1
|
Ren X, Zhao L, Hao Y, Huang X, Lv G, Zhou X. Copper-instigated modulatory cell mortality mechanisms and progress in kidney diseases. Ren Fail 2025; 47:2431142. [PMID: 39805816 PMCID: PMC11734396 DOI: 10.1080/0886022x.2024.2431142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/23/2024] [Accepted: 11/13/2024] [Indexed: 01/16/2025] Open
Abstract
Copper is a vital cofactor in various enzymes, plays a pivotal role in maintaining cell homeostasis. When copper metabolism is disordered and mitochondrial dysfunction is impaired, programmed cell death such as apoptosis, paraptosis, pyroptosis, ferroptosis, cuproptosis, autophagy and necroptosis can be induced. In this review, we focus on the metabolic mechanisms of copper. In addition, we discuss the mechanism by which copper induces various programmed cell deaths. Finally, this review examines copper's involvement in prevalent kidney diseases such as acute kidney injury and chronic kidney disease. The findings indicate that the use of copper chelators or plant extracts can mitigate kidney damage by reducing copper accumulation, offering novel insights into the pathogenesis and treatment strategies for kidney diseases.
Collapse
Affiliation(s)
- Xiya Ren
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Limei Zhao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yajie Hao
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiu Huang
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Guangna Lv
- The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
2
|
He W, Pan K, Xiao C. Activation ADORA1 protects against sepsis-associated acute kidney injury by inhibiting pyroptosis. Tissue Cell 2025; 95:102849. [PMID: 40090281 DOI: 10.1016/j.tice.2025.102849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
BACKGROUND The ADORA1 is known to provide renoprotection against acute kidney injury. However, the underlying mechanisms remain unclear. The purpose of this study was to investigate whether and how ADORA1 plays a role in renoprotection in sepsis associated acute kidney injury (SA-AKI). METHODS Sepsis model was induced by lipopolysaccharide (LPS) in male C57BL/6 mice, 0.9 % NS served as controls. Animals received ADORA1 agonists and antagonist before the LPS. Renal function, histology and pyroptosis markers were assessed, with simultaneous validation by vitro assays. RESULTS The animals treated with ADORA1 agonists exhibited higher survival rates and an improved renal functional recovery, attenuated histological lesions and downgraded pyroptosis. Moreover, which down-regulated the expression of cleaved caspase 11 and GSDMD, while the ADORA1 antagonist group exhibit an oppose results. CONCLUSIONS ADORA1 protects against SA-AKI, at least in part, through its inhibitory effects on pyroptosis via the noncanonical inflammasome pathway. If our finding may extrapolated to clinical setting, ADORA1 agonist may serve as a clinical strategy to SA-AKI.
Collapse
Affiliation(s)
- Wei He
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kaixin Pan
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chenggen Xiao
- Department of Emergency, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Marunouchi T, Kyono M, Kikuchi N, Tanonaka K. Gemfibrozil mitigates caspase-11-driven myocardial pyroptosis in ischemia/reperfusion injury in mice. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2025; 12:100292. [PMID: 40134584 PMCID: PMC11932663 DOI: 10.1016/j.jmccpl.2025.100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/27/2025]
Abstract
The size of the infarct area following acute myocardial infarction (AMI) is a critical prognostic factor. Caspase-11-dependent pyroptosis has been implicated as a key mechanism driving cardiomyocyte death after AMI. However, no therapeutic agents have been developed to inhibit myocardial cell death by targeting caspase-11. This study investigates the effects of gemfibrozil, a potential caspase-11 inhibitor, on ischemia/reperfusion-induced myocardial pyroptosis in mice. To model AMI, the left coronary artery of C57BL/6 N mice was ligated for 1 h, followed by reperfusion. Levels of cleaved caspase-11 and the N-terminal fragment of gasdermin D (GSDMD-N) in ischemic myocardial tissue increased progressively over time after ischemia/reperfusion. Gemfibrozil treatment during reperfusion significantly attenuated these increases in cleaved caspase-11 and GSDMD-N levels. Moreover, gemfibrozil reduced the extent of myocardial infarct size during reperfusion. In cultured cardiomyocytes isolated from adult mice, hypoxia/reoxygenation-induced increases in caspase-11 and GSDMD cleavage were similarly mitigated by gemfibrozil, which concurrently prevented necrotic cell death. These findings demonstrate the involvement of caspase-11-dependent pyroptosis in myocardial cell death following ischemia/reperfusion and suggest that gemfibrozil holds promise as a therapeutic agent for reducing myocardial infarct size after AMI.
Collapse
Affiliation(s)
- Tetsuro Marunouchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Mayu Kyono
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Naoko Kikuchi
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| | - Kouichi Tanonaka
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Sciences, Japan
| |
Collapse
|
4
|
Zhang J, Chen Y, Han B, Liu Y, Li X, Yang J, Liu Y, Cao Y, Liang D, Yu B. Mitigating PCOS progression: The protective effect of C-phycocyanin on ovarian granulosa cell pyroptosis via the NRF2/NLRP3/GSDMD pathway. Int Immunopharmacol 2025; 159:114917. [PMID: 40412127 DOI: 10.1016/j.intimp.2025.114917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/05/2025] [Accepted: 05/18/2025] [Indexed: 05/27/2025]
Abstract
BACKGROUND Pyroptosis is a proinflammatory cell death process that contributes to inflammatory diseases. C-Phycocyanin (C-PC) is a water-soluble protein pigment primarily derived from cyanobacteria, and it exhibits anti-inflammatory effects. However, the role of natural C-PC in pyroptosis in human ovarian granulosa cells (GCs), particularly in conditions like polycystic ovary syndrome (PCOS), remains unclear. This study investigates the effects of C-PC on pyroptosis and its relevance to PCOS. METHODS Here dehydroepiandrosterone (DHEA) was used to induce PCOS in a mouse model that was characterized by an irregular oestrous cycle, cystic follicles and an elevated serum hormone level. DHEA treatment was used to induce GC pyroptosis. Scanning electron microscopy (SEM) was used to determine cell morphology. The expression levels of key proteins for oxidative stress and pyroptosis, including nuclear factor erythroid 2-related factor 2 (NRF2), NLR family of pyrroline-containing structural domain 3 (NLRP3) inflammasomes, cleaved caspase-1, and N-GSDMD were investigated in vivo and in vitro by Western blotting and immunofluorescence staining. RESULTS C-PC restored the estrous cycle in PCOS mice, reduced testosterone levels, and decreased cystic follicles. It attenuated PCOS progression by reducing oxidative stress level and suppressing GCs pyroptosis. At the cellular level, C-PC inhibited DHEA-induced GC pyroptosis by blocking NLRP3 inflammasome activation and lowering ROS, effects reversed by the NRF2 inhibitor (ML385). Molecular docking analysis and CETSA suggested that C-PC may protect against PCOS by activating the NRF2 pathway or by indirectly binding to the Ser27 site of GSDMD. In addition, C-PC suppressed ROS/p38-MAPK activation induced by DHEA, and p38-MAPK agonists diminished its effect on NLRP3 inflammasome activity and GC pyroptosis protection. CONCLUSION C-PC exerts a protective effect on GC pyroptosis through the NRF2/NLRP3/GSDMD and ROS/p-38 MAPK pathways, highlighting its potential to mitigate inflammation and its relevance to reproductive health issues like PCOS.
Collapse
Affiliation(s)
- Jing Zhang
- College of Grain Engineering, Anhui Vocational College of Grain Engineering, Hefei 230011, Anhui, China
| | - Yaxin Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Baoqing Han
- Belgorod Institute of Food Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yang Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jun Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Biao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
5
|
Liu Y, Wu Q, Shao J, Mei Y, Zhang J, Xu Q, Mao L. The NLRP3 inflammasome: a therapeutic target of phytochemicals in treating atherosclerosis (a systematic review). Front Immunol 2025; 16:1568722. [PMID: 40443656 PMCID: PMC12119316 DOI: 10.3389/fimmu.2025.1568722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/22/2025] [Indexed: 06/02/2025] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the gradual accumulation of plaques in arterial walls, with its pathogenesis remaining incompletely understood. Recent studies have highlighted that development of AS is closely associated with the aberrant activation of the NLRP3 inflammasome in the arteries. Inhibition of the NLRP3 inflammasome by natural products and formulae derived from Chinese herbal medicines (CHMs) has been shown to alleviate AS-associated pathologies. However, therapies that effectively and safely target the NLRP3 inflammasome remain limited. This review aims to summarize the key discoveries from recent studies on the effects of these natural products and formulae on the NLRP3 inflammasome in the context of AS treatment. A comprehensive literature search was conducted on databases such as PubMed/MEDLINE up to January 2025, yielding 38 eligible studies. Our analysis indicates that certain therapies can effectively prevent arterial inflammation in animal models by targeting multiple pathways and mechanisms related to the NLRP3 inflammasome. This review summarizes the primary findings of these studies, focusing on the therapeutic effects and underlying mechanisms of action. Based on these insights, we propose future strategies to enhance the efficacy, specificity, and safety of existing natural products and formulae for AS treatment. Additionally, this study offers a perspective for future research that may enhance our understanding of the roles and the mechanisms of CHM-derived phytochemicals and formulae in regulating the NLRP3 inflammasome and treating AS.
Collapse
Affiliation(s)
- Yongchao Liu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Qianyi Wu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Jing Shao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Youmin Mei
- Department of Periodontology, Nantong Stomatological Hospital, Nantong, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Liming Mao
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
6
|
Xu W, Wang L, Chen R, Liu Y, Chen W. Pyroptosis and its role in intestinal ischemia-reperfusion injury: a potential therapeutic target. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04261-1. [PMID: 40372474 DOI: 10.1007/s00210-025-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
Intestinal ischemia-reperfusion injury (II/RI) is a critical acute condition characterized by complex pathological mechanisms, including various modes of cell death. Among these, pyroptosis has garnered significant attention in recent years. This review explores the characteristics, molecular mechanisms, and implications of pyroptosis in II/RI, with a focus on therapeutic strategies targeting the pyroptosis pathway. Key processes such as NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome activation, caspase-1 activation, and gasdermin D (GSDMD)-mediated membrane pore formation are identified as central to pyroptosis. Compounds like MCC950, CY-09, metformin, and curcumin have shown promise in attenuating II/RI in preclinical studies by modulating these pathways. However, challenges remain in understanding non-canonical pyroptosis pathways, unraveling the exact mechanisms of GSDMD-induced pore formation, and translating these findings into clinical applications. Addressing these gaps will be crucial for developing innovative and effective treatments for II/RI.
Collapse
Affiliation(s)
- Wenping Xu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Lang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Ruili Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Yi Liu
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China
| | - Wendong Chen
- Department of Anesthesiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, 650032, China.
| |
Collapse
|
7
|
Tang Y, Tong W, Peng Y, Sun S. Targeting cholesterol-driven pyroptosis: a promising strategy for the prevention and treatment of atherosclerosis. Mol Biol Rep 2025; 52:459. [PMID: 40372511 DOI: 10.1007/s11033-025-10554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 04/28/2025] [Indexed: 05/16/2025]
Abstract
Funding Pyroptosis is a type of programmed cell death (PCD) pathway distinguished by inflammation. It is activated by specific inflammasomes. Once activated, it causes the physical breakdown of the cell, along with the discharge of pro-inflammatory cytokines, such as interleukin-1β (IL-1β) and interleukin-18 (IL-18). Abundant evidence has demonstrated the existence of pyroptotic cell death within atherosclerotic plaques, which has significance for the development of atherosclerosis (AS). As a result, pyroptosis has become a new and important topic in cardiovascular disease (CVD) research. Cholesterol, it is recognized to have a connection with inflammation, exerts a crucial function in the development process of AS, and has been linked to the initiation of pyroptosis. This review aims to briefly summarize the fundamental aspects of pyroptosis and the influence of cholesterol-related inflammation in AS. Additionally, this review will explore potential therapeutic approaches based on pyroptosis that could be utilized for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yuehong Tang
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenjuan Tong
- Department of Gynecology and Obstetrics, First Affiliated Hospital, University of South China, Hengyang, Hunan, 421001, China
| | - Yujiao Peng
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shaowei Sun
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
8
|
Szczerba M, Ganesh A, Gil-Marqués ML, Briken V, Goldberg MB. NLRP11 is required for canonical NLRP3 and non-canonical inflammasome activation during human macrophage infection with mycobacteria. mBio 2025; 16:e0081825. [PMID: 40272180 PMCID: PMC12077127 DOI: 10.1128/mbio.00818-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
The NLRP11 protein is only expressed in primates and participates in the activation of the canonical NLRP3 and non-canonical NLRP3 inflammasome activation after infection with gram-negative bacteria. Here, we generated a series of defined NLRP11 deletion mutants to further analyze the role of NLRP11 in NLRP3 inflammasome activation. Like the complete NLRP11 deletion mutant (NLRP11-/-), the NLRP11 mutant lacking the NAIP, C2TA, HET-E, and TP1 (NACHT) and leucine-rich repeat (LRR) domains (NLRP11∆N_LRR) showed reduced activation of the canonical NLRP3 inflammasome, whereas a pyrin domain mutant (NLRP11∆PYD) had no effect on NLRP3 activation. The NLRP11-/- and NLRP11∆N_LRR mutants, but not the NLRP11∆PYD mutant, also displayed reduced activation of caspase-4 during infection with the intracytosolic, gram-negative pathogen Shigella flexneri. We found that the human-adapted, acid-fast pathogen Mycobacterium tuberculosis and the opportunistic pathogen Mycobacterium kansasii both activate the non-canonical NLRP11 inflammasome in a caspase-4/caspase-5-dependent pathway. In conclusion, we show that NLRP11 functions in the non-canonical caspase-4/caspase-5 inflammasome activation pathway and the canonical NLRP3 inflammasome pathway and that NLRP11 is required for full recognition of mycobacteria by each of these pathways. Our work extends the spectrum of bacterial pathogen recognition by the non-canonical NLRP11-caspase4/caspase-5 pathway beyond gram-negative bacteria.IMPORTANCEThe activation of inflammasome complexes plays a crucial role in intracellular pathogen detection. NLRP11 and caspase-4 are essential for recognizing lipopolysaccharide (LPS), a molecule found in gram-negative bacteria such as the human pathogens Shigella spp., which activate both canonical NLRP3 and non-canonical inflammasome pathways. Through a series of deletion mutants, we demonstrate that the NACHT and LRR domains of NLRP11, but not its pyrin domain, are critical for detection of S. flexneri. Notably, our research reveals that the acid-fast bacterium M. tuberculosis is also detected by NLRP11 and caspase-4, despite not producing LPS. These findings significantly expand the range of pathogens recognized by NLRP11 and caspase-4 to now include acid-fast bacteria that do not contain LPS and underscore the versatility of these innate immune components in pathogen detection.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - María Luisa Gil-Marqués
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Marcia B. Goldberg
- Division of Infectious Diseases, Department of Medicine, Center for Bacterial Pathogenesis, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Xia LY, Yu NR, Huang SL, Qu H, Qin L, Zhao QS, Leng Y. Dehydrotrametenolic acid methyl ester, a triterpenoid of Poria cocos, alleviates non-alcoholic steatohepatitis by suppressing NLRP3 inflammasome activation via targeting Caspase-1 in mice. Acta Pharmacol Sin 2025:10.1038/s41401-025-01569-9. [PMID: 40329004 DOI: 10.1038/s41401-025-01569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/14/2025] [Indexed: 05/08/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) has emerged as a prevalent chronic liver disease with a huge unmet clinical need. A few studies have reported the beneficial effects of Poria cocos Wolf (P. cocos) extract on NASH mice, but the active components were still unknown. In this study we investigated the therapeutic effects of dehydrotrametenolic acid methyl ester (ZQS5029-1), a lanosterol-7,9(11)-diene triterpenes in P. cocos, in a high-fat diet plus CCl4 induced murine NASH model and a GAN diet induced ob/ob murine NASH model. The NASH mice were treated with ZQS5029-1 (75 mg·kg-1·d-1, i.g.) for 6 and 8 weeks, respectively. We showed that ZQS5029-1 treatment markedly relieved liver injury, inflammation and fibrosis in both the murine NASH models. We found that ZQS5029-1 treatment significantly suppressed hepatic NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activation in both the NASH murine models, and blocked lipopolysaccharides (LPS)+adenosine 5'-triphosphate (ATP)/Nigericin-induced NLRP3 inflammasome activation in bone marrow-derived macrophages (BMDMs) and Kupffer cells in vitro. We demonstrated that ZQS5029-1 directly bound to the H236 residue of mouse Caspase-1, thereby inhibiting NLRP3 inflammasome activation. The effects of ZQS5029-1 on macrophage-hepatocyte/HSC crosstalk were analyzed using the supernatants from macrophages preconditioned with LPS + ATP introduced into hepatocytes and hepatic stellate cells (HSCs). We found that the conditioned medium from the BMDMs induced injury and death, as well as lipid accumulation in hepatocytes, and activation of HSCs; these effects were blocked by conditioned medium from BMDMs treated with ZQS5029-1. Moreover, the protective effects of ZQS5029-1 on hepatocytes and HSCs were eliminated by H236A-mutation of Caspase-1. We conclude that ZQS5029-1 is a promising lead compound for the treatment of NASH by inhibiting NLRP3 inflammasome activation through targeting Caspase-1 and regulating the macrophage-hepatocyte/HSC crosstalk.
Collapse
Affiliation(s)
- Ling-Yan Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nai-Rong Yu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Li Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qin-Shi Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Zhang Z, Shimizu T. Recent advances in structural studies of NLRP3 and NLRP1 inflammasome regulation. Curr Opin Struct Biol 2025; 92:103057. [PMID: 40334522 DOI: 10.1016/j.sbi.2025.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
The NOD-like receptor (NLR) family comprises inflammasome sensors that are critical intracellular pattern recognition receptors of the innate immune system. The NLR family members NLRP3 and NLRP1 can be activated by a wide range of pathogenic, chemical, self-derived and stress-related stimuli. In recent years, remarkable progress in functional and structural studies of these two receptors have shed light on their complicated and entirely different activation and regulation mechanisms. This review focuses on recent structural studies of NLRP3 and NLRP1, emphasizing the regulatory steps mediated by various activation and inhibitory factors.
Collapse
Affiliation(s)
- Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
11
|
Nadendla EK, Tweedell RE, Kasof G, Kanneganti TD. Caspases: structural and molecular mechanisms and functions in cell death, innate immunity, and disease. Cell Discov 2025; 11:42. [PMID: 40325022 PMCID: PMC12052993 DOI: 10.1038/s41421-025-00791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/05/2025] [Indexed: 05/07/2025] Open
Abstract
Caspases are critical regulators of cell death, development, innate immunity, host defense, and disease. Upon detection of pathogens, damage-associated molecular patterns, cytokines, or other homeostatic disruptions, innate immune sensors, such as NLRs, activate caspases to initiate distinct regulated cell death pathways, including non-lytic (apoptosis) and innate immune lytic (pyroptosis and PANoptosis) pathways. These cell death pathways are driven by specific caspases and distinguished by their unique molecular mechanisms, supramolecular complexes, and enzymatic properties. Traditionally, caspases are classified as either apoptotic (caspase-2, -3, -6, -7, -8, -9, and -10) or inflammatory (caspase-1, -4, -5, and -11). However, extensive data from the past decades have shown that apoptotic caspases can also drive lytic inflammatory cell death downstream of innate immune sensing and inflammatory responses, such as in the case of caspase-3, -6, -7, and -8. Therefore, more inclusive classification systems based on function, substrate specificity, or the presence of pro-domains have been proposed to better reflect the multifaceted roles of caspases. In this review, we categorize caspases into CARD-, DED-, and short/no pro-domain-containing groups and examine their critical functions in innate immunity and cell death, along with their structural and molecular mechanisms, including active site/exosite properties and substrates. Additionally, we highlight the emerging roles of caspases in cellular homeostasis and therapeutic targeting. Given the clinical relevance of caspases across multiple diseases, improved understanding of these proteins and their structure-function relationships is critical for developing effective treatment strategies.
Collapse
Affiliation(s)
- Eswar Kumar Nadendla
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gary Kasof
- Cell Signaling Technology, Danvers, MA, USA
| | | |
Collapse
|
12
|
Mohamed RA, Abdallah DM, El-Abhar HS. Chaperone-mediated autophagy, heat shock protein 70, and serotonin: novel targets of beta-hydroxybutyrate in HFFD/LPS-induced sporadic Alzheimer's disease model. Inflammopharmacology 2025:10.1007/s10787-025-01754-6. [PMID: 40319428 DOI: 10.1007/s10787-025-01754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/04/2025] [Indexed: 05/07/2025]
Abstract
Sporadic Alzheimer's disease (AD), which accounts for the majority of cases, is sturdily influenced by lifestyle factors such as dietary habits, obesity, and diabetes, leading to its classification as Type 3 diabetes. To model this pathological link, our AD-like model was developed by feeding Wistar male rats a high-fat diet with fructose in drinking water (HFFD) for 8 weeks, followed by a single dose of lipopolysaccharide (LPS). This group was compared with a normal control group fed a standard diet and a β-hydroxybutyrate (BHB)-treated group (125 mg/kg, p.o.), administered starting 3 h after LPS and continuing for 1 week. The results demonstrate that BHB treatment illuminated cognitive gains, as indicated by the Y-maze, Morris water maze, and novel object recognition tests. In addition, it preserved hippocampal cytoarchitecture, reduced neurodegeneration, and attenuated amyloid plaques and phosphorylated Tau deposition. Cellularly, BHB restored critical molecular mechanisms, including increased lysosomal-associated membrane protein 2A (LAMP2A) hippocampal content as the main marker of chaperone-mediated autophagy (CMA), along with the chaperon protein Hsp70. Moreover, BHB alleviated neuroinflammation by inhibiting the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) inflammasome activation alongside the downstream targets cleaved caspase-1 and IL-1β/IL-18 cytokines. BHB also reduced pyroptotic markers, caspase-11 and gasdermin-N, and microglia-induced inflammation as it shifted microglial polarization toward the neuroprotective M2 phenotype. Finally, BHB normalized hippocampal neurotransmitter levels of the inhibited acetylcholine and serotonin. These findings support BHB as a promising, multifaceted treatment for AD, highlighting the roles of CMA, Hsp70, and 5-HT in slowing disease progression and improving cognitive function.
Collapse
Affiliation(s)
- Reem A Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Science and Arts (MSA), Cairo, 12566, Egypt.
| | - Dalaal M Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan S El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
13
|
Huang C, Li J, Wu R, Li Y, Zhang C. Targeting pyroptosis for cancer immunotherapy: mechanistic insights and clinical perspectives. Mol Cancer 2025; 24:131. [PMID: 40319304 PMCID: PMC12049004 DOI: 10.1186/s12943-025-02344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025] Open
Abstract
Pyroptosis is a distinct form of programmed cell death characterized by the rupture of the cell membrane and robust inflammatory responses. Increasing evidence suggests that pyroptosis significantly affects the tumor microenvironment and antitumor immunity by releasing damage-associated molecular patterns (DAMPs) and pro-inflammatory mediators, thereby establishing it as a pivotal target in cancer immunotherapy. This review thoroughly explores the molecular mechanisms underlying pyroptosis, with a particular focus on inflammasome activation and the gasdermin family of proteins (GSDMs). It examines the role of pyroptotic cell death in reshaping the tumor immune microenvironment (TIME) involving both tumor and immune cells, and discusses recent advancements in targeting pyroptotic pathways through therapeutic strategies such as small molecule modulators, engineered nanocarriers, and combinatory treatments with immune checkpoint inhibitors. We also review recent advances and future directions in targeting pyroptosis to enhance tumor immunotherapy with immune checkpoint inhibitors, adoptive cell therapy, and tumor vaccines. This study suggested that targeting pyroptosis offers a promising avenue to amplify antitumor immune responses and surmount resistance to existing immunotherapies, potentially leading to more efficacious cancer treatments.
Collapse
Affiliation(s)
- Chen Huang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiayi Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ruiyan Wu
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yangqian Li
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenliang Zhang
- Division of Abdominal Tumor Multimodality Treatment, Department of Medical Oncology, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
14
|
Chen C, Wang J, Zhu X, Zhang S, Yuan X, Hu J, Liu C, Liu L, Zhang Z, Li J. Lactylation as a metabolic epigenetic modification: Mechanistic insights and regulatory pathways from cells to organs and diseases. Metabolism 2025; 169:156289. [PMID: 40324589 DOI: 10.1016/j.metabol.2025.156289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/20/2025] [Accepted: 04/30/2025] [Indexed: 05/07/2025]
Abstract
In recent years, lactylation, a novel post-translational modification, has demonstrated a unique role in bridging cellular metabolism and epigenetic regulation. This modification exerts a dual-edged effect in both cancer and non-cancer diseases by dynamically integrating the supply of metabolic substrates and the activity of modifying enzymes: on one hand, it promotes tissue homeostasis and repair through the activation of repair genes; on the other, it exacerbates pathological progression by driving malignant phenotypes. In the field of oncology, lactylation regulates key processes such as metabolic reprogramming, immune evasion, and therapeutic resistance, thereby shaping the heterogeneity of the tumor microenvironment. In non-cancerous diseases, including neurodegeneration and cardiovascular disorders, its aberrant activation can lead to mitochondrial dysfunction, fibrosis, and chronic inflammation. Existing studies have revealed a dynamic regulatory network formed by the cooperation of modifying and demodifying enzymes, and have identified mechanisms such as subcellular localization and RNA metabolism intervention that influence disease progression. Nevertheless, several challenges remain in the field. This article comprehensively summarizes the disease-specific regulatory mechanisms of lactylation, with the aim of providing a theoretical foundation for its targeted therapeutic application.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xiandun Yuan
- Department of Rheumatology and Immunology, Peking University Third Hospital, Beijing 100096, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Zhenpeng Zhang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Jun Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
15
|
Leventoğlu E, Bakkaloğlu SA. A new era in the treatment of kidney diseases: NLRP3 inflammasome and cytokine-targeted therapies. Pediatr Nephrol 2025; 40:1515-1521. [PMID: 39485496 DOI: 10.1007/s00467-024-06578-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/03/2024]
Abstract
The kidneys are crucial for filtering blood, managing overall body water, electrolyte, and acid-base balance, and regulating blood pressure. They remove metabolic waste products, toxins, and drugs. In addition, they limit inflammation by clearing cytokines and reduce immune cell activation by removing bacterial components. Dendritic cells (DCs) in the kidney maintain peripheral tolerance. About 85% of filtered water is reabsorbed by the proximal tubule, exposing distal nephron cells to high concentrations of low molecular weight antigens. These antigens are captured by DCs, helping to inactivate potentially autoreactive T cells and maintain tolerance to circulating antigens. In kidney failure, immune function is severely compromised due to the retention of toxins and cytokines, which activate immune cells and increase systemic inflammation. The kidneys are also vulnerable to immune-mediated diseases. Loss of immune homeostasis, characterized by over- or under-activity of the immune response, can adversely affect kidney function. With advances in immunology and cellular biology, biologic therapies targeting various pathways involved in the pathophysiology of kidney diseases are being developed. In this review, the immunologic aspects of kidney diseases and focus on cytokine-based therapies that may hold promise for the treatment of kidney diseases in the future will be presented.
Collapse
Affiliation(s)
- Emre Leventoğlu
- Department of Pediatric Nephrology, Konya City Hospital, Konya, Turkey.
| | - Sevcan A Bakkaloğlu
- Faculty of Medicine, Department of Pediatric Nephrology, Gazi University, Ankara, Turkey
| |
Collapse
|
16
|
Zhang C, Xiang Z, Yang P, Zhang L, Deng J, Liao X. Advances in Nano-Immunomodulatory Systems for the Treatment of Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409190. [PMID: 40145715 PMCID: PMC12061249 DOI: 10.1002/advs.202409190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/26/2025] [Indexed: 03/28/2025]
Abstract
Acute kidney injury (AKI) occurs when there is an imbalance in the immune microenvironment, leading to ongoing and excessive inflammation. Numerous immunomodulatory therapies have been suggested for the treatment of AKI, the current immunomodulatory treatment delivery systems are suboptimal and lack efficiency. Given the lack of effective treatment, AKI can result in multi-organ dysfunction and even death, imposing a significant healthcare burden on both the family and society. This underscores the necessity for innovative treatment delivery systems, such as nanomaterials, to better control pathological inflammation, and ultimately enhance AKI treatment outcomes. Despite the modification of numerous immunomodulatory nanomaterials to target the AKI immune microenvironment with promising therapeutic results, the literature concerning their intersection is scarce. In this article, the pathophysiological processes of AKI are outlined, focusing on the immune microenvironment, discuss significant advances in the comprehension of AKI recovery, and describe the multifunctionality and suitability of nanomaterial-based immunomodulatory treatments in managing AKI. The main obstacles and potential opportunities in the swiftly advancing research field are also clarified.
Collapse
Affiliation(s)
- Chenli Zhang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
- Department of nephrologySecond People's Hospital of YibinYibin644000China
| | - Zeli Xiang
- Department of nephrologySecond People's Hospital of YibinYibin644000China
| | - Pengfei Yang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Ling Zhang
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| | - Jun Deng
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
- Institute of Burn Research, Southwest HospitalState Key Lab of Trauma and Chemical PoisoningArmy Medical University (Third Military Medical University)Chongqing400038China
| | - Xiaohui Liao
- Department of NephrologyThe Second Affiliated HospitalChongqing Medical UniversityChongqing400016China
| |
Collapse
|
17
|
Li Z, Cheng W, Gao K, Liang S, Ke L, Wang M, Fan J, Li D, Zhang P, Xu Z, Li N. Pyroptosis: A spoiler of peaceful coexistence between cells in degenerative bone and joint diseases. J Adv Res 2025; 71:227-262. [PMID: 38876191 DOI: 10.1016/j.jare.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND As people age, degenerative bone and joint diseases (DBJDs) become more prevalent. When middle-aged and elderly people are diagnosed with one or more disorders such as osteoporosis (OP), osteoarthritis (OA), and intervertebral disc degeneration (IVDD), it often signals the onset of prolonged pain and reduced functionality. Chronic inflammation has been identified as the underlying cause of various degenerative diseases, including DBJDs. Recently, excessive activation of pyroptosis, a form of programed cell death (PCD) mediated by inflammasomes, has emerged as a primary driver of harmful chronic inflammation. Consequently, pyroptosis has become a potential target for preventing and treating DBJDs. AIM OF REVIEW This review explored the physiological and pathological roles of the pyroptosis pathway in bone and joint development and its relation to DBJDs. Meanwhile, it elaborated the molecular mechanisms of pyroptosis within individual cell types in the bone marrow and joints, as well as the interplay among different cell types in the context of DBJDs. Furthermore, this review presented the latest compelling evidence supporting the idea of regulating the pyroptosis pathway for DBJDs treatment, and discussed the potential, limitations, and challenges of various therapeutic strategies involving pyroptosis regulation. KEY SCIENTIFIC CONCEPTS OF REVIEW In summary, an interesting identity for the unregulated pyroptosis pathway in the context of DBJDs was proposed in this review, which was undertaken as a spoiler of peaceful coexistence between cells in a degenerative environment. Over the extended course of DBJDs, pyroptosis pathway perpetuated its activity through crosstalk among pyroptosis cascades in different cell types, thus exacerbating the inflammatory environment throughout the entire bone marrow and joint degeneration environment. Correspondingly, pyroptosis regulation therapy emerged as a promising option for clinical treatment of DBJDs.
Collapse
Affiliation(s)
- Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenxiang Cheng
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Songlin Liang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liqing Ke
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengjie Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Jilin Fan
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Dandan Li
- College of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050011, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Biomedical Engineering, Shenzhen University of Advanced Technology, Shenzhen 518000, China; Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, 518000 China; Shandong Zhongke Advanced Technology Co., Ltd., Jinan, 250300 China.
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| | - Nianhu Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250014, China; Department of Orthopedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
18
|
Liu R, Zhao Y, Chen Y, Chen X, Yang G, Li H. NEK7 is an essential regulator in NLRP3 inflammasome assembly of common carp (Cyprinus carpio L.). Int J Biol Macromol 2025; 305:141190. [PMID: 39965690 DOI: 10.1016/j.ijbiomac.2025.141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/28/2025] [Accepted: 02/15/2025] [Indexed: 02/20/2025]
Abstract
The NIMA-related kinase 7 (NEK7), a member of the Never in Mitosis Gene A (NIMA) kinase family, participates in the assembly of the NLRP3 inflammasome in mammalian. However, it is currently unclear that the functions of NEK7 in the activation and assembly of NLRP3 inflammasome in teleost. In this research, the cDNA sequence of NEK7 of common carp (CcNEK7) was cloned and its role in the assembly of CcNLRP3 inflammasome was investigated. CcNEK7 was conserved throughout evolution, with its amino acid sequence, three-dimensional structure, and subcellular localization being similar to those in mammals. qPCR detection showed that CcNEK7 had the highest expression levels in the spleen of healthy common carp and could respond to bacteria and virus infection. It was additionally discovered that CcNEK7 can interact with CcNLRP3 and promote the oligomerization of CcNLRP3 and CcASC. Additionally, CcNEK7 significantly increased the CcNLRP3-induced cytotoxicity and pyroptosis, suggesting that CcNEK7 may exerts a regulatory function in the assembly of the CcNLRP3 inflammasome. These results provide a foundation for further understanding the assembly and regulation mechanisms of the inflammasome in bony fish, and also provides a target and theoretical framework for preventing and controlling of various aquatic animal diseases.
Collapse
Affiliation(s)
- Rongrong Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Yue Zhao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Yixin Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Xinping Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, PR China..
| |
Collapse
|
19
|
de Oliveira IM, Chaves MM. The NLRP3 Inflammasome in inflammatory diseases: Cellular dynamics and role in granuloma formation. Cell Immunol 2025; 411-412:104961. [PMID: 40339528 DOI: 10.1016/j.cellimm.2025.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/17/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
The innate immune system recognizes pathogen-associated molecular patterns (PAMPs) and damage associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). Inflammasomes, cytoplasmic protein complexes, are activated in response to PAMPs and DAMPs, leading to the release of inflammatory cytokines such as IL-1β and IL-18. NLRP3 inflammasome is one of the best characterized inflammasomes and recently its activation has been associated with granuloma formation, structures that aggregate immune cells in response to infections, such as those caused by bacteria, fungi and parasites, and autoinflammatory diseases, such as sarcoidosis. Activation of NLRP3 inflammasomes in macrophages induces the release of cytokines that recruit immune cells, such as monocytes and lymphocytes, to the site of infection. Neutrophils, monocytes, T and B lymphocytes are important in the formation and maintenance of granulomas. Although NLRP3 plays a key role in the immune response, cell recruitment and granuloma formation, many aspects of its function in different cell types remain to be elucidated. In this review, we aim to outline the NLRP3 inflammasome not only as a protein complex that aids innate immune cells in combating intracellular pathogens but also as a platform with broader implications in orchestrating immune responses. This underexplored aspect of the NLRP3 inflammasome presents a novel perspective on its involvement in immunity. Thus, we review the current understanding of the role of the NLRP3 inflammasome in immune cell infiltration and its significance in the organization and formation of granulomas in inflammatory diseases.
Collapse
Affiliation(s)
- Isadora M de Oliveira
- Department of Cellular and Molecular Biology and Pathogenic Bioagents, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Mariana M Chaves
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil; Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
20
|
Zhuang X, Chen X, Cao L, Wang B, Wang Z, Li S, Li H, Li C, Yang N. The class A scavenger receptor member 3 (SCARA3) regulates cell apoptosis through X-linked apoptosis inhibitory protein (XIAP) in turbot (Scophthalmus maximus L.). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105370. [PMID: 40194751 DOI: 10.1016/j.dci.2025.105370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/29/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Class A scavenger receptor 3 (SCARA3), a macrophage scavenger receptor-like protein, plays important roles in inhibiting cell proliferation, migration, and invasion. In the present study, a SCARA3 gene of turbot (SmSCARA3) (Gene ID: 118289953) with an 1815 bp ORF encoding 604 amino acids was identified. Phylogenetic analysis revealed that SmSCARA3 showed the closest relationship to that counterpart of olive flounder (Paralichthys olivaceus). The synteny analysis demonstrated conserved syntenic patterns across selected vertebrates. In addition, SmSCARA3 was ubiquitously expressed in all the examined tissues, with the highest expression level in intestine and the lowest expression level in the brain. SmSCARA3 exhibited different expression patterns in mucosal tissues (intestine, gill, skin) after two bacterial infections. Subsequently, recombinant SmSCARA3 protein (rSmSCARA3) revealed the strong binding affinity to LPS and responded primarily to LPS stimulation in intestinal cells of turbot. Additionally, the interference and overexpression experiments indicated that SmSCARA3 was associated with apoptosis related genes, such as Caspase1, Caspase3 and Caspase3a, and it could activate Caspase3 in HEPG2 cells. Moreover, flow cytometry revealed the apoptosis of SmSCARA3 overexpression group increased by 10.03%, which was consistent with the effect of SmSCARA3 on proliferation inhibition in intestinal cells of turbot. The cell apoptosis levels in the SmSCARA3-Flag and XIAP-HA experimental group were significantly lower than that in the control group (51.17% vs 72.72%). Finally, the Co-IP assay showed that SmSCARA3 could directly interact with XIAP. In conclusion, our results indicated that SmSCARA3 could activate Caspase3 and modulate apoptosis through XIAP , highlighting its potential roles as a therapeutic target for fish diseases.
Collapse
Affiliation(s)
- Xinghua Zhuang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xuan Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lili Cao
- Shandong Freshwater Fisheries Research Institute, Jinan, 250013, China
| | - Beibei Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhongyi Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Suwan Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Honghong Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Li
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Ning Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
21
|
Sachetto ATA, Archibald SJ, Perkins M, Zhang G, Zhang Y, Ye D, Grover SP, Wu C, Li Z, Mackman N. Pathways regulating the levels of tissue factor-positive extracellular vesicles and activation of coagulation in endotoxemic mice. J Thromb Haemost 2025:S1538-7836(25)00262-4. [PMID: 40286911 DOI: 10.1016/j.jtha.2025.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/03/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Sepsis and endotoxemia are associated with activation of coagulation as part of the host response to infection, but this can lead to disseminated intravascular coagulation. Lipopolysaccharide (LPS) is detected by the cell surface receptor toll-like receptor (TLR)4 and the intracellular receptor caspase 11. OBJECTIVES This study aimed to determine the roles of TLR4, caspase 11, and the NOD-, LRR-, and pyrin domain-containing protein (NLRP)3 inflammasome in increases of extracellular vesicle (EV) tissue factor (TF) activity and activation of coagulation in a mouse endotoxemia model. METHODS LPS was injected intraperitoneally into control mice and Tlr4-/-, Casp11-/-, Nlrp3-/-, or Casp1-/- mice or wild-type mice treated with the TLR4 inhibitor TAK-242 or the NLRP3 inhibitor MCC950. Blood samples were collected at 3 and 8 hours for analysis of cells, tumor necrosis factor α, interleukin (IL)-6, IL-1β, soluble intercellular adhesion molecule 1, EV TF activity, and thrombin-antithrombin (TAT) complexes. RESULTS LPS induced IL-1β at 3 and 8 hours, indicating inflammasome activation at these times. Tlr4 deficiency was associated with a significant decrease in tumor necrosis factor α and IL-6 but not soluble intercellular adhesion molecule 1 in endotoxemic mice. LPS induction of EV TF activity and TAT reduced significantly in Tlr4-/- mice at both 3 and 8 hours postinjection. In contrast, EV TF activity and TAT were only reduced in Casp11-/- mice at 8 hours post-LPS injection. CONCLUSION Our results indicate that TLR4 plays a major role whereas caspase 11 and the NLRP3 inflammasome play minor roles in the generation of TF-positive EVs and activation of coagulation in a mouse model of endotoxemia.
Collapse
Affiliation(s)
- Ana T A Sachetto
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sierra J Archibald
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Megan Perkins
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Guoying Zhang
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Yan Zhang
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Dien Ye
- SAHA Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Steven P Grover
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Congqing Wu
- SAHA Cardiovascular Research Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Zhenyu Li
- Irma Lerma Rangel School of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Nigel Mackman
- UNC Blood Research Center, Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
22
|
Li W, Liu T, Chen Y, Sun Y, Li C, Dong Y. Regulation and therapeutic potential of NLRP3 inflammasome in intestinal diseases. J Leukoc Biol 2025; 117:qiaf014. [PMID: 40276926 DOI: 10.1093/jleuko/qiaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Indexed: 04/26/2025] Open
Abstract
The NOD-like receptor family, particularly the protein 3 that contains the pyrin domain (NLRP3), is an intracellular sensing protein complex responsible for detecting patterns associated with pathogens and injuries. NLRP3 plays a crucial role in the innate immune response. Currently, a wide range of research has indicated the crucial importance of NLRP3 in various inflammatory conditions. Similarly, the NLRP3 inflammasome plays a significant role in preserving intestinal balance and impacting the advancement of diseases. In addition, several randomized trials have demonstrated the safety and efficacy of targeting NLRP3 in the treatment of colitis, colorectal cancer, and related diseases. This review explores the mechanisms of NLRP3 assembly and activation in the gut. We describe its pathological significance in intestinal diseases. Finally, we summarize current and future therapeutic approaches targeting NLRP3 for intestinal diseases.
Collapse
Affiliation(s)
- Wenxue Li
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Tianya Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yaoxing Chen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| | - Yan Sun
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Chengzhong Li
- Department of Horticulture and Landscape Architecture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Yulan Dong
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China
| |
Collapse
|
23
|
Zhang Y, Zhang G, Dong B, Pandeya A, Cui J, Valenca SDS, Yang L, Qi J, Chai Z, Wu C, Kirchhofer D, Shiroishi T, Khasawneh F, Tao M, Shao F, Waters CM, Wei Y, Li Z. Pyroptosis of pulmonary fibroblasts and macrophages through NLRC4 inflammasome leads to acute respiratory failure. Cell Rep 2025; 44:115479. [PMID: 40158217 PMCID: PMC12087274 DOI: 10.1016/j.celrep.2025.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/16/2024] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
The NAIP/NLRC4 inflammasome plays a pivotal role in the defense against bacterial infections, with its in vivo physiological function primarily recognized as driving inflammation in immune cells. Acute lung injury (ALI) is a leading cause of mortality in sepsis. In this study, we identify that the NAIP/NLRC4 inflammasome is highly expressed in both macrophages and pulmonary fibroblasts and that pyroptosis of these cells plays a critical role in lung injury. Mice challenged with gram-negative bacteria or flagellin developed lethal lung injury, characterized by reduced blood oxygen saturation, disrupted lung barrier function, and escalated inflammation. Flagellin-induced lung injury was protected in caspase-1 or GSDMD-deficient mice. These findings enhance our understanding of the NAIP/NLRC4 inflammasome's (patho)physiological function and highlight the significant role of inflammasome activation and pyroptosis in ALI during sepsis.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Guoying Zhang
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Brittany Dong
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA
| | - Ankit Pandeya
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jian Cui
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40506, USA
| | | | - Ling Yang
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Jiaqian Qi
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Zhuodong Chai
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Congqing Wu
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40506, USA; Department of Surgery, University of Kentucky, Lexington, KY 40506, USA
| | - Daniel Kirchhofer
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA 94080, USA
| | | | - Fadi Khasawneh
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Min Tao
- Department of Oncology, First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206 China
| | - Christopher M Waters
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - Yinan Wei
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Zhenyu Li
- Department of Pharmaceutical Sciences, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
24
|
Song S, Wang J, Ouyang X, Huang R, Wang F, Xie J, Chen Q, Hu D. Therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04036-8. [PMID: 40257490 DOI: 10.1007/s00210-025-04036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/06/2025] [Indexed: 04/22/2025]
Abstract
As a form of inflammation-associated cell death, pyroptosis has gained widespread attention in recent years. Accumulating evidence indicates that pyroptosis regulates tumor growth and is associated with autoimmune disorders and inflammatory response. Paclitaxel, a traditional Chinese medicine, usually induces death of cancer cells as a chemotherapeutic agent. Previous studies have revealed that paclitaxel can exert an anti-tumor effect through a variety of cell death mechanisms, of which pyroptosis plays a pivotal role in inhibiting tumor growth and enhancing anti-tumor immunity. In this review, we summarize the current advances in therapeutic connections between pyroptosis and paclitaxel in anti-tumor effects.
Collapse
Affiliation(s)
- Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Renyin Huang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Fang Wang
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junke Xie
- Jingshan Union Hospital, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
25
|
Sharma BR, Choudhury SM, Abdelaal HM, Wang Y, Kanneganti TD. Innate immune sensor NLRP3 drives PANoptosome formation and PANoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025:vkaf042. [PMID: 40249072 DOI: 10.1093/jimmun/vkaf042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/30/2025] [Indexed: 04/19/2025]
Abstract
Inflammasomes are multiprotein innate immune complexes formed in response to infections, tissue damage, or cellular stress that promote the maturation and release of IL-1β/IL-18 and are implicated in lytic cell death. The NLRP3 inflammasome is canonically activated by an initial priming event followed by an activation stimulus, leading to rapid cell death that occurs through caspase-1 (CASP1) and gasdermin D (GSDMD) activation, called pyroptosis. CASP1- and GSDMD-deficient cells are protected from the rapid LPS plus ATP-induced pyroptosis. However, innate immune responses physiologically occur over time, extending beyond minutes to hours and days. Therefore, in this study, we assessed lytic cell death beyond the early timepoints. While cells lacking the innate immune sensor NLRP3 were protected from cell death induced by the canonical NLRP3 trigger, LPS priming and ATP stimulation (LPS plus ATP), for extended time, CASP1- and GSDMD-deficient cells started to lyse in a time-dependent manner after 2 h. Nevertheless, robust IL-1β and IL-18 release was still dependent on CASP1 activation. These data suggested that NLRP3 engages an additional innate immune, lytic cell death pathway. Indeed, LPS plus ATP induced the activation of caspases and RIPKs associated with PANoptosis in WT cells, and cells deficient in PANoptosis machinery were protected from cell death for extended times. A PANoptosome complex containing NLRP3, ASC, CASP8, and RIPK3 was observed by microscopy in WT, as well as CASP1- or GSDMD-deficient, cells by 30 min post-stimulation. Overall, these findings highlight the central role of NLRP3 as a PANoptosome sensor. Given the physiological role of innate immune cell death, PANoptosis, in health and disease, our study emphasizes the importance of a comprehensive understanding of PANoptosomes, and their components, as therapeutic targets.
Collapse
Affiliation(s)
- Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sk Mohiuddin Choudhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Hadia M Abdelaal
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Yaqiu Wang
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | | |
Collapse
|
26
|
Lin Y, Chen Q, Liu S, Liu B. Ocifisertib alleviates the gasdermin D-independent pyroptosis of nucleus pulposus cells by targeting GSDME. Sci Rep 2025; 15:13280. [PMID: 40247083 PMCID: PMC12006288 DOI: 10.1038/s41598-025-98283-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/10/2025] [Indexed: 04/19/2025] Open
Abstract
This study aimed to elucidate the cellular and molecular mechanisms of GSDME in GSDMD independent nucleus pulposus (NP) cell pyroptosis. We analyzed microarray datasets to identify differentially expressed genes (DEGs) in the progression of intervertebral disc degeneration (IDD) and conducted Gene Ontology analysis to elucidate DEGs-participated biological processes. We utilized lipopolysaccharides (LPS) to treat human primary NP cells to establish pyroptosis cell model. And siRNA was used to simulate a GSDMD-deficient environment. We used several regulators to figure out how GSDME was participate in pyroptosis via a GSDMD independent pathway. The molecular docking was conducted to identify compound that could possibly bind to GSDME and suppress its cleavage. Finally, Ocifisertib was intraperitoneally administered into IDD rat model to explore its therapeutic potential. Pyroptosis was activated in IDD. In vitro, LPS induced NP cell pyroptosis by promoting the cleavage of GSDMD and GSDME. In the absence of GSDMD, the cleavage of GSDME compensatively upregulated to mediate pyroptosis. Ocifisertib alleviated pyroptosis-mediated IDD by inhibiting GSDME cleavage in annulus fibrosus puncture-induced IDD rat model. Our study provides evidence that the cleavage of GSDME aggravates IDD by accelerating NP cell pyroptosis and demonstrates that Ocifisertib has therapeutic potential in IDD treatment.
Collapse
Affiliation(s)
- Yu Lin
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China
| | - Qiyong Chen
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China.
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China.
| | - Shaoqiang Liu
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China
| | - Boling Liu
- Department of Spine Surgery, Fuzhou Second General Hospital, 47 Shangteng Road, Cangshan District, Fuzhou, 350007, China
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, 350007, China
| |
Collapse
|
27
|
Miao R, Wang X, Zhang J, Kang Q, Liu Q, Luo X, Hou J, Gao B. Manipulation of cancer cell pyroptosis for therapeutic approaches: challenges and opportunities. Biomark Res 2025; 13:58. [PMID: 40200299 PMCID: PMC11980353 DOI: 10.1186/s40364-025-00771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/23/2025] [Indexed: 04/10/2025] Open
Abstract
Remarkable advances have been achieved following discoveries that gasdermins are the executioners of pyroptosis. The pyroptotic process consists a subcellular permeabilization phase and a cell lysis phase, the latter of which is irreversible. Besides immune cells, pyroptosis has also been observed in cancer cells, which exhibit distinct mechanisms compared to canonical immune cell pyroptosis. Although chronic cancer cell pyroptosis fuels tumor growth, intense pyroptotic cell death in tumor cells enhances anticancer immunity by promoting killer lymphocytes infiltration. Triggering pyroptosis in cancer cells is emerging as a promising strategy for cancer treatment. In this review, we introduce the process of cancer cell pyroptosis and its role in antitumor immunity, discuss the translation of these insights into therapies, and highlight current challenges and opportunities in the investigation of cancer cell pyroptosis.
Collapse
Affiliation(s)
- Rui Miao
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Jingyv Zhang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qinyv Kang
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Qing Liu
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Xianglin Luo
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China
| | - Junwei Hou
- Department of Otolaryngology Head and Neck Surgery, Central South University, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Xiangya Road 87, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Xiangya Road 87, Changsha, Hunan, 410008, China.
| | - Baorong Gao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
- Department of Obstetrics and Gynaecology, West China Second University Hospital, No. 20, Section 3, Renmin Nan Lu, Chengdu, 610041, China.
| |
Collapse
|
28
|
Wen X, Zuo Z, Yang L, Qi X, Wei Z, Xu S, Li J, Luo X, Hu G, Liao Z. Bortezomib-loaded hybrid liposome inducing pyroptosis for targeted therapy against colorectal cancer. Drug Deliv Transl Res 2025:10.1007/s13346-025-01845-5. [PMID: 40205156 DOI: 10.1007/s13346-025-01845-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
Colorectal cancer (CRC) is a highly invasive malignant tumor. At present, the combination of surgery with chemotherapy constitutes the predominant strategy in the treatment of CRC. The serious side effects of chemotherapy profoundly impair patients' quality of life. It is of great importance to develop novel approach to reduce side effects and increase anti-tumor efficacy in CRC treatment. Bortezomib (Btz), a reversible proteasome inhibitor, possessing both chemotherapeutic and immunotherapeutic effects by inducing cell pyroptotic. However, the application of Btz is impeded by their lack of tumor-targeting capability and lipid solubility. To address these restrictions and develop an ideal drug carrier, we performed a biohybrid approach by fusing liposomes with artificial extracellular vesicles engineered from cancer cells to generate hybrid liposomes (HV@Btz) for the targeted delivery of Btz. In contrast to liposomes, HV@Btz possessed higher cellular uptake efficiency and strong cytotoxicity against CT26 cells by inducing cell pyroptotic. Additionally, HV@Btz had superior tumor-targeting ability and prolonged circulation time. HV@Btz significantly suppressed tumor growth and triggered robust anti-tumor immune response with minimum systemic toxicity in both subcutaneous and orthotopic CRC-bearing mice. This study demonstrated that HV@Btz could serve as a scalable approach by inducing cell pyroptotic for the management of colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyong Wen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhongkun Zuo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Leping Yang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiaoyan Qi
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zuxing Wei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Shu Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jian Li
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiong Luo
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Gunchu Hu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhiqiang Liao
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
29
|
Hsu CW, Okano T, Niinuma Y, Leewananthawet A, Iida T, Onsoi P, Boonyaleka K, Ashida H, Suzuki T. A complex of NLRP3 with caspase-4 is essential for inflammasome activation by Tannerella forsythia infection. Int Immunol 2025; 37:261-271. [PMID: 39673522 DOI: 10.1093/intimm/dxae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/02/2024] [Indexed: 12/16/2024] Open
Abstract
Periodontitis, a chronic inflammatory disease of periodontal tissue, is often associated with a group of pathogenic bacteria known as the "red complex", including Tannerella forsythia. Previous papers showed that T. forsythia induces many kinds of inflammatory cytokines including interleukin (IL)-1β regulated by inflammasome activation. However, the physiological function of periodontitis and the mechanism to induce inflammasome activation by T. forsythia infection are poorly understood. In this study, we demonstrate that the Nod-like receptor pyrin domain containing 3 (NLRP3) and caspase-4 are essential for inflammasome activation by T. forsythia infection, playing a crucial role in IL-1β maturation in THP-1 cells. We also showed that the knockout of ASC or Gasdermin D suppresses pyroptotic cell death. Moreover, co-immunoprecipitation assays confirmed the formation of a complex involving caspase-4, NLRP3, and ASC following T. forsythia infection. Additionally, reactive oxygen species production was identified as a key factor in caspase-4-mediated NLRP3 inflammasome activation by T. forsythia infection. These results enhance our understanding of inflammasome activation in response to T. forsythia infection and provide new insights into the pathogenic mechanisms of periodontitis.
Collapse
Affiliation(s)
- Chen-Wei Hsu
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Tokuju Okano
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Yuiko Niinuma
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Anongwee Leewananthawet
- Specialized Dental Center, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tamako Iida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Poramed Onsoi
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Kotchakorn Boonyaleka
- Division of Periodontology, Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Hiroshi Ashida
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| | - Toshihiko Suzuki
- Department of Bacterial Pathogenesis, Infection and Host Response, Graduate School of Medical and Dental Sciences, Institute of SCIENCE TOKYO, Tokyo, Japan
| |
Collapse
|
30
|
Barbero-Úriz Ó, Valenti M, Molina M, Fernández-Acero T, Cid VJ. Modeling Necroptotic and Pyroptotic Signaling in Saccharomyces cerevisiae. Biomolecules 2025; 15:530. [PMID: 40305268 PMCID: PMC12025182 DOI: 10.3390/biom15040530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The yeast Saccharomyces cerevisiae is the paradigm of a eukaryotic model organism. In virtue of a substantial degree of functional conservation, it has been extensively exploited to understand multiple aspects of the genetic, molecular, and cellular biology of human disease. Many aspects of cell signaling in cancer, aging, or metabolic diseases have been tackled in yeast. Here, we review the strategies undertaken throughout the years for the development of humanized yeast models to study regulated cell death (RCD) pathways in general, and specifically, those related to innate immunity and inflammation, with an emphasis on pyroptosis and necroptosis. Such pathways involve the assembly of distinct modular signaling complexes such as the inflammasome and the necrosome. Like other supramolecular organizing centers (SMOCs), such intricate molecular arrangements trigger the activity of enzymes, like caspases or protein kinases, culminating in the activation of lytic pore-forming final effectors, respectively, Gasdermin D (GSDMD) in pyroptosis and MLKL in necroptosis. Even though pathways related to those governing innate immunity and inflammation in mammals are missing in fungi, the heterologous expression of their components in the S. cerevisiae model provides a "cellular test tube" to readily study their properties and interactions, thus constituting a valuable tool for finding novel therapies.
Collapse
Affiliation(s)
| | | | | | | | - Víctor J. Cid
- Department of Microbiology and Parasitology, School of Pharmacy, Universidad Complutense de Madrid, Pza. de Ramón y Cajal s/n, 28040 Madrid, Spain; (Ó.B.-Ú.); (M.V.); (M.M.); (T.F.-A.)
| |
Collapse
|
31
|
Ogawa S, Hori H, Niwa M, Itoh M, Lin M, Yoshida F, Ino K, Kawanishi H, Narita M, Nakano W, Imai R, Matsui M, Kamo T, Kunugi H, Hattori K, Kim Y. Serum lipid and plasma fatty acid profiles in PTSD patients and healthy individuals: Associations with symptoms, cognitive function, and inflammatory markers. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111298. [PMID: 39988258 DOI: 10.1016/j.pnpbp.2025.111298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/22/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Increasing evidence suggests that posttraumatic stress disorder (PTSD), a serious mental health condition, is associated with physical health problems. Lipid-related molecules are crucial for central nervous system functions associated with PTSD symptoms; however, case-control studies exploring the relationship between PTSD and lipid-related molecules are scarce. We examined 68 civilian PTSD patients and 97 healthy controls, evaluating PTSD symptoms, childhood maltreatment history, suicidality, and cognitive functions. Cholesterol, triglycerides, and inflammation-related marker levels were analyzed in serum, while fatty acid levels were measured in plasma. Compared to controls, patients exhibited significantly lower high-density lipoprotein cholesterol and n-6 linoleic acid levels, alongside higher saturated palmitic acid levels and the triene-to-tetraene (T/T) ratio. PTSD symptoms, particularly hyperarousal, were significantly positively correlated with n-6 γ-linolenic, n-6 dihomo-γ-linolenic, and n-9 mead acid levels, and the T/T ratio. Cognitive functions were significantly positively correlated with n-3 docosahexaenoic acid and total n-3 fatty acid levels, and negatively correlated with saturated lauric, palmitic, and total saturated fatty acid levels. Suicidality was significantly positively correlated with dihomo-γ-linolenic acid, mead acid levels, and the T/T ratio, and negatively correlated with polyunsaturated fatty acid (PUFA) levels. Inflammation-related marker levels were significantly correlated with higher palmitic, n-9 oleic, and total n-9 fatty acid levels, and lower linoleic acid and PUFA levels. Latent profile analysis (LPA) revealed distinct subgroups associated with unique fatty acid profiles. These lipid-related alterations may improve the understanding of PTSD pathophysiology. Distinct fatty acid profiles identified by LPA may help subtype PTSD patients and guide nutrition-based personalized treatment strategies.
Collapse
Affiliation(s)
- Shintaro Ogawa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Hiroaki Hori
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan.
| | - Madoka Niwa
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Mariko Itoh
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mingming Lin
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Laboratory for Imagination and Executive Functions, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Fuyuko Yoshida
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Keiko Ino
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Hitomi Kawanishi
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Behavioral Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Megumi Narita
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Wakako Nakano
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Risa Imai
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry and Cognitive-Behavioral Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan; Risa Irinaka Mental Clinic, Nagoya, Aichi, Japan
| | - Mie Matsui
- Department of Clinical Cognitive Neuroscience, Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Toshiko Kamo
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Wakamatsu-cho Mental and Skin Clinic, Shinjuku, Tokyo, Japan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Psychiatry, Teikyo University School of Medicine, Itabashi, Tokyo, Japan
| | - Kotaro Hattori
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Department of Bioresources, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshiharu Kim
- Department of Behavioral Medicine, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
32
|
Davoodi Karsalari P, Asna Ashari K, Rezaei N. NLRP3 inflammasome: significance and potential therapeutic targets to advance solid organ transplantation. Expert Opin Ther Targets 2025; 29:281-301. [PMID: 40317257 DOI: 10.1080/14728222.2025.2500425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
INTRODUCTION NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome, integral to innate immunity, has become a pivotal figure in the inflammatory cascade. AREAS COVERED This article provides an overview of the NLRP3 inflammasome, reviewing its complicated structure, as well as the diverse signals that trigger its assembly. Furthermore, we explored the intricate relationship between the NLRP3 inflammasome and acute and chronic rejection in solid organ transplantation. Solid organ transplantation stands as a crucial medical intervention, yet its efficacy is challenged by immune-mediated complications, including acute rejection, ischemia-reperfusion injury, and chronic allograft rejection. We also investigated the encouraging potential of immunosuppressive therapies targeting NLRP3 signaling to alleviate inflammatory responses linked to transplantation. EXPERT OPINION In recent years, the NLRP3 inflammasome has garnered considerable attention owing to its critical functions spanning diverse fields. This study highlights the critical function of the NLRP3 inflammasome and presents insights, offering fresh perspectives on how its modulation might help to improve the outcomes among patients who undergo solid organ transplantations.
Collapse
Affiliation(s)
- Pershia Davoodi Karsalari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kosar Asna Ashari
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Pediatrics, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity, Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Miao Z, Zhang X, Xu Y, Liu Y, Yang Q. Unveiling the nexus: pyroptosis and its crucial implications in liver diseases. Mol Cell Biochem 2025; 480:2159-2176. [PMID: 39477911 DOI: 10.1007/s11010-024-05147-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/22/2024] [Indexed: 04/02/2025]
Abstract
Pyroptosis, a distinctive form of programmed cell death orchestrated by gasdermin proteins, manifests as cellular rupture, accompanied by the release of inflammatory factors. While pyroptosis is integral to anti-infection immunity, its aberrant activation has been implicated in tumorigenesis. The liver, as the body's largest metabolic organ, is rich in various enzymes and governs metabolism. It is also the primary site for protein synthesis. Recent years have witnessed the emergence of pyroptosis as a significant player in the pathogenesis of specific liver diseases, exerting a pivotal role in both physiological and pathological processes. A comprehensive exploration of pyroptosis can unveil its contributions to the development and regression of conditions such as hepatitis, cirrhosis, and hepatocellular carcinoma, offering innovative perspectives for clinical prevention and treatment. This review consolidates current knowledge on key molecules involved in cellular pyroptosis and delineates their roles in liver diseases. Furthermore, we discuss the potential of leveraging pyroptosis as a novel or existing anti-cancer strategy.
Collapse
Affiliation(s)
- Zeyu Miao
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Xiaorong Zhang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yang Xu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Yan Liu
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China
| | - Qing Yang
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin Province, China.
| |
Collapse
|
34
|
Lin M, Zhang C, Li H, Li K, Gou S, He X, Lv C, Gao K. Pyroptosis for osteoarthritis treatment: insights into cellular and molecular interactions inflammatory. Front Immunol 2025; 16:1556990. [PMID: 40236711 PMCID: PMC11996656 DOI: 10.3389/fimmu.2025.1556990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/13/2025] [Indexed: 04/17/2025] Open
Abstract
Osteoarthritis (OA) is a widely prevalent chronic degenerative disease often associated with significant pain and disability. It is characterized by the deterioration of cartilage and the extracellular matrix (ECM), synovial inflammation, and subchondral bone remodeling. Recent studies have highlighted pyroptosis-a form of programmed cell death triggered by the inflammasome-as a key factor in sustaining chronic inflammation. Central to this process are the inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18), which play crucial roles mediating intra-articular pyroptosis through the NOD-like receptor protein 3 (NLRP3) inflammasome. This paper investigates the role of the pyroptosis pathway in perpetuating chronic inflammatory diseases and its linkage with OA. Furthermore, it explores the mechanisms of pyroptosis, mediated by nuclear factor κB (NF-κB), the purinergic receptor P2X ligand-gated ion channel 7 (P2X7R), adenosine monophosphate (AMP)-activated protein kinase (AMPK), and hypoxia-inducible factor-1α (HIF-1α). Additionally, it examines the interactions among various cellular components in the context of OA. These insights indicate that targeting the regulation of pyroptosis presents a promising therapeutic approach for the prevention and treatment of OA, offering valuable theoretical perspectives for its effective management.
Collapse
Affiliation(s)
- Minghui Lin
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cunxin Zhang
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Haiming Li
- Second College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kang Li
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Shuao Gou
- Jining No.1 People's Hospital, affiliated with Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xiao He
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
- Medical Integration and Practice Center, Shandong University, Jinan, China
| | - Chaoliang Lv
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| | - Kai Gao
- Department of Orthopedics, Jining No.1 People’s Hospital, Jining, China
| |
Collapse
|
35
|
Li C, Ma Z, Wei X, Wang Y, Wu J, Li X, Sun X, Ding Z, Yang C, Zou Y. Bufalin Ameliorates Myocardial Ischemia/Reperfusion Injury by Suppressing Macrophage Pyroptosis via P62 Pathway. J Cardiovasc Transl Res 2025; 18:221-236. [PMID: 39733202 PMCID: PMC12043737 DOI: 10.1007/s12265-024-10577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/29/2024] [Indexed: 12/30/2024]
Abstract
Bufalin, which is isolated from toad venom, exerts positive effects on hearts under pathological circumstance. We aimed to investigate the effects and mechanisms of bufalin on myocardial I/R injury. In vivo, bufalin ameliorated myocardial I/R injury, which characteristics with better ejection function, decreased infarct size and less apoptosis. The levels of pyroptotic proteins were increased in I/R-treated macrophages and inflammatory cytokines expressed more in I/R-induced mouse, which could be attenuated by bufalin. Bufalin also reduced H/R-treated macrophage pyroptosis in vitro. Autophagic flux blockage and ROS accumulation were reduced by bufalin in impaired macrophages. Overexpression of p62 abrogated the anti-proptosis and anti-oxidative effects of bufalin. The levels of apoptosis related proteins were changed and TUNEL-positive ratio was raised in cardiomyocytes that received conditioned medium treatment with H/R-treated macrophages, while bufalin pretreatment could reduce apoptosis. These findings indicate that bufalin may attenuate myocardial I/R injury by suppressing macrophage pyroptosis via P62 pathway.
Collapse
Affiliation(s)
- Chang Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhen Ma
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China
| | - Xiang Wei
- Department of Cardiology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai, 200032, China
| | - Ying Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xuan Li
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Xiaolei Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
| | - Cheng Yang
- Department of Cardiac Surgery, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong'an Road, Shanghai, 200032, China.
- State Key Laboratory of Genetic Engineering, Fudan University, 138 Yixueyuan Road, Shanghai, 200438, China.
| |
Collapse
|
36
|
Xu X, Yang T, An J, Li B, Dou Z. Liver injury in sepsis: manifestations, mechanisms and emerging therapeutic strategies. Front Immunol 2025; 16:1575554. [PMID: 40226624 PMCID: PMC11985447 DOI: 10.3389/fimmu.2025.1575554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Sepsis is defined as a condition related to infection that manifests with multiorgan dysfunction, representing a life-threatening state. Consequently, severe complications frequently occur, with liver injury being one of the most prevalent serious complications of sepsis. Liver dysfunction during sepsis serves as an independent predictor of mortality. This review provides a comprehensive overview of current research on sepsis-induced liver injury (SILI), encompassing the clinical manifestations, diagnostic criteria, pathogenesis and therapeutic strategies associated with this condition. SILI may manifest as hypoxic hepatitis due to ischemia and shock, cholestasis resulting from abnormal bile metabolism, or bile duct sclerosis. The pathophysiology of sepsis involves intricate interactions among the inflammatory response, oxidative stress, and cell death. All of these factors complicate treatment and represent potential targets for therapeutic intervention. Furthermore, this review addresses the limitations inherent in conventional therapies currently employed for managing SILI and emphasizes the potential of novel targeted strategies aimed at addressing the fundamental mechanisms underlying this condition.
Collapse
Affiliation(s)
- Xinqi Xu
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Tingyu Yang
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Jiapan An
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Bin Li
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| | - Zhimin Dou
- The First Hospital of Lanzhou University & The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Egan MS, O'Rourke EA, Mageswaran SK, Zuo B, Martynyuk I, Demissie T, Hunter EN, Bass AR, Chang YW, Brodsky IE, Shin S. Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages. eLife 2025; 12:RP90107. [PMID: 40162563 PMCID: PMC11957546 DOI: 10.7554/elife.90107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into host cells and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and restricting bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and Ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells as well as increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.
Collapse
Affiliation(s)
- Marisa S Egan
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emily A O'Rourke
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shrawan Kumar Mageswaran
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Biao Zuo
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Inna Martynyuk
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Electron Microscopy Resource Laboratory, Department of Biochemistry & Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Tabitha Demissie
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Emma N Hunter
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Antonia R Bass
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Yi-Wei Chang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Institute of Structural Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary MedicinePhiladelphiaUnited States
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
38
|
Wei C, Jiang W, Luo M, Shao F. BBB breakdown caused by plasma membrane pore formation. Trends Cell Biol 2025:S0962-8924(25)00064-9. [PMID: 40140333 DOI: 10.1016/j.tcb.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025]
Abstract
The blood-brain barrier, recently reintroduced as the blood-brain border (BBB), is a dynamic interface between the central nervous system (CNS) and the bloodstream. Disruption of the BBB exposes the CNS to peripheral pathogens and harmful substances, causing or worsening various CNS diseases. While traditional views attribute BBB failure to tight junction disruption or increased transcytosis, recent studies highlight the critical role of gasdermin D (GSDMD) pore formation in brain endothelial cells (bECs) during BBB disruption by lipopolysaccharide (LPS) or bacterial infections. This mechanism may also be involved in neurological complications like the 'brain fog' seen in long COVID. Pore formation in bECs may represent a prevalent mechanism causing BBB leakage. Investigating membrane-permeabilizing pores or channels and their effects on BBB integrity is a growing area of research. Further exploration of molecular processes that maintain, disrupt, and restore bEC membrane integrity will advance our understanding of brain vasculature and aid in developing new therapies for BBB-related diseases.
Collapse
Affiliation(s)
- Chao Wei
- State Key Laboratory of Cognitive Science and Mental Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China.
| | - Wei Jiang
- National Institute of Biological Sciences, Beijing, PR China
| | - Minmin Luo
- Chinese Institute for Brain Research, Beijing, PR China
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China.
| |
Collapse
|
39
|
Yao Z, Li Y, Mai H, Wang Z, Zhang H, Cai D, Wang X. Comprehensive multiomics analysis identifies PYCARD as a key pyroptosis-related gene in osteoarthritis synovial macrophages. Front Immunol 2025; 16:1558139. [PMID: 40196125 PMCID: PMC11973068 DOI: 10.3389/fimmu.2025.1558139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/10/2025] [Indexed: 04/09/2025] Open
Abstract
Background Osteoarthritis (OA) is a chronic joint disease that significantly impairs quality of life. Synovitis plays a pivotal role in OA progression, and pyroptosis, a form of programmed cell death associated with innate immune inflammation, may contribute to the pathogenesis of OA synovitis. Nevertheless, the precise role of pyroptosis in OA pathogenesis remains poorly understood. Methods We performed an analysis of bulk RNA sequencing data to examine the expression profiles of pyroptosis-related genes in the OA synovium. A LASSO-Cox regression model was employed to identify pivotal genes. Single-cell RNA sequencing data were used to validate the expression of these genes in specific synovial cell clusters. Differentially expressed genes (DEGs) in macrophages with high or low expression levels of core genes were subjected to enrichment analysis. A protein-protein interaction (PPI) network was constructed to identify hub genes, and potential therapeutic compounds were predicted. Consensus clustering analysis was performed to examine the correlations between hub genes and disease status. After identifying PYCARD as the core pyroptosis gene in OA macrophages, we assessed the expression levels of PYCARD in the OA synovium and validated the expression of PYCARD and its related core genes in M1 macrophages. Results A total of twenty pyroptosis-related DEGs were identified, and six core genes were selected through LASSO regression. PYCARD was identified as the key pyroptosis gene in macrophages. Furthermore, 57 therapeutic compounds targeting these genes were predicted. Validation confirmed the upregulation of PYCARD in the OA synovium and M1 macrophages. Conclusion PYCARD was identified as the core pyroptosis gene in OA macrophages, and 57 potential therapeutic compounds were identified. This study offers valuable insights into potential treatment targets for OA.
Collapse
Affiliation(s)
- Zihao Yao
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yuexin Li
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hanwen Mai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhuolun Wang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Daozhang Cai
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiangjiang Wang
- Department of Orthopedics, The Affiliated Qingyuan Hospital (Qingyuan People’s Hospital), Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
40
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
41
|
Kroon S, Malcic D, Weidert L, Bircher L, Boldt L, Christen P, Kiefer P, Sintsova A, Nguyen BD, Barthel M, Steiger Y, Clerc M, Herzog MKM, Chen C, Gül E, Guery B, Slack E, Sunagawa S, Vorholt JA, Maier L, Lacroix C, Hausmann A, Hardt WD. Sublethal systemic LPS in mice enables gut-luminal pathogens to bloom through oxygen species-mediated microbiota inhibition. Nat Commun 2025; 16:2760. [PMID: 40113753 PMCID: PMC11926250 DOI: 10.1038/s41467-025-57979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
Endotoxin-driven systemic immune activation is a common hallmark across various clinical conditions. During acute critical illness, elevated plasma lipopolysaccharide triggers non-specific systemic immune activation. In addition, a compositional shift in the gut microbiota, including an increase in gut-luminal opportunistic pathogens, is observed. Whether a causal link exists between acute endotoxemia and abundance of gut-luminal opportunistic pathogens is incompletely understood. Here, we model acute, pathophysiological lipopolysaccharide concentrations in mice and show that systemic exposure promotes a 100-10'000-fold expansion of Klebsiella pneumoniae, Escherichia coli, Enterococcus faecium and Salmonella Typhimurium in the gut within one day, without overt enteropathy. Mechanistically, this is driven by a Toll-like receptor 4-dependent increase in gut-luminal oxygen species levels, which transiently halts microbiota fermentation and fuels growth of gut-luminal facultative anaerobic pathogens through oxidative respiration. Thus, systemic immune activation transiently perturbs microbiota homeostasis and favours opportunistic pathogens, potentially increasing the risk of infection in critically ill patients.
Collapse
Affiliation(s)
- Sanne Kroon
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dejan Malcic
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lena Weidert
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Lea Bircher
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Leonardo Boldt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Philipp Christen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Patrick Kiefer
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Bidong D Nguyen
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Manja Barthel
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yves Steiger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Melanie Clerc
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Mathias K-M Herzog
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Carmen Chen
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Benoit Guery
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emma Slack
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julia A Vorholt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- M3 Research Center for Malignome, Metabolome and Microbiome, University Hospital Tübingen, Tübingen, Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Christophe Lacroix
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Annika Hausmann
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
- Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
- reNEW - Novo Nordisk Foundation Center for Stem Cell Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
42
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
43
|
Fahey DL, Patel N, Watford WT. TPL2 kinase activity is required for Il1b transcription during LPS priming but dispensable for NLRP3 inflammasome activation. Front Immunol 2025; 16:1496613. [PMID: 40170849 PMCID: PMC11958189 DOI: 10.3389/fimmu.2025.1496613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/19/2025] [Indexed: 04/03/2025] Open
Abstract
The NLRP3 inflammasome complex is an important mechanism for regulating the release of pro-inflammatory cytokines, IL-1β and IL-18, in response to harmful pathogens. Overproduction of pro-inflammatory cytokines has been linked to cryopyrin-associated periodic syndrome, arthritis, and other inflammatory conditions. It has been previously shown that tumor progression locus 2, a serine-threonine kinase, promotes IL-1β synthesis in response to LPS stimulation; however, whether TPL2 kinase activity is required during inflammasome priming to promote Il1b mRNA transcription and/or during inflammasome activation for IL-1β secretion remained unknown. In addition, whether elevated type I interferons, a consequence of either Tpl2 genetic ablation or inhibition of TPL2 kinase activity, decreases IL-1β expression or inflammasome function has not been explored. Using LPS-stimulated primary murine bone marrow-derived macrophages, we determined that TPL2 kinase activity is required for transcription of Il1b, but not Nlrp3, Il18, caspase-1 (Casp1), or gasdermin-D (Gsdmd) during inflammasome priming. Both Casp1 and Gsdmd mRNA synthesis decreased in the absence of type I interferon signaling, evidence of crosstalk between type I interferons and the inflammasome. Our results demonstrate that TPL2 kinase activity is differentially required for the expression of inflammasome precursor cytokines and components but is dispensable for inflammasome activation. These data provide the foundation for the further exploration of TPL2 kinase inhibitor as a potential therapeutic in inflammatory diseases.
Collapse
Affiliation(s)
- Denise L. Fahey
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Niki Patel
- College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Wendy T. Watford
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
44
|
Zhu M, Fan X, Zhang N, Wang H, Ma J, Yin X, Cai J, Cong L, Chen R, Fan J, Kong X, Geng B, Gong Y, Du C. Endothelial endogenous CSE/H 2S inhibits endothelial pyroptosis by activating sirtuin1 to attenuate LPS-induced acute lung injury. FASEB J 2025; 39:e70420. [PMID: 40028711 DOI: 10.1096/fj.202402042r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/30/2025] [Accepted: 02/17/2025] [Indexed: 03/05/2025]
Abstract
Endothelial pyroptosis, a pro-inflammatory programmed cell death, promotes endothelial inflammation and is a pivotal process in the initial stage of acute lung injury (ALI). Hydrogen sulfide (H2S), a gasotransmitter primarily dependent on cystathionine γ-lyase (CSE) in the cardiovascular and respiratory systems, plays a protective role during ALI. Nonetheless, the modulatory role and precise molecular mechanism of endothelial endogenous CSE/H2S in the pathogenesis of ALI remain elusive. Herein, we prepared an ALI mouse model using intratracheal administration of LPS (5 mg/kg), and lung injury was assessed by evaluating pulmonary edema, inflammatory response, and endothelial pyroptosis. In this model, H2S production from pulmonary tissues declined in a time-dependent manner, accompanied by a compensatory elevation of CSE protein levels. Treatment with the H2S donor (NaHS) attenuated pulmonary edema, inflammatory cell infiltration, endothelial pyroptosis, and reduced serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Meanwhile, the inducible deletion of CSE in endothelial cells exacerbated these changes. The blocking effect of CSE/H2S on endothelial pyroptosis (evidenced by caspase-11 activation and GSDMD-NT formation) was also confirmed in cultured pulmonary microvascular endothelial cells (PMECs). Mechanistically, H2S-mediated regulation of sirtuin-1 (SIRT1) expression and activation (via sulfhydration) contributed to the modulatory process. Collectively, we uncovered that endothelial endogenous CSE/H2S alleviates endothelial pyroptosis by activating SIRT1, thereby preventing LPS-induced acute lung injury.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xiaofang Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Nan Zhang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hui Wang
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshe Ma
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianghong Yin
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junyan Cai
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, P.R. China
| | - Linjing Cong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ran Chen
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junming Fan
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoxia Kong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bin Geng
- Hypertension Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongsheng Gong
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congkuo Du
- Institute of Hypoxia Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
45
|
Gu F, Huang D, Li R, Peng L, Huan T, Ye K, Bian Z, Yin W. Roles of Pyroptosis in the Progression of Pulpitis and Apical Periodontitis. J Inflamm Res 2025; 18:3361-3375. [PMID: 40084091 PMCID: PMC11905803 DOI: 10.2147/jir.s507198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Pyroptosis is a type of programmed cell death that induces proinflammatory cytokine release and is closely related to inflammatory diseases. Pulpitis and apical periodontitis are common inflammatory diseases that lead to alveolar bone destruction and tooth loss. Recent studies have revealed that pyroptosis is crucial in the progression of pulpitis and apical periodontitis, which involves various cell types and leads to different results. Odontoblasts are located at the periphery of dental pulp tissue and are susceptible to various irritants, the lysates from odontoblasts act as alerts and induce immune reactions in the inner pulp after pyroptosis. The expression levels of inflammasomes in dental pulp cells (DPCs) change with the progression of pulpitis, which may serve as a diagnostic marker of pulpitis. Periodontal ligament fibroblasts (PDLFs) undergo pyroptosis when stimulated by bacterial infection or cyclic stretch and are associated with both infection-induced and trauma-induced apical periodontitis. Immune cells can undergo pyroptosis directly after infection or are influenced by the pyroptotic secretome of other cells, which changes their composition. In this review, we briefly introduce the location and function of different cell types involved in the progression of pulpitis and apical periodontitis, summarize the roles of pyroptosis in different cells, and discuss the effects of drugs targeting pyroptosis in the treatment of pulpitis and apical periodontitis.
Collapse
Affiliation(s)
- Fan Gu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Delan Huang
- Department of Stomatology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Ruiqi Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Linlin Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Tingting Huan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Kaili Ye
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Zhuan Bian
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| | - Wei Yin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
- Department of Cariology and Endodontics I, Hospital of Stomatology, Wuhan University, Wuhan, 430079, People’s Republic of China
| |
Collapse
|
46
|
Szczerba M, Ganesh A, Gil-Marqués ML, Briken V, Goldberg MB. NLRP11 is required for canonical NLRP3 and non-canonical inflammasome activation during human macrophage infection with mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.11.627830. [PMID: 40093077 PMCID: PMC11908186 DOI: 10.1101/2024.12.11.627830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The NLRP11 protein is only expressed in primates and participates in the activation of the canonical NLRP3 and non-canonical NLRP3 inflammasome activation after infection with gram-negative bacteria. Here, we generated a series of defined NLRP11 deletion mutants to further analyze the role of NLRP11 in NLRP3 inflammasome activation. Like the complete NLRP11 deletion mutant (NLRP11 -/- ), the NLRP11 mutant lacking the NACHT and LRR domains (NLRP11 ΔN_LRR ) showed reduced activation of the canonical NLRP3 inflammasome, whereas a pyrin domain mutant (NLRP11 ΔPYD ) had no effect on NLRP3 activation. The NLRP11 -/- and NLRP11 ΔN_LRR mutants but not the NLRP11 ΔPYD mutant also displayed reduced activation of caspase-4 during infection with the intracytosolic, gram-negative pathogen Shigella flexneri. We found that the human adapted, acid-fast pathogen Mycobacterium tuberculosis and the opportunistic pathogen M. kansasii both activate the non-canonical NLRP11 inflammasome in a caspase-4/5-dependent pathway. In conclusion, we show that NLRP11 functions in the non-canonical caspase-4/5 inflammasome activation pathway and the canonical NRLP3 inflammasome pathway, and that NLRP11 is required for full recognition of mycobacteria by each of these pathways. Our work extends the spectrum of bacterial pathogen recognition by the non-canonical NLRP11-caspase4/5 pathway beyond gram-negative bacteria.
Collapse
Affiliation(s)
- Mateusz Szczerba
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Akshaya Ganesh
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - María Luisa Gil-Marqués
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Marcia B. Goldberg
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
47
|
Cao AB, Devant P, Wang C, Sun M, Kennedy SN, Ma W, Ruan J, Kagan JC. LPS binding caspase activation and recruitment domains (CARDs) are bipartite lipid binding modules. SCIENCE ADVANCES 2025; 11:eadt9027. [PMID: 40053584 PMCID: PMC11887843 DOI: 10.1126/sciadv.adt9027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/03/2025] [Indexed: 03/09/2025]
Abstract
Caspase-11 is an innate immune pattern recognition receptor (PRR) that detects cytosolic bacterial lipopolysaccharides (LPS) through its caspase activation and recruitment domain (CARD). Caspase-11 also detects eukaryotic (i.e., self) lipids. This observation raises the question of whether common or distinct mechanisms govern caspase interactions with self- and nonself-lipids. In this study, using biochemical, computational, and cell-based assays, we report that the caspase-11 CARD functions as a bipartite lipid-binding module. Distinct regions within the CARD bind to phosphate groups and long acyl chains of self- and nonself-lipids. Self-lipid binding capability is conserved across numerous caspase-11 homologs and orthologs. The symmetry in self- and nonself-lipid detection mechanisms enabled us to engineer an LPS-binding domain de novo, using an ancestral CARD-like domain present in the fish Amphilophus citrinellus. These findings offer insights into the molecular basis of LPS recognition by caspase-11 and highlight the fundamental and likely inseparable relationship between self and nonself discrimination.
Collapse
Affiliation(s)
- Anh B. Cao
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Pascal Devant
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Chengliang Wang
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Mengyu Sun
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Stephanie N. Kennedy
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Weiyi Ma
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Jianbin Ruan
- Department of Immunology, UConn Health School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
48
|
Wang H, Ma L, Su W, Liu Y, Xie N, Liu J. NLRP3 inflammasome in health and disease (Review). Int J Mol Med 2025; 55:48. [PMID: 39930811 PMCID: PMC11781521 DOI: 10.3892/ijmm.2025.5489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/16/2024] [Indexed: 02/13/2025] Open
Abstract
Activation of inflammasomes is the activation of inflammation‑related caspase mediated by the assembly signal of multi‑protein complex and the maturity of inflammatory factors, such as IL‑1β and IL‑18. Among them, the Nod‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most thoroughly studied type of inflammatory corpuscle at present, which is involved in the occurrence and development of numerous human diseases. Therefore, targeting the NLRP3 inflammasome has become the focus of drug development for related diseases. In this paper, the research progress of the NLRP3 inflammasome in recent years is summarized, including the activation and regulation of NLRP3 and its association with diseases. A deep understanding of the regulatory mechanism of NLRP3 will be helpful to the discovery of new drug targets and the development of therapeutic drugs.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| | - Weiran Su
- Department of Internal Medicine, Jiading District Central Hospital, Shanghai 201800, P.R. China
| | - Yangruoyu Liu
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Ning Xie
- Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
| |
Collapse
|
49
|
Yu Y, Ba X, Li T, Xu W, Zhao J, Zhang N, Zhao Y, Wang T, Zhang X, Wang X, Bai B, Wang B. PTPN22 and the pathogenesis of ulcerative colitis: Insights into T cell differentiation and the JAK/STAT signaling pathway. Cell Signal 2025; 127:111551. [PMID: 39643025 DOI: 10.1016/j.cellsig.2024.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/20/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
70 % of the ulcerative colitis (UC) linked gene loci are associated with other autoimmune or immunodeficient diseases. The phosphatase activity of PTPN22 can regulate the development of T cells and contribute to regulate the level of inflammation in autoimmune diseases. We produced PTPN22-CS thymus-specific transgenic mice, which suppressed PTPN22 enzyme activity in the thymocytes. Overexpressed PTPN22-CS facilitated the development of the thymocytes towards CD4+T cells and resulted in an increased proportion of the Th1 and Treg cells in the UC mesenteric lymph nodes. PTPN22-CS promoted the activation of the JAK/STAT signaling pathway in the Th1 and Treg cells that localized in the colon, resulting in an excessive production of inflammatory mediators such as IL-2 and IFN-γ. Consequently, PTPN22-CS contributes to the inflammatory response of ulcerative colitis. In summary, the tyrosine phosphatase activity of PTPN22 plays a role in modulating UC by regulating T cell differentiation and modulating the JAK/STAT signaling pathway, thereby influencing the inflammatory response in colonic. These findings provide new insight into the association between PTPN22 and the pathogenesis of UC.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Xinlei Ba
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Tong Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Wenying Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Jiahui Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China
| | - Na Zhang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Yanjiao Zhao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China
| | - Tao Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Xiaonan Zhang
- Department of Pathophysiology, Bengbu Medical University, Longzihu, Bengbu, 233030, Anhui, PR China..
| | - Xipeng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China
| | - Bin Bai
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| | - Bing Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life Science and Health, Northeastern University, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China; College of Life and Health Sciences, Northeastern University, Shenyang, #195 Chuangxin Road, Hunnan Xinqu, Shenyang, Liaoning 110169, China.
| |
Collapse
|
50
|
Oliveira LPG, Xavier RG, Nora CCV, Mangueira CLP, Rosseto EA, Aloia T, Gil JZ, Neto AS, Lopes FBTP, Carvalho KI. Exhaustion profile on classical monocytes after LPS stimulation on Crohn's disease patients. Hum Immunol 2025; 86:111257. [PMID: 39952081 DOI: 10.1016/j.humimm.2025.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Crohn's disease is a type of inflammatory bowel disease that leads to symptoms such as diarrhea, abdominal pain, weight loss, and increased risk of developing tumors. The immune system plays a vital role in the gastrointestinal tract by maintaining tolerance to commensal antigens and food. However, in Crohn's disease, this tolerance mechanism is disrupted, resulting in chronic inflammatory responses. The involvement of the immune system is central to Crohn's disease, with a wide range of immune cells including monocytes, being affected. Due to the limited understanding of the role of monocytes in Crohn's disease, our study aimed to clarify the cytokine production and activation profile of monocytes subsets in the context of this condition. We used multiparametric flow cytometry to analyze the status of monocyte, quantified gene expression using qPCR, and created a correlation matrix to connect the flow cytometry data with the qPCR results through a bioinformatics approach. Our findings indicate that patients with Crohn's disease show a reduction in all monocyte subsets. Additionally, classical monocytes exhibit an exhaustion profile characterized by increased CD38 expression and reduced IL-1β production following LPS stimulation in patient groups. These results suggest that monocyte subsets play distinct roles in the disease's pathophysiology of Crohn's disease, potentially contributing to chronic inflammation and impairing the resolution of the immune response.
Collapse
Affiliation(s)
| | - Rafaela Gomes Xavier
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil
| | | | | | | | - Thiago Aloia
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil
| | | | | | | | - Karina Inacio Carvalho
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil; Case Comprehensive Cancer Center, Case Western Reserve University Cleveland OH USA.
| |
Collapse
|