1
|
Meyerhof GT, Dhavan P, Blunk S, Bourd A, Singh R, Chandel A, Montell C. Visual threat avoidance while host seeking by Aedes aegypti mosquitoes. Cell Rep 2025; 44:115435. [PMID: 40112001 PMCID: PMC12077400 DOI: 10.1016/j.celrep.2025.115435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
The mosquito Aedes aegypti infects hundreds of millions of people annually with disease-causing viruses. When a mosquito approaches a host, the host often swats defensively. Here, we reveal the mosquito's escape behavior during host seeking in response to a threatening visual cue-a newly appearing shadow. We found that reactions to a shadow are far more aversive when it appears quickly versus slowly. Remarkably, mosquitoes evade shadows under very dim light conditions. Knockout of the TRP channel compromises the ability of mosquitoes to avoid threatening shadows, but only under high light conditions. Conversely, removing two of the five rhodopsins normally present in the compound eyes, Op1 and Op2, diminishes shadow aversion, but only under low light. Upon removal of a threatening visual cue, mosquitoes quickly re-initiate host seeking. Thus, female Aedes balance their need to host seek with visual threat avoidance by rapidly transitioning between these two behavioral states.
Collapse
Affiliation(s)
- Geoff T Meyerhof
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Pratik Dhavan
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Summer Blunk
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Allison Bourd
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Ramandeep Singh
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Avinash Chandel
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Craig Montell
- Neuroscience Research Institute and Department of Molecular, Cellular Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
2
|
Soto F, Lin CI, Jo A, Chou SY, Harding EG, Ruzycki PA, Seabold GK, Petralia RS, Kerschensteiner D. Molecular mechanism establishing the OFF pathway in vision. Nat Commun 2025; 16:3708. [PMID: 40251167 PMCID: PMC12008213 DOI: 10.1038/s41467-025-59046-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 04/07/2025] [Indexed: 04/20/2025] Open
Abstract
Parallel ON and OFF (positive- and negative-contrast) pathways fundamental to vision arise at the complex synapse of cone photoreceptors. Cone pedicles form spatially segregated functionally opposite connections with ON and OFF bipolar cells. Here, we discover that mammalian cones express LRFN2, a cell-adhesion molecule, which localizes to the pedicle base. LRFN2 stabilizes basal contacts between cone pedicles and OFF bipolar cell dendrites to guide pathway-specific partner choices, encompassing multiple cell types. In addition, LRFN2 trans-synaptically organizes glutamate receptor clusters, determining the contrast preferences of the OFF pathway. ON and OFF pathways converge in the inner retina to regulate bipolar cell outputs. We analyze LRFN2's contributions to ON-OFF interactions, pathway asymmetries, and neural and behavioral responses to approaching predators. Our results reveal that LRFN2 controls the formation of the OFF pathway in vision, supports parallel processing in a single synapse, and shapes contrast coding and the detection of visual threats.
Collapse
Affiliation(s)
- Florentina Soto
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
| | - Chin-I Lin
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Graduate Program in Neuroscience, Division of Biological & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew Jo
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ssu-Yu Chou
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Ellen G Harding
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Philip A Ruzycki
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gail K Seabold
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ronald S Petralia
- Laboratory of Neurochemistry, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Kerschensteiner
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO, USA.
- Bright Center for Human Vision, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Samara E, Schilling T, Ribeiro IMA, Haag J, Leonte MB, Borst A. Columnar cholinergic neurotransmission onto T5 cells of Drosophila. Curr Biol 2025; 35:1269-1284.e6. [PMID: 40020661 DOI: 10.1016/j.cub.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 03/03/2025]
Abstract
Several nicotinic and muscarinic acetylcholine receptors (AChRs) are expressed in the brain of Drosophila melanogaster. However, the contribution of different AChRs to visual information processing remains poorly understood. T5 cells are the primary motion-sensing neurons in the OFF pathway and receive input from four different columnar cholinergic neurons, Tm1, Tm2, Tm4, and Tm9. We reasoned that different AChRs in T5 postsynaptic sites might contribute to direction selectivity, a central feature of motion detection. We show that the nicotinic nAChRα1, nAChRα3, nAChRα4, nAChRα5, nAChRα7, and nAChβ1 subunits localize on T5 dendrites. By targeting synaptic markers specifically to each cholinergic input neuron, we find a prevalence of the nAChRα5 in Tm1, Tm2, and Tm4-to-T5 synapses and of nAChRα7 in Tm9-to-T5 synapses. Knockdown of nAChRα4, nAChRα5, nAChRα7, or mAChR-B individually in T5 cells alters the optomotor response and reduces T5 directional selectivity. Our findings indicate the contribution of a consortium of postsynaptic receptors to input visual processing and, thus, to the computation of motion direction in T5 cells.
Collapse
Affiliation(s)
- Eleni Samara
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Department Biology II Neurobiology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg, Germany.
| | - Tabea Schilling
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Inês M A Ribeiro
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Institute of Medical Psychology, Medical Faculty, LMU Munich, Goethestrasse 31, 80336 Munich, Germany
| | - Juergen Haag
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany
| | - Maria-Bianca Leonte
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany; Graduate School of Systemic Neurosciences, Department Biology II Neurobiology, LMU Munich, Grosshaderner Strasse 2, 82152 Planegg, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, Department of Circuits-Computation-Models, Am Klopferspitz 18, 82152 Planegg, Germany.
| |
Collapse
|
4
|
Tyszka A, Szypulski K, Pyza E, Damulewicz M. Autophagy in the retina affects photoreceptor synaptic plasticity and behavior. JOURNAL OF INSECT PHYSIOLOGY 2025; 161:104741. [PMID: 39662838 DOI: 10.1016/j.jinsphys.2024.104741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/08/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
The visual system is a sensory system which is sensitive to light and detects photic stimuli. It plays many important functions, such as vision, circadian clock entrainment and regulation of sleep-wake behavior. The interconnection between the visual system and clock network is precisely regulated. The outer layer of the visual system called the retina, is composed of opsin-based photoreceptors that, in addition to visual information, provide photic information for the circadian clock, which in turn, regulates daily rhythms, such as activity and sleep patterns. The retina houses its own circadian oscillators (belonging to peripheral oscillators), however, they are also controlled by the main clock (pacemaker). Photoreceptor cells show many clock and light-dependent rhythms, such as the rhythms in synaptic plasticity or rhodopsin turnover, but their precise regulation is still not completely understood. In this study, we provided evidence that one of the mechanisms involved in the regulation of retinal rhythms is autophagy. We showed that autophagy is rhythmic in photoreceptors, with a specific daily pattern of autophagosome levels in different cells. Moreover, our data suggest that rhythmic autophagy-dependent degradation of the presynaptic protein Bruchpilot or photosensitive rhodopsin is involved in the regulation of daily rhythms observed in the retina. In effect, autophagy disruption in the photoreceptors, which affects photic signal transmission to the main clock neurons, causes changes in sleep level and pattern.
Collapse
Affiliation(s)
- Aleksandra Tyszka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Kornel Szypulski
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Pang MM, Chen F, Xie M, Druckmann S, Clandinin TR, Yang HH. A recurrent neural circuit in Drosophila temporally sharpens visual inputs. Curr Biol 2025; 35:333-346.e6. [PMID: 39706173 PMCID: PMC11769683 DOI: 10.1016/j.cub.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here, we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors. These neurons have biphasic responses to brief flashes of light, a hallmark of cells that encode changes in stimulus intensity. However, the second phase was often much larger in area than the first, creating an unusual temporal filter. Genetic dissection revealed that recurrent neural circuitry strongly shapes the second phase of the response, informing the structure of a dynamical model. By applying this model to moving natural images, we demonstrate that rather than veridically representing stimulus changes, this temporal processing strategy systematically enhances them, amplifying and sharpening responses. Comparing the measured responses of L2 to model predictions across both artificial and natural stimuli revealed that L2 tunes its properties as the model predicts to temporally sharpen visual inputs. Since this strategy is tunable to behavioral context, generalizable to any time-varying sensory input, and implementable with a common circuit motif, we propose that it could be broadly used to selectively enhance sharp and salient changes.
Collapse
Affiliation(s)
- Michelle M Pang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Marjorie Xie
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Helen H Yang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Zhang S, Li K, Luo Z, Xu M, Zheng S. A Bio-Inspired Visual Neural Model for Robustly and Steadily Detecting Motion Directions of Translating Objects Against Variable Contrast in the Figure-Ground and Noise Interference. Biomimetics (Basel) 2025; 10:51. [PMID: 39851767 PMCID: PMC11761596 DOI: 10.3390/biomimetics10010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/26/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
(1) Background: At present, the bio-inspired visual neural models have made significant achievements in detecting the motion direction of the translating object. Variable contrast in the figure-ground and environmental noise interference, however, have a strong influence on the existing model. The responses of the lobula plate tangential cell (LPTC) neurons of Drosophila are robust and stable in the face of variable contrast in the figure-ground and environmental noise interference, which provides an excellent paradigm for addressing these challenges. (2) Methods: To resolve these challenges, we propose a bio-inspired visual neural model, which consists of four stages. Firstly, the photoreceptors (R1-R6) are utilized to perceive the change in luminance. Secondly, the change in luminance is divided into parallel ON and OFF pathways based on the lamina monopolar cell (LMC), and the spatial denoising and the spatio-temporal lateral inhibition (LI) mechanisms can suppress environmental noise and improve motion boundaries, respectively. Thirdly, the non-linear instantaneous feedback mechanism in divisive contrast normalization is adopted to reduce local contrast sensitivity; further, the parallel ON and OFF contrast pathways are activated. Finally, the parallel motion and contrast pathways converge on the LPTC in the lobula complex. (3) Results: By comparing numerous experimental simulations with state-of-the-art (SotA) bio-inspired models, we can draw four conclusions. Firstly, the effectiveness of the contrast neural computation and the spatial denoising mechanism is verified by the ablation study. Secondly, this model can robustly detect the motion direction of the translating object against variable contrast in the figure-ground and environmental noise interference. Specifically, the average detection success rate of the proposed bio-inspired model under the pure and real-world complex noise datasets was increased by 5.38% and 5.30%. Thirdly, this model can effectively reduce the fluctuation in this model response against variable contrast in the figure-ground and environmental noise interference, which shows the stability of this model; specifically, the average inter-quartile range of the coefficient of variation in the proposed bio-inspired model under the pure and real-world complex noise datasets was reduced by 38.77% and 47.84%, respectively. The average decline ratio of the sum of the coefficient of variation in the proposed bio-inspired model under the pure and real-world complex noise datasets was 57.03% and 67.47%, respectively. Finally, the robustness and stability of this model are further verified by comparing other early visual pre-processing mechanisms and engineering denoising methods. (4) Conclusions: This model can robustly and steadily detect the motion direction of the translating object under variable contrast in the figure-ground and environmental noise interference.
Collapse
Affiliation(s)
- Sheng Zhang
- College of Information Science and Engineering, Hohai University, Nanjing 211100, China; (S.Z.); (S.Z.)
| | - Ke Li
- School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
| | - Zhonghua Luo
- School of Mechanical and Electrical Engineering, Nanchang Institute of Technology, Nanchang 330044, China
| | - Mengxi Xu
- School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
| | - Shengnan Zheng
- College of Information Science and Engineering, Hohai University, Nanjing 211100, China; (S.Z.); (S.Z.)
- School of Computer Engineering, Nanjing Institute of Technology, Nanjing 211167, China;
| |
Collapse
|
7
|
Lappalainen JK, Tschopp FD, Prakhya S, McGill M, Nern A, Shinomiya K, Takemura SY, Gruntman E, Macke JH, Turaga SC. Connectome-constrained networks predict neural activity across the fly visual system. Nature 2024; 634:1132-1140. [PMID: 39261740 PMCID: PMC11525180 DOI: 10.1038/s41586-024-07939-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/09/2024] [Indexed: 09/13/2024]
Abstract
We can now measure the connectivity of every neuron in a neural circuit1-9, but we cannot measure other biological details, including the dynamical characteristics of each neuron. The degree to which measurements of connectivity alone can inform the understanding of neural computation is an open question10. Here we show that with experimental measurements of only the connectivity of a biological neural network, we can predict the neural activity underlying a specified neural computation. We constructed a model neural network with the experimentally determined connectivity for 64 cell types in the motion pathways of the fruit fly optic lobe1-5 but with unknown parameters for the single-neuron and single-synapse properties. We then optimized the values of these unknown parameters using techniques from deep learning11, to allow the model network to detect visual motion12. Our mechanistic model makes detailed, experimentally testable predictions for each neuron in the connectome. We found that model predictions agreed with experimental measurements of neural activity across 26 studies. Our work demonstrates a strategy for generating detailed hypotheses about the mechanisms of neural circuit function from connectivity measurements. We show that this strategy is more likely to be successful when neurons are sparsely connected-a universally observed feature of biological neural networks across species and brain regions.
Collapse
Affiliation(s)
- Janne K Lappalainen
- Machine Learning in Science, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Fabian D Tschopp
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sridhama Prakhya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Mason McGill
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Eyal Gruntman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Dept of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Jakob H Macke
- Machine Learning in Science, Tübingen University, Tübingen, Germany
- Tübingen AI Center, Tübingen, Germany
- Max Planck Institute for Intelligent Systems, Tübingen, Germany
| | - Srinivas C Turaga
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
8
|
Matsliah A, Yu SC, Kruk K, Bland D, Burke AT, Gager J, Hebditch J, Silverman B, Willie KP, Willie R, Sorek M, Sterling AR, Kind E, Garner D, Sancer G, Wernet MF, Kim SS, Murthy M, Seung HS. Neuronal parts list and wiring diagram for a visual system. Nature 2024; 634:166-180. [PMID: 39358525 PMCID: PMC11446827 DOI: 10.1038/s41586-024-07981-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Abstract
A catalogue of neuronal cell types has often been called a 'parts list' of the brain1, and regarded as a prerequisite for understanding brain function2,3. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven to be essential for understanding fly vision4,5. Here we analyse the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. Most new cell types contain 10 to 100 cells, and integrate information over medium distances in the visual field. Some existing type families (Tm, Li, and LPi)6-10 at least double in number of types. A new serpentine medulla (Sm) interneuron family contains more types than any other. Three families of cross-neuropil types are revealed. The consistency of types is demonstrated by analysing the distances in high-dimensional feature space, and is further validated by algorithms that select small subsets of discriminative features. We use connectivity to hypothesize about the functional roles of cell types in motion, object and colour vision. Connectivity with 'boundary types' that straddle the optic lobe and central brain is also quantified. We showcase the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity and reduction of the connectome to a substantially simpler wiring diagram of cell types, with immediate relevance for brain function and development.
Collapse
Affiliation(s)
- Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Krzysztof Kruk
- Independent researcher, Kielce, Poland
- Eyewire, Boston, MA, USA
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Burke
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - James Hebditch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ben Silverman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Ryan Willie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Emil Kind
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Dustin Garner
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Mathias F Wernet
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Sung Soo Kim
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Computer Science Department, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Pang MM, Chen F, Xie M, Druckmann S, Clandinin TR, Yang HH. A recurrent neural circuit in Drosophila deblurs visual inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590352. [PMID: 38712245 PMCID: PMC11071408 DOI: 10.1101/2024.04.19.590352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A critical goal of vision is to detect changes in light intensity, even when these changes are blurred by the spatial resolution of the eye and the motion of the animal. Here we describe a recurrent neural circuit in Drosophila that compensates for blur and thereby selectively enhances the perceived contrast of moving edges. Using in vivo, two-photon voltage imaging, we measured the temporal response properties of L1 and L2, two cell types that receive direct synaptic input from photoreceptors. These neurons have biphasic responses to brief flashes of light, a hallmark of cells that encode changes in stimulus intensity. However, the second phase was often much larger than the first, creating an unusual temporal filter. Genetic dissection revealed that recurrent neural circuitry strongly shapes the second phase of the response, informing the structure of a dynamical model. By applying this model to moving natural images, we demonstrate that rather than veridically representing stimulus changes, this temporal processing strategy systematically enhances them, amplifying and sharpening responses. Comparing the measured responses of L2 to model predictions across both artificial and natural stimuli revealed that L2 tunes its properties as the model predicts in order to deblur images. Since this strategy is tunable to behavioral context, generalizable to any time-varying sensory input, and implementable with a common circuit motif, we propose that it could be broadly used to selectively enhance sharp and salient changes.
Collapse
Affiliation(s)
- Michelle M. Pang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Feng Chen
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Marjorie Xie
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Current affiliation: School for the Future of Innovation of Society, Arizona State University, Tempe, AZ 85281, USA
| | - Shaul Druckmann
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Helen H. Yang
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
- Current affiliation: Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
10
|
Longden KD, Rogers EM, Nern A, Dionne H, Reiser MB. Different spectral sensitivities of ON- and OFF-motion pathways enhance the detection of approaching color objects in Drosophila. Nat Commun 2023; 14:7693. [PMID: 38001097 PMCID: PMC10673857 DOI: 10.1038/s41467-023-43566-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Color and motion are used by many species to identify salient objects. They are processed largely independently, but color contributes to motion processing in humans, for example, enabling moving colored objects to be detected when their luminance matches the background. Here, we demonstrate an unexpected, additional contribution of color to motion vision in Drosophila. We show that behavioral ON-motion responses are more sensitive to UV than for OFF-motion, and we identify cellular pathways connecting UV-sensitive R7 photoreceptors to ON and OFF-motion-sensitive T4 and T5 cells, using neurogenetics and calcium imaging. Remarkably, this contribution of color circuitry to motion vision enhances the detection of approaching UV discs, but not green discs with the same chromatic contrast, and we show how this could generalize for systems with ON- and OFF-motion pathways. Our results provide a computational and circuit basis for how color enhances motion vision to favor the detection of saliently colored objects.
Collapse
Affiliation(s)
- Kit D Longden
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| | - Edward M Rogers
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Aljoscha Nern
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Heather Dionne
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Michael B Reiser
- HHMI Janelia Research Campus, 19700 Helix Drive, Ashburn, VA, 20147, USA.
| |
Collapse
|
11
|
Tanaka R, Zhou B, Agrochao M, Badwan BA, Au B, Matos NCB, Clark DA. Neural mechanisms to incorporate visual counterevidence in self-movement estimation. Curr Biol 2023; 33:4960-4979.e7. [PMID: 37918398 PMCID: PMC10848174 DOI: 10.1016/j.cub.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
In selecting appropriate behaviors, animals should weigh sensory evidence both for and against specific beliefs about the world. For instance, animals measure optic flow to estimate and control their own rotation. However, existing models of flow detection can be spuriously triggered by visual motion created by objects moving in the world. Here, we show that stationary patterns on the retina, which constitute evidence against observer rotation, suppress inappropriate stabilizing rotational behavior in the fruit fly Drosophila. In silico experiments show that artificial neural networks (ANNs) that are optimized to distinguish observer movement from external object motion similarly detect stationarity and incorporate negative evidence. Employing neural measurements and genetic manipulations, we identified components of the circuitry for stationary pattern detection, which runs parallel to the fly's local motion and optic-flow detectors. Our results show how the fly brain incorporates negative evidence to improve heading stability, exemplifying how a compact brain exploits geometrical constraints of the visual world.
Collapse
Affiliation(s)
- Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Baohua Zhou
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06511, USA
| | - Margarida Agrochao
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Braedyn Au
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Natalia C B Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Wu Tsai Institute, Yale University, New Haven, CT 06511, USA; Quantitative Biology Institute, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
12
|
Mano O, Choi M, Tanaka R, Creamer MS, Matos NCB, Shomar JW, Badwan BA, Clandinin TR, Clark DA. Long-timescale anti-directional rotation in Drosophila optomotor behavior. eLife 2023; 12:e86076. [PMID: 37751469 PMCID: PMC10522332 DOI: 10.7554/elife.86076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Locomotor movements cause visual images to be displaced across the eye, a retinal slip that is counteracted by stabilizing reflexes in many animals. In insects, optomotor turning causes the animal to turn in the direction of rotating visual stimuli, thereby reducing retinal slip and stabilizing trajectories through the world. This behavior has formed the basis for extensive dissections of motion vision. Here, we report that under certain stimulus conditions, two Drosophila species, including the widely studied Drosophila melanogaster, can suppress and even reverse the optomotor turning response over several seconds. Such 'anti-directional turning' is most strongly evoked by long-lasting, high-contrast, slow-moving visual stimuli that are distinct from those that promote syn-directional optomotor turning. Anti-directional turning, like the syn-directional optomotor response, requires the local motion detecting neurons T4 and T5. A subset of lobula plate tangential cells, CH cells, show involvement in these responses. Imaging from a variety of direction-selective cells in the lobula plate shows no evidence of dynamics that match the behavior, suggesting that the observed inversion in turning direction emerges downstream of the lobula plate. Further, anti-directional turning declines with age and exposure to light. These results show that Drosophila optomotor turning behaviors contain rich, stimulus-dependent dynamics that are inconsistent with simple reflexive stabilization responses.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale UniversityNew HavenUnited States
| | - Minseung Choi
- Department of Neurobiology, Stanford UniversityStanfordUnited States
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Natalia CB Matos
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
| | - Joseph W Shomar
- Department of Physics, Yale UniversityNew HavenUnited States
| | - Bara A Badwan
- Department of Chemical Engineering, Yale UniversityNew HavenUnited States
| | | | - Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale UniversityNew HavenUnited States
- Interdepartmental Neuroscience Program, Yale UniversityNew HavenUnited States
- Department of Physics, Yale UniversityNew HavenUnited States
- Department of Neuroscience, Yale UniversityNew HavenUnited States
| |
Collapse
|
13
|
Fu Q. Motion perception based on ON/OFF channels: A survey. Neural Netw 2023; 165:1-18. [PMID: 37263088 DOI: 10.1016/j.neunet.2023.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/02/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Motion perception is an essential ability for animals and artificially intelligent systems interacting effectively, safely with surrounding objects and environments. Biological visual systems, that have naturally evolved over hundreds-million years, are quite efficient and robust for motion perception, whereas artificial vision systems are far from such capability. This paper argues that the gap can be significantly reduced by formulation of ON/OFF channels in motion perception models encoding luminance increment (ON) and decrement (OFF) responses within receptive field, separately. Such signal-bifurcating structure has been found in neural systems of many animal species articulating early motion is split and processed in segregated pathways. However, the corresponding biological substrates, and the necessity for artificial vision systems have never been elucidated together, leaving concerns on uniqueness and advantages of ON/OFF channels upon building dynamic vision systems to address real world challenges. This paper highlights the importance of ON/OFF channels in motion perception through surveying current progress covering both neuroscience and computationally modelling works with applications. Compared to related literature, this paper for the first time provides insights into implementation of different selectivity to directional motion of looming, translating, and small-sized target movement based on ON/OFF channels in keeping with soundness and robustness of biological principles. Existing challenges and future trends of such bio-plausible computational structure for visual perception in connection with hotspots of machine learning, advanced vision sensors like event-driven camera finally are discussed.
Collapse
Affiliation(s)
- Qinbing Fu
- Machine Life and Intelligence Research Centre, School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Abstract
How neurons detect the direction of motion is a prime example of neural computation: Motion vision is found in the visual systems of virtually all sighted animals, it is important for survival, and it requires interesting computations with well-defined linear and nonlinear processing steps-yet the whole process is of moderate complexity. The genetic methods available in the fruit fly Drosophila and the charting of a connectome of its visual system have led to rapid progress and unprecedented detail in our understanding of how neurons compute the direction of motion in this organism. The picture that emerged incorporates not only the identity, morphology, and synaptic connectivity of each neuron involved but also its neurotransmitters, its receptors, and their subcellular localization. Together with the neurons' membrane potential responses to visual stimulation, this information provides the basis for a biophysically realistic model of the circuit that computes the direction of visual motion.
Collapse
Affiliation(s)
- Alexander Borst
- Max Planck Institute for Biological Intelligence, Martinsried, Germany; ,
| | - Lukas N Groschner
- Max Planck Institute for Biological Intelligence, Martinsried, Germany; ,
| |
Collapse
|
15
|
Duan W, Zhang Y, Zhang X, Yang J, Shan H, Liu L, Wei H. A Visual Pathway into Central Complex for High-Frequency Motion-Defined Bars in Drosophila. J Neurosci 2023; 43:4821-4836. [PMID: 37290936 PMCID: PMC10312062 DOI: 10.1523/jneurosci.0128-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/10/2023] Open
Abstract
Relative motion breaks a camouflaged target from a same-textured background, thus eliciting discrimination of a motion-defined object. Ring (R) neurons are critical components in the Drosophila central complex, which has been implicated in multiple visually guided behaviors. Using two-photon calcium imaging with female flies, we demonstrated that a specific population of R neurons that innervate the superior domain of bulb neuropil, termed superior R neurons, encoded a motion-defined bar with high spatial frequency contents. Upstream superior tuberculo-bulbar (TuBu) neurons transmitted visual signals by releasing acetylcholine within synapses connected with superior R neurons. Blocking TuBu or R neurons impaired tracking performance of the bar, which reveals their importance in motion-defined feature encoding. Additionally, the presentation of a low spatial frequency luminance-defined bar evoked consistent excitation in R neurons of the superior bulb, whereas either excited or inhibited responses were evoked in the inferior bulb. The distinct properties of the responses to the two bar stimuli indicate there is a functional division between the bulb subdomains. Moreover, physiological and behavioral tests with restricted lines suggest that R4d neurons play a vital role in tracking motion-defined bars. We conclude that the central complex receives the motion-defined features via a visual pathway from superior TuBu to R neurons and might encode different visual features via distinct response patterns at the population level, thereby driving visually guided behaviors.SIGNIFICANCE STATEMENT Animals could discriminate a motion-defined object that is indistinguishable with a same-textured background until it moves, but little is known about the underlying neural mechanisms. In this study, we identified that R neurons and their upstream partners, TuBu neurons, innervating the superior bulb of Drosophila central brain are involved in the discrimination of high-frequency motion-defined bars. Our study provides new evidence that R neurons receive multiple visual inputs from distinct upstream neurons, indicating a population coding mechanism for the fly central brain to discriminate diverse visual features. These results build progress in unraveling neural substrates for visually guided behaviors.
Collapse
Affiliation(s)
- Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Yihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Zhang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Jihua Yang
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| | - Heying Shan
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
- Chinese Academy of Sciences Key Laboratory of Mental Health, Beijing 100101, China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, Chinese Academy of Sciences Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
16
|
Pirogova N, Borst A. Contrast normalization affects response time-course of visual interneurons. PLoS One 2023; 18:e0285686. [PMID: 37294743 PMCID: PMC10256145 DOI: 10.1371/journal.pone.0285686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/28/2023] [Indexed: 06/11/2023] Open
Abstract
In natural environments, light intensities and visual contrasts vary widely, yet neurons have a limited response range for encoding them. Neurons accomplish that by flexibly adjusting their dynamic range to the statistics of the environment via contrast normalization. The effect of contrast normalization is usually measured as a reduction of neural signal amplitudes, but whether it influences response dynamics is unknown. Here, we show that contrast normalization in visual interneurons of Drosophila melanogaster not only suppresses the amplitude but also alters the dynamics of responses when a dynamic surround is present. We present a simple model that qualitatively reproduces the simultaneous effect of the visual surround on the response amplitude and temporal dynamics by altering the cells' input resistance and, thus, their membrane time constant. In conclusion, single-cell filtering properties as derived from artificial stimulus protocols like white-noise stimulation cannot be transferred one-to-one to predict responses under natural conditions.
Collapse
Affiliation(s)
- Nadezhda Pirogova
- Department Circuits-Computation-Models, Max Planck Institute for Biological Intelligence, Planegg, Martinsried, Germany
- Graduate School of Systemic Neurosciences, LMU Munich, Planegg, Martinsried, Germany
| | - Alexander Borst
- Department Circuits-Computation-Models, Max Planck Institute for Biological Intelligence, Planegg, Martinsried, Germany
| |
Collapse
|
17
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
18
|
Braun A, Borst A, Meier M. Disynaptic inhibition shapes tuning of OFF-motion detectors in Drosophila. Curr Biol 2023:S0960-9822(23)00601-2. [PMID: 37236181 DOI: 10.1016/j.cub.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/02/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
The circuitry underlying the detection of visual motion in Drosophila melanogaster is one of the best studied networks in neuroscience. Lately, electron microscopy reconstructions, algorithmic models, and functional studies have proposed a common motif for the cellular circuitry of an elementary motion detector based on both supralinear enhancement for preferred direction and sublinear suppression for null-direction motion. In T5 cells, however, all columnar input neurons (Tm1, Tm2, Tm4, and Tm9) are excitatory. So, how is null-direction suppression realized there? Using two-photon calcium imaging in combination with thermogenetics, optogenetics, apoptotics, and pharmacology, we discovered that it is via CT1, the GABAergic large-field amacrine cell, where the different processes have previously been shown to act in an electrically isolated way. Within each column, CT1 receives excitatory input from Tm9 and Tm1 and provides the sign-inverted, now inhibitory input signal onto T5. Ablating CT1 or knocking down GABA-receptor subunit Rdl significantly broadened the directional tuning of T5 cells. It thus appears that the signal of Tm1 and Tm9 is used both as an excitatory input for preferred direction enhancement and, through a sign inversion within the Tm1/Tm9-CT1 microcircuit, as an inhibitory input for null-direction suppression.
Collapse
Affiliation(s)
- Amalia Braun
- Max Planck Institute for Biological Intelligence, Department of Circuits - Computation - Models, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, Department of Circuits - Computation - Models, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Matthias Meier
- Max Planck Institute for Biological Intelligence, Department of Circuits - Computation - Models, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
19
|
Zhao Y, Ke S, Cheng G, Lv X, Chang J, Zhou W. Direction Selectivity of TmY Neurites in Drosophila. Neurosci Bull 2023; 39:759-773. [PMID: 36399278 PMCID: PMC10169962 DOI: 10.1007/s12264-022-00966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
The perception of motion is an important function of vision. Neural wiring diagrams for extracting directional information have been obtained by connectome reconstruction. Direction selectivity in Drosophila is thought to originate in T4/T5 neurons through integrating inputs with different temporal filtering properties. Through genetic screening based on synaptic distribution, we isolated a new type of TmY neuron, termed TmY-ds, that form reciprocal synaptic connections with T4/T5 neurons. Its neurites responded to grating motion along the four cardinal directions and showed a variety of direction selectivity. Intriguingly, its direction selectivity originated from temporal filtering neurons rather than T4/T5. Genetic silencing and activation experiments showed that TmY-ds neurons are functionally upstream of T4/T5. Our results suggest that direction selectivity is generated in a tripartite circuit formed among these three neurons-temporal filtering, TmY-ds, and T4/T5 neurons, in which TmY-ds plays a role in the enhancement of direction selectivity in T4/T5 neurons.
Collapse
Affiliation(s)
- Yinyin Zhao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shanshan Ke
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guo Cheng
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaohua Lv
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jin Chang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Wei Zhou
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
20
|
Mano O, Choi M, Tanaka R, Creamer MS, Matos NC, Shomar J, Badwan BA, Clandinin TR, Clark DA. Long timescale anti-directional rotation in Drosophila optomotor behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523055. [PMID: 36711627 PMCID: PMC9882005 DOI: 10.1101/2023.01.06.523055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Locomotor movements cause visual images to be displaced across the eye, a retinal slip that is counteracted by stabilizing reflexes in many animals. In insects, optomotor turning causes the animal to turn in the direction of rotating visual stimuli, thereby reducing retinal slip and stabilizing trajectories through the world. This behavior has formed the basis for extensive dissections of motion vision. Here, we report that under certain stimulus conditions, two Drosophila species, including the widely studied D. melanogaster, can suppress and even reverse the optomotor turning response over several seconds. Such "anti-directional turning" is most strongly evoked by long-lasting, high-contrast, slow-moving visual stimuli that are distinct from those that promote syn-directional optomotor turning. Anti-directional turning, like the syn-directional optomotor response, requires the local motion detecting neurons T4 and T5. A subset of lobula plate tangential cells, CH cells, show involvement in these responses. Imaging from a variety of direction-selective cells in the lobula plate shows no evidence of dynamics that match the behavior, suggesting that the observed inversion in turning direction emerges downstream of the lobula plate. Further, anti-directional turning declines with age and exposure to light. These results show that Drosophila optomotor turning behaviors contain rich, stimulus-dependent dynamics that are inconsistent with simple reflexive stabilization responses.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Minseung Choi
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Ryosuke Tanaka
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Matthew S. Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Natalia C.B. Matos
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Joseph Shomar
- Department of Physics, Yale University, New Haven, CT 06511, USA
| | - Bara A. Badwan
- Department of Chemical Engineering, Yale University, New Haven, CT 06511, USA
| | | | - Damon A. Clark
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
- Department of Physics, Yale University, New Haven, CT 06511, USA
- Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
21
|
Mishra A, Serbe-Kamp E, Borst A, Haag J. Voltage to Calcium Transformation Enhances Direction Selectivity in Drosophila T4 Neurons. J Neurosci 2023; 43:2497-2514. [PMID: 36849417 PMCID: PMC10082464 DOI: 10.1523/jneurosci.2297-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 03/01/2023] Open
Abstract
An important step in neural information processing is the transformation of membrane voltage into calcium signals leading to transmitter release. However, the effect of voltage to calcium transformation on neural responses to different sensory stimuli is not well understood. Here, we use in vivo two-photon imaging of genetically encoded voltage and calcium indicators, ArcLight and GCaMP6f, respectively, to measure responses in direction-selective T4 neurons of female Drosophila Comparison between ArcLight and GCaMP6f signals reveals calcium signals to have a significantly higher direction selectivity compared with voltage signals. Using these recordings, we build a model which transforms T4 voltage responses into calcium responses. Using a cascade of thresholding, temporal filtering and a stationary nonlinearity, the model reproduces experimentally measured calcium responses across different visual stimuli. These findings provide a mechanistic underpinning of the voltage to calcium transformation and show how this processing step, in addition to synaptic mechanisms on the dendrites of T4 cells, enhances direction selectivity in the output signal of T4 neurons. Measuring the directional tuning of postsynaptic vertical system (VS)-cells with inputs from other cells blocked, we found that, indeed, it matches the one of the calcium signal in presynaptic T4 cells.SIGNIFICANCE STATEMENT The transformation of voltage to calcium influx is an important step in the signaling cascade within a nerve cell. While this process has been intensely studied in the context of transmitter release mechanism, its consequences for information transmission and neural computation are unclear. Here, we measured both membrane voltage and cytosolic calcium levels in direction-selective cells of Drosophila in response to a large set of visual stimuli. We found direction selectivity in the calcium signal to be significantly enhanced compared with membrane voltage through a nonlinear transformation of voltage to calcium. Our findings highlight the importance of an additional step in the signaling cascade for information processing within single nerve cells.
Collapse
Affiliation(s)
- Abhishek Mishra
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Etienne Serbe-Kamp
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| | - Alexander Borst
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
- Graduate School of Systemic Neurosciences, Ludwig Maximilian University of Munich, 82152 Martinsried, Germany
| | - Juergen Haag
- Max Planck Institute for Biological Intelligence, 82152 Martinsried, Germany
| |
Collapse
|
22
|
Skelton PSM, Finn A, Brinkworth RSA. Contrast independent biologically inspired translational optic flow estimation. BIOLOGICAL CYBERNETICS 2022; 116:635-660. [PMID: 36303043 PMCID: PMC9691503 DOI: 10.1007/s00422-022-00948-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The visual systems of insects are relatively simple compared to humans. However, they enable navigation through complex environments where insects perform exceptional levels of obstacle avoidance. Biology uses two separable modes of optic flow to achieve this: rapid gaze fixation (rotational motion known as saccades); and the inter-saccadic translational motion. While the fundamental process of insect optic flow has been known since the 1950's, so too has its dependence on contrast. The surrounding visual pathways used to overcome environmental dependencies are less well known. Previous work has shown promise for low-speed rotational motion estimation, but a gap remained in the estimation of translational motion, in particular the estimation of the time to impact. To consistently estimate the time to impact during inter-saccadic translatory motion, the fundamental limitation of contrast dependence must be overcome. By adapting an elaborated rotational velocity estimator from literature to work for translational motion, this paper proposes a novel algorithm for overcoming the contrast dependence of time to impact estimation using nonlinear spatio-temporal feedforward filtering. By applying bioinspired processes, approximately 15 points per decade of statistical discrimination were achieved when estimating the time to impact to a target across 360 background, distance, and velocity combinations: a 17-fold increase over the fundamental process. These results show the contrast dependence of time to impact estimation can be overcome in a biologically plausible manner. This, combined with previous results for low-speed rotational motion estimation, allows for contrast invariant computational models designed on the principles found in the biological visual system, paving the way for future visually guided systems.
Collapse
Affiliation(s)
- Phillip S. M. Skelton
- Centre for Defence Engineering Research and Training, College of Science and Engineering, Flinders University, 1284 South Road, Tonsley, South Australia 5042 Australia
| | - Anthony Finn
- Science, Technology, Engineering, and Mathematics, University of South Australia, 1 Mawson Lakes Boulevard, Mawson Lakes, South Australia 5095 Australia
| | - Russell S. A. Brinkworth
- Centre for Defence Engineering Research and Training, College of Science and Engineering, Flinders University, 1284 South Road, Tonsley, South Australia 5042 Australia
| |
Collapse
|
23
|
Ling J, Wang H, Xu M, Chen H, Li H, Peng J. Mathematical study of neural feedback roles in small target motion detection. Front Neurorobot 2022; 16:984430. [PMID: 36203523 PMCID: PMC9530796 DOI: 10.3389/fnbot.2022.984430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022] Open
Abstract
Building an efficient and reliable small target motion detection visual system is challenging for artificial intelligence robotics because a small target only occupies few pixels and hardly displays visual features in images. Biological visual systems that have evolved over millions of years could be ideal templates for designing artificial visual systems. Insects benefit from a class of specialized neurons, called small target motion detectors (STMDs), which endow them with an excellent ability to detect small moving targets against a cluttered dynamic environment. Some bio-inspired models featured in feed-forward information processing architectures have been proposed to imitate the functions of the STMD neurons. However, feedback, a crucial mechanism for visual system regulation, has not been investigated deeply in the STMD-based neural circuits and its roles in small target motion detection remain unclear. In this paper, we propose a time-delay feedback STMD model for small target motion detection in complex backgrounds. The main contributions of this study are as follows. First, a feedback pathway is designed by transmitting information from output-layer neurons to lower-layer interneurons in the STMD pathway and the role of the feedback is analyzed from the view of mathematical analysis. Second, to estimate the feedback constant, the existence and uniqueness of solutions for nonlinear dynamical systems formed by feedback loop are analyzed via Schauder's fixed point theorem and contraction mapping theorem. Finally, an iterative algorithm is designed to solve the nonlinear problem and the performance of the proposed model is tested by experiments. Experimental results demonstrate that the feedback is able to weaken background false positives while maintaining a minor effect on small targets. It outperforms existing STMD-based models regarding the accuracy of fast-moving small target detection in visual clutter. The proposed feedback approach could inspire the relevant modeling of robust motion perception robotics visual systems.
Collapse
Affiliation(s)
- Jun Ling
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
| | - Hongxin Wang
- Machine Life and Intelligence Research Center, Guangzhou University, Guangzhou, China
- Computational Intelligence Lab (CIL), School of Computer Science, University of Lincoln, Lincoln, United Kingdom
| | - Mingshuo Xu
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
| | - Hao Chen
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
| | - Haiyang Li
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
- *Correspondence: Haiyang Li
| | - Jigen Peng
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, China
- Jigen Peng
| |
Collapse
|
24
|
Gonzalez-Suarez AD, Zavatone-Veth JA, Chen J, Matulis CA, Badwan BA, Clark DA. Excitatory and inhibitory neural dynamics jointly tune motion detection. Curr Biol 2022; 32:3659-3675.e8. [PMID: 35868321 PMCID: PMC9474608 DOI: 10.1016/j.cub.2022.06.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/03/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Neurons integrate excitatory and inhibitory signals to produce their outputs, but the role of input timing in this integration remains poorly understood. Motion detection is a paradigmatic example of this integration, since theories of motion detection rely on different delays in visual signals. These delays allow circuits to compare scenes at different times to calculate the direction and speed of motion. Different motion detection circuits have different velocity sensitivity, but it remains untested how the response dynamics of individual cell types drive this tuning. Here, we sped up or slowed down specific neuron types in Drosophila's motion detection circuit by manipulating ion channel expression. Altering the dynamics of individual neuron types upstream of motion detectors increased their sensitivity to fast or slow visual motion, exposing distinct roles for excitatory and inhibitory dynamics in tuning directional signals, including a role for the amacrine cell CT1. A circuit model constrained by functional data and anatomy qualitatively reproduced the observed tuning changes. Overall, these results reveal how excitatory and inhibitory dynamics together tune a canonical circuit computation.
Collapse
Affiliation(s)
| | - Jacob A Zavatone-Veth
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Juyue Chen
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | | | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA; Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
25
|
Hayashi M, Kazawa T, Tsunoda H, Kanzaki R. The Understanding of ON-Edge Motion Detection Through the Simulation Based on the Connectome of Drosophila’s Optic Lobe. JOURNAL OF ROBOTICS AND MECHATRONICS 2022. [DOI: 10.20965/jrm.2022.p0795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The optic lobe of the fly is one of the prominent model systems for the neural mechanism of the motion detection. How a fly who lives under various visual situations of the nature processes the information from at most a few thousands of ommatidia in their neural circuit for the detection of moving objects is not exactly clear though many computational models of the fly optic lobe as a moving objects detector were suggested. Here we attempted to elucidate the mechanisms of ON-edge motion detection by a simulation approach based on the TEM connectome of Drosophila. Our simulation model of the optic lobe with the NEURON simulator that covers the full scale of ommatidia, reproduced the characteristics of the receptor neurons, lamina monopolar neurons, and T4 cells in the lobula. The contribution of each neuron can be estimated by changing synaptic connection strengths in the simulation and measuring the response to the motion stimulus. Those show the paradelle pathway provide motion detection in the fly optic lobe has more robustness and is more sophisticated than a simple combination of HR and BL systems.
Collapse
|
26
|
Aung MH, Hogan K, Mazade RE, Park HN, Sidhu CS, Iuvone PM, Pardue MT. ON than OFF pathway disruption leads to greater deficits in visual function and retinal dopamine signaling. Exp Eye Res 2022; 220:109091. [PMID: 35487263 PMCID: PMC9701101 DOI: 10.1016/j.exer.2022.109091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/15/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
The visual system uses ON and OFF pathways to signal luminance increments and decrements. Increasing evidence suggests that ON and OFF pathways have different signaling properties and serve specialized visual functions. However, it is still unclear the contribution of ON and OFF pathways to visual behavior. Therefore, we examined the effects on optomotor response and the retinal dopamine system in nob mice with ON pathway dysfunction and Vsx1-/- mice with partial OFF pathway dysfunction. Spatial frequency and contrast sensitivity thresholds were determined, and values were compared to age-matched wild-type controls. Retinas were collected immediately after visual testing to measure levels of dopamine and its metabolite, DOPAC. At 4 weeks of age, we found that nob mice had significantly reduced spatial frequency (19%) and contrast sensitivity (60%) thresholds compared to wild-type mice. Vsx1-/- mice also exhibited reductions in optomotor responses (3% in spatial frequency; 18% in contrast sensitivity) at 4 weeks, although these changes were significantly smaller than those found in nob mice. Furthermore, nob mice had significantly lower DOPAC levels (53%) and dopamine turnover (41%) compared to controls while Vsx1-/- mice displayed a transient increase in DOPAC levels at 4 weeks of age (55%). Our results show that dysfunction of ON pathways leads to reductions in contrast sensitivity, spatial frequency threshold, and retinal dopamine turnover whereas partial loss of the OFF pathway has minimal effect. We conclude that ON pathways play a critical role in visual reflexes and retinal dopamine signaling, highlighting a potential association for future investigations.
Collapse
Affiliation(s)
- Moe H Aung
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kelleigh Hogan
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Reece E Mazade
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, USA
| | - Han Na Park
- Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA
| | - Curran S Sidhu
- Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA
| | - P Michael Iuvone
- Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA
| | - Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA, 30033, USA; Neuroscience Program, Emory University School of Medicine, 1365 Clifton Rd NE, Atlanta, GA, 30322, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Dr, Atlanta, GA, 30332, USA; Department of Ophthalmology, Emory University School of Medicine, 1365 Clifton Road NE, Atlanta, GA, 0322, USA.
| |
Collapse
|
27
|
Abstract
A recent study has revealed how the connectivity of neurons in the lamina of the Asian swallowtail butterfly forms the basis of this insect's exceptional colour vision through two circuit motifs: colour opponency of photoreceptors and broadband colour integration by lamina neurons.
Collapse
Affiliation(s)
- Anna Stöckl
- Chair of Zoology 2, Würzburg University, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
28
|
An Artificial Visual System for Motion Direction Detection Based on the Hassenstein–Reichardt Correlator Model. ELECTRONICS 2022. [DOI: 10.3390/electronics11091423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The perception of motion direction is essential for the survival of visual animals. Despite various theoretical and biophysical investigations that have been conducted to elucidate directional selectivity at the neural level, the systemic mechanism of motion direction detection remains elusive. Here, we develop an artificial visual system (AVS) based on the core computation of the Hassenstein–Reichardt correlator (HRC) model for global motion direction detection. With reference to the biological investigations of Drosophila, we first describe a local motion-sensitive, directionally detective neuron that only responds to ON motion signals with high pattern contrast in a particular direction. Then, we use the full-neurons scheme motion direction detection mechanism to detect the global motion direction based on our previous research. The mechanism enables our AVS to detect multiple directions in a two-dimensional view, and the global motion direction is inferred from the outputs of all local motion-sensitive directionally detective neurons. To verify the reliability of our AVS, we conduct a series of experiments and compare its performance with the time-considered convolution neural network (CNN) and the EfficientNetB0 under the same conditions. The experimental results demonstrated that our system is reliable in detecting the direction of motion, and among the three models, our AVS has better motion direction detection capabilities.
Collapse
|
29
|
Connectome of the lamina reveals the circuit for early color processing in the visual pathway of a butterfly. Curr Biol 2022; 32:2291-2299.e3. [DOI: 10.1016/j.cub.2022.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/28/2022] [Accepted: 03/25/2022] [Indexed: 01/06/2023]
|
30
|
Ketkar MD, Gür B, Molina-Obando S, Ioannidou M, Martelli C, Silies M. First-order visual interneurons distribute distinct contrast and luminance information across ON and OFF pathways to achieve stable behavior. eLife 2022; 11:74937. [PMID: 35263247 PMCID: PMC8967382 DOI: 10.7554/elife.74937] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
The accurate processing of contrast is the basis for all visually guided behaviors. Visual scenes with rapidly changing illumination challenge contrast computation because photoreceptor adaptation is not fast enough to compensate for such changes. Yet, human perception of contrast is stable even when the visual environment is quickly changing, suggesting rapid post receptor luminance gain control. Similarly, in the fruit fly Drosophila, such gain control leads to luminance invariant behavior for moving OFF stimuli. Here, we show that behavioral responses to moving ON stimuli also utilize a luminance gain, and that ON-motion guided behavior depends on inputs from three first-order interneurons L1, L2, and L3. Each of these neurons encodes contrast and luminance differently and distributes information asymmetrically across both ON and OFF contrast-selective pathways. Behavioral responses to both ON and OFF stimuli rely on a luminance-based correction provided by L1 and L3, wherein L1 supports contrast computation linearly, and L3 non-linearly amplifies dim stimuli. Therefore, L1, L2, and L3 are not specific inputs to ON and OFF pathways but the lamina serves as a separate processing layer that distributes distinct luminance and contrast information across ON and OFF pathways to support behavior in varying conditions.
Collapse
Affiliation(s)
- Madhura D Ketkar
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Burak Gür
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Sebastian Molina-Obando
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Maria Ioannidou
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Carlotta Martelli
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Marion Silies
- Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
31
|
A serotonergic circuit regulates aversive associative learning under mitochondrial stress in
C. elegans. Proc Natl Acad Sci U S A 2022; 119:e2115533119. [PMID: 35254908 PMCID: PMC8931235 DOI: 10.1073/pnas.2115533119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance
Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode
Caenorhabditis elegans
to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.
Collapse
|
32
|
Groschner LN, Malis JG, Zuidinga B, Borst A. A biophysical account of multiplication by a single neuron. Nature 2022; 603:119-123. [PMID: 35197635 PMCID: PMC8891015 DOI: 10.1038/s41586-022-04428-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/14/2022] [Indexed: 12/19/2022]
Abstract
Nonlinear, multiplication-like operations carried out by individual nerve cells greatly enhance the computational power of a neural system1-3, but our understanding of their biophysical implementation is scant. Here we pursue this problem in the Drosophila melanogaster ON motion vision circuit4,5, in which we record the membrane potentials of direction-selective T4 neurons and of their columnar input elements6,7 in response to visual and pharmacological stimuli in vivo. Our electrophysiological measurements and conductance-based simulations provide evidence for a passive supralinear interaction between two distinct types of synapse on T4 dendrites. We show that this multiplication-like nonlinearity arises from the coincidence of cholinergic excitation and release from glutamatergic inhibition. The latter depends on the expression of the glutamate-gated chloride channel GluClα8,9 in T4 neurons, which sharpens the directional tuning of the cells and shapes the optomotor behaviour of the animals. Interacting pairs of shunting inhibitory and excitatory synapses have long been postulated as an analogue approximation of a multiplication, which is integral to theories of motion detection10,11, sound localization12 and sensorimotor control13.
Collapse
Affiliation(s)
| | | | - Birte Zuidinga
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | | |
Collapse
|
33
|
Ichinose T, Habib S. ON and OFF Signaling Pathways in the Retina and the Visual System. FRONTIERS IN OPHTHALMOLOGY 2022; 2:989002. [PMID: 36926308 PMCID: PMC10016624 DOI: 10.3389/fopht.2022.989002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Visual processing starts at the retina of the eye, and signals are then transferred primarily to the visual cortex and the tectum. In the retina, multiple neural networks encode different aspects of visual input, such as color and motion. Subsequently, multiple neural streams in parallel convey unique aspects of visual information to cortical and subcortical regions. Bipolar cells, which are the second order neurons of the retina, separate visual signals evoked by light and dark contrasts and encode them to ON and OFF pathways, respectively. The interplay between ON and OFF neural signals is the foundation for visual processing for object contrast which underlies higher order stimulus processing. ON and OFF pathways have been classically thought to signal in a mirror-symmetric manner. However, while these two pathways contribute synergistically to visual perception in some instances, they have pronounced asymmetries suggesting independent operation in other cases. In this review, we summarize the role of the ON-OFF dichotomy in visual signaling, aiming to contribute to the understanding of visual recognition.
Collapse
Affiliation(s)
- Tomomi Ichinose
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Correspondence: Tomomi Ichinose, MD, PhD,
| | - Samar Habib
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
34
|
Nagel K. Motion vision: Pinning down motion computation in an ever-changing circuit. Curr Biol 2021; 31:R1523-R1525. [PMID: 34875241 DOI: 10.1016/j.cub.2021.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new electrophysiological study of the Drosophila visual system, recording from columnar inputs to motion-detecting neurons, has provided new insights into the computations that underlie motion vision.
Collapse
Affiliation(s)
- Katherine Nagel
- Neuroscience Institute, NYU School of Medicine, 435 E. 30(th) Street, Room 1102, New York, NY 10016, USA.
| |
Collapse
|
35
|
Vrontou E, Groschner LN, Szydlowski S, Brain R, Krebbers A, Miesenböck G. Response competition between neurons and antineurons in the mushroom body. Curr Biol 2021; 31:4911-4922.e4. [PMID: 34610272 PMCID: PMC8612741 DOI: 10.1016/j.cub.2021.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 09/03/2021] [Indexed: 11/04/2022]
Abstract
The mushroom bodies of Drosophila contain circuitry compatible with race models of perceptual choice. When flies discriminate odor intensity differences, opponent pools of αβ core Kenyon cells (on and off αβc KCs) accumulate evidence for increases or decreases in odor concentration. These sensory neurons and “antineurons” connect to a layer of mushroom body output neurons (MBONs) which bias behavioral intent in opposite ways. All-to-all connectivity between the competing integrators and their MBON partners allows for correct and erroneous decisions; dopaminergic reinforcement sets choice probabilities via reciprocal changes to the efficacies of on and off KC synapses; and pooled inhibition between αβc KCs can establish equivalence with the drift-diffusion formalism known to describe behavioral performance. The response competition network gives tangible form to many features envisioned in theoretical models of mammalian decision making, but it differs from these models in one respect: the principal variables—the fill levels of the integrators and the strength of inhibition between them—are represented by graded potentials rather than spikes. In pursuit of similar computational goals, a small brain may thus prioritize the large information capacity of analog signals over the robustness and temporal processing span of pulsatile codes. Mushroom body output neurons respond with excitation to odor on- and offset On and off responses reflect the convergence of oppositely tuned Kenyon cells (KCs) Opponent KCs compete by eliciting inhibitory feedback from a common interneuron pool KCs and interneurons communicate through graded potentials rather than spikes
Collapse
Affiliation(s)
- Eleftheria Vrontou
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Lukas N Groschner
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Susanne Szydlowski
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Ruth Brain
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Alina Krebbers
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK.
| |
Collapse
|
36
|
James JV, Cazzolato BS, Grainger S, Wiederman SD. Nonlinear, neuronal adaptation in insect vision models improves target discrimination within repetitively moving backgrounds. BIOINSPIRATION & BIOMIMETICS 2021; 16:066015. [PMID: 34555824 DOI: 10.1088/1748-3190/ac2988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
Neurons which respond selectively to small moving targets, even against a cluttered background, have been identified in several insect species. To investigate what underlies these robust and highly selective responses, researchers have probed the neuronal circuitry in target-detecting, visual pathways. Observations in flies reveal nonlinear adaptation over time, composed of a fast onset and gradual decay. This adaptive processing is seen in both of the independent, parallel pathways encoding either luminance increments (ON channel) or decrements (OFF channel). The functional significance of this adaptive phenomenon has not been determined from physiological studies, though the asymmetrical time course suggests a role in suppressing responses to repetitive stimuli. We tested this possibility by comparing an implementation of fast adaptation against alternatives, using a model of insect 'elementary small target motion detectors'. We conducted target-detecting simulations on various natural backgrounds, that were shifted via several movement profiles (and target velocities). Using performance metrics, we confirmed that the fast adaptation observed in neuronal systems enhances target detection against a repetitively moving background. Such background movement would be encountered via natural ego-motion as the insect travels through the world. These findings show that this form of nonlinear, fast-adaptation (suitably implementable via cellular biophysics) plays a role analogous to background subtraction techniques in conventional computer vision.
Collapse
Affiliation(s)
- John V James
- School of Mechanical Engineering, University of Adelaide, Adelaide SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide SA, Australia
| | - Benjamin S Cazzolato
- School of Mechanical Engineering, University of Adelaide, Adelaide SA, Australia
| | - Steven Grainger
- School of Mechanical Engineering, University of Adelaide, Adelaide SA, Australia
| | | |
Collapse
|
37
|
Gruntman E, Reimers P, Romani S, Reiser MB. Non-preferred contrast responses in the Drosophila motion pathways reveal a receptive field structure that explains a common visual illusion. Curr Biol 2021; 31:5286-5298.e7. [PMID: 34672960 DOI: 10.1016/j.cub.2021.09.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
Diverse sensory systems, from audition to thermosensation, feature a separation of inputs into ON (increments) and OFF (decrements) signals. In the Drosophila visual system, separate ON and OFF pathways compute the direction of motion, yet anatomical and functional studies have identified some crosstalk between these channels. We used this well-studied circuit to ask whether the motion computation depends on ON-OFF pathway crosstalk. Using whole-cell electrophysiology, we recorded visual responses of T4 (ON) and T5 (OFF) cells, mapped their composite ON-OFF receptive fields, and found that they share a similar spatiotemporal structure. We fit a biophysical model to these receptive fields that accurately predicts directionally selective T4 and T5 responses to both ON and OFF moving stimuli. This model also provides a detailed mechanistic explanation for the directional preference inversion in response to the prominent reverse-phi illusion. Finally, we used the steering responses of tethered flying flies to validate the model's predicted effects of varying stimulus parameters on the behavioral turning inversion.
Collapse
Affiliation(s)
- Eyal Gruntman
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, USA.
| | - Pablo Reimers
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, USA
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, USA.
| |
Collapse
|
38
|
Scene statistics and noise determine the relative arrangement of receptive field mosaics. Proc Natl Acad Sci U S A 2021; 118:2105115118. [PMID: 34556573 PMCID: PMC8488585 DOI: 10.1073/pnas.2105115118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/18/2022] Open
Abstract
Across a wide variety of species, cells in the retina specialized for signaling either increases (ON) or decreases (OFF) in light represent one of the most basic building blocks of visual computation. These cells coordinate to form mosaics, with each cell responsible for a small, minimally overlapping portion of visual space, but the ways in which these mosaics could be spatially coordinated with each other are relatively unknown. Here, we show how efficient coding theory, which hypothesizes that the nervous system minimizes the amount of redundant information it encodes, can predict the relative spatial arrangement of ON and OFF mosaics. The most information-efficient arrangements are determined both by levels of noise in the system and the statistics of natural images. Many sensory systems utilize parallel ON and OFF pathways that signal stimulus increments and decrements, respectively. These pathways consist of ensembles or grids of ON and OFF detectors spanning sensory space. Yet, encoding by opponent pathways raises a question: How should grids of ON and OFF detectors be arranged to optimally encode natural stimuli? We investigated this question using a model of the retina guided by efficient coding theory. Specifically, we optimized spatial receptive fields and contrast response functions to encode natural images given noise and constrained firing rates. We find that the optimal arrangement of ON and OFF receptive fields exhibits a transition between aligned and antialigned grids. The preferred phase depends on detector noise and the statistical structure of the natural stimuli. These results reveal that noise and stimulus statistics produce qualitative shifts in neural coding strategies and provide theoretical predictions for the configuration of opponent pathways in the nervous system.
Collapse
|
39
|
Williams B, Del Rosario J, Muzzu T, Peelman K, Coletta S, Bichler EK, Speed A, Meyer-Baese L, Saleem AB, Haider B. Spatial modulation of dark versus bright stimulus responses in the mouse visual system. Curr Biol 2021; 31:4172-4179.e6. [PMID: 34314675 PMCID: PMC8478832 DOI: 10.1016/j.cub.2021.06.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 05/20/2021] [Accepted: 06/30/2021] [Indexed: 01/06/2023]
Abstract
A fundamental task of the visual system is to respond to both increases and decreases of luminance with action potentials (ON and OFF responses1-4). OFF responses are stronger, faster, and more salient than ON responses in primary visual cortex (V1) of both cats5,6 and primates,7,8 but in ferrets9 and mice,10 ON responses can be stronger, weaker,11 or balanced12 in comparison to OFF responses. These discrepancies could arise from differences in species, experimental techniques, or stimulus properties, particularly retinotopic location in the visual field, as has been speculated;9 however, the role of retinotopy for ON/OFF dominance has not been systematically tested across multiple scales of neural activity within species. Here, we measured OFF versus ON responses across large portions of visual space with silicon probe and whole-cell patch-clamp recordings in mouse V1 and lateral geniculate nucleus (LGN). We found that OFF responses dominated in the central visual field, whereas ON and OFF responses were more balanced in the periphery. These findings were consistent across local field potential (LFP), spikes, and subthreshold membrane potential in V1, and were aligned with spatial biases in ON and OFF responses in LGN. Our findings reveal that retinotopy may provide a common organizing principle for spatial modulation of OFF versus ON processing in mammalian visual systems.
Collapse
Affiliation(s)
- Brice Williams
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Joseph Del Rosario
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Tomaso Muzzu
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Kayla Peelman
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Stefano Coletta
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Edyta K Bichler
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Anderson Speed
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Lisa Meyer-Baese
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Aman B Saleem
- UCL Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London WC1H 0AP, UK
| | - Bilal Haider
- Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.
| |
Collapse
|
40
|
Mano O, Creamer MS, Badwan BA, Clark DA. Predicting individual neuron responses with anatomically constrained task optimization. Curr Biol 2021; 31:4062-4075.e4. [PMID: 34324832 DOI: 10.1016/j.cub.2021.06.090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/24/2021] [Accepted: 06/29/2021] [Indexed: 01/28/2023]
Abstract
Artificial neural networks trained to solve sensory tasks can develop statistical representations that match those in biological circuits. However, it remains unclear whether they can reproduce properties of individual neurons. Here, we investigated how artificial networks predict individual neuron properties in the visual motion circuits of the fruit fly Drosophila. We trained anatomically constrained networks to predict movement in natural scenes, solving the same inference problem as fly motion detectors. Units in the artificial networks adopted many properties of analogous individual neurons, even though they were not explicitly trained to match these properties. Among these properties was the split into ON and OFF motion detectors, which is not predicted by classical motion detection models. The match between model and neurons was closest when models were trained to be robust to noise. These results demonstrate how anatomical, task, and noise constraints can explain properties of individual neurons in a small neural network.
Collapse
Affiliation(s)
- Omer Mano
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Bara A Badwan
- School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Neuroscience, Yale University, New Haven, CT 06511, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
41
|
Pagni M, Haikala V, Oberhauser V, Meyer PB, Reiff DF, Schnaitmann C. Interaction of “chromatic” and “achromatic” circuits in Drosophila color opponent processing. Curr Biol 2021; 31:1687-1698.e4. [DOI: 10.1016/j.cub.2021.01.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
|
42
|
Parallel Synaptic Acetylcholine Signals Facilitate Large Monopolar Cell Repolarization and Modulate Visual Behavior in Drosophila. J Neurosci 2021; 41:2164-2176. [PMID: 33468565 DOI: 10.1523/jneurosci.2388-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/03/2020] [Accepted: 01/03/2021] [Indexed: 11/21/2022] Open
Abstract
Appropriate termination of the photoresponse in image-forming photoreceptors and downstream neurons is critical for an animal to achieve high temporal resolution. Although the cellular and molecular mechanisms of termination in image-forming photoreceptors have been extensively studied in Drosophila, the underlying mechanism of termination in their downstream large monopolar cells remains less explored. Here, we show that synaptic ACh signaling, from both amacrine cells (ACs) and L4 neurons, facilitates the rapid repolarization of L1 and L2 neurons. Intracellular recordings in female flies show that blocking synaptic ACh output from either ACs or L4 neurons leads to slow repolarization of L1 and L2 neurons. Genetic and electrophysiological studies in both male and female flies determine that L2 neurons express ACh receptors and directly receive ACh signaling. Moreover, our results demonstrate that synaptic ACh signaling from both ACs and L4 neurons simultaneously facilitates ERG termination. Finally, visual behavior studies in both male and female flies show that synaptic ACh signaling, from either ACs or L4 neurons to L2 neurons, is essential for the optomotor response of the flies in high-frequency light stimulation. Our study identifies parallel synaptic ACh signaling for repolarization of L1 and L2 neurons and demonstrates that synaptic ACh signaling facilitates L1 and L2 neuron repolarization to maintain the optomotor response of the fly on high-frequency light stimulation.SIGNIFICANCE STATEMENT The image-forming photoreceptor downstream neurons receive multiple synaptic inputs from image-forming photoreceptors and various types of interneurons. It remains largely unknown how these synaptic inputs modulate the neural activity and function of image-forming photoreceptor downstream neurons. We show that parallel synaptic ACh signaling from both amacrine cells and L4 neurons facilitates rapid repolarization of large monopolar cells in Drosophila and maintains the optomotor response of the fly on high-frequency light stimulation. This work is one of the first reports showing how parallel synaptic signaling modulates the activity of large monopolar cells and motion vision simultaneously.
Collapse
|
43
|
Strausfeld NJ. The lobula plate is exclusive to insects. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101031. [PMID: 33711678 DOI: 10.1016/j.asd.2021.101031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Just one superorder of insects is known to possess a neuronal network that mediates extremely rapid reactions in flight in response to changes in optic flow. Research on the identity and functional organization of this network has over the course of almost half a century focused exclusively on the order Diptera, a member of the approximately 300-million-year-old clade Holometabola defined by its mode of development. However, it has been broadly claimed that the pivotal neuropil containing the network, the lobula plate, originated in the Cambrian before the divergence of Hexapoda and Crustacea from a mandibulate ancestor. This essay defines the traits that designate the lobula plate and argues against a homologue in Crustacea. It proposes that the origin of the lobula plate is relatively recent and may relate to the origin of flight.
Collapse
|
44
|
Luan H, Diao F, Scott RL, White BH. The Drosophila Split Gal4 System for Neural Circuit Mapping. Front Neural Circuits 2020; 14:603397. [PMID: 33240047 PMCID: PMC7680822 DOI: 10.3389/fncir.2020.603397] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022] Open
Abstract
The diversity and dense interconnectivity of cells in the nervous system present a huge challenge to understanding how brains work. Recent progress toward such understanding, however, has been fuelled by the development of techniques for selectively monitoring and manipulating the function of distinct cell types-and even individual neurons-in the brains of living animals. These sophisticated techniques are fundamentally genetic and have found their greatest application in genetic model organisms, such as the fruit fly Drosophila melanogaster. Drosophila combines genetic tractability with a compact, but cell-type rich, nervous system and has been the incubator for a variety of methods of neuronal targeting. One such method, called Split Gal4, is playing an increasingly important role in mapping neural circuits in the fly. In conjunction with functional perturbations and behavioral screens, Split Gal4 has been used to characterize circuits governing such activities as grooming, aggression, and mating. It has also been leveraged to comprehensively map and functionally characterize cells composing important brain regions, such as the central complex, lateral horn, and the mushroom body-the latter being the insect seat of learning and memory. With connectomics data emerging for both the larval and adult brains of Drosophila, Split Gal4 is also poised to play an important role in characterizing neurons of interest based on their connectivity. We summarize the history and current state of the Split Gal4 method and indicate promising areas for further development or future application.
Collapse
Affiliation(s)
| | | | | | - Benjamin H. White
- Laboratory of Molecular Biology, National Institute of Mental Health, NIH, Bethesda, MD, United States
| |
Collapse
|
45
|
Fendl S, Vieira RM, Borst A. Conditional protein tagging methods reveal highly specific subcellular distribution of ion channels in motion-sensing neurons. eLife 2020; 9:62953. [PMID: 33079061 PMCID: PMC7655108 DOI: 10.7554/elife.62953] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/14/2020] [Indexed: 11/25/2022] Open
Abstract
Neurotransmitter receptors and ion channels shape the biophysical properties of neurons, from the sign of the response mediated by neurotransmitter receptors to the dynamics shaped by voltage-gated ion channels. Therefore, knowing the localizations and types of receptors and channels present in neurons is fundamental to our understanding of neural computation. Here, we developed two approaches to visualize the subcellular localization of specific proteins in Drosophila: The flippase-dependent expression of GFP-tagged receptor subunits in single neurons and ‘FlpTag’, a versatile new tool for the conditional labelling of endogenous proteins. Using these methods, we investigated the subcellular distribution of the receptors GluClα, Rdl, and Dα7 and the ion channels para and Ih in motion-sensing T4/T5 neurons of the Drosophila visual system. We discovered a strictly segregated subcellular distribution of these proteins and a sequential spatial arrangement of glutamate, acetylcholine, and GABA receptors along the dendrite that matched the previously reported EM-reconstructed synapse distributions.
Collapse
Affiliation(s)
- Sandra Fendl
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| | | | - Alexander Borst
- Max Planck Institute of Neurobiology, Martinsried, Germany.,Graduate School of Systemic Neurosciences, LMU Munich, Martinsried, Germany
| |
Collapse
|
46
|
Ravenscroft TA, Janssens J, Lee PT, Tepe B, Marcogliese PC, Makhzami S, Holmes TC, Aerts S, Bellen HJ. Drosophila Voltage-Gated Sodium Channels Are Only Expressed in Active Neurons and Are Localized to Distal Axonal Initial Segment-like Domains. J Neurosci 2020; 40:7999-8024. [PMID: 32928889 PMCID: PMC7574647 DOI: 10.1523/jneurosci.0142-20.2020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/15/2020] [Accepted: 08/04/2020] [Indexed: 12/28/2022] Open
Abstract
In multipolar vertebrate neurons, action potentials (APs) initiate close to the soma, at the axonal initial segment. Invertebrate neurons are typically unipolar with dendrites integrating directly into the axon. Where APs are initiated in the axons of invertebrate neurons is unclear. Voltage-gated sodium (NaV) channels are a functional hallmark of the axonal initial segment in vertebrates. We used an intronic Minos-Mediated Integration Cassette to determine the endogenous gene expression and subcellular localization of the sole NaV channel in both male and female Drosophila, para Despite being the only NaV channel in the fly, we show that only 23 ± 1% of neurons in the embryonic and larval CNS express para, while in the adult CNS para is broadly expressed. We generated a single-cell transcriptomic atlas of the whole third instar larval brain to identify para expressing neurons and show that it positively correlates with markers of differentiated, actively firing neurons. Therefore, only 23 ± 1% of larval neurons may be capable of firing NaV-dependent APs. We then show that Para is enriched in an axonal segment, distal to the site of dendritic integration into the axon, which we named the distal axonal segment (DAS). The DAS is present in multiple neuron classes in both the third instar larval and adult CNS. Whole cell patch clamp electrophysiological recordings of adult CNS fly neurons are consistent with the interpretation that Nav-dependent APs originate in the DAS. Identification of the distal NaV localization in fly neurons will enable more accurate interpretation of electrophysiological recordings in invertebrates.SIGNIFICANCE STATEMENT The site of action potential (AP) initiation in invertebrates is unknown. We tagged the sole voltage-gated sodium (NaV) channel in the fly, para, and identified that Para is enriched at a distal axonal segment. The distal axonal segment is located distal to where dendrites impinge on axons and is the likely site of AP initiation. Understanding where APs are initiated improves our ability to model neuronal activity and our interpretation of electrophysiological data. Additionally, para is only expressed in 23 ± 1% of third instar larval neurons but is broadly expressed in adults. Single-cell RNA sequencing of the third instar larval brain shows that para expression correlates with the expression of active, differentiated neuronal markers. Therefore, only 23 ± 1% of third instar larval neurons may be able to actively fire NaV-dependent APs.
Collapse
Affiliation(s)
- Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Jasper Janssens
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Burak Tepe
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
| | - Samira Makhzami
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California at Irvine, Irvine, California 92697
| | - Stein Aerts
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium
- Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
47
|
Fu Q, Yue S. Modelling Drosophila motion vision pathways for decoding the direction of translating objects against cluttered moving backgrounds. BIOLOGICAL CYBERNETICS 2020; 114:443-460. [PMID: 32623517 PMCID: PMC7554016 DOI: 10.1007/s00422-020-00841-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/19/2020] [Indexed: 06/03/2023]
Abstract
Decoding the direction of translating objects in front of cluttered moving backgrounds, accurately and efficiently, is still a challenging problem. In nature, lightweight and low-powered flying insects apply motion vision to detect a moving target in highly variable environments during flight, which are excellent paradigms to learn motion perception strategies. This paper investigates the fruit fly Drosophila motion vision pathways and presents computational modelling based on cutting-edge physiological researches. The proposed visual system model features bio-plausible ON and OFF pathways, wide-field horizontal-sensitive (HS) and vertical-sensitive (VS) systems. The main contributions of this research are on two aspects: (1) the proposed model articulates the forming of both direction-selective and direction-opponent responses, revealed as principal features of motion perception neural circuits, in a feed-forward manner; (2) it also shows robust direction selectivity to translating objects in front of cluttered moving backgrounds, via the modelling of spatiotemporal dynamics including combination of motion pre-filtering mechanisms and ensembles of local correlators inside both the ON and OFF pathways, which works effectively to suppress irrelevant background motion or distractors, and to improve the dynamic response. Accordingly, the direction of translating objects is decoded as global responses of both the HS and VS systems with positive or negative output indicating preferred-direction or null-direction translation. The experiments have verified the effectiveness of the proposed neural system model, and demonstrated its responsive preference to faster-moving, higher-contrast and larger-size targets embedded in cluttered moving backgrounds.
Collapse
Affiliation(s)
- Qinbing Fu
- Machine Life and Intelligence Research Centre, Guangzhou University, Guangzhou, China.
- Computational Intelligence Lab/Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, UK.
| | - Shigang Yue
- Machine Life and Intelligence Research Centre, Guangzhou University, Guangzhou, China.
- Computational Intelligence Lab/Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, UK.
| |
Collapse
|
48
|
Feord RC, Wardill TJ. A novel setup for simultaneous two-photon functional imaging and precise spectral and spatial visual stimulation in Drosophila. Sci Rep 2020; 10:15681. [PMID: 32973185 PMCID: PMC7515906 DOI: 10.1038/s41598-020-72673-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/03/2020] [Indexed: 11/13/2022] Open
Abstract
Motion vision has been extensively characterised in Drosophila melanogaster, but substantially less is known about how flies process colour, or how spectral information affects other visual modalities. To accurately dissect the components of the early visual system responsible for processing colour, we developed a versatile visual stimulation setup to probe combined spatial, temporal and spectral response properties. Using flies expressing neural activity indicators, we tracked visual responses in the medulla, the second visual neuropil, to a projected colour stimulus. The introduction of custom bandpass optical filters enables simultaneous two-photon imaging and visual stimulation over a large range of wavelengths without compromising the temporal stimulation rate. With monochromator-produced light, any spectral bandwidth and centre wavelength from 390 to 730 nm can be selected to produce a narrow spectral hue. A specialised screen material scatters each band of light across the visible spectrum equally at all locations of the screen, thus enabling presentation of spatially structured stimuli. We show layer-specific shifts of spectral response properties in the medulla correlating with projection regions of photoreceptor terminals.
Collapse
Affiliation(s)
- Rachael C Feord
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
| | - Trevor J Wardill
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Ecology, Evolution & Behavior, University of Minnesota, Saint Paul, Minnesota, 55108, USA.
| |
Collapse
|
49
|
Zavatone-Veth JA, Badwan BA, Clark DA. A minimal synaptic model for direction selective neurons in Drosophila. J Vis 2020; 20:2. [PMID: 32040161 PMCID: PMC7343402 DOI: 10.1167/jov.20.2.2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Visual motion estimation is a canonical neural computation. In Drosophila, recent advances have identified anatomic and functional circuitry underlying direction-selective computations. Models with varying levels of abstraction have been proposed to explain specific experimental results but have rarely been compared across experiments. Here we use the wealth of available anatomical and physiological data to construct a minimal, biophysically inspired synaptic model for Drosophila’s first-order direction-selective T4 cells. We show how this model relates mathematically to classical models of motion detection, including the Hassenstein-Reichardt correlator model. We used numerical simulation to test how well this synaptic model could reproduce measurements of T4 cells across many datasets and stimulus modalities. These comparisons include responses to sinusoid gratings, to apparent motion stimuli, to stochastic stimuli, and to natural scenes. Without fine-tuning this model, it sufficed to reproduce many, but not all, response properties of T4 cells. Since this model is flexible and based on straightforward biophysical properties, it provides an extensible framework for developing a mechanistic understanding of T4 neural response properties. Moreover, it can be used to assess the sufficiency of simple biophysical mechanisms to describe features of the direction-selective computation and identify where our understanding must be improved.
Collapse
|
50
|
Serotonergic modulation of visual neurons in Drosophila melanogaster. PLoS Genet 2020; 16:e1009003. [PMID: 32866139 PMCID: PMC7485980 DOI: 10.1371/journal.pgen.1009003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
Sensory systems rely on neuromodulators, such as serotonin, to provide flexibility for information processing as stimuli vary, such as light intensity throughout the day. Serotonergic neurons broadly innervate the optic ganglia of Drosophila melanogaster, a widely used model for studying vision. It remains unclear whether serotonin modulates the physiology of interneurons in the optic ganglia. To address this question, we first mapped the expression patterns of serotonin receptors in the visual system, focusing on a subset of cells with processes in the first optic ganglion, the lamina. Serotonin receptor expression was found in several types of columnar cells in the lamina including 5-HT2B in lamina monopolar cell L2, required for spatiotemporal luminance contrast, and both 5-HT1A and 5-HT1B in T1 cells, whose function is unknown. Subcellular mapping with GFP-tagged 5-HT2B and 5-HT1A constructs indicated that these receptors localize to layer M2 of the medulla, proximal to serotonergic boutons, suggesting that the medulla neuropil is the primary site of serotonergic regulation for these neurons. Exogenous serotonin increased basal intracellular calcium in L2 terminals in layer M2 and modestly decreased the duration of visually induced calcium transients in L2 neurons following repeated dark flashes, but otherwise did not alter the calcium transients. Flies without functional 5-HT2B failed to show an increase in basal calcium in response to serotonin. 5-HT2B mutants also failed to show a change in amplitude in their response to repeated light flashes but other calcium transient parameters were relatively unaffected. While we did not detect serotonin receptor expression in L1 neurons, they, like L2, underwent serotonin-induced changes in basal calcium, presumably via interactions with other cells. These data demonstrate that serotonin modulates the physiology of interneurons involved in early visual processing in Drosophila. Serotonergic neurons innervate the Drosophila melanogaster eye, but it was not known whether serotonin signaling could induce acute physiological responses in visual interneurons. We found serotonin receptors expressed in all neuropils of the optic lobe and identified specific neurons involved in visual information processing that express serotonin receptors. Activation of these receptors increased intracellular calcium in first order interneurons L1 and L2 and may enhance visually induced calcium transients in L2 neurons. These data support a role for the serotonergic neuromodulation of interneurons in the Drosophila visual system.
Collapse
|