1
|
Baloul S, Roussos C, Gomez-Lamarca M, Muresan L, Bray S. Changes in searching behaviour of CSL transcription complexes in Notch active conditions. Life Sci Alliance 2024; 7:e202302336. [PMID: 38097371 PMCID: PMC10721712 DOI: 10.26508/lsa.202302336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
During development cells receive a variety of signals, which are of crucial importance to their fate determination. One such source of signal is the Notch signalling pathway, where Notch activity regulates expression of target genes through the core transcription factor CSL. To understand changes in transcription factor behaviour that lead to transcriptional changes in Notch active cells, we have probed CSL behaviours in real time, using in vivo Single Molecule Localisation Microscopy. Trajectory analysis reveals that Notch-On conditions increase the fraction of bound CSL molecules, but also the proportion of molecules with exploratory behaviours. These properties are shared by the co-activator Mastermind. Furthermore, both CSL and Mastermind, exhibit characteristics of local exploration near a Notch target locus. A similar behaviour is observed for CSL molecules diffusing in the vicinity of other bound CSL clusters. We suggest therefore that CSL acquires an exploratory behaviour when part of the activation complex, favouring local searching and retention close to its target enhancers. This change explains how CSL can efficiently increase its occupancy at target sites in Notch-On conditions.
Collapse
Affiliation(s)
- Sarah Baloul
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Charalambos Roussos
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Maria Gomez-Lamarca
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Leila Muresan
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| | - Sarah Bray
- Physiology Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Zaytseva O, Mitchell NC, Muckle D, Delandre C, Nie Z, Werner JK, Lis JT, Eyras E, Hannan RD, Levens DL, Marshall OJ, Quinn LM. Psi promotes Drosophila wing growth via direct transcriptional activation of cell cycle targets and repression of growth inhibitors. Development 2023; 150:286725. [PMID: 36692218 PMCID: PMC10110491 DOI: 10.1242/dev.201563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFβ signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.
Collapse
Affiliation(s)
- Olga Zaytseva
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Naomi C Mitchell
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Damien Muckle
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Caroline Delandre
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Zuqin Nie
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - John T Lis
- Cornell University, Ithaca, NY 14850, USA
| | - Eduardo Eyras
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Ross D Hannan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Owen J Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Leonie M Quinn
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
3
|
Marié IJ, Chang HM, Levy DE. HDAC stimulates gene expression through BRD4 availability in response to IFN and in interferonopathies. J Exp Med 2018; 215:3194-3212. [PMID: 30463877 PMCID: PMC6279398 DOI: 10.1084/jem.20180520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/15/2018] [Accepted: 10/19/2018] [Indexed: 01/12/2023] Open
Abstract
In contrast to the common role of histone deacetylases (HDACs) for gene repression, HDAC activity provides a required positive function for IFN-stimulated gene (ISG) expression. Here, we show that HDAC1/2 as components of the Sin3A complex are required for ISG transcriptional elongation but not for recruitment of RNA polymerase or transcriptional initiation. Transcriptional arrest by HDAC inhibition coincides with failure to recruit the epigenetic reader Brd4 and elongation factor P-TEFb due to sequestration of Brd4 on hyperacetylated chromatin. Brd4 availability is regulated by an equilibrium cycle between opposed acetyltransferase and deacetylase activities that maintains a steady-state pool of free Brd4 available for recruitment to inducible promoters. An ISG expression signature is a hallmark of interferonopathies and other autoimmune diseases. Combined inhibition of HDAC1/2 and Brd4 resolved the aberrant ISG expression detected in cells derived from patients with two inherited interferonopathies, ISG15 and USP18 deficiencies, defining a novel therapeutic approach to ISG-associated autoimmune diseases.
Collapse
Affiliation(s)
- Isabelle J Marié
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Hao-Ming Chang
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - David E Levy
- Departments of Pathology and Microbiology and Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
4
|
Choi A, Wang M, Hrizo S, Buckley MS. Visualizing cellular stress: A hypothesis-driven confocal laboratory exercise to identify compounds that activate heat shock factor binding at Hsp70 loci. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 46:445-452. [PMID: 30204283 DOI: 10.1002/bmb.21163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/11/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Exposure of organisms to high temperatures and various chemical and physical stressors can cause protein misfolding and aggregation. In turn, this can disrupt the functions of proteins, threatening both development and homeostasis. To overcome this, cells can initiate the highly conserved heat shock (HS) stress response pathway. In eukaryotes, this is a coordinated cellular response, in which the master HS activator, heat shock factor (HSF), is rapidly recruited to the HS protein genes, and triggers the recruitment of additional coactivator proteins that facilitate gene expression. This results in the production of HS proteins that function as nuclear and cytosolic molecular chaperones, to promote refolding of proteins and prevent aggregation and increase protein degradation pathways. Here, we describe a laboratory exercise in which students visualize and quantify Green Fluorescent Protein (GFP)-tagged HSF binding to the HS protein genes in living Drosophila salivary gland nuclei as an output of chemically induced protein misfolding. Students are assigned an array of chemicals, and using the scientific literature, predict impacts of these chemicals on protein folding. Students then test the effects of their chemicals by measuring GFP-tagged HSF binding to the HS genes in salivary glands using confocal microscopy. Designed for junior and senior level students in a cell/molecular biology course, this is a two-part lab, in which student work closely with an instructor to help familiarize them with developing hypotheses supported by scientific literature and testing these hypotheses by quantitating the levels of GFP-HSF binding, using confocal microscopy of living Drosophila cells. © 2018 International Union of Biochemistry and Molecular Biology, 46(5):445-452, 2018.
Collapse
Affiliation(s)
- Annette Choi
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Mengqi Wang
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
| | - Stacy Hrizo
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| | - Martin S Buckley
- Department of Biology, Slippery Rock University, Slippery Rock, Pennsylvania, 16057
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261
| |
Collapse
|
5
|
Gomez-Lamarca MJ, Falo-Sanjuan J, Stojnic R, Abdul Rehman S, Muresan L, Jones ML, Pillidge Z, Cerda-Moya G, Yuan Z, Baloul S, Valenti P, Bystricky K, Payre F, O'Holleran K, Kovall R, Bray SJ. Activation of the Notch Signaling Pathway In Vivo Elicits Changes in CSL Nuclear Dynamics. Dev Cell 2018; 44:611-623.e7. [PMID: 29478922 PMCID: PMC5855320 DOI: 10.1016/j.devcel.2018.01.020] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/27/2017] [Accepted: 01/23/2018] [Indexed: 12/27/2022]
Abstract
A key feature of Notch signaling is that it directs immediate changes in transcription via the DNA-binding factor CSL, switching it from repression to activation. How Notch generates both a sensitive and accurate response-in the absence of any amplification step-remains to be elucidated. To address this question, we developed real-time analysis of CSL dynamics including single-molecule tracking in vivo. In Notch-OFF nuclei, a small proportion of CSL molecules transiently binds DNA, while in Notch-ON conditions CSL recruitment increases dramatically at target loci, where complexes have longer dwell times conferred by the Notch co-activator Mastermind. Surprisingly, recruitment of CSL-related corepressors also increases in Notch-ON conditions, revealing that Notch induces cooperative or "assisted" loading by promoting local increase in chromatin accessibility. Thus, in vivo Notch activity triggers changes in CSL dwell times and chromatin accessibility, which we propose confer sensitivity to small input changes and facilitate timely shut-down.
Collapse
Affiliation(s)
- Maria J Gomez-Lamarca
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Julia Falo-Sanjuan
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Robert Stojnic
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sohaib Abdul Rehman
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Matthew L Jones
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zoe Pillidge
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Gustavo Cerda-Moya
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Zhenyu Yuan
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah Baloul
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Phillippe Valenti
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kerstin Bystricky
- LBME/UMR5099, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Francois Payre
- Centre de Biologie du Développement/UMR5547, CBI (Centre de Biologie Intégrative) University of Toulouse/CNRS, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Rhett Kovall
- University of Cincinnati College of Medicine, Department of Molecular Genetics, Biochemistry and Microbiology, 231 Albert Sabin Way, Cincinnati, OH 45267-0524, USA
| | - Sarah J Bray
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
6
|
McKinlay A, Podicheti R, Wendte JM, Cocklin R, Rusch DB. RNA polymerases IV and V influence the 3' boundaries of Polymerase II transcription units in Arabidopsis. RNA Biol 2017; 15:269-279. [PMID: 29199514 DOI: 10.1080/15476286.2017.1409930] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear multisubunit RNA polymerases IV and V (Pol IV and Pol V) evolved in plants as specialized forms of Pol II. Their functions are best understood in the context of RNA-directed DNA methylation (RdDM), a process in which Pol IV-dependent 24 nt siRNAs direct the de novo cytosine methylation of regions transcribed by Pol V. Pol V has additional functions, independent of Pol IV and 24 nt siRNA biogenesis, in maintaining the repression of transposons and genomic repeats whose silencing depends on maintenance cytosine methylation. Here we report that Pol IV and Pol V play unexpected roles in defining the 3' boundaries of Pol II transcription units. Nuclear run-on assays reveal that in the absence of Pol IV or Pol V, Pol II occupancy downstream of poly A sites increases for approximately 12% of protein-coding genes. This effect is most pronounced for convergently transcribed gene pairs. Although Pols IV and V are detected near transcript ends of the affected Pol II - transcribed genes, their role in limiting Pol II read-through is independent of siRNA biogenesis or cytosine methylation for the majority of these genes. Interestingly, we observed that splicing was less efficient in pol IV or pol V mutant plants, compared to wild-type plants, suggesting that Pol IV or Pol V might affect pre-mRNA processing. We speculate that Pols IV and V (and/or their associated factors) play roles in Pol II transcription termination and pre-mRNA splicing by influencing polymerase elongation rates and/or release at collision sites for convergent genes.
Collapse
Affiliation(s)
- Anastasia McKinlay
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ram Podicheti
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA.,c School of Informatics and Computing, Indiana University , Bloomington , IN , USA
| | - Jered M Wendte
- a Department of Biology , Indiana University , Bloomington , Indiana , USA
| | - Ross Cocklin
- a Department of Biology , Indiana University , Bloomington , Indiana , USA.,d Howard Hughes Medical Institute, Indiana University , Bloomington , Indiana
| | - Douglas B Rusch
- b Center for Genomics and Bioinformatics, Indiana University , Bloomington , Indiana , USA
| |
Collapse
|
7
|
Deng H, Kerppola TK. Visualization of the Genomic Loci That Are Bound by Specific Multiprotein Complexes by Bimolecular Fluorescence Complementation Analysis on Drosophila Polytene Chromosomes. Methods Enzymol 2017; 589:429-455. [PMID: 28336073 DOI: 10.1016/bs.mie.2017.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We have developed a procedure that enables visualization of the genomic loci that are bound by complexes formed by a specific combination of chromatin-binding proteins. This procedure is based on imaging bimolecular fluorescence complementation (BiFC) complexes on Drosophila polytene chromosomes. BiFC complexes are formed by the facilitated association of two fluorescent protein fragments that are fused to proteins that interact with, or are in close proximity to, each other. The intensity of BiFC complex fluorescence at individual genomic loci is greatly enhanced by the parallel alignment of hundreds of chromatids within the polytene chromosomes. The loci that are bound by the complexes are mapped by comparing the locations of BiFC complex fluorescence with the stereotypical banding patterns of the chromosomes. We describe strategies for the design, expression, and validation of fusion proteins for the analysis of BiFC complex binding on polytene chromosomes. We detail protocols for the preparation of polytene chromosome spreads that have been optimized for the purpose of BiFC complex visualization. Finally, we provide guidance for the interpretation of results from studies of BiFC complex binding on polytene chromosomes and for comparison of the genomic loci that are bound by BiFC complexes with those that are bound by subunits of the corresponding endogenous complexes. The visualization of BiFC complex binding on polytene chromosomes provides a unique method to visualize multiprotein complex binding at specific loci, throughout the genome, in individual cells.
Collapse
Affiliation(s)
- Huai Deng
- University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
8
|
Vaňková Hausnerová V, Lanctôt C. Chromatin decondensation is accompanied by a transient increase in transcriptional output. Biol Cell 2016; 109:65-79. [PMID: 27633335 DOI: 10.1111/boc.201600032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND INFORMATION The levels of chromatin condensation usually correlate inversely with the levels of transcription. The mechanistic links between chromatin condensation and RNA polymerase II activity remain to be elucidated. In the present work, we sought to experimentally determine whether manipulation of chromatin condensation levels can have a direct effect on transcriptional activity. RESULTS We generated a U-2-OS cell line in which the nascent transcription of a reporter gene could be imaged alongside chromatin compaction levels in living cells. The transcripts were tagged at their 5' end with PP7 stem loops, which can be detected upon expression of a PP7 capsid protein fused to green fluorescent protein. Cycles of global chromatin hypercondensation and decondensation were performed by perfusing culture media of different osmolarities during imaging. We used the fluorescence recovery after photobleaching technique to analyse the transcriptional dynamics in both conditions. Surprisingly, we found that, despite a drop in signal intensity, nascent transcription appeared to continue at the same rate in hypercondensed chromatin. Furthermore, quantification of transcriptional profiles revealed that chromatin decondensation was accompanied by a brief and transient spike in transcriptional output. CONCLUSIONS We propose a model whereby the initiation of transcription is not impaired in condensed chromatin, but inefficient elongation in these conditions leads to the accumulation of RNA polymerase II at the transcription site. Upon chromatin decondensation, release of the RNA polymerase II halt triggers a wave of transcription, which we detect as a transient spike in activity. SIGNIFICANCE The results presented here shed light on the activity of RNA polymerase II during chromatin condensation and decondensation. As such, they point to a new level of transcriptional regulation.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV and Department of Cell Biology, Faculty of Science, Charles University, Vestec u Prahy, 252 50, Czech Republic
| | - Christian Lanctôt
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV and Department of Cell Biology, Faculty of Science, Charles University, Vestec u Prahy, 252 50, Czech Republic
| |
Collapse
|
9
|
Nguyen D, Fayol O, Buisine N, Lecorre P, Uguen P. Functional Interaction between HEXIM and Hedgehog Signaling during Drosophila Wing Development. PLoS One 2016; 11:e0155438. [PMID: 27176767 PMCID: PMC4866710 DOI: 10.1371/journal.pone.0155438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022] Open
Abstract
Studying the dynamic of gene regulatory networks is essential in order to understand the specific signals and factors that govern cell proliferation and differentiation during development. This also has direct implication in human health and cancer biology. The general transcriptional elongation regulator P-TEFb regulates the transcriptional status of many developmental genes. Its biological activity is controlled by an inhibitory complex composed of HEXIM and the 7SK snRNA. Here, we examine the function of HEXIM during Drosophila development. Our key finding is that HEXIM affects the Hedgehog signaling pathway. HEXIM knockdown flies display strong phenotypes and organ failures. In the wing imaginal disc, HEXIM knockdown initially induces ectopic expression of Hedgehog (Hh) and its transcriptional effector Cubitus interuptus (Ci). In turn, deregulated Hedgehog signaling provokes apoptosis, which is continuously compensated by apoptosis-induced cell proliferation. Thus, the HEXIM knockdown mutant phenotype does not result from the apoptotic ablation of imaginal disc; but rather from the failure of dividing cells to commit to a proper developmental program due to Hedgehog signaling defects. Furthermore, we show that ci is a genetic suppressor of hexim. Thus, HEXIM ensures the integrity of Hedgehog signaling in wing imaginal disc, by a yet unknown mechanism. To our knowledge, this is the first time that the physiological function of HEXIM has been addressed in such details in vivo.
Collapse
Affiliation(s)
- Duy Nguyen
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | - Olivier Fayol
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | | | - Pierrette Lecorre
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
| | - Patricia Uguen
- UMR-S1174, Univ. Paris-Sud, Inserm, Université Paris-Saclay, Bât. 440, 91405 Orsay, France
- * E-mail:
| |
Collapse
|
10
|
Kinney NA, Onufriev AV, Sharakhov IV. Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes. Nucleus 2016; 6:212-24. [PMID: 26068134 DOI: 10.1080/19491034.2015.1056441] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We use a combined experimental and computational approach to study the effects of chromosome-nuclear envelope (Chr-NE) attachments on the 3D genome organization of Drosophila melanogaster (fruit fly) salivary gland nuclei. We consider 3 distinct models: a Null model - without specific Chr-NE attachments, a 15-attachment model - with 15 previously known Chr-NE attachments, and a 48-attachment model - with 15 original and 33 recently identified Chr-NE attachments. The radial densities of chromosomes in the models are compared to the densities observed in 100 experimental images of optically sectioned salivary gland nuclei forming "z-stacks." Most of the experimental z-stacks support the Chr-NE 48-attachment model suggesting that as many as 48 chromosome loci with appreciable affinity for the NE are necessary to reproduce the experimentally observed distribution of chromosome density in fruit fly nuclei. Next, we investigate if and how the presence and the number of Chr-NE attachments affect several key characteristics of 3D genome organization: chromosome territories and gene-gene contacts. This analysis leads to novel insight about the possible role of Chr-NE attachments in regulating the genome architecture. Specifically, we find that model nuclei with more numerous Chr-NE attachments form more distinct chromosome territories and their chromosomes intertwine less frequently. Intra-chromosome and intra-arm contacts are more common in model nuclei with Chr-NE attachments compared to the Null model (no specific attachments), while inter-chromosome and inter-arm contacts are less common in nuclei with Chr-NE attachments. We demonstrate that Chr-NE attachments increase the specificity of long-range inter-chromosome and inter-arm contacts. The predicted effects of Chr-NE attachments are rationalized by intuitive volume vs. surface accessibility arguments.
Collapse
Affiliation(s)
- Nicholas Allen Kinney
- a Genomics Bioinformatics and Computational Biology; Virginia Tech ; Blacksburg , VA , USA
| | | | | |
Collapse
|
11
|
Xie XJ, Hsu FN, Gao X, Xu W, Ni JQ, Xing Y, Huang L, Hsiao HC, Zheng H, Wang C, Zheng Y, Xiaoli AM, Yang F, Bondos SE, Ji JY. CDK8-Cyclin C Mediates Nutritional Regulation of Developmental Transitions through the Ecdysone Receptor in Drosophila. PLoS Biol 2015. [PMID: 26222308 PMCID: PMC4519132 DOI: 10.1371/journal.pbio.1002207] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The steroid hormone ecdysone and its receptor (EcR) play critical roles in orchestrating developmental transitions in arthropods. However, the mechanism by which EcR integrates nutritional and developmental cues to correctly activate transcription remains poorly understood. Here, we show that EcR-dependent transcription, and thus, developmental timing in Drosophila, is regulated by CDK8 and its regulatory partner Cyclin C (CycC), and the level of CDK8 is affected by nutrient availability. We observed that cdk8 and cycC mutants resemble EcR mutants and EcR-target genes are systematically down-regulated in both mutants. Indeed, the ability of the EcR-Ultraspiracle (USP) heterodimer to bind to polytene chromosomes and the promoters of EcR target genes is also diminished. Mass spectrometry analysis of proteins that co-immunoprecipitate with EcR and USP identified multiple Mediator subunits, including CDK8 and CycC. Consistently, CDK8-CycC interacts with EcR-USP in vivo; in particular, CDK8 and Med14 can directly interact with the AF1 domain of EcR. These results suggest that CDK8-CycC may serve as transcriptional cofactors for EcR-dependent transcription. During the larval–pupal transition, the levels of CDK8 protein positively correlate with EcR and USP levels, but inversely correlate with the activity of sterol regulatory element binding protein (SREBP), the master regulator of intracellular lipid homeostasis. Likewise, starvation of early third instar larvae precociously increases the levels of CDK8, EcR and USP, yet down-regulates SREBP activity. Conversely, refeeding the starved larvae strongly reduces CDK8 levels but increases SREBP activity. Importantly, these changes correlate with the timing for the larval–pupal transition. Taken together, these results suggest that CDK8-CycC links nutrient intake to developmental transitions (EcR activity) and fat metabolism (SREBP activity) during the larval–pupal transition. During the larval-pupal transition in Drosophila, CDK8-CycC helps to link nutrient intake to development by activating ecdysone receptor-dependent transcription and to fat metabolism by inhibiting SREBP-activated gene expression. Arthropods are estimated to account for over 80% of animal species on earth. Characterized by their rigid exoskeletons, juvenile arthropods must periodically shed their thick outer cuticles by molting in order to grow. The steroid hormone ecdysone plays an essential role in regulating the timing of developmental transitions, but exactly how ecdysone and its receptor EcR activates transcription correctly after integrating nutritional and developmental cues remains unknown. Our developmental genetic analyses of two Drosophila mutants, cdk8 and cycC, show that they are lethal during the prepupal stage, with aberrant accumulation of fat and a severely delayed larval–pupal transition. As we have reported previously, CDK8-CycC inhibits fat accumulation by directly inactivating SREBP, a master transcription factor that controls the expression of lipogenic genes, which explains the abnormal fat accumulation in the cdk8 and cycC mutants. We find that CDK8 and CycC are required for EcR to bind to its target genes, serving as transcriptional cofactors for EcR-dependent gene expression. The expression of EcR target genes is compromised in cdk8 and cycC mutants and underpins the retarded pupariation phenotype. Starvation of feeding larvae precociously up-regulates CDK8 and EcR, prematurely down-regulates SREBP activity, and leads to early pupariation, whereas re-feeding starved larvae has opposite effects. Taken together, these results suggest that CDK8 and CycC play important roles in coordinating nutrition intake with fat metabolism by directly inhibiting SREBP-dependent gene expression and regulating developmental timing by activating EcR-dependent transcription in Drosophila.
Collapse
Affiliation(s)
- Xiao-Jun Xie
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Fu-Ning Hsu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Xinsheng Gao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Jian-Quan Ni
- Gene Regulatory Laboratory, School of Medicine, Tsinghua University, Beijing, China
| | - Yue Xing
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Liying Huang
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, Los Angeles, United States of America
| | - Hao-Ching Hsiao
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Haiyan Zheng
- Biological Mass Spectrometry Facility, Robert Wood Johnson Medical School and Rutgers, the State University of New Jersey, Frelinghuysen Road, Piscataway, New Jersey, United States of America
| | - Chenguang Wang
- Key Laboratory of Tianjin Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | - Yani Zheng
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
| | - Alus M. Xiaoli
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Fajun Yang
- Department of Medicine, Division of Endocrinology, Diabetes Research and Training Center, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sarah E. Bondos
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Astakhova LN, Zatsepina OG, Funikov SY, Zelentsova ES, Schostak NG, Orishchenko KE, Evgen’ev MB, Garbuz DG. Activity of heat shock genes' promoters in thermally contrasting animal species. PLoS One 2015; 10:e0115536. [PMID: 25700087 PMCID: PMC4336284 DOI: 10.1371/journal.pone.0115536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/25/2014] [Indexed: 01/14/2023] Open
Abstract
Heat shock gene promoters represent a highly conserved and universal system for the rapid induction of transcription after various stressful stimuli. We chose pairs of mammalian and insect species that significantly differ in their thermoresistance and constitutive levels of Hsp70 to compare hsp promoter strength under normal conditions and after heat shock (HS). The first pair includes the HSPA1 gene promoter of camel (Camelus dromedarius) and humans. It was demonstrated that the camel HSPA1A and HSPA1L promoters function normally in vitro in human cell cultures and exceed the strength of orthologous human promoters under basal conditions. We used the same in vitro assay for Drosophila melanogaster Schneider-2 (S2) cells to compare the activity of the hsp70 and hsp83 promoters of the second species pair represented by Diptera, i.e., Stratiomys singularior and D. melanogaster, which dramatically differ in thermoresistance and the pattern of Hsp70 accumulation. Promoter strength was also monitored in vivo in D. melanogaster strains transformed with constructs containing the S. singularior hsp70 ORF driven either by its own promoter or an orthologous promoter from the D. melanogaster hsp70Aa gene. Analysis revealed low S. singularior hsp70 promoter activity in vitro and in vivo under basal conditions and after HS in comparison with the endogenous promoter in D. melanogaster cells, which correlates with the absence of canonical GAGA elements in the promoters of the former species. Indeed, the insertion of GAGA elements into the S. singularior hsp70 regulatory region resulted in a dramatic increase in promoter activity in vitro but only modestly enhanced the promoter strength in the larvae of the transformed strains. In contrast with hsp70 promoters, hsp83 promoters from both of the studied Diptera species demonstrated high conservation and universality.
Collapse
Affiliation(s)
- Lyubov N. Astakhova
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Olga G. Zatsepina
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Sergei Yu. Funikov
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Elena S. Zelentsova
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Natalia G. Schostak
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| | - Konstantin E. Orishchenko
- Institute of Cytology and Genetics, The Siberian Branch of RAS, Prospekt Lavrentyeva 10,630090, Novosibirsk, Russia
| | - Michael B. Evgen’ev
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
- Institute of Cell Biophysics RAS, Pushchino, Moscow region, 142290, Russia
| | - David G. Garbuz
- Engelhardt Institute of Molecular Biology RAS, Vavilov str. 32, Moscow, 119991, Russia
| |
Collapse
|
13
|
Yu Z, Liu J, Deng WM, Jiao R. Histone chaperone CAF-1: essential roles in multi-cellular organism development. Cell Mol Life Sci 2015; 72:327-37. [PMID: 25292338 PMCID: PMC11114026 DOI: 10.1007/s00018-014-1748-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/16/2014] [Accepted: 09/29/2014] [Indexed: 01/01/2023]
Abstract
More and more studies have shown chromatin remodelers and histone modifiers play essential roles in regulating developmental patterns by organizing specific chromosomal architecture to establish programmed transcriptional profiles, with implications that histone chaperones execute a coordinating role in these processes. Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved three-subunit protein complex, was identified as a histone chaperone coupled with DNA replication and repair in cultured mammalian cells and yeasts. Interestingly, recent findings indicate CAF-1 may have important regulatory roles during development by interacting with specific transcription factors and epigenetic regulators. In this review, we focus on the essential roles of CAF-1 in regulating heterochromatin organization, asymmetric cell division, and specific signal transduction through epigenetic modulations of the chromatin. In the end, we aim at providing a current image of facets of CAF-1 as a histone chaperone to orchestrate cell proliferation and differentiation during multi-cellular organism development.
Collapse
Affiliation(s)
- Zhongsheng Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Jiyong Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32304-4295 USA
| | - Renjie Jiao
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Datun Road 15, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100080 China
- Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Dongfengxi Road 195, Guangzhou, 510182 China
| |
Collapse
|
14
|
Wu L, Li L, Zhou B, Qin Z, Dou Y. H2B ubiquitylation promotes RNA Pol II processivity via PAF1 and pTEFb. Mol Cell 2014; 54:920-931. [PMID: 24837678 DOI: 10.1016/j.molcel.2014.04.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/24/2014] [Accepted: 04/08/2014] [Indexed: 12/16/2022]
Abstract
Histone H2B ubiquitination plays an important role in transcription regulation. It has been shown that H2B ubiquitination is regulated by multiple upstream events associated with elongating RNA polymerase. Here we demonstrate that H2B K34 ubiquitylation by the MOF-MSL complex is part of the protein networks involved in early steps of transcription elongation. Knocking down MSL2 in the MOF-MSL complex affects not only global H2BK34ub, but also multiple cotranscriptionally regulated histone modifications. More importantly, we show that the MSL, PAF1, and RNF20/40 complexes are recruited and stabilized at active gene promoters by direct binary interactions. The stabilized complexes serve to regulate chromatin association of pTEFb through a positive feedback loop and facilitate Pol II transition during early transcription elongation. Results from our biochemical studies are underscored by genome-wide analyses that show high RNA Pol II processivity and transcription activity at MSL target genes.
Collapse
Affiliation(s)
- Lipeng Wu
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Li Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Bo Zhou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Yali Dou
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Kinney NA, Sharakhov IV, Onufriev AV. Investigation of the chromosome regions with significant affinity for the nuclear envelope in fruit fly--a model based approach. PLoS One 2014; 9:e91943. [PMID: 24651400 PMCID: PMC3961273 DOI: 10.1371/journal.pone.0091943] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/18/2014] [Indexed: 12/16/2022] Open
Abstract
Three dimensional nuclear architecture is important for genome function, but is still poorly understood. In particular, little is known about the role of the “boundary conditions” – points of attachment between chromosomes and the nuclear envelope. We describe a method for modeling the 3D organization of the interphase nucleus, and its application to analysis of chromosome-nuclear envelope (Chr-NE) attachments of polytene (giant) chromosomes in Drosophila melanogaster salivary glands. The model represents chromosomes as self-avoiding polymer chains confined within the nucleus; parameters of the model are taken directly from experiment, no fitting parameters are introduced. Methods are developed to objectively quantify chromosome territories and intertwining, which are discussed in the context of corresponding experimental observations. In particular, a mathematically rigorous definition of a territory based on convex hull is proposed. The self-avoiding polymer model is used to re-analyze previous experimental data; the analysis suggests 33 additional Chr-NE attachments in addition to the 15 already explored Chr-NE attachments. Most of these new Chr-NE attachments correspond to intercalary heterochromatin – gene poor, dark staining, late replicating regions of the genome; however, three correspond to euchromatin – gene rich, light staining, early replicating regions of the genome. The analysis also suggests 5 regions of anti-contact, characterized by aversion for the NE, only two of these correspond to euchromatin. This composition of chromatin suggests that heterochromatin may not be necessary or sufficient for the formation of a Chr-NE attachment. To the extent that the proposed model represents reality, the confinement of the polytene chromosomes in a spherical nucleus alone does not favor the positioning of specific chromosome regions at the NE as seen in experiment; consequently, the 15 experimentally known Chr-NE attachment positions do not appear to arise due to non-specific (entropic) forces. Robustness of the key conclusions to model assumptions is thoroughly checked.
Collapse
Affiliation(s)
- Nicholas Allen Kinney
- Genomics Bioinformatics and Computational Biology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Igor V. Sharakhov
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (IVS); (AVO)
| | - Alexey V. Onufriev
- Department of Physics, Virginia Tech, Blacksburg, Virginia, United States of America
- Department of Computer Science, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail: (IVS); (AVO)
| |
Collapse
|
16
|
Buckley MS, Kwak H, Zipfel WR, Lis JT. Kinetics of promoter Pol II on Hsp70 reveal stable pausing and key insights into its regulation. Genes Dev 2014; 28:14-9. [PMID: 24395245 PMCID: PMC3894409 DOI: 10.1101/gad.231886.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The kinetics with which promoter-proximal paused RNA polymerase II (Pol II) undergoes premature termination versus productive elongation is central to understanding underlying mechanisms of metazoan transcription regulation. To assess the fate of Pol II quantitatively, we tracked photoactivatable GFP-tagged Pol II at uninduced Hsp70 on polytene chromosomes and showed that Pol II is stably paused with a half-life of 5 min. Biochemical analysis of short nascent RNA from Hsp70 reveals that this half-life is determined by two comparable rates of productive elongation and premature termination of paused Pol II. Importantly, heat shock dramatically increases elongating Pol II without decreasing termination, indicating that regulation acts at the step of paused Pol II entry to productive elongation.
Collapse
|
17
|
Tycon MA, Daddysman MK, Fecko CJ. RNA polymerase II subunits exhibit a broad distribution of macromolecular assembly states in the interchromatin space of cell nuclei. J Phys Chem B 2013; 118:423-33. [PMID: 24354435 DOI: 10.1021/jp4082933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nearly all cellular processes are enacted by multi-subunit protein complexes, yet the assembly mechanism of most complexes is not well understood. The anthropomorphism "protein recruitment" that is used to describe the concerted binding of proteins to accomplish a specific function conceals significant uncertainty about the underlying physical phenomena and chemical interactions governing the formation of macromolecular complexes. We address this deficiency by investigating the diffusion dynamics of two RNA polymerase II subunits, Rpb3 and Rpb9, in regions of live Drosophila cell nuclei that are devoid of chromatin binding sites. Using FRAP microscopy, we demonstrate that both unengaged subunits are incorporated into a broad distribution of complexes, with sizes ranging from free (unincorporated) proteins to those that have been predicted for fully assembled gene transcription units. In live cells, Rpb3 exhibits regions of stability at both size extremes connected by a continuous distribution of complexes. Corresponding measurements on cellular extracts reveal a distribution that retains peaks at the extremes but not in between, suggesting that partially assembled complexes are less stable. We propose that the broad distribution of macromolecular species allows for mechanistic flexibility in the assembly of transcription complexes.
Collapse
Affiliation(s)
- Michael A Tycon
- Department of Chemistry, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina 27599-3290, United States
| | | | | |
Collapse
|
18
|
The ecdysone receptor (ScEcR-A) binds DNA puffs at the start of DNA amplification in Sciara coprophila. Chromosome Res 2013; 21:345-60. [PMID: 23737076 DOI: 10.1007/s10577-013-9360-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/23/2013] [Indexed: 12/20/2022]
Abstract
The steroid hormone ecdysone induces DNA amplification and subsequent DNA puff formation in late fourth larval instar salivary gland polytene chromosomes of the fungus fly, Sciara coprophila. Previous in vitro studies on DNA puff II/9A in Sciara demonstrated that the ecdysone receptor (ScEcR-A) efficiently binds an ecdysone response element adjacent to the origin recognition complex binding site within the II/9A amplification origin, implying a role for ScEcR-A in amplification. Here, we extrapolate the molecular details from locus II/9A to the rest of the genome using immunofluorescence with a ScEcR-A-specific antibody. ScEcR-A binds all DNA puff sites just as amplification begins and persists throughout the processes of amplification, transcription, and puffing. Ecdysone injections into pre-amplification stage larvae prematurely induce both DNA amplification and ScEcR-A binding to DNA puff sites. These data are consistent with a direct role for ScEcR-A in DNA amplification.
Collapse
|
19
|
Lakhotia SC. Long non-coding RNAs coordinate cellular responses to stress. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:779-96. [PMID: 22976942 DOI: 10.1002/wrna.1135] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Following the initial discovery of the heat shock RNA omega (hsrω) gene of Drosophila melanogaster to be non-coding (nc) and also inducible by cell stress, other stress-inducible long non-coding RNAs (lncRNA) have been described in diverse organisms. In view of the rapid sequence divergence of lncRNAs, present knowledge of stress trasncriptome is limited and fragmented. Several known stress-related lncRNAs, associated with specific nuclear speckled domains or nucleolus, provide structural base for sequestering diverse RNA-processing/regulatory proteins. Others have roles in transcriptional or translational inhibition during stress or in signaling pathways; functions of several other lncRNAs are not yet known. Most stress-related lncRNAs act primarily by modulating activity of the proteins to which they bind or by sequestering specific sets of proteins away from the active pool. A common emerging theme is that a given lncRNA targets one or more protein/s with key role/s in the cascade of events triggered by the stress and therefore has a widespread integrative effect. Since proteins associate with RNA through short sequence motifs, the overall base sequence of functionally similar ncRNAs is often not conserved except for specific motifs. The rapid evolvability of ncRNA sequences provides elegant modules for adaptability to changing environment as binding of one or the other protein to ncRNA can alter its structure and functions in distinct ways. Thus the stress-related lncRNAs act as hubs in the cellular networks to coordinate activities of the members within and between different networks to maintain cellular homeostasis for survival or to trigger cell death.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
20
|
Duvvuri B, Duvvuri VR, Wu J, Wu GE. Stabilised DNA secondary structures with increasing transcription localise hypermutable bases for somatic hypermutation in IGHV3-23. Immunogenetics 2012; 64:481-96. [PMID: 22391874 DOI: 10.1007/s00251-012-0607-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 02/07/2012] [Indexed: 12/22/2022]
Abstract
Somatic hypermutation (SHM) mediated by activation-induced cytidine deaminase (AID) is a transcription-coupled mechanism most responsible for generating high affinity antibodies. An issue remaining enigmatic in SHM is how AID is preferentially targeted during transcription to hypermutable bases in its substrates (WRC motifs) on both DNA strands. AID targets only single stranded DNA. By modelling the dynamical behaviour of IGHV3-23 DNA, a commonly used human variable gene segment, we observed that hypermutable bases on the non-transcribed strand are paired whereas those on transcribed strand are mostly unpaired. Hypermutable bases (both paired and unpaired) are made accessible to AID in stabilised secondary structures formed with increasing transcription levels. This observation provides a rationale for the hypermutable bases on both the strands of DNA being targeted to a similar extent despite having differences in unpairedness. We propose that increasing transcription and RNAP II stalling resulting in the formation and stabilisation of stem-loop structures with AID hotspots in negatively supercoiled region can localise the hypermutable bases of both strands of DNA, to AID-mediated SHM.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- School of Kinesiology & Health Science, Faculty of Health, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | | | | | | |
Collapse
|
21
|
Xu CR, Zaret KS. Chromatin "pre-pattern" and epigenetic modulation in the cell fate choice of liver over pancreas in the endoderm. Nucleus 2012; 3:150-4. [PMID: 22555599 DOI: 10.4161/nucl.19321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding the basis for multipotency, whereby stem cells and other progenitors can differentiate into certain tissues and not others, provides insights into the mechanism of cell programming in development, homeostasis, and disease. We recently reported a screen of diverse chromatin marks to obtain clues about chromatin states in the multipotent embryonic endoderm. Genetic and pharmacologic tests of certain marks' function demonstrated that the relevant chromatin modifying factors modulate the fate choice for liver or pancreas induction in the endoderm. The information about chromatin states from embryonic studies can be used to predict lineage-specific developmental potential and chromatin modifiers to enhance particular cell fate transitions from stem cells.
Collapse
Affiliation(s)
- Cheng-Ran Xu
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
22
|
Vezf1 protein binding sites genome-wide are associated with pausing of elongating RNA polymerase II. Proc Natl Acad Sci U S A 2012; 109:2370-5. [PMID: 22308494 DOI: 10.1073/pnas.1121538109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein Vezf1 plays multiple roles important for embryonic development. In Vezf1(-/-) mouse embryonic stem (mES) cells, our earlier data showed widespread changes in gene-expression profiles, including decreased expression of the full-length active isoform of Dnmt3b methyltransferase and concomitant genome-wide reduction in DNA methylation. Here we show that in HeLaS3 cells there is a strong genome-wide correlation between Vezf1 binding and peaks of elongating Ser2-P RNA polymerase (Pol) ll, reflecting Vezf1-dependent slowing of elongation. In WT mES cells, the elongating form of RNA pol II accumulates near Vezf1 binding sites within the dnmt3b gene and at several other Vezf1 sites, and this accumulation is significantly reduced at these sites in Vezf1(-/-) mES cells. Depending upon genomic location, Vezf1-mediated Pol II pausing can have different regulatory roles in transcription and splicing. We find examples of genes in which Vezf1 binding sites are located near cassette exons, and in which loss of Vezf1 leads to a change in the relative abundance of alternatively spliced messages. We further show that Vezf1 interacts with Mrg15/Mrgbp, a protein that recognizes H3K36 trimethylation, consistent with the role of histone modifications at alternatively spliced sites.
Collapse
|
23
|
Gazumyan A, Bothmer A, Klein IA, Nussenzweig MC, McBride KM. Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res 2012; 113:167-90. [PMID: 22429855 PMCID: PMC4353630 DOI: 10.1016/b978-0-12-394280-7.00005-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA damage, rearrangement, and mutation of the human genome are the basis of carcinogenesis and thought to be avoided at all costs. An exception is the adaptive immune system where lymphocytes utilize programmed DNA damage to effect antigen receptor diversification. Both B and T lymphocytes diversify their antigen receptors through RAG1/2 mediated recombination, but B cells undergo two additional processes--somatic hypermutation (SHM) and class-switch recombination (CSR), both initiated by activation-induced cytidine deaminase (AID). AID deaminates cytidines in DNA resulting in U:G mismatches that are processed into point mutations in SHM or double-strand breaks in CSR. Although AID activity is focused at Immunoglobulin (Ig) gene loci, it also targets a wide array of non-Ig genes including oncogenes associated with lymphomas. Here, we review the molecular basis of AID regulation, targeting, and initiation of CSR and SHM, as well as AID's role in generating chromosome translocations that contribute to lymphomagenesis.
Collapse
Affiliation(s)
- Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Antibody maturation requires class switch recombination (CSR) and somatic hypermutation (SHM), both of which are initiated by activation-induced cytidine deaminase (AID). AID deaminates cytosine residues resulting in mismatches that are differentially processed to produce double-strand breaks in Ig switch (S) regions that lead to CSR, or to point mutations in variable (V) exons resulting in SHM. Although AID was first thought to be Ig-specific, recent work indicates that it also targets a diverse group of non-Ig loci, including genes such as Bcl6 and c-myc, whose modification by AID results in lymphoma-associated mutations and translocations. Here, we review the recent literature on AID targeting and the role for transcriptional stalling in recruitment of this enzyme to Ig and non-Ig loci. We propose a model for AID recruitment based on transcriptional stalling, which reconciles several of the key features of SHM, CSR, and lymphoma-associated translocation.
Collapse
Affiliation(s)
- Rushad Pavri
- Laboratory of Molecular Immunology, The Rockefeller University, New York, USA
| | | |
Collapse
|
25
|
Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 2011; 480:391-5. [PMID: 22056986 PMCID: PMC4082306 DOI: 10.1038/nature10492] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 08/17/2011] [Indexed: 12/22/2022]
Abstract
RNAi pathways have evolved as important modulators of gene expression that act in the cytoplasm by degrading RNA target molecules via the activity of short (21-30nt) RNAs1-6 RNAi components have been reported to play a role in the nucleus as they are involved in epigenetic regulation and heterochromatin formation7-10. However, although RNAi-mediated post-transcriptional silencing (PTGS) is well documented, mechanisms of RNAi-mediated transcriptional gene silencing (TGS) and in particular the role of RNAi components in chromatin, especially in higher eukaryotes, are still elusive. Here we show that key RNAi components Dicer-2 (Dcr2) and and Argonaute-2 (AGO2) AGO2 associate with chromatin, with strong preference for euchromatic, transcriptionally active loci and interact with core transcription machinery. Notably Dcr2 and AGO2 loss of function show that transcriptional defects are accompanied by perturbation of Pol II positioning on promoters. Further, both Dcr2 and Ago2 null mutations as well as missense mutations compromising the RNAi activity impair global Pol II dynamics upon heat shock. Finally, AGO2 RIP-seq experiments reveal that, AGO2 is strongly enriched in small-RNAs encompassing promoter as well as other parts of heat shock and other gene loci on both sense and antisense, with a strong bias for antisense, particularly after heat shock. Taken together our results reveal a new scenario in which Dcr2 and AGO2 are globally associated with transcriptionally active loci and may play a pivotal role in shaping the transcriptome by controlling RNA Pol II processivity.
Collapse
|
26
|
de Nadal E, Ammerer G, Posas F. Controlling gene expression in response to stress. Nat Rev Genet 2011; 12:833-45. [PMID: 22048664 DOI: 10.1038/nrg3055] [Citation(s) in RCA: 487] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute stress puts cells at risk, and rapid adaptation is crucial for maximizing cell survival. Cellular adaptation mechanisms include modification of certain aspects of cell physiology, such as the induction of efficient changes in the gene expression programmes by intracellular signalling networks. Recent studies using genome-wide approaches as well as single-cell transcription measurements, in combination with classical genetics, have shown that rapid and specific activation of gene expression can be accomplished by several different strategies. This article discusses how organisms can achieve generic and specific responses to different stresses by regulating gene expression at multiple stages of mRNA biogenesis from chromatin structure to transcription, mRNA stability and translation.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | | | | |
Collapse
|
27
|
Sansó M, Vargas-Pérez I, García P, Ayté J, Hidalgo E. Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe. Mol Microbiol 2011; 82:542-54. [DOI: 10.1111/j.1365-2958.2011.07851.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
28
|
The large noncoding hsrω-n transcripts are essential for thermotolerance and remobilization of hnRNPs, HP1 and RNA polymerase II during recovery from heat shock in Drosophila. Chromosoma 2011; 121:49-70. [PMID: 21913129 DOI: 10.1007/s00412-011-0341-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 07/12/2011] [Accepted: 08/24/2011] [Indexed: 01/04/2023]
Abstract
The hs-GAL4(t)-driven expression of the hsrω-RNAi transgene or EP93D allele of the noncoding hsrω resulted in global down- or upregulation, respectively, of the large hsrω-n transcripts following heat shock. Subsequent to temperature shock, hsrω-null or those expressing hsrω-RNAi or the EP93D allele displayed delayed lethality of most embryos, first or third instar larvae. Three-day-old hsrω-null flies mostly died immediately or within a day after heat shock. Heat-shock-induced RNAi or EP expression in flies caused only a marginal lethality but severely affected oogenesis. EP allele or hsrω-RNAi expression after heat shock did not affect heat shock puffs and Hsp70 synthesis. Both down- and upregulation of hsrω-n transcripts suppressed reappearance of the hsrω-n transcript-dependent nucleoplasmic omega speckles during recovery from heat shock. Hrp36, heterochromatin protein 1, and active RNA pol II in unstressed or heat-shocked wild-type or hsrω-null larvae or those expressing the hs-GAL4(t)-driven hsrω-RNAi or the EP93D allele were comparably distributed on polytene chromosomes. Redistribution of these proteins to pre-stress locations after a 1- or 2-h recovery was severely compromised in glands with down- or upregulated levels of hsrω-n transcripts after heat shock. The hsrω-null unstressed cells always lacked omega speckles and little Hrp36 moved to any chromosome region following heat shock, and its relocation to chromosome regions during recovery was also incomplete. This present study reveals for the first time that the spatial restoration of key regulatory factors like hnRNPs, HP1, or RNA pol II to their pre-stress nuclear targets in cells recovering from thermal stress is dependent upon critical level of the large hsrω-n noncoding RNA. In the absence of their relocation to pre-stress chromosome sites, normal developmental gene activity fails to be restored, which finally results in delayed organismal death.
Collapse
|
29
|
Levine M. Paused RNA polymerase II as a developmental checkpoint. Cell 2011; 145:502-11. [PMID: 21565610 DOI: 10.1016/j.cell.2011.04.021] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 02/18/2011] [Accepted: 04/25/2011] [Indexed: 11/18/2022]
Abstract
The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development.
Collapse
Affiliation(s)
- Michael Levine
- Division of Genetics, Genomics, and Development, Department of Molecular and Cell Biology, Center for Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Sansó M, Vargas-Pérez I, Quintales L, Antequera F, Ayté J, Hidalgo E. Gcn5 facilitates Pol II progression, rather than recruitment to nucleosome-depleted stress promoters, in Schizosaccharomyces pombe. Nucleic Acids Res 2011; 39:6369-79. [PMID: 21515633 PMCID: PMC3159446 DOI: 10.1093/nar/gkr255] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the fission yeast, the MAP kinase Sty1 and the transcription factor Atf1 regulate up to 400 genes in response to environmental signals, and both proteins have been shown to bind to their promoters in a stress-dependent manner. In a genetic search, we have isolated the histone H3 acetyltransferase Gcn5, a component of the SAGA complex, as being essential for oxidative stress survival and activation of those genes. Upon stress, Gcn5 is recruited to promoters and coding sequences of stress genes in a Sty1- and Atf1-dependent manner, causing both an enhanced acetylation of histone H3 and nucleosome eviction. Unexpectedly, recruitment of RNA polymerase II (Pol II) is not impaired in Δgcn5 cells. We show here that stress genes display a 400-bp long nucleosome depleted region upstream of the transcription start site even prior to activation. Stress treatment does not alter promoter nucleosome architecture, but induces eviction of the downstream nucleosomes at stress genes, which is not observed in Δgcn5 cells. We conclude that, while Pol II is recruited to nucleosome-free stress promoters in a transcription factor dependent manner, Gcn5 mediates eviction of nucleosomes positioned downstream of promoters, allowing efficient Pol II progression along the genes.
Collapse
Affiliation(s)
- Miriam Sansó
- Departament de Ciències Experimentals i de la Salut, Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, C/ Dr. Aiguader 88, E-08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
31
|
He F, Ren J, Wang W, Ma J. A multiscale investigation of bicoid-dependent transcriptional events in Drosophila embryos. PLoS One 2011; 6:e19122. [PMID: 21544208 PMCID: PMC3081338 DOI: 10.1371/journal.pone.0019122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/16/2011] [Indexed: 01/11/2023] Open
Abstract
Background Morphogen molecules form concentration gradients to provide spatial information to cells in a developing embryo. Precisely how cells decode such information to form patterns with sharp boundaries remains an open question. For example, it remains controversial whether the Drosophila morphogenetic protein Bicoid (Bcd) plays a transient or sustained role in activating its target genes to establish sharp expression boundaries during development. Methodology/Principal Findings In this study, we describe a method to simultaneously detect Bcd and the nascent transcripts of its target genes in developing embryos. This method allows us to investigate the relationship between Bcd and the transcriptional status of individual copies of its target genes on distinct scales. We show that, on three scales analyzed concurrently—embryonic, nuclear and local, the actively-transcribing gene copies are associated with high Bcd concentrations. These results underscore the importance of Bcd as a sustained input for transcriptional decisions of individual copies of its target genes during development. We also show that the Bcd-dependent transcriptional decisions have a significantly higher noise than Bcd-dependent gene products, suggesting that, consistent with theoretical studies, time and/or space averaging reduces the noise of Bcd-activated transcriptional output. Finally, our analysis of an X-linked Bcd target gene reveals that Bcd-dependent transcription bursts at twice the frequency in males as in females, providing a mechanism for dosage compensation in early Drosophila embryos. Conclusion/Significance Our study represents a first experimental uncovering of the actions of Bcd in controlling the actual transcriptional events while its positional information is decoded during development. It establishes a sustained role of Bcd in transcriptional decisions of individual copies of its target genes to generate sharp expression boundaries. It also provides an experimental evaluation of the effect of time and/or space averaging on Bcd-dependent transcriptional output, and establishes a dosage compensation mechanism in early Drosophila embryos.
Collapse
Affiliation(s)
- Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Jie Ren
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- Key Laboratory of Cell Proliferation and Differentiation, Center of Developmental Biology and Genetics, College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Wei Wang
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Morettini S, Tribus M, Zeilner A, Sebald J, Campo-Fernandez B, Scheran G, Wörle H, Podhraski V, Fyodorov DV, Lusser A. The chromodomains of CHD1 are critical for enzymatic activity but less important for chromatin localization. Nucleic Acids Res 2011; 39:3103-15. [PMID: 21177652 PMCID: PMC3082874 DOI: 10.1093/nar/gkq1298] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 11/28/2010] [Accepted: 12/03/2010] [Indexed: 11/12/2022] Open
Abstract
The molecular motor protein CHD1 has been implicated in the regulation of transcription and in the transcription-independent genome-wide incorporation of H3.3 into paternal chromatin in Drosophila melanogaster. A key feature of CHD1 is the presence of two chromodomains, which can bind to histone H3 methylated at lysine 4 and thus might serve to recruit and/or maintain CHD1 at the chromatin. Here, we describe genetic and biochemical approaches to the study of the Drosophila CHD1 chromodomains. We found that overall localization of CHD1 on polytene chromosomes does not appreciably change in chromodomain-mutant flies. In contrast, the chromodomains are important for transcription-independent activities of CHD1 during early embryonic development as well as for transcriptional regulation of several heat shock genes. However, neither CHD1 nor its chromodomains are needed for RNA polymerase II localization and H3K4 methylation but loss of CHD1 decreases transcription-induced histone eviction at the Hsp70 gene in vivo. Chromodomain mutations negatively affect the chromatin assembly activities of CHD1 in vitro, and they appear to be involved in linking the ATP-dependent motor to the chromatin assembly function of CHD1.
Collapse
Affiliation(s)
- Stefano Morettini
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Martin Tribus
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Anette Zeilner
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Johanna Sebald
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Beatriz Campo-Fernandez
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Gabriele Scheran
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Hildegard Wörle
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Valerie Podhraski
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Dmitry V. Fyodorov
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl Strasse 3, 6020 Innsbruck, Austria and Department of Cell Biology, Albert-Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| |
Collapse
|
33
|
Zobeck KL, Buckley MS, Zipfel WR, Lis JT. Recruitment timing and dynamics of transcription factors at the Hsp70 loci in living cells. Mol Cell 2010; 40:965-75. [PMID: 21172661 PMCID: PMC3021954 DOI: 10.1016/j.molcel.2010.11.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/20/2010] [Accepted: 10/08/2010] [Indexed: 11/22/2022]
Abstract
Chromatin immunoprecipitation (ChIP) studies provide snapshots of factors on chromatin in cell populations. Here, we use live-cell imaging to examine at high temporal resolution the recruitment and dynamics of transcription factors to the inducible Hsp70 loci in individual Drosophila salivary gland nuclei. Recruitment of the master regulator, HSF, is first detected within 20 s of gene activation; the timing of its recruitment resolves from RNA polymerase II and P-TEFb, and these factors resolve from Spt6 and Topo I. Remarkably, the recruitment of each factor is highly synchronous between different cells. In addition, fluorescence recovery after photobleaching (FRAP) analyses show that the entry and exit of multiple factors are progressively constrained upon gene activation, suggesting the gradual formation of a transcription compartment. Furthermore, we demonstrate that poly(ADP-ribose) (PAR) polymerase activity is required to maintain the transcription compartment. We propose that PAR polymers locally retain factors in a transcription compartment.
Collapse
Affiliation(s)
- Katie L. Zobeck
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Martin S. Buckley
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Warren R. Zipfel
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Abstract
The dynamic protein interactions required for transcription are functionally important yet poorly understood; in this issue of Molecular Cell, Zobeck et al. (2010) resolve the sequential recruitment and selective recycling of transcription factors at an actively transcribing locus in Drosophila.
Collapse
Affiliation(s)
- Laura B. Motta-Mena
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Carrie L. Partch
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| | - Kevin H. Gardner
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-8816, USA
| |
Collapse
|
35
|
Pavri R, Gazumyan A, Jankovic M, Di Virgilio M, Klein I, Ansarah-Sobrinho C, Resch W, Yamane A, Reina San-Martin B, Barreto V, Nieland TJ, Root DE, Casellas R, Nussenzweig MC. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 2010; 143:122-33. [PMID: 20887897 PMCID: PMC2993080 DOI: 10.1016/j.cell.2010.09.017] [Citation(s) in RCA: 294] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 08/02/2010] [Accepted: 09/13/2010] [Indexed: 11/30/2022]
Abstract
Activation-induced cytidine deaminase (AID) initiates antibody gene diversification by creating U:G mismatches. However, AID is not specific for antibody genes; Off-target lesions can activate oncogenes or cause chromosome translocations. Despite its importance in these transactions little is known about how AID finds its targets. We performed an shRNA screen to identify factors required for class switch recombination (CSR) of antibody loci. We found that Spt5, a factor associated with stalled RNA polymerase II (Pol II) and single stranded DNA (ssDNA), is required for CSR. Spt5 interacts with AID, it facilitates association between AID and Pol II, and AID recruitment to its Ig and non-Ig targets. ChIP-seq experiments reveal that Spt5 colocalizes with AID and stalled Pol II. Further, Spt5 accumulation at sites of Pol II stalling is predictive of AID-induced mutation. We propose that AID is targeted to sites of Pol II stalling in part via its association with Spt5.
Collapse
Affiliation(s)
- Rushad Pavri
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Brovko FA, Vasil'eva VS, Lushnikova AL, Selivankina SY, Karavaiko NN, Boziev KM, Shepelyakovskaya AO, Moshkov DA, Pavlik LL, Kusnetsov VV, Kulaeva ON. Cytokinin-binding protein (70 kDa) from etioplasts and amyloplasts of etiolated maize seedlings and chloroplasts of green plants and its putative function. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:3461-3474. [PMID: 20584787 DOI: 10.1093/jxb/erq170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Cytokinins regulate chloroplast differentiation and functioning, but their targets in plastids are not known. In this connection, the plastid localization of the 70 kDa cytokinin-binding protein (CBP70) was studied immunocytochemically in 4-d-old etiolated maize seedlings (Zea mays L., cv. Elbrus) using monoclonal antibodies (mAbs) against CBP70 recognizing this protein not only in nuclei and cytoplasm, but also in plastids. CBP70 was detected in the amyloplasts of the root cap and etioplasts of the mesocotyl, stem apex, and leaves encircling the stem axis in the node. Immunogold electron microscopy demonstrated CBP70 localization in amyloplasts outside starch grains and revealed a dependence of CBP70 content in etioplasts on the degree of their inner membrane differentiation: the low CBP70 amount in etioplasts at the early stages of membrane development, the high content in etioplasts with actively developing membranes, and a considerable decrease in plastids with the formed prolamellar body. This suggests that CBP70 is involved in etioplast structure development. CBP70 was also observed in chloroplasts of the bundle sheath of green maize leaves. CBP70 purified from etioplasts mediated trans-zeatin-dependent activation of transcription elongation in vitro in the transcription systems of maize etioplasts and barley chloroplasts, suggesting that CBP70 is a plastid transcription elongation factor or a modulator of plastid elongation factor activity. CBP70 involvement in the cytokinin-dependent regulation of plastid transcription elongation could be essential for the cytokinin control of the biogenesis of this organelle.
Collapse
Affiliation(s)
- Fedor A Brovko
- Pushchino Branch of Ovchinnikov-Shemyakin Institute of Bioorganic Chemistry, Russian Academy of Sciences, pr. Nauki 6, Pushchino, Moscow region, 142290 Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The rapid activation of gene expression in response to stimuli occurs largely through the regulation of RNA polymerase II-dependent transcription. In this Review, we discuss events that occur during the transcription cycle in eukaryotes that are important for the rapid and specific activation of gene expression in response to external stimuli. In addition to regulated recruitment of the transcription machinery to the promoter, it has now been shown that control steps can include chromatin remodelling and the release of paused polymerase. Recent work suggests that some components of signal transduction cascades also play an integral part in activating transcription at target genes.
Collapse
|
38
|
Shi X, Teo LS, Pan X, Chong SW, Kraut R, Korzh V, Wohland T. Probing events with single molecule sensitivity in zebrafish and Drosophila embryos by fluorescence correlation spectroscopy. Dev Dyn 2010; 238:3156-67. [PMID: 19882725 DOI: 10.1002/dvdy.22140] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Zebrafish and Drosophila are animal models widely used in developmental biology. High-resolution microscopy and live imaging techniques have allowed the investigation of biological processes down to the cellular level in these models. Here, using fluorescence correlation spectroscopy (FCS), we show that even processes on a molecular level can be studied in these embryos. The two animal models provide different advantages and challenges. We first characterize their autofluorescence pattern and determine usable penetration depth for FCS especially in the case of zebrafish, where tissue thickness is an issue. Next, the applicability of FCS to study molecular processes is shown by the determination of blood flow velocities with high spatial resolution and the determination of diffusion coefficients of cytosolic and membrane-bound enhanced green fluorescent protein-labeled proteins in different cell types. This work provides an approach to study molecular processes in vivo and opens up the possibility to relate these molecular processes to developmental biology questions.
Collapse
Affiliation(s)
- Xianke Shi
- Department of Chemistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
39
|
Bécavin C, Barbi M, Victor JM, Lesne A. Transcription within condensed chromatin: Steric hindrance facilitates elongation. Biophys J 2010; 98:824-33. [PMID: 20197036 PMCID: PMC2830436 DOI: 10.1016/j.bpj.2009.10.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 10/28/2009] [Accepted: 10/29/2009] [Indexed: 11/26/2022] Open
Abstract
During eukaryotic transcription, RNA-polymerase activity generates torsional stress in DNA, having a negative impact on the elongation process. Using our previous studies of chromatin fiber structure and conformational transitions, we suggest that this torsional stress can be alleviated, thanks to a tradeoff between the fiber twist and nucleosome conformational transitions into an activated state named "reversome". Our model enlightens the origin of polymerase pauses, and leads to the counterintuitive conclusion that chromatin-organized compaction might facilitate polymerase progression. Indeed, in a compact and well-structured chromatin loop, steric hindrance between nucleosomes enforces sequential transitions, thus ensuring that the polymerase always meets a permissive nucleosomal state.
Collapse
Affiliation(s)
- Christophe Bécavin
- Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
- Institut de Recherche Interdisciplinaire, Centre National de la Recherche Scientifique, USR 3078, Universités Lille I and II, Villeneuve d'Ascq, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, UMR 7600, Université Pierre et Marie Curie, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, UMR 7600, Université Pierre et Marie Curie, Paris, France
| | - Annick Lesne
- Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France
- Laboratoire de Physique Théorique de la Matière Condensée, Centre National de la Recherche Scientifique, UMR 7600, Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
40
|
Abstract
A growing number of promoters have key components of the transcription machinery, such as TATA-binding protein (TBP) and RNA polymerase II (RNAPII), present at the promoter prior to activation of transcription. Thus, while transcriptional output undergoes a dramatic increase between uninduced and induced conditions, occupancy of a large portion of the transcription machinery does not. As such, activation of these poised promoters depends on rate-limiting steps after recruitment of TBP and RNAPII for regulated expression. Little is known about the transcription components required in these latter steps of transcription in vivo. To identify components with critical roles in transcription after recruitment of TBP in Saccharomyces cerevisiae, we screened for loss of gene expression activity from promoter-tethered TBP in >100 mutant strains deleted for a transcription-related gene. The assay revealed a dramatic enrichment for strains containing deletions in genes encoding subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and Mediator. Analysis of an authentic postrecruitment-regulated gene (CYC1) reveals that SAGA occupies the promoter under both uninduced and induced conditions. In contrast, Mediator is recruited only after transfer to inducing conditions and correlates with activation of the preloaded polymerase at CYC1. These studies indicate the critical functions of SAGA and Mediator in the mechanism of activation of genes with rate-limiting steps after recruitment of TBP.
Collapse
|
41
|
Zeitlinger J, Stark A. Developmental gene regulation in the era of genomics. Dev Biol 2010; 339:230-9. [PMID: 20045679 DOI: 10.1016/j.ydbio.2009.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/04/2009] [Accepted: 12/23/2009] [Indexed: 01/30/2023]
Abstract
Genetic experiments over the last few decades have identified many developmental control genes critical for pattern formation and cell fate specification during the development of multicellular organisms. A large fraction of these genes encode transcription factors and signaling molecules, show highly dynamic expression patterns during development, and are deeply evolutionarily conserved and deregulated in various human diseases such as cancer. Because of their importance in development, evolution, and disease, a fundamental question in biology is how these developmental control genes are regulated in such an extensive and precise fashion. Using genomics methods, it has become clear that developmental control genes are a distinct group of genes with special regulatory characteristics. However, a systematic analysis of these characteristics has not been presented. Here we review how developmental control genes were discovered, evaluate their genome-wide regulation and gene structure, discuss emerging evidence for their mode of regulation, and estimate their overall abundance in the genome. Understanding the global regulation of developmental control genes may provide a new perspective on development in the era genomics.
Collapse
Affiliation(s)
- Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
42
|
Wallace HA, Plata MP, Kang HJ, Ross M, Labrador M. Chromatin insulators specifically associate with different levels of higher-order chromatin organization in Drosophila. Chromosoma 2009; 119:177-94. [PMID: 20033198 DOI: 10.1007/s00412-009-0246-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/20/2009] [Accepted: 10/30/2009] [Indexed: 01/08/2023]
Abstract
Chromatin insulators are required for proper temporal and spatial expression of genes in metazoans. Here, we have analyzed the distribution of insulator proteins on the 56F-58A region of chromosome 2R in Drosophila polytene chromosomes to assess the role of chromatin insulators in shaping genome architecture. Data show that the suppressor of Hairy-wing protein [Su(Hw)] is found in three structures differentially associated with insulator proteins: bands, interbands, and multi-gene domains of coexpressed genes. Results show that bands are generally formed by condensation of chromatin that belongs to genes containing one or more Su(Hw) binding sites, whereas, in interbands, Su(Hw) sites appear associated with open chromatin. In addition, clusters of coexpressed genes in this region form bands characterized by the lack of CP190 and BEAF-32 insulator proteins. This pattern correlates with the distribution of specific chromatin marks and is conserved in nurse cells, suggesting that this organization may not be limited to one cell type but represents the basic organization of interphasic chromosomes.
Collapse
Affiliation(s)
- Heather A Wallace
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
43
|
Abstract
Inflammation is a multicomponent response to tissue stress, injury and infection, and a crucial point of its control is at the level of gene transcription. The inducible inflammatory gene expression programme--such as that triggered by Toll-like receptor signalling in macrophages--is comprised of several coordinately regulated sets of genes that encode key functional programmes; these are controlled by three classes of transcription factors, as well as various transcriptional co-regulators and chromatin modifications. Here, we discuss the mechanisms of and the emerging principles in the transcriptional regulation of inflammatory responses in diverse physiological settings.
Collapse
|
44
|
Zlatanova J, Victor JM. How are nucleosomes disrupted during transcription elongation? HFSP JOURNAL 2009; 3:373-8. [PMID: 20514129 DOI: 10.2976/1.3249971] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Indexed: 11/19/2022]
Abstract
Chromatin structure is a powerful tool to regulate eukaryotic transcription. Moreover, nucleosomes are constantly remodeled, disassembled, and reassembled in the body of transcribed genes. Here we propose a general model that explains, in quantitative terms, how transcription elongation affects nucleosome structure at a distance as a result of the positive torque the polymerases create as they translocate along DNA templates.
Collapse
|
45
|
Evolution of insect dorsoventral patterning mechanisms. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2009; 74:275-9. [PMID: 19843594 DOI: 10.1101/sqb.2009.74.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The dorsoventral (DV) patterning of the early Drosophila embryo depends on Dorsal, a maternal sequence-specific transcription factor related to mammalian NF-kappaB. Dorsal controls DV patterning through the differential regulation of approximately 50 target genes in a concentration-dependent manner. Whole-genome methods, including ChIP-chip and ChIP-seq assays, have identified approximately 100 Dorsal target enhancers, and more than one-third of these have been experimentally confirmed via transgenic embryo assays. Despite differences in DV patterning among divergent insects, a number of the Dorsal target enhancers are located in conserved positions relative to the associated transcription units. Thus, the evolution of novel patterns of gene expression might depend on the modification of old enhancers, rather than the invention of new ones. As many as half of all Dorsal target genes appear to contain "shadow" enhancers: a second enhancer that directs the same or similar expression pattern as the primary enhancer. Preliminary studies suggest that shadow enhancers might help to ensure resilience of gene expression in response to environmental and genetic perturbations. Finally, most Dorsal target genes appear to contain RNA polymerase II (pol II) prior to their activation. Stalled pol II fosters synchronous patterns of gene activation in the early embryo. In contrast, DV patterning genes lacking stalled pol II are initially activated in an erratic or stochastic fashion. It is possible that stalled pol II confers fitness to a population by ensuring coordinate deployment of the gene networks controlling embryogenesis.
Collapse
|
46
|
Boettiger AN, Levine M. Synchronous and stochastic patterns of gene activation in the Drosophila embryo. Science 2009; 325:471-3. [PMID: 19628867 DOI: 10.1126/science.1173976] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Drosophila embryogenesis is characterized by rapid transitions in gene activity, whereby crudely distributed gradients of regulatory proteins give way to precise on/off patterns of gene expression. To explore the underlying mechanisms, a partially automated, quantitative in situ hybridization method was used to visualize expression profiles of 14 developmental control genes in hundreds of embryos. These studies revealed two distinct patterns of gene activation: synchronous and stochastic. Synchronous genes display essentially uniform expression of nascent transcripts in all cells of an embryonic tissue, whereas stochastic genes display erratic patterns of de novo activation. RNA polymerase II is "pre-loaded" (stalled) in the promoter regions of synchronous genes, but not stochastic genes. Transcriptional synchrony might ensure the orderly deployment of the complex gene regulatory networks that control embryogenesis.
Collapse
|
47
|
Ardehali MB, Yao J, Adelman K, Fuda NJ, Petesch SJ, Webb WW, Lis JT. Spt6 enhances the elongation rate of RNA polymerase II in vivo. EMBO J 2009; 28:1067-77. [PMID: 19279664 PMCID: PMC2683705 DOI: 10.1038/emboj.2009.56] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 02/06/2009] [Indexed: 12/20/2022] Open
Abstract
Several eukaryotic transcription factors have been shown to modulate the elongation rate of RNA polymerase II (Pol II) on naked or chromatin-reconstituted templates in vitro. However, none of the tested factors have been shown to directly affect the elongation rate of Pol II in vivo. We performed a directed RNAi knock-down (KD) screen targeting 141 candidate transcription factors and identified multiple factors, including Spt6, that alter the induced Hsp70 transcript levels in Drosophila S2 cells. Spt6 is known to interact with both nucleosome structure and Pol II, and it has properties consistent with having a role in elongation. Here, ChIP assays of the first wave of Pol II after heat shock in S2 cells show that KD of Spt6 reduces the rate of Pol II elongation. Also, fluorescence recovery after photobleaching assays of GFP-Pol II in salivary gland cells show that this Spt6-dependent effect on elongation rate persists during steady-state-induced transcription, reducing the elongation rate from approximately 1100 to 500 bp/min. Furthermore, RNAi depletion of Spt6 reveals its broad requirement during different stages of development.
Collapse
Affiliation(s)
- M Behfar Ardehali
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Jie Yao
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - Karen Adelman
- Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Steven J Petesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Watt W Webb
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
48
|
Patterns of gene-specific and total transcriptional activity during the Plasmodium falciparum intraerythrocytic developmental cycle. EUKARYOTIC CELL 2009; 8:327-38. [PMID: 19151330 DOI: 10.1128/ec.00340-08] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The relationships among gene regulatory mechanisms in the malaria parasite Plasmodium falciparum throughout its asexual intraerythrocytic developmental cycle (IDC) remain poorly understood. To investigate the level and nature of transcriptional activity and its role in controlling gene expression during the IDC, we performed nuclear run-on on whole-transcriptome samples from time points throughout the IDC and found a peak in RNA polymerase II-dependent transcriptional activity related to both the number of nuclei per parasite and variable transcriptional activity per nucleus over time. These differential total transcriptional activity levels allowed the calculation of the absolute transcriptional activities of individual genes from gene-specific nuclear run-on hybridization data. For half of the genes analyzed, sense-strand transcriptional activity peaked at the same time point as total activity. The antisense strands of several genes were substantially transcribed. Comparison of the transcriptional activity of the sense strand of each gene to its steady-state RNA abundance across the time points assayed revealed both correlations and discrepancies, implying transcriptional and posttranscriptional regulation, respectively. Our results demonstrate that such comparisons can effectively indicate gene regulatory mechanisms in P. falciparum and suggest that genes with diverse transcriptional activity levels and patterns combine to produce total transcriptional activity levels tied to parasite development during the IDC.
Collapse
|
49
|
Albrecht-Buehler G. Properties and distribution of pure GA-sequences of mammalian genomes. PLoS One 2008; 3:e3818. [PMID: 19043592 PMCID: PMC2585066 DOI: 10.1371/journal.pone.0003818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 11/06/2008] [Indexed: 11/23/2022] Open
Abstract
The article describes DNA sequences of mammalian genomes that are longer than 50 bases, but consist exclusively of G's and A's (‘pure GA-sequences’). Although their frequency of incidence should be 10−16 or smaller, the chromosomes of human, chimpanzee, dog, cat, rat, and mouse contained many tens of thousands of them ubiquitously located along the chromosomes with a species-dependent density, reaching sizes of up to 1300 [b]. With the exception of a small number of poly-A-, poly-G-, poly-GA-, and poly-GAAA-sequences (combined <0.5%), all pure GA-sequences of the mammals tested were unique individuals, contained several repeated short GA-containing motifs, and shared a common hexa-nucleotide spectrum. At most 2% of the human GA-sequences were transcribed into mRNAs; all others were not coding for proteins. Although this could have made them less subject to natural selection, they contained 160 times fewer point mutations than one should expect from the genome at large. As to the presence of other sequences with similarly restricted base contents, there were approximately as many pure TC-sequences as pure GA-sequences, but many fewer pure AC-, TA, and TG-sequences. There were practically no pure GC-sequences. The functions of pure GA-sequences are not known. Supported by a number of observations related to heat shock phenomena, the article speculates that they serve as genomic sign posts which may help guide polymerases and transcription factors to their proper targets, and/or as spatial linkers that help generate the 3-dimensional organization of chromatin.
Collapse
Affiliation(s)
- Guenter Albrecht-Buehler
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America.
| |
Collapse
|
50
|
Gilbert LI. Drosophila is an inclusive model for human diseases, growth and development. Mol Cell Endocrinol 2008; 293:25-31. [PMID: 18374475 DOI: 10.1016/j.mce.2008.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2007] [Accepted: 02/11/2008] [Indexed: 01/01/2023]
Abstract
Cytogenetic studies over the last century have led to the complete mapping of the Drosophila polytene chromosomes. The resulting data and the analysis of puffing at specific gene sites, manifestations of enhanced transcriptional activity, have led to the use of the fruit fly as the most well-understood animal model for a plethora of cellular mechanisms and genetic defects. In recent years the fly data base has contributed greatly to the use of Drosophila as a remarkable model for the functional genomics of many human genes. Here I review briefly the diversity of "model genes" studied in this dipteran, ranging from mental acuity, sleep and development, to recent studies from our laboratory, and those of our collaborators, on steroid hormone biosynthesis and neurodegeneration.
Collapse
|