techniques. Such scenario might be related to underestimating their total number and giving an inaccurate location. The present study included using a combination of bioinformatics methods for identifying, at base-pair level, chromosomal rearrangements occurring during X chromosome evolution in 13 mammalian species. A comparative technique using four different algorithms was used for optimizing the detection of hotspot regions in the human X chromosome. We identified a significant interspecific variation in SB size which was related to genetic information gain regarding the human X chromosome. We found that human hotspot regions were enriched by LINE-1 and Alu transposable elements, which may have led to intraspecific chromosome rearrangement events. New fragile regions located in the human X chromosome have also been postulated. We estimate that the high resolution map of X chromosome fragile sites presented here constitutes useful data concerning future studies on mammalian evolution and human disease.
Collapse
|
21
|
Li JJ, Bickel PJ, Biggin MD. System wide analyses have underestimated protein abundances and the importance of transcription in mammals. PeerJ 2014; 2:e270. [PMID: 24688849 PMCID: PMC3940484 DOI: 10.7717/peerj.270] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 01/22/2014] [Indexed: 12/17/2022] Open
Abstract
Large scale surveys in mammalian tissue culture cells suggest that the protein expressed at the median abundance is present at 8,000–16,000 molecules per cell and that differences in mRNA expression between genes explain only 10–40% of the differences in protein levels. We find, however, that these surveys have significantly underestimated protein abundances and the relative importance of transcription. Using individual measurements for 61 housekeeping proteins to rescale whole proteome data from Schwanhausser et al. (2011), we find that the median protein detected is expressed at 170,000 molecules per cell and that our corrected protein abundance estimates show a higher correlation with mRNA abundances than do the uncorrected protein data. In addition, we estimated the impact of further errors in mRNA and protein abundances using direct experimental measurements of these errors. The resulting analysis suggests that mRNA levels explain at least 56% of the differences in protein abundance for the 4,212 genes detected by Schwanhausser et al. (2011), though because one major source of error could not be estimated the true percent contribution should be higher. We also employed a second, independent strategy to determine the contribution of mRNA levels to protein expression. We show that the variance in translation rates directly measured by ribosome profiling is only 12% of that inferred by Schwanhausser et al. (2011), and that the measured and inferred translation rates correlate poorly (R2 = 0.13). Based on this, our second strategy suggests that mRNA levels explain ∼81% of the variance in protein levels. We also determined the percent contributions of transcription, RNA degradation, translation and protein degradation to the variance in protein abundances using both of our strategies. While the magnitudes of the two estimates vary, they both suggest that transcription plays a more important role than the earlier studies implied and translation a much smaller role. Finally, the above estimates only apply to those genes whose mRNA and protein expression was detected. Based on a detailed analysis by Hebenstreit et al. (2012), we estimate that approximately 40% of genes in a given cell within a population express no mRNA. Since there can be no translation in the absence of mRNA, we argue that differences in translation rates can play no role in determining the expression levels for the ∼40% of genes that are non-expressed.
Collapse
Affiliation(s)
- Jingyi Jessica Li
- Department of Statistics, University of California , Berkeley, CA , USA ; Departments of Statistics and Human Genetics, University of California , Los Angeles, CA , USA
| | - Peter J Bickel
- Department of Statistics, University of California , Berkeley, CA , USA
| | - Mark D Biggin
- Genomics Division, Lawrence Berkeley National Laboratory , Berkeley, CA , USA
| |
Collapse
|
22
|
Khuong TM, Neely GG. Conserved systems and functional genomic assessment of nociception. FEBS J 2013; 280:5298-306. [DOI: 10.1111/febs.12464] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Thang M. Khuong
- Neuroscience Program; Garvan Institute of Medical Research; Darlinghurst Sydney Australia
| | - Graham Greg Neely
- Neuroscience Program; Garvan Institute of Medical Research; Darlinghurst Sydney Australia
| |
Collapse
|
23
|
Zhang Y, Liu S, Lu J, Jiang Y, Gao X, Ninwichian P, Li C, Waldbieser G, Liu Z. Comparative genomic analysis of catfish linkage group 8 reveals two homologous chromosomes in zebrafish and other teleosts with extensive inter-chromosomal rearrangements. BMC Genomics 2013; 14:387. [PMID: 23758806 PMCID: PMC3691659 DOI: 10.1186/1471-2164-14-387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/24/2013] [Indexed: 12/02/2022] Open
Abstract
Background Comparative genomics is a powerful tool to transfer genomic information from model species to related non-model species. Channel catfish (Ictalurus punctatus) is the primary aquaculture species in the United States. Its existing genome resources such as genomic sequences generated from next generation sequencing, BAC end sequences (BES), physical maps, linkage maps, and integrated linkage and physical maps using BES-associated markers provide a platform for comparative genomic analysis between catfish and other model teleost fish species. This study aimed to gain understanding of genome organizations and similarities among catfish and several sequenced teleost genomes using linkage group 8 (LG8) as a pilot study. Results With existing genome resources, 287 unique genes were identified in LG8. Comparative genome analysis indicated that most of these 287 genes on catfish LG8 are located on two homologous chromosomes of zebrafish, medaka, stickleback, and three chromosomes of green-spotted pufferfish. Large numbers of conserved syntenies were identified. Detailed analysis of the conserved syntenies in relation to chromosome level similarities revealed extensive inter-chromosomal and intra-chromosomal rearrangements during evolution. Of the 287 genes, 35 genes were found to be duplicated in the catfish genome, with the vast majority of the duplications being interchromosomal. Conclusions Comparative genome analysis is a powerful tool even in the absence of a well-assembled whole genome sequence. In spite of sequence stacking due to low resolution of the linkage and physical maps, conserved syntenies can be identified although the exact gene order and orientation are unknown at present. Through chromosome-level comparative analysis, homologous chromosomes among teleosts can be identified. Syntenic analysis should facilitate annotation of the catfish genome, which in turn, should facilitate functional inference of genes based on their orthology.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, The Fish Molecular Genetics and Biotechnology Laboratory, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Schmidt EF, Kus L, Gong S, Heintz N. BAC transgenic mice and the GENSAT database of engineered mouse strains. Cold Spring Harb Protoc 2013; 2013:2013/3/pdb.top073692. [PMID: 23457350 DOI: 10.1101/pdb.top073692] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The brain is a complex tissue comprising hundreds of distinct cell types, each of which has unique circuitry and plays a discrete role in nervous system function. Large-scale studies mapping gene-expression patterns throughout the nervous system have revealed that many genes are exclusively expressed in specific cell populations. The GENSAT (Gene Expression Nervous System Atlas) Project created a library of engineered mice utilizing bacterial artificial chromosomes (BACs) to drive the expression of enhanced green fluorescent protein (eGFP) in genetically defined cell populations. BACs contain large segments of genomic DNA and retain most of the transcriptional regulatory elements directing the expression of a given gene, resulting in more faithful reproduction of endogenous expression patterns. BAC transgenic mice offer a robust solution to the challenging task of stably and reproducibly accessing specific cell types from a heterogeneous tissue such as the brain. A significant advantage of utilizing eGFP as a reporter is the fact that it can fill entire cells, including neuronal dendrites and axons as well as glial processes, making GENSAT reporter mice a powerful tool for neuroimaging studies. This article provides a primer on the generation of BAC transgenic mice and advantages for their use in labeling genetically defined cell types. It also provides an overview of searching the GENSAT database and ordering engineered mouse lines.
Collapse
|
25
|
Bozdag S, Close TJ, Lonardi S. A graph-theoretical approach to the selection of the minimum tiling path from a physical map. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:352-360. [PMID: 23929859 DOI: 10.1109/tcbb.2013.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The problem of computing the minimum tiling path (MTP) from a set of clones arranged in a physical map is a cornerstone of hierarchical (clone-by-clone) genome sequencing projects. We formulate this problem in a graph theoretical framework, and then solve by a combination of minimum hitting set and minimum spanning tree algorithms. The tool implementing this strategy, called FMTP, shows improved performance compared to the widely used software FPC. When we execute FMTP and FPC on the same physical map, the MTP produced by FMTP covers a higher portion of the genome, and uses a smaller number of clones. For instance, on the rice genome the MTP produced by our tool would reduce by about 11 percent the cost of a clone-by-clone sequencing project. Source code, benchmark data sets, and documentation of FMTP are freely available at >http://code.google.com/p/fingerprint-based-minimal-tiling-path/ under MIT license.
Collapse
Affiliation(s)
- Serdar Bozdag
- Department of Mathematics, Statistics and Computer Science, Marquette University, PO Box 1881, Milwaukee, WI 53201-1881, USA.
| | | | | |
Collapse
|
26
|
|
27
|
Lee KH, Kim WC, Shin KS, Roh JK, Cho DH, Cho K. Large interrelated clusters of repetitive elements (REs) and RE arrays predominantly represent reference mouse chromosome Y. Chromosome Res 2013; 21:15-26. [PMID: 23359013 DOI: 10.1007/s10577-012-9334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/21/2012] [Accepted: 12/22/2012] [Indexed: 11/29/2022]
Abstract
The vast majority of the mouse and human genomes consist of repetitive elements (REs), while protein-coding sequences occupy only ~3 %. It has been reported that the Y chromosomes of both species are highly populated with REs although at present, their complete sequences are not available in any public database. The recent update of the mouse genome database (Build 38.1) from the National Center for Biotechnology Information (NCBI) indicates that mouse chromosome Y is ~92 Mb in size, which is substantially larger than the ~16 Mb reported previously (Build 37.2). In this study, we examined how REs are arranged in mouse chromosome Y (Build 38.1) using REMiner-II, a RE mining program. A combination of diverse REs and RE arrays formed large clusters (up to ~28 Mb in size) and most of them were directly or inversely related. Interestingly, the RE population of human chromosome Y (NCBI Build 37.2-current) was less dense, and the RE/RE array clusters were not evident in comparison to mouse chromosome Y. The annotated gene loci were distributed in five different regions and most of them were surrounded by unique RE arrays. In particular, tandem RE arrays were embedded into the introns of two adjacent gene loci. The findings from this study indicate that the large and interrelated clusters of REs and RE arrays predominantly represent the unique organizational pattern of mouse chromosome Y. The potential interactions among the clusters, which are populated with various interrelated REs and RE arrays, may play a role in the structural configuration and function of mouse chromosome Y.
Collapse
Affiliation(s)
- Kang-Hoon Lee
- Department of Surgery, University of California, Davis and Shriners Hospitals for Children Northern California, Sacramento, CA 95817, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Background New genes in eukaryotes are created through a variety of different mechanisms. De novo origin from non-coding DNA is a mechanism that has recently gained attention. So far, de novo genes have been described in a handful of organisms, with Drosophila being the most extensively studied. We searched for genes that have appeared de novo in the mouse and rat lineages. Methodology Using a rigorous and conservative approach we identify 75 murine genes (69 mouse genes and 6 rat genes) for which there is good evidence of de novo origin since the divergence of mouse and rat. Each of these genes is only found in either the mouse or rat lineages, with no candidate orthologs nor evidence for potentially-unannotated orthologs in the other lineage. The veracity of each of these genes is supported by expression evidence. Additionally, their presence in one lineage and absence in the other cannot be explained by sequencing gaps. For 11 of the 75 candidate novel genes we could identify a mouse-specific mutation that led to the creation of the open reading frame (ORF) specifically in mouse. None of the six rat-specific genes had an unequivocal rat-specific mutation creating the ORF, which may at least be partly due to lower data quality for that genome. Conclusions All 75 candidate genes presented in this study are relatively small and encode short peptides. A large number of them (51 out of 69 mouse genes and 3 out of 6 rat genes) also overlap with other genes, either within introns, or on the opposite strand. These characteristics have previously been documented for de novo genes. The description of these genes opens up the opportunity to integrate this evolutionary analysis with the rich experimental data available for these two model organisms.
Collapse
Affiliation(s)
- Daniel N. Murphy
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Aoife McLysaght
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
- * E-mail:
| |
Collapse
|
29
|
Drown DM, Preuss KM, Wade MJ. Evidence of a paucity of genes that interact with the mitochondrion on the X in mammals. Genome Biol Evol 2012; 4:763-8. [PMID: 22813777 PMCID: PMC3509887 DOI: 10.1093/gbe/evs064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2012] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are essential organelles whose replication, development, and physiology are dependent upon coordinated gene interactions with both the mitochondrial and the nuclear genomes. The evolution of coadapted (CA) nuclear-mitochondrial gene combinations would be facilitated if such nuclear genes were located on the X-chromosome instead of on the autosomes because of the increased probability of cotransmission. Here, we test the prediction of the CA hypothesis by investigating the chromosomal distribution of nuclear genes that interact with mitochondria. Using the online genome database BIOMART, we compared the density of genes that have a mitochondrion cellular component annotation across chromosomes in 16 vertebrates. We find a strong and highly significant genomic pattern against the CA hypothesis: nuclear genes interacting with the mitochondrion are significantly underrepresented on the X-chromosome in mammals but not in birds. We interpret our findings in terms of sexual conflict as a mechanism that may generate the observed pattern. Our finding extends single-gene theory for the evolution of sexually antagonistic genes to nuclear-mitochondrial gene combinations.
Collapse
|
30
|
Considerations for importing live genetically modified mice from academic laboratories. Lab Anim (NY) 2012; 41:167-70. [DOI: 10.1038/laban0612-167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/13/2012] [Indexed: 11/08/2022]
|
31
|
Zhang M, Zhang Y, Huang JJ, Zhang X, Lee MK, Stelly DM, Zhang HB. Genome physical mapping of polyploids: a BIBAC physical map of cultivated tetraploid cotton, Gossypium hirsutum L. PLoS One 2012; 7:e33644. [PMID: 22438974 PMCID: PMC3306275 DOI: 10.1371/journal.pone.0033644] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/14/2012] [Indexed: 12/01/2022] Open
Abstract
Polyploids account for approximately 70% of flowering plants, including many field, horticulture and forage crops. Cottons are a world-leading fiber and important oilseed crop, and a model species for study of plant polyploidization, cellulose biosynthesis and cell wall biogenesis. This study has addressed the concerns of physical mapping of polyploids with BACs and/or BIBACs by constructing a physical map of the tetraploid cotton, Gossypium hirsutum L. The physical map consists of 3,450 BIBAC contigs with an N50 contig size of 863 kb, collectively spanning 2,244 Mb. We sorted the map contigs according to their origin of subgenome, showing that we assembled physical maps for the A- and D-subgenomes of the tetraploid cotton, separately. We also identified the BIBACs in the map minimal tilling path, which consists of 15,277 clones. Moreover, we have marked the physical map with nearly 10,000 BIBAC ends (BESs), making one BES in approximately 250 kb. This physical map provides a line of evidence and a strategy for physical mapping of polyploids, and a platform for advanced research of the tetraploid cotton genome, particularly fine mapping and cloning the cotton agronomic genes and QTLs, and sequencing and assembling the cotton genome using the modern next-generation sequencing technology.
Collapse
Affiliation(s)
- Meiping Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yang Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - James J. Huang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Xiaojun Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Mi-Kyung Lee
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - David M. Stelly
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Hong-Bin Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Advances in BAC-based physical mapping and map integration strategies in plants. J Biomed Biotechnol 2012; 2012:184854. [PMID: 22500080 PMCID: PMC3303678 DOI: 10.1155/2012/184854] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/26/2011] [Accepted: 11/11/2011] [Indexed: 12/29/2022] Open
Abstract
In the advent of next-generation sequencing (NGS) platforms, map-based sequencing strategy has been recently suppressed being too expensive and laborious. The detailed studies on NGS drafts alone indicated these assemblies remain far from gold standard reference quality, especially when applied on complex genomes. In this context the conventional BAC-based physical mapping has been identified as an important intermediate layer in current hybrid sequencing strategy. BAC-based physical map construction and its integration with high-density genetic maps have benefited from NGS and high-throughput array platforms. This paper addresses the current advancements of BAC-based physical mapping and high-throughput map integration strategies to obtain densely anchored well-ordered physical maps. The resulted maps are of immediate utility while providing a template to harness the maximum benefits of the current NGS platforms.
Collapse
|
33
|
Zhang Y, Zhang X, O'Hare TH, Payne WS, Dong JJ, Scheuring CF, Zhang M, Huang JJ, Lee MK, Delany ME, Zhang HB, Dodgson JB. A comparative physical map reveals the pattern of chromosomal evolution between the turkey (Meleagris gallopavo) and chicken (Gallus gallus) genomes. BMC Genomics 2011; 12:447. [PMID: 21906286 PMCID: PMC3189400 DOI: 10.1186/1471-2164-12-447] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/09/2011] [Indexed: 02/08/2023] Open
Abstract
Background A robust bacterial artificial chromosome (BAC)-based physical map is essential for many aspects of genomics research, including an understanding of chromosome evolution, high-resolution genome mapping, marker-assisted breeding, positional cloning of genes, and quantitative trait analysis. To facilitate turkey genetics research and better understand avian genome evolution, a BAC-based integrated physical, genetic, and comparative map was developed for this important agricultural species. Results The turkey genome physical map was constructed based on 74,013 BAC fingerprints (11.9 × coverage) from two independent libraries, and it was integrated with the turkey genetic map and chicken genome sequence using over 41,400 BAC assignments identified by 3,499 overgo hybridization probes along with > 43,000 BAC end sequences. The physical-comparative map consists of 74 BAC contigs, with an average contig size of 13.6 Mb. All but four of the turkey chromosomes were spanned on this map by three or fewer contigs, with 14 chromosomes spanned by a single contig and nine chromosomes spanned by two contigs. This map predicts 20 to 27 major rearrangements distinguishing turkey and chicken chromosomes, despite up to 40 million years of separate evolution between the two species. These data elucidate the chromosomal evolutionary pattern within the Phasianidae that led to the modern turkey and chicken karyotypes. The predominant rearrangement mode involves intra-chromosomal inversions, and there is a clear bias for these to result in centromere locations at or near telomeres in turkey chromosomes, in comparison to interstitial centromeres in the orthologous chicken chromosomes. Conclusion The BAC-based turkey-chicken comparative map provides novel insights into the evolution of avian genomes, a framework for assembly of turkey whole genome shotgun sequencing data, and tools for enhanced genetic improvement of these important agricultural and model species.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Schulte D, Ariyadasa R, Shi B, Fleury D, Saski C, Atkins M, deJong P, Wu CC, Graner A, Langridge P, Stein N. BAC library resources for map-based cloning and physical map construction in barley (Hordeum vulgare L.). BMC Genomics 2011; 12:247. [PMID: 21595870 PMCID: PMC3224359 DOI: 10.1186/1471-2164-12-247] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Although second generation sequencing (2GS) technologies allow re-sequencing of previously gold-standard-sequenced genomes, whole genome shotgun sequencing and de novo assembly of large and complex eukaryotic genomes is still difficult. Availability of a genome-wide physical map is therefore still a prerequisite for whole genome sequencing for genomes like barley. To start such an endeavor, large insert genomic libraries, i.e. Bacterial Artificial Chromosome (BAC) libraries, which are unbiased and representing deep haploid genome coverage, need to be ready in place. RESULT Five new BAC libraries were constructed for barley (Hordeum vulgare L.) cultivar Morex. These libraries were constructed in different cloning sites (HindIII, EcoRI, MboI and BstXI) of the respective vectors. In order to enhance unbiased genome representation and to minimize the number of gaps between BAC contigs, which are often due to uneven distribution of restriction sites, a mechanically sheared library was also generated. The new BAC libraries were fully characterized in depth by scrutinizing the major quality parameters such as average insert size, degree of contamination (plate wide, neighboring, and chloroplast), empty wells and off-scale clones (clones with <30 or >250 fragments). Additionally a set of gene-based probes were hybridized to high density BAC filters and showed that genome coverage of each library is between 2.4 and 6.6 X. CONCLUSION BAC libraries representing >20 haploid genomes are available as a new resource to the barley research community. Systematic utilization of these libraries in high-throughput BAC fingerprinting should allow developing a genome-wide physical map for the barley genome, which will be instrumental for map-based gene isolation and genome sequencing.
Collapse
Affiliation(s)
- Daniela Schulte
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
- KWS SAAT AG, Grimsehlstr. 31, 37555 Einbeck, Germany
| | - Ruvini Ariyadasa
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Bujun Shi
- Australian Centre of Plant Functional Genomics, University of Adelaide, PMB 1 Glen Osmond SA 5064, Australia
| | - Delphine Fleury
- Australian Centre of Plant Functional Genomics, University of Adelaide, PMB 1 Glen Osmond SA 5064, Australia
| | - Chris Saski
- Clemson University Genomics Institute (CUGI), 51 New Cherry St. BRC 310, Clemson, SC 29634, USA
| | - Michael Atkins
- Clemson University Genomics Institute (CUGI), 51 New Cherry St. BRC 310, Clemson, SC 29634, USA
| | - Pieter deJong
- BACPAC Resources, Children's Hospital Oakland, 747 52nd St. Oakland, CA 94609, USA
| | - Cheng-Cang Wu
- Lucigen Corporation, 2120 West Greenview Dr., Middleton, WI 53562, USA
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| | - Peter Langridge
- Australian Centre of Plant Functional Genomics, University of Adelaide, PMB 1 Glen Osmond SA 5064, Australia
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Gatersleben, Germany
| |
Collapse
|
35
|
Song X, Goicoechea JL, Ammiraju JSS, Luo M, He R, Lin J, Lee SJ, Sisneros N, Watts T, Kudrna DA, Golser W, Ashley E, Collura K, Braidotti M, Yu Y, Matzkin LM, McAllister BF, Markow TA, Wing RA. The 19 genomes of Drosophila: a BAC library resource for genus-wide and genome-scale comparative evolutionary research. Genetics 2011; 187:1023-30. [PMID: 21321134 PMCID: PMC3070512 DOI: 10.1534/genetics.111.126540] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/05/2011] [Indexed: 11/18/2022] Open
Abstract
The genus Drosophila has been the subject of intense comparative phylogenomics characterization to provide insights into genome evolution under diverse biological and ecological contexts and to functionally annotate the Drosophila melanogaster genome, a model system for animal and insect genetics. Recent sequencing of 11 additional Drosophila species from various divergence points of the genus is a first step in this direction. However, to fully reap the benefits of this resource, the Drosophila community is faced with two critical needs: i.e., the expansion of genomic resources from a much broader range of phylogenetic diversity and the development of additional resources to aid in finishing the existing draft genomes. To address these needs, we report the first synthesis of a comprehensive set of bacterial artificial chromosome (BAC) resources for 19 Drosophila species from all three subgenera. Ten libraries were derived from the exact source used to generate 10 of the 12 draft genomes, while the rest were generated from a strategically selected set of species on the basis of salient ecological and life history features and their phylogenetic positions. The majority of the new species have at least one sequenced reference genome for immediate comparative benefit. This 19-BAC library set was rigorously characterized and shown to have large insert sizes (125-168 kb), low nonrecombinant clone content (0.3-5.3%), and deep coverage (9.1-42.9×). Further, we demonstrated the utility of this BAC resource for generating physical maps of targeted loci, refining draft sequence assemblies and identifying potential genomic rearrangements across the phylogeny.
Collapse
Affiliation(s)
- Xiang Song
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Jose Luis Goicoechea
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Jetty S. S. Ammiraju
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Meizhong Luo
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Ruifeng He
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Jinke Lin
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - So-Jeong Lee
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Nicholas Sisneros
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Tom Watts
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - David A. Kudrna
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Wolfgang Golser
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Elizabeth Ashley
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Kristi Collura
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Michele Braidotti
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Yeisoo Yu
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Luciano M. Matzkin
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Bryant F. McAllister
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Therese Ann Markow
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| | - Rod A. Wing
- Arizona Genomics Institute and BIO5 Institute, School of Plant Sciences, and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093 and Department of Biology, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
36
|
Jin K, Zheng X, Xia Y. Gene Expression Profiling via Multigene Concatemers. PLoS One 2011; 6:e15711. [PMID: 21267445 PMCID: PMC3022625 DOI: 10.1371/journal.pone.0015711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/23/2010] [Indexed: 12/26/2022] Open
Abstract
We established a novel method, Gene Expression Profiling via Multigene Concatemers (MgC-GEP), to study multigene expression patterns simultaneously. This method consists of the following steps: (1) cDNA was obtained using specific reverse primers containing an adaptor. (2) During the initial 1-3 cycles of polymerase chain reaction (PCR), the products containing universal adaptors with digestion sites at both termini were amplified using specific forward and reverse primers containing the adaptors. (3) In the subsequent 4-28 cycles, the universal adaptors were used as primers to yield products. (4) The products were digested and ligated to produce concatemers. (5) The concatemers were cloned into the vector and sequenced. Then, the occurrence of each gene tag was determined. To validate MgC-GEP, we analyzed 20 genes in Saccharomyces cerevisiae induced by weak acid using MgC-GEP combined with real-time reverse transcription (RT)-PCR. Compared with the results of real-time RT-PCR and the previous reports of microarray analysis, MgC-GEP can precisely determine the transcript levels of multigenes simultaneously. Importantly, MgC-GEP is a cost effective strategy that can be widely used in most laboratories without specific equipment. MgC-GEP is a potentially powerful tool for multigene expression profiling, particularly for moderate-throughput analysis.
Collapse
Affiliation(s)
- Kai Jin
- Genetic Engineering Research Center, School of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Xiaoli Zheng
- Genetic Engineering Research Center, School of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Bioengineering, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| |
Collapse
|
37
|
Frenkel Z, Paux E, Mester D, Feuillet C, Korol A. LTC: a novel algorithm to improve the efficiency of contig assembly for physical mapping in complex genomes. BMC Bioinformatics 2010; 11:584. [PMID: 21118513 PMCID: PMC3098104 DOI: 10.1186/1471-2105-11-584] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 11/30/2010] [Indexed: 11/25/2022] Open
Abstract
Background Physical maps are the substrate of genome sequencing and map-based cloning and their construction relies on the accurate assembly of BAC clones into large contigs that are then anchored to genetic maps with molecular markers. High Information Content Fingerprinting has become the method of choice for large and repetitive genomes such as those of maize, barley, and wheat. However, the high level of repeated DNA present in these genomes requires the application of very stringent criteria to ensure a reliable assembly with the FingerPrinted Contig (FPC) software, which often results in short contig lengths (of 3-5 clones before merging) as well as an unreliable assembly in some difficult regions. Difficulties can originate from a non-linear topological structure of clone overlaps, low power of clone ordering algorithms, and the absence of tools to identify sources of gaps in Minimal Tiling Paths (MTPs). Results To address these problems, we propose a novel approach that: (i) reduces the rate of false connections and Q-clones by using a new cutoff calculation method; (ii) obtains reliable clusters robust to the exclusion of single clone or clone overlap; (iii) explores the topological contig structure by considering contigs as networks of clones connected by significant overlaps; (iv) performs iterative clone clustering combined with ordering and order verification using re-sampling methods; and (v) uses global optimization methods for clone ordering and Band Map construction. The elements of this new analytical framework called Linear Topological Contig (LTC) were applied on datasets used previously for the construction of the physical map of wheat chromosome 3B with FPC. The performance of LTC vs. FPC was compared also on the simulated BAC libraries based on the known genome sequences for chromosome 1 of rice and chromosome 1 of maize. Conclusions The results show that compared to other methods, LTC enables the construction of highly reliable and longer contigs (5-12 clones before merging), the detection of "weak" connections in contigs and their "repair", and the elongation of contigs obtained by other assembly methods.
Collapse
Affiliation(s)
- Zeev Frenkel
- University of Haifa, Institute of Evolution, Haifa 31905, Israel.
| | | | | | | | | |
Collapse
|
38
|
Vergara IA, Chen N. Large synteny blocks revealed between Caenorhabditis elegans and Caenorhabditis briggsae genomes using OrthoCluster. BMC Genomics 2010; 11:516. [PMID: 20868500 PMCID: PMC2997010 DOI: 10.1186/1471-2164-11-516] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 09/24/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Accurate identification of synteny blocks is an important step in comparative genomics towards the understanding of genome architecture and expression. Most computer programs developed in the last decade for identifying synteny blocks have limitations. To address these limitations, we recently developed a robust program called OrthoCluster, and an online database OrthoClusterDB. In this work, we have demonstrated the application of OrthoCluster in identifying synteny blocks between the genomes of Caenorhabditis elegans and Caenorhabditis briggsae, two closely related hermaphrodite nematodes. RESULTS Initial identification and analysis of synteny blocks using OrthoCluster enabled us to systematically improve the genome annotation of C. elegans and C. briggsae, identifying 52 potential novel genes in C. elegans, 582 in C. briggsae, and 949 novel orthologous relationships between these two species. Using the improved annotation, we have detected 3,058 perfect synteny blocks that contain no mismatches between C. elegans and C. briggsae. Among these synteny blocks, the majority are mapped to homologous chromosomes, as previously reported. The largest perfect synteny block contains 42 genes, which spans 201.2 kb in Chromosome V of C. elegans. On average, perfect synteny blocks span 18.8 kb in length. When some mismatches (interruptions) are allowed, synteny blocks ("imperfect synteny blocks") that are much larger in size are identified. We have shown that the majority (80%) of the C. elegans and C. briggsae genomes are covered by imperfect synteny blocks. The largest imperfect synteny block spans 6.14 Mb in Chromosome X of C. elegans and there are 11 synteny blocks that are larger than 1 Mb in size. On average, imperfect synteny blocks span 63.6 kb in length, larger than previously reported. CONCLUSIONS We have demonstrated that OrthoCluster can be used to accurately identify synteny blocks and have found that synteny blocks between C. elegans and C. briggsae are almost three-folds larger than previously identified.
Collapse
Affiliation(s)
- Ismael A Vergara
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | | |
Collapse
|
39
|
Sarropoulou E, Fernandes JMO. Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:92-102. [PMID: 20961822 DOI: 10.1016/j.cbd.2010.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 12/14/2022]
Abstract
Comparative genomics is a powerful tool to transfer knowledge coming from model fish species to non-model fish species of economic or/and evolutionary interest. Such transfer is of importance as functional studies either are difficult to perform with most non-model species. The first comparative map constructed using the human and the chimpanzee genome allowed the identification of putative orthologues. Although comparative mapping in teleosts is still in its infancy, five model teleost genomes from different orders have been fully sequenced to date and the sequencing of several commercially important species are also underway or near completion. The accessibility of these whole genome sequences and rapid developments in genomics of fish species are paving the way towards new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of non-model, but economically, physiologically or evolutionary important species is now feasible. Furthermore, comparison of low coverage gene maps of non-model fish species against fully sequenced fish species will enhance the efficiency of candidate gene identification projected for quantitative trait loci (QTL) scans for traits of special interest.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology and Genetics, Hellenic Centre for Marine Research, Crete, Greece.
| | | |
Collapse
|
40
|
A first generation BAC-based physical map of the Asian seabass (Lates calcarifer). PLoS One 2010; 5:e11974. [PMID: 20700486 PMCID: PMC2916840 DOI: 10.1371/journal.pone.0011974] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 07/12/2010] [Indexed: 11/19/2022] Open
Abstract
Background The Asian seabass (Lates calcarifer) is an important marine foodfish species in Southeast Asia and Australia. Genetic improvement of this species has been achieved to some extent through selective breeding programs since 1990s. Several genomic tools such as DNA markers, a linkage map, cDNA and BAC libraries have been developed to assist selective breeding. A physical map is still lacking, although it is essential for positional cloning of genes located in quantitative trait loci (QTL) and assembly of whole genome sequences. Methodology/Principal Findings A genome-wide physical map of the Asian seabass was constructed by restriction fingerprinting of 38,208 BAC clones with SNaPshot HICF FPC technique. A total of 30,454 were assembled into 2,865 contigs. The physical length of the assembled contigs summed up to 665 Mb. Analyses of some contigs using different methods demonstrated the reliability of the assembly. Conclusions/Significance The present physical map is the first physical map for Asian seabass. This physical map will facilitate the fine mapping of QTL for economically important traits and the positional cloning of genes located in QTL. It will also be useful for the whole genome sequencing and assembly. Detailed information about BAC-contigs and BAC clones are available upon request.
Collapse
|
41
|
Abstract
The global obesity epidemic has heightened the need for an improved understanding of how body weight is controlled, and research using mouse models is critical to this effort. In this perspective, we provide a conceptual framework for investigation of feeding behavior in this species, with an emphasis on factors that influence study design, data interpretation, and relevance to feeding behavior in humans. Although we focus on the mouse, the principles presented can be applied to most other animal models. This document represents the current consensus view of investigators from the National Institutes of Health (NIH)-funded Mouse Metabolic Phenotyping Centers (MMPCs).
Collapse
Affiliation(s)
- Kate L J Ellacott
- Vanderbilt University Mouse Metabolic Phenotyping Center, Vanderbilt University Medical Center, Nashville, TN 37232-0615, USA.
| | | | | | | | | |
Collapse
|
42
|
Wang HH, Portincasa P, Afdhal NH, Wang DQH. Lith genes and genetic analysis of cholesterol gallstone formation. Gastroenterol Clin North Am 2010; 39:185-viii. [PMID: 20478482 DOI: 10.1016/j.gtc.2010.02.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Epidemiologic investigations, clinical observations, and family and twin studies in humans, as well as gallstone prevalence investigations in inbred mouse models, support the concept that cholesterol cholelithiasis could result from a complex interaction of environmental factors and the effects of multiple undetermined genes. Quantitative trait locus (QTL) analysis is a powerful genetic method for identifying primary rate-limiting genetic defects and discriminating them from secondary downstream lithogenic effects caused by mutations of the primary genes, and the subsequent positional cloning of such genes responsible for QTLs, followed by the use of manufactured mouse strains with "knockout" or "knockin" of the genes, could lead to the discovery of lithogenic actions of gallstone (LITH) genes. The combined use of genomic strategies and phenotypic studies in inbred strains of mice has successfully resulted in the identification of many candidate LITH genes. Because there is exceptionally close homology between mouse and human genomes, the orthologous human LITH genes can be identified from the mouse study. The discovery of LITH genes and more fundamental knowledge concerning the genetic determinants and molecular mechanisms underlying the formation of cholesterol gallstones in humans will pave the way for critical diagnostic and prelithogenic preventive measures for this exceptionally prevalent digestive disease.
Collapse
Affiliation(s)
- Helen H Wang
- Liver Center and Gastroenterology Division, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
43
|
Guan C, Ye C, Yang X, Gao J. A review of current large-scale mouse knockout efforts. Genesis 2010; 48:73-85. [PMID: 20095055 DOI: 10.1002/dvg.20594] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
After the successful completion of the human genome project (HGP), biological research in the postgenome era urgently needs an efficient approach for functional analysis of genes. Utilization of knockout mouse models has been powerful for elucidating the function of genes as well as finding new therapeutic interventions for human diseases. Gene trapping and gene targeting are two independent techniques for making knockout mice from embryonic stem (ES) cells. Gene trapping is high-throughput, random, and sequence-tagged while gene targeting enables the knockout of specific genes. It has been about 20 years since the first gene targeting and gene trapping mice were generated. In recent years, new tools have emerged for both gene targeting and gene trapping, and organizations have been formed to knock out genes in the mouse genome using either of the two methods. The knockout mouse project (KOMP) and the international gene trap consortium (IGTC) were initiated to create convenient resources for scientific research worldwide and knock out all the mouse genes. Organizers of KOMP regard it as important as the HGP. Gene targeting methods have changed from conventional gene targeting to high-throughput conditional gene targeting. The combined advantages of trapping and targeting elements are improving the gene trapping spectrum and gene targeting efficiency. As a newly-developed insertional mutation system, transposons have some advantages over retrovirus in trapping genes. Emergence of the international knockout mouse consortium (IKMP) is the beginning of a global collaboration to systematically knock out all the genes in the mouse genome for functional genomic research.
Collapse
Affiliation(s)
- Chunmei Guan
- College of Life Science, Shandong University, Jinan 250100, Shandong, People's Republic of China
| | | | | | | |
Collapse
|
44
|
Scalabrin S, Troggio M, Moroldo M, Pindo M, Felice N, Coppola G, Prete G, Malacarne G, Marconi R, Faes G, Jurman I, Grando S, Jesse T, Segala C, Valle G, Policriti A, Fontana P, Morgante M, Velasco R. Physical mapping in highly heterozygous genomes: a physical contig map of the Pinot Noir grapevine cultivar. BMC Genomics 2010; 11:204. [PMID: 20346114 PMCID: PMC2865496 DOI: 10.1186/1471-2164-11-204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 03/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most of the grapevine (Vitis vinifera L.) cultivars grown today are those selected centuries ago, even though grapevine is one of the most important fruit crops in the world. Grapevine has therefore not benefited from the advances in modern plant breeding nor more recently from those in molecular genetics and genomics: genes controlling important agronomic traits are practically unknown. A physical map is essential to positionally clone such genes and instrumental in a genome sequencing project. RESULTS We report on the first whole genome physical map of grapevine built using high information content fingerprinting of 49,104 BAC clones from the cultivar Pinot Noir. Pinot Noir, as most grape varieties, is highly heterozygous at the sequence level. This resulted in the two allelic haplotypes sometimes assembling into separate contigs that had to be accommodated in the map framework or in local expansions of contig maps. We performed computer simulations to assess the effects of increasing levels of sequence heterozygosity on BAC fingerprint assembly and showed that the experimental assembly results are in full agreement with the theoretical expectations, given the heterozygosity levels reported for grape. The map is anchored to a dense linkage map consisting of 994 markers. 436 contigs are anchored to the genetic map, covering 342 of the 475 Mb that make up the grape haploid genome. CONCLUSIONS We have developed a resource that makes it possible to access the grapevine genome, opening the way to a new era both in grape genetics and breeding and in wine making. The effects of heterozygosity on the assembly have been analyzed and characterized by using several complementary approaches which could be easily transferred to the study of other genomes which present the same features.
Collapse
Affiliation(s)
- Simone Scalabrin
- Istituto di Genomica Applicata, Parco Scientifico e Tecnologico di Udine Luigi Danieli, Via J Linussio 51, 33100 Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
As our ability to generate sequencing data continues to increase, data analysis is replacing data generation as the rate-limiting step in genomics studies. Here we provide a guide to genomic data visualization tools that facilitate analysis tasks by enabling researchers to explore, interpret and manipulate their data, and in some cases perform on-the-fly computations. We will discuss graphical methods designed for the analysis of de novo sequencing assemblies and read alignments, genome browsing, and comparative genomics, highlighting the strengths and limitations of these approaches and the challenges ahead.
Collapse
|
46
|
Ma J, Chen X, Wang M, Kang Z. Constructing Physical and Genomic Maps for Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen, by Comparing Its EST Sequences to the Genomic Sequence of P. graminis f. sp. tritici, the Wheat Stem Rust Pathogen. Comp Funct Genomics 2010; 2009:302620. [PMID: 20169145 PMCID: PMC2821759 DOI: 10.1155/2009/302620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/20/2009] [Indexed: 01/09/2023] Open
Abstract
The wheat stripe rust fungus, Puccinia striiformis f. sp. tritici (Pst), does not have a known alternate host for sexual reproduction, which makes it impossible to study gene linkages through classic genetic and molecular mapping approaches. In this study, we compared 4,219 Pst expression sequence tags (ESTs) to the genomic sequence of P. graminis f. sp. tritici (Pgt), the wheat stem rust fungus, using BLAST searches. The percentages of homologous genes varied greatly among different Pst libraries with 54.51%, 51.21%, and 13.61% for the urediniospore, germinated urediniospore, and haustorial libraries, respectively, with an average of 33.92%. The 1,432 Pst genes with significant homology with Pgt sequences were grouped into physical groups corresponding to 237 Pgt supercontigs. The physical relationship was demonstrated by 12 pairs (57%), out of 21 selected Pst gene pairs, through PCR screening of a Pst BAC library. The results indicate that the Pgt genome sequence is useful in constructing Pst physical maps.
Collapse
Affiliation(s)
- Jinbiao Ma
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- USDA-ARS, Wheat Genetics Quality, Physiology, and Disease Research Unit, Pullman, WA 99164-6430, USA
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
47
|
Qualitative differences between C57BL/6J and DBA/2J mice in morphine potentiation of brain stimulation reward and intravenous self-administration. Psychopharmacology (Berl) 2010; 208:309-21. [PMID: 20013116 PMCID: PMC2965394 DOI: 10.1007/s00213-009-1732-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/14/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE The C57BL/6J (C57) and DBA/2J (DBA) mice are the most common genotypes used to identify chromosomal regions and neurochemical mechanisms of interest in opioid addiction. Unfortunately, outside of the oral two-bottle choice procedure, limited and sometimes controversial evidence is available for determining their relative sensitivity to the rewarding effects of morphine. OBJECTIVES The purpose of this study was to utilize classically accepted models of drug abuse liability to determine relative susceptibility to the rewarding effects of morphine. METHODS The ability of morphine or amphetamine to potentiate lateral hypothalamic brain stimulation and intravenous morphine self-administration (across three doses in a fixed ratio schedule and at the highest dose in progressive ratio schedules) was investigated in both genotypes. RESULTS In both measures, C57 and DBA mice differed dramatically in their response to morphine. Morphine potentiated rewarding stimulation in the C57 mice but antagonized it in the DBA mice. Consistent with these findings, intravenous morphine did not serve as a positive reinforcer in DBA mice under conditions that were effective in the C57 mice using a fixed ratio schedule and failed to sustain levels of responding sufficient to maintain a constant rate of drug intake under a progressive ratio schedule. In contrast, amphetamine potentiated the rewarding effects of brain stimulation similarly in the two genotypes. CONCLUSIONS These findings provide strong evidence that morphine is rewarding in the C57 genotype and not in the DBA genotype. Understanding their relative susceptibility is important given the prominence of these genotypes in candidate gene identification and gene mapping.
Collapse
|
48
|
Milner LC, Buck KJ. Identifying quantitative trait loci (QTLs) and genes (QTGs) for alcohol-related phenotypes in mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:173-204. [PMID: 20813243 DOI: 10.1016/s0074-7742(10)91006-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Alcoholism is a complex clinical disorder with genetic and environmental contributions. Although no animal model duplicates alcoholism, models for specific factors, such as the withdrawal syndrome, are useful to identify potential genetic determinants of liability in humans. Murine models have been invaluable to identify quantitative trait loci (QTLs) that influence a variety of alcohol responses. However, the QTL regions are typically large, at least initially, and contain numerous genes, making identification of the causal quantitative trait gene(s) (QTGs) challenging. Here, we present QTG identification strategies currently used in the field of alcohol genetics and discuss relevance to alcoholic human populations.
Collapse
Affiliation(s)
- Lauren C Milner
- Department of Behavioral Neuroscience, VA Medical Center and Oregon Health & Science University, Portland, OR 97239, USA
| | | |
Collapse
|
49
|
Boles MK, Wilkinson BM, Wilming LG, Liu B, Probst FJ, Harrow J, Grafham D, Hentges KE, Woodward LP, Maxwell A, Mitchell K, Risley MD, Johnson R, Hirschi K, Lupski JR, Funato Y, Miki H, Marin-Garcia P, Matthews L, Coffey AJ, Parker A, Hubbard TJ, Rogers J, Bradley A, Adams DJ, Justice MJ. Discovery of candidate disease genes in ENU-induced mouse mutants by large-scale sequencing, including a splice-site mutation in nucleoredoxin. PLoS Genet 2009; 5:e1000759. [PMID: 20011118 PMCID: PMC2782131 DOI: 10.1371/journal.pgen.1000759] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/09/2009] [Indexed: 12/13/2022] Open
Abstract
An accurate and precisely annotated genome assembly is a fundamental requirement for functional genomic analysis. Here, the complete DNA sequence and gene annotation of mouse Chromosome 11 was used to test the efficacy of large-scale sequencing for mutation identification. We re-sequenced the 14,000 annotated exons and boundaries from over 900 genes in 41 recessive mutant mouse lines that were isolated in an N-ethyl-N-nitrosourea (ENU) mutation screen targeted to mouse Chromosome 11. Fifty-nine sequence variants were identified in 55 genes from 31 mutant lines. 39% of the lesions lie in coding sequences and create primarily missense mutations. The other 61% lie in noncoding regions, many of them in highly conserved sequences. A lesion in the perinatal lethal line l11Jus13 alters a consensus splice site of nucleoredoxin (Nxn), inserting 10 amino acids into the resulting protein. We conclude that point mutations can be accurately and sensitively recovered by large-scale sequencing, and that conserved noncoding regions should be included for disease mutation identification. Only seven of the candidate genes we report have been previously targeted by mutation in mice or rats, showing that despite ongoing efforts to functionally annotate genes in the mammalian genome, an enormous gap remains between phenotype and function. Our data show that the classical positional mapping approach of disease mutation identification can be extended to large target regions using high-throughput sequencing.
Collapse
Affiliation(s)
- Melissa K. Boles
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Bonney M. Wilkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Laurens G. Wilming
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Bin Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Frank J. Probst
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jennifer Harrow
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Darren Grafham
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Kathryn E. Hentges
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Lanette P. Woodward
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrea Maxwell
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Karen Mitchell
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Michael D. Risley
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Randy Johnson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Karen Hirschi
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children's Hospital, Houston, Texas, United States of America
| | - Yosuke Funato
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hiroaki Miki
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Pablo Marin-Garcia
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Lucy Matthews
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Alison J. Coffey
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Anne Parker
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Tim J. Hubbard
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Jane Rogers
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- * E-mail: (MJJ); (DJA)
| | - Monica J. Justice
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (MJJ); (DJA)
| |
Collapse
|
50
|
Liu H, Jiang Y, Wang S, Ninwichian P, Somridhivej B, Xu P, Abernathy J, Kucuktas H, Liu Z. Comparative analysis of catfish BAC end sequences with the zebrafish genome. BMC Genomics 2009; 10:592. [PMID: 20003258 PMCID: PMC2796685 DOI: 10.1186/1471-2164-10-592] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 12/10/2009] [Indexed: 01/09/2023] Open
Abstract
Background Comparative mapping is a powerful tool to transfer genomic information from sequenced genomes to closely related species for which whole genome sequence data are not yet available. However, such an approach is still very limited in catfish, the most important aquaculture species in the United States. This project was initiated to generate additional BAC end sequences and demonstrate their applications in comparative mapping in catfish. Results We reported the generation of 43,000 BAC end sequences and their applications for comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end sequences as a resource along with linkage mapping and existing physical map, conserved syntenic regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC end sequences (17.3%) had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5), of which 3,221 were unique gene hits, providing a platform for comparative mapping based on locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites associated with contigs allowed identification of large conserved genomic segments and construction of super scaffolds. Conclusion BAC end sequences and their associated polymorphic markers are great resources for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified to exist between catfish and zebrafish. However, it appears that the level of conservation at local genomic regions are high while a high level of chromosomal shuffling and rearrangements exist between catfish and zebrafish genomes. Orthologous regions established through comparative analysis should facilitate both structural and functional genome analysis in catfish.
Collapse
Affiliation(s)
- Hong Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|