1
|
Chipman AD. The development and evolution of arthropod tagmata. Proc Biol Sci 2025; 292:20242950. [PMID: 40237508 PMCID: PMC12001983 DOI: 10.1098/rspb.2024.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The segmented body is a hallmark of the arthropod body plan. Morphological segments are formed during embryogenesis, through a complex procedure involving the activation of a series of gene regulatory networks. The segments of the arthropod body are organized into functional units known as tagmata, and these tagmata are different among the arthropod classes (e.g. head, thorax and abdomen in insects). Based on embryological work on segment generation in a number of arthropod species, coupled with a survey of classical descriptions of arthropod development, I suggest a new framework for the evolution of arthropod tagmata. The ancestral condition involves three developmental tagmata: the pre-gnathal segments, a tagma that is formed within a pre-existing developmental field and a tagma that is formed through the activity of a segment-addition zone that may be embryonic or post-embryonic. These embryonic tagmata may fuse post-embryonically to generate more complex adult tagmata. This framework is consistent with the evolution of tagmosis seen in the early arthropod fossil record. It also calls for a re-thinking of the decades-old division of arthropod development into short-germ versus long-germ development, a re-thinking of questions of segment identity determination and the role of Hox genes in tagma differentiation.
Collapse
Affiliation(s)
- Ariel D. Chipman
- Department of Ecology, Evolution & Behavior, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Du KS, Guo J, Losso SR, Pates S, Li M, Chen AL. Multiple origins of dorsal ecdysial sutures in trilobites and their relatives. eLife 2024; 12:RP93113. [PMID: 39356105 PMCID: PMC11446549 DOI: 10.7554/elife.93113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Euarthropods are an extremely diverse phylum in the modern, and have been since their origination in the early Palaeozoic. They grow through moulting the exoskeleton (ecdysis) facilitated by breaking along lines of weakness (sutures). Artiopodans, a group that includes trilobites and their non-biomineralizing relatives, dominated arthropod diversity in benthic communities during the Palaeozoic. Most trilobites - a hyperdiverse group of tens of thousands of species - moult by breaking the exoskeleton along cephalic sutures, a strategy that has contributed to their high diversity during the Palaeozoic. However, the recent description of similar sutures in early diverging non-trilobite artiopodans means that it is unclear whether these sutures evolved deep within Artiopoda, or convergently appeared multiple times within the group. Here, we describe new well-preserved material of Acanthomeridion, a putative early diverging artiopodan, including hitherto unknown details of its ventral anatomy and appendages revealed through CT scanning, highlighting additional possible homologous features between the ventral plates of this taxon and trilobite free cheeks. We used three coding strategies treating ventral plates as homologous to trilobite-free cheeks, to trilobite cephalic doublure, or independently derived. If ventral plates are considered homologous to free cheeks, Acanthomeridion is recovered sister to trilobites, however, dorsal ecdysial sutures are still recovered at many places within Artiopoda. If ventral plates are considered homologous to doublure or non-homologous, then Acanthomeridion is not recovered as sister to trilobites, and thus the ventral plates represent a distinct feature to trilobite doublure/free cheeks.
Collapse
Affiliation(s)
- Kun-Sheng Du
- Research Center of Paleobiology, Yuxi Normal University, Yuxi, China
- Key Laboratory for Palaeobiology and MEC International Joint Laboratory for Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China
| | - Jin Guo
- Key Laboratory for Palaeobiology and MEC International Joint Laboratory for Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China
- Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang, China
| | - Sarah R Losso
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, United States
| | - Stephen Pates
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Ming Li
- Institute of Geology, Chinese Academy of Geological Sciences, Beijing, China
| | - Ai-Lin Chen
- Research Center of Paleobiology, Yuxi Normal University, Yuxi, China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Paleontology, Nanjing, China
| |
Collapse
|
3
|
Smith MR, Long EJ, Dhungana A, Dobson KJ, Yang J, Zhang X. Organ systems of a Cambrian euarthropod larva. Nature 2024; 633:120-126. [PMID: 39085610 PMCID: PMC11374701 DOI: 10.1038/s41586-024-07756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The Cambrian radiation of euarthropods can be attributed to an adaptable body plan. Sophisticated brains and specialized feeding appendages, which are elaborations of serially repeated organ systems and jointed appendages, underpin the dominance of Euarthropoda in a broad suite of ecological settings. The origin of the euarthropod body plan from a grade of vermiform taxa with hydrostatic lobopodous appendages ('lobopodian worms')1,2 is founded on data from Burgess Shale-type fossils. However, the compaction associated with such preservation obscures internal anatomy3-6. Phosphatized microfossils provide a complementary three-dimensional perspective on early crown group euarthropods7, but few lobopodians8,9. Here we describe the internal and external anatomy of a three-dimensionally preserved euarthropod larva with lobopods, midgut glands and a sophisticated head. The architecture of the nervous system informs the early configuration of the euarthropod brain and its associated appendages and sensory organs, clarifying homologies across Panarthropoda. The deep evolutionary position of Youti yuanshi gen. et sp. nov. informs the sequence of character acquisition during arthropod evolution, demonstrating a deep origin of sophisticated haemolymph circulatory systems, and illuminating the internal anatomical changes that propelled the rise and diversification of this enduringly successful group.
Collapse
Affiliation(s)
- Martin R Smith
- Department of Earth Sciences, Durham University, Durham, UK.
| | - Emma J Long
- Department of Earth Sciences, Durham University, Durham, UK
- Science Group, Natural History Museum, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | | | - Katherine J Dobson
- Department of Earth Sciences, Durham University, Durham, UK
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, UK
| | - Jie Yang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| | - Xiguang Zhang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| |
Collapse
|
4
|
Jin C, Chen H, Mai H, Hou X, Yang X, Zhai D. Discovery of diverse Pectocaris species at the Cambrian series 2 Hongjingshao formation Xiazhuang section (Kunming, SW China) and its ecological, taphonomic, and biostratigraphic implications. PeerJ 2024; 12:e17230. [PMID: 38638159 PMCID: PMC11025544 DOI: 10.7717/peerj.17230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/21/2024] [Indexed: 04/20/2024] Open
Abstract
Pectocaris species are intermediate- to large-sized Cambrian bivalved arthropods. Previous studies have documented Pectocaris exclusively from the Cambrian Series 2 Stage 3 Chengjiang biota in Yu'anshan Formation, Chiungchussu Stage in SW China. In this study, we report Pectocaris paraspatiosa sp. nov., and three other previously known Pectocaris from the Xiazhuang section in Kunming, which belongs to the Hongjingshao Formation and is a later phase within Cambrian Stage 3 than the Yu'anshan Formation. The new species can be distinguished from its congeners by the sparsely arranged endopodal endites and the morphologies of the abdomen, telson, and telson processes. We interpret P. paraspatiosa sp. nov. as a filter-feeder and a powerful swimmer adapted to shallow, agitated environments. Comparison among the Pectocaris species reinforces previous views that niche differentiation had been established among the congeneric species based on morphological differentiation. Our study shows the comprehensive occurrences of Pectocaris species outside the Chengjiang biota for the first time. With a review of the shared fossil taxa of Chengjiang and Xiaoshiba biotas, we identify a strong biological connection between the Yu'anshan and Hongjingshao Formations.
Collapse
Affiliation(s)
- Changfei Jin
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Hong Chen
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Xianfeng Yang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Cherry AL, Wheeler MJ, Mathisova K, Di Miceli M. In silico analyses of the involvement of GPR55, CB1R and TRPV1: response to THC, contribution to temporal lobe epilepsy, structural modeling and updated evolution. Front Neuroinform 2024; 18:1294939. [PMID: 38404644 PMCID: PMC10894036 DOI: 10.3389/fninf.2024.1294939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The endocannabinoid (eCB) system is named after the discovery that endogenous cannabinoids bind to the same receptors as the phytochemical compounds found in Cannabis. While endogenous cannabinoids include anandamide (AEA) and 2-arachidonoylglycerol (2-AG), exogenous phytocannabinoids include Δ-9 tetrahydrocannabinol (THC) and cannabidiol (CBD). These compounds finely tune neurotransmission following synapse activation, via retrograde signaling that activates cannabinoid receptor 1 (CB1R) and/or transient receptor potential cation channel subfamily V member 1 (TRPV1). Recently, the eCB system has been linked to several neurological diseases, such as neuro-ocular abnormalities, pain insensitivity, migraine, epilepsy, addiction and neurodevelopmental disorders. In the current study, we aim to: (i) highlight a potential link between the eCB system and neurological disorders, (ii) assess if THC exposure alters the expression of eCB-related genes, and (iii) identify evolutionary-conserved residues in CB1R or TRPV1 in light of their function. Methods To address this, we used several bioinformatic approaches, such as transcriptomic (Gene Expression Omnibus), protein-protein (STRING), phylogenic (BLASTP, MEGA) and structural (Phyre2, AutoDock, Vina, PyMol) analyzes. Results Using RNA sequencing datasets, we did not observe any dysregulation of eCB-related transcripts in major depressive disorders, bipolar disorder or schizophrenia in the anterior cingulate cortex, nucleus accumbens or dorsolateral striatum. Following in vivo THC exposure in adolescent mice, GPR55 was significantly upregulated in neurons from the ventral tegmental area, while other transcripts involved in the eCB system were not affected by THC exposure. Our results also suggest that THC likely induces neuroinflammation following in vitro application on mice microglia. Significant downregulation of TPRV1 occurred in the hippocampi of mice in which a model of temporal lobe epilepsy was induced, confirming previous observations. In addition, several transcriptomic dysregulations were observed in neurons of both epileptic mice and humans, which included transcripts involved in neuronal death. When scanning known interactions for transcripts involved in the eCB system (n = 12), we observed branching between the eCB system and neurophysiology, including proteins involved in the dopaminergic system. Our protein phylogenic analyzes revealed that CB1R forms a clade with CB2R, which is distinct from related paralogues such as sphingosine-1-phosphate, receptors, lysophosphatidic acid receptors and melanocortin receptors. As expected, several conserved residues were identified, which are crucial for CB1R receptor function. The anandamide-binding pocket seems to have appeared later in evolution. Similar results were observed for TRPV1, with conserved residues involved in receptor activation. Conclusion The current study found that GPR55 is upregulated in neurons following THC exposure, while TRPV1 is downregulated in temporal lobe epilepsy. Caution is advised when interpreting the present results, as we have employed secondary analyzes. Common ancestors for CB1R and TRPV1 diverged from jawless vertebrates during the late Ordovician, 450 million years ago. Conserved residues are identified, which mediate crucial receptor functions.
Collapse
Affiliation(s)
- Amy L. Cherry
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Michael J. Wheeler
- Sustainable Environments Research Group, School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Karolina Mathisova
- School of Science and the Environment University of Worcester, Worcester, United Kingdom
| | - Mathieu Di Miceli
- Worcester Biomedical Research Group, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
6
|
Park TYS. Trilobite hypostome as a fusion of anterior sclerite and labrum. ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 77:101308. [PMID: 37832459 DOI: 10.1016/j.asd.2023.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The trilobite hypostome is a biomineralized ventral plate that covers the mouth, but its evolutionary origin remains controversial. The labrum is a lobe-like structure that can take on variety of shapes in front of the mouth in arthropods, while the anterior sclerite refers to a cuticular plate articulated to the anterior margin of the head in some Cambrian arthropods. Here I present a perspective that views the trilobite hypostome as a fusion of the anterior sclerite and the labrum based on anatomical, topological, and developmental evidence. According to this perspective, the anterior lobe of the hypostome originated from the anterior sclerite, while the posterior lobe reflects a remnant of the sclerotized cover of the labrum. The convex anterior lobe housed the root of the eye stalks, represented by the palpebral ridges and the hypostomal wing, and the posterior lobe occasionally developed a pair of posterolateral extensions, as do the labra. The position of the antennal insertion was located in front of the posterior lobe, displaying a similar topology to the Cambrian arthropods with the labrum. The hypostome was present in many artiopodans except for the Conciliterga, in which the anterior sclerite was separate from the labrum.
Collapse
Affiliation(s)
- Tae-Yoon S Park
- Division of Earth Sciences, Korea Polar Research Institute, 26 Songdomirae-ro, Yeonsu-gu, Incheon, 21990, Republic of Korea; Polar Science, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, 34113, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Zhang C, Liu Y, Ortega-Hernández J, Wolfe JM, Jin C, Mai H, Hou X, Guo J, Zhai D. Three-dimensional morphology of the biramous appendages in Isoxys from the early Cambrian of South China, and its implications for early euarthropod evolution. Proc Biol Sci 2023; 290:20230335. [PMID: 37072042 PMCID: PMC10113025 DOI: 10.1098/rspb.2023.0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Early euarthropod evolution involved a major transition from lobopodian-like taxa to organisms featuring a segmented, well-sclerotized trunk (arthrodization) and limbs (arthropodization). However, the precise origin of a completely arthrodized trunk and arthropodized ventral biramous appendages remain controversial, as well as the early onset of anterior-posterior limb differentiation in stem-group euarthropods. New fossil material and micro-computed tomography inform the detailed morphology of the arthropodized biramous appendages in the carapace-bearing euarthropod Isoxys curvirostratus from the early Cambrian Chengjiang biota. In addition to well-developed grasping frontal appendages, I. curvirostratus possesses two batches of morphologically and functionally distinct biramous limbs. The first batch consists of four pairs of short cephalic appendages with robust endites with a feeding function, whereas the second batch has more elongate trunk appendages for locomotion. Critically, our new material shows that the trunk of I. curvirostratus was not arthrodized. The results of our phylogenetic analyses recover isoxyids as some of the earliest branching sclerotized euarthropods, and strengthens the hypothesis that arthropodized biramous appendages evolved before full body arthrodization.
Collapse
Affiliation(s)
- Caixia Zhang
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
- Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, People's Republic of China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Changfei Jin
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| | - Jin Guo
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
- Management Committee of the Chengjiang Fossil Site World Heritage, Chengjiang 652599, People's Republic of China
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming 650091, People's Republic of China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Waihuan South Road, Chenggong District, Kunming 650500, People's Republic of China
| |
Collapse
|
8
|
Yang J, Lan T, Zhang XG, Smith MR. Protomelission is an early dasyclad alga and not a Cambrian bryozoan. Nature 2023; 615:468-471. [PMID: 36890226 DOI: 10.1038/s41586-023-05775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
The animal phyla and their associated body plans originate from a singular burst of evolution occurring during the Cambrian period, over 500 million years ago1. The phylum Bryozoa, the colonial 'moss animals', have been the exception: convincing skeletons of this biomineralizing clade have been absent from Cambrian strata, in part because potential bryozoan fossils are difficult to distinguish from the modular skeletons of other animal and algal groups2,3. At present, the strongest candidate4 is the phosphatic microfossil Protomelission5. Here we describe exceptionally preserved non-mineralized anatomy in Protomelission-like macrofossils from the Xiaoshiba Lagerstätte6. Taken alongside the detailed skeletal construction and the potential taphonomic origin of 'zooid apertures', we consider that Protomelission is better interpreted as the earliest dasycladalean green alga-emphasizing the ecological role of benthic photosynthesizers in early Cambrian communities. Under this interpretation, Protomelission cannot inform the origins of the bryozoan body plan; despite a growing number of promising candidates7-9, there remain no unequivocal bryozoans of Cambrian age.
Collapse
Affiliation(s)
- Jie Yang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China
| | - Xi-Guang Zhang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China.
| | - Martin R Smith
- Department of Earth Sciences, Durham University, Durham, UK.
| |
Collapse
|
9
|
Izquierdo-López A, Caron JB. The problematic Cambrian arthropod Tuzoia and the origin of mandibulates revisited. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220933. [PMID: 36483757 PMCID: PMC9727825 DOI: 10.1098/rsos.220933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The origin of mandibulates, the hyperdiverse arthropod group that includes pancrustaceans and myriapods, dates back to the Cambrian. Bivalved arthropod groups such as hymenocarines have been argued to be early mandibulates, but many species are still poorly known, and their affinities remain uncertain. One of the most common and globally distributed Cambrian bivalved arthropods is Tuzoia. Originally described in 1912 from the Burgess Shale based on isolated carapaces, its full anatomy has remained largely unknown. Here, we describe new specimens of Tuzoia from the Canadian Burgess Shale (Wuliuan, Cambrian) showcasing exceptionally preserved soft tissues, allowing for the first comprehensive reconstruction of its anatomy, ecology and evolutionary affinities. The head bears antennae and differentiated cephalic appendages. The body is divided into a cephalothorax, a homonomous trunk bearing ca 10 pairs of legs with heptopodomerous endopods and enlarged basipods, and a tail fan with two pairs of caudal rami. These traits suggest that Tuzoia swam along the seafloor and used its spinose legs for predation or scavenging. Tuzoia is retrieved by a Bayesian phylogenetic analysis as an early mandibulate hymenocarine lineage, exemplifying the rapid diversification of this group in open marine environments during the Cambrian Explosion.
Collapse
Affiliation(s)
- Alejandro Izquierdo-López
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
- Royal Ontario Museum, Toronto, Ontario, Canada, M5S 2C6
| | - Jean-Bernard Caron
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
- Earth Sciences, University of Toronto, Toronto, Ontario, Canada, M5S 3B2
- Royal Ontario Museum, Toronto, Ontario, Canada, M5S 2C6
| |
Collapse
|
10
|
Aria C. The origin and early evolution of arthropods. Biol Rev Camb Philos Soc 2022; 97:1786-1809. [PMID: 35475316 DOI: 10.1111/brv.12864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
The rise of arthropods is a decisive event in the history of life. Likely the first animals to have established themselves on land and in the air, arthropods have pervaded nearly all ecosystems and have become pillars of the planet's ecological networks. Forerunners of this saga, exceptionally well-preserved Palaeozoic fossils recently discovered or re-discovered using new approaches and techniques have elucidated the precocious appearance of extant lineages at the onset of the Cambrian explosion, and pointed to the critical role of the plankton and hard integuments in early arthropod diversification. The notion put forward at the beginning of the century that the acquisition of extant arthropod characters was stepwise and represented by the majority of Cambrian fossil taxa is being rewritten. Although some key traits leading to Euarthropoda are indeed well documented along a diversified phylogenetic stem, this stem led to several speciose and ecologically diverse radiations leaving descendants late into the Palaeozoic, and a large part, if not all of the Cambrian euarthropods can now be placed on either of the two extant lineages: Mandibulata and Chelicerata. These new observations and discoveries have altered our view on the nature and timing of the Cambrian explosion and clarified diagnostic characters at the origin of extant arthropods, but also raised new questions, especially with respect to cephalic plasticity. There is now strong evidence that early arthropods shared a homologous frontalmost appendage, coined here the cheira, which likely evolved into antennules and chelicerae, but other aspects, such as brain and labrum evolution, are still subject to active debate. The early evolution of panarthropods was generally driven by increased mastication and predation efficiency and sophistication, but a wealth of recent studies have also highlighted the prevalent role of suspension-feeding, for which early panarthropods developed their own adaptive feedback through both specialized appendages and the diversification of small, morphologically differentiated larvae. In a context of general integumental differentiation and hardening across Cambrian metazoans, arthrodization of body and limbs notably prompted two diverging strategies of basipod differentiation, which arguably became founding criteria in the divergence of total-groups Mandibulata and Chelicerata. The kinship of trilobites and their relatives remains a source of disagreement, but a recent topological solution, termed the 'deep split', could embed Artiopoda as sister taxa to chelicerates and constitute definitive support for Arachnomorpha. Although Cambrian fossils have been critical to all these findings, data of exceptional quality have also been accumulating from other Palaeozoic Konservat-Lagerstätten, and a better integration of this information promises a much more complete and elaborate picture of early arthropod evolution in the near future. From the broader perspective of a total-evidence approach to the understanding of life's history, and despite persisting systematic debates and new interpretative challenges, various advances based on palaeontological evidence open the prospect of finally using the full potential of the most diverse animal phylum to investigate macroevolutionary patterns and processes.
Collapse
Affiliation(s)
- Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, 210008, P. R. China.,Shaanxi Key Laboratory of Early Life and Environments, Northwest University, Xi'an, 710069, P.R. China
| |
Collapse
|
11
|
Fu D, Legg DA, Daley AC, Budd GE, Wu Y, Zhang X. The evolution of biramous appendages revealed by a carapace-bearing Cambrian arthropod. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210034. [PMID: 35125000 PMCID: PMC8819368 DOI: 10.1098/rstb.2021.0034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Biramous appendages are a common feature among modern marine arthropods that evolved deep in arthropod phylogeny. The branched appendage of Cambrian arthropods has long been considered as the ancient biramous limb, sparking numerous investigations on its origin and evolution. Here, we report a new arthropod, Erratus sperare gen. et sp. nov., from the Lower Cambrian (Stage 3, 520 Ma) Chengjiang biota of Yunnan, China, with unique trunk appendages formed of lateral anomalocaridid-type flaps and ventral subconical endopods. These appendages represent an intermediate stage of biramous limb evolution, i.e. from 'two pairs of flap appendages' in radiodonts to 'flap + endopod' in Erratus, to 'exopod + endopod' in the rest of carapace-bearing arthropods that populate the basal region of the upper-stem lineage arthropods (deuteropods). The new species occupies a phylogenetic position at the first node closer to deuteropods than to radiodonts, and therefore pinpoints the earliest occurrence of the endopod within Deuteropoda. The primitive endopod is weakly sclerotized, and has unspecialized segments without endites or claw. The findings might support previous claims that the outer branch of the biramous limb of fossil marine arthropods, such as trilobites, is not a true exopod, but is instead a modified exite. This article is part of the theme issue 'The impact of Chinese palaeontology on evolutionary research'.
Collapse
Affiliation(s)
- Dongjing Fu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xian 710069, People's Republic of China
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, UK
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Geopolis, Lausanne 1015, Switzerland
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden
| | - Yu Wu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xian 710069, People's Republic of China
| | - Xingliang Zhang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environments, Department of Geology, Northwest University, Xian 710069, People's Republic of China
| |
Collapse
|
12
|
Jiao DG, Pates S, Lerosey-Aubril R, Ortega-Hernández J, Yang J, Lan T, Zhang XG. New multipodomerous appendages of stem-group euarthropods from the Cambrian (Stage 4) Guanshan Konservat-Lagerstätte. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211134. [PMID: 34804574 PMCID: PMC8580442 DOI: 10.1098/rsos.211134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/04/2021] [Indexed: 05/13/2023]
Abstract
Stem-group euarthropods are important for understanding the early evolutionary and ecological history of the most species-rich animal phylum on Earth. Of particular interest are fossil taxa that occupy a phylogenetic position immediately crownwards of radiodonts, for this part of the euarthropod tree is associated with the appearance of several morphological features that characterize extant members of the group. Here, we report two new euarthropods from the Cambrian Stage 4 Guanshan Biota of South China. The fuxianhuiid Alacaris? sp. is represented by isolated appendages composed of a gnathobasic protopodite and an endite-bearing endopod of at least 20 podomeres. This material represents the youngest occurrence of the family Chengjiangocarididae, and its first record outside the Chengjiang and Xiaoshiba biotas. We also describe Lihuacaris ferox gen. et sp. nov. based on well-preserved and robust isolated appendages. Lihuacaris ferox exhibits an atypical combination of characters including an enlarged rectangular base, 11 endite-bearing podomeres and a hypertrophied distal element bearing 8-10 curved spines. Alacaris? sp. appendages display adaptations for macrophagy. Lihuacaris ferox appendages resemble the frontal appendages of radiodonts, as well as the post-oral endopods of chengjiangocaridid fuxianhuids and other deuteropods with well-documented raptorial/predatory habits. Lihuacaris ferox contributes towards the record of endemic biodiversity in the Guanshan Biota.
Collapse
Affiliation(s)
- De-guang Jiao
- Yuxi Normal University, Kunming, 134 Phoenix Road, Yuxi, Yunnan 653100, People's Republic of China
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, People's Republic of China
| | - Xi-guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
13
|
Janssen K, Mähler B, Rust J, Bierbaum G, McCoy VE. The complex role of microbial metabolic activity in fossilization. Biol Rev Camb Philos Soc 2021; 97:449-465. [PMID: 34649299 DOI: 10.1111/brv.12806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria play an important role in the fossilization of soft tissues; their metabolic activities drive the destruction of the tissues and also strongly influence mineralization. Some environmental conditions, such as anoxia, cold temperatures, and high salinity, are considered widely to promote fossilization by modulating bacterial activity. However, bacteria are extremely diverse, and have developed metabolic adaptations to a wide range of stressful conditions. Therefore, the influence of the environment on bacterial activity, and of their metabolic activity on fossilization, is complex. A number of examples illustrate that simple, general assumptions about the role of bacteria in soft tissue fossilization cannot explain all preservational pathways: (i) experimental results show that soft tissues of cnidaria decay less in oxic than anoxic conditions, and in the fossil record are found more commonly in fossil sites deposited under oxic conditions rather than anoxic environments; (ii) siderite concretions, which often entomb soft tissue fossils, precipitate due to a complex mixture of sulfate- and iron reduction by some bacterial species, running counter to original theories that iron reduction is the primary driver of siderite concretion growth; (iii) arthropod brains, now widely accepted to be preserved in many Cambrian fossil sites, are one of the first structures to decay in taphonomic experiments, indicating that their fossilization processes are complex and influenced by bacterial activity. In order to expand our understanding of the complex process of bacterially driven soft tissue fossilization, more research needs to be done, on fossils themselves and in taphonomic experiments, to determine how the complex variation in microbial metabolic activity influences decay and mineralization.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Bastian Mähler
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Jes Rust
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211, U.S.A
| |
Collapse
|
14
|
Nanglu K, Caron JB. Symbiosis in the Cambrian: enteropneust tubes from the Burgess Shale co-inhabited by commensal polychaetes. Proc Biol Sci 2021; 288:20210061. [PMID: 34034516 DOI: 10.1098/rspb.2021.0061] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The in situ preservation of animal behaviour in the fossil record is exceedingly rare, but can lead to unique macroecological and macroevolutionary insights, especially regarding early representatives of major animal clades. We describe a new complex ecological relationship from the middle Cambrian Burgess Shale (Raymond Quarry, Canada). More than 30 organic tubes were recorded with multiple enteropneust and polychaete worms preserved within them. Based on the tubicolous nature of fossil enteropneusts, we suggest that they were the tube builders while the co-preserved polychaetes were commensals. These findings mark, to our knowledge, the first record of commensalism within Annelida and Hemichordata in the entire fossil record. The finding of multiple enteropneusts sharing common tubes suggests that either the tubes represent reproductive structures built by larger adults, and the enteropneusts commonly preserved within are juveniles, or these enteropneusts were living as a pseudo-colony without obligate attachment to each other, and the tube was built collaboratively. While neither hypothesis can be ruled out, gregarious behaviour was clearly an early trait of both hemichordates and annelids. Further, commensal symbioses in the Cambrian may be more common than currently recognized.
Collapse
Affiliation(s)
- Karma Nanglu
- Department of Paleobiology, Smithsonian National Museum of Natural History, 10th Street and Constitution Avenue NW, Washington, DC 20560, USA
| | - Jean-Bernard Caron
- Department of Natural History Palaeobiology, Royal Ontario Museum, Toronto, Ontario, Canada M5S 2C6.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 2J7.,Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1
| |
Collapse
|
15
|
Budd GE. The origin and evolution of the euarthropod labrum. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101048. [PMID: 33862532 DOI: 10.1016/j.asd.2021.101048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 05/16/2023]
Abstract
A widely (although not universally) accepted model of arthropod head evolution postulates that the labrum, a structure seen in almost all living euarthropods, evolved from an anterior pair of appendages homologous to the frontal appendages of onychophorans. However, the implications of this model for the interpretation of fossil arthropods have not been fully integrated into reconstructions of the euarthropod stem group, which remains in a state of some disorder. Here I review the evidence for the nature and evolution of the labrum from living taxa, and reconsider how fossils should be interpreted in the light of this. Identification of the segmental identity of head appendage in fossil arthropods remains problematic, and often rests ultimately on unproven assertions. New evidence from the Cambrian stem-group euarthropod Parapeytoia is presented to suggest that an originally protocerebral appendage persisted well up into the upper stem-group of the euarthropods, which prompts a re-evaluation of widely-accepted segmental homologies and the interpretation of fossil central nervous systems. Only a protocerebral brain was implicitly present in a large part of the euarthropod stem group, and the deutocerebrum must have been a relatively late addition.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala, SE 752 36, Sweden.
| |
Collapse
|
16
|
Derby CD. The Crustacean Antennule: A Complex Organ Adapted for Lifelong Function in Diverse Environments and Lifestyles. THE BIOLOGICAL BULLETIN 2021; 240:67-81. [PMID: 33939945 DOI: 10.1086/713537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
AbstractThe crustacean first antenna, or antennule, has been an experimental model for studying sensory biology for over 150 years. Investigations have led to a clearer understanding of the functional organization of the antennule as an olfactory organ but also to a realization that the antennule is much more than that. Across the Crustacea, the antennules take on many forms and functions. As an example, the antennule of reptantian decapods has many types of sensilla, each with distinct structure and function and with hundreds of thousands of chemosensory neurons expressing hundreds of genes that code for diverse classes of receptor proteins. Together, these antennular sensilla represent multiple chemosensory pathways, each with its own central connections and functions. The antennule also has a diversity of sensors of mechanical stimuli, including vibrations, touch, water flow, and the animal's own movements. The antennule likely also detects other environmental cues, such as temperature, oxygen, pH, salinity, and noxious stimuli. Furthermore, the antennule is a motor organ-it is flicked to temporally and spatially sample the animal's chemo-mechanical surroundings-and this information is used in resolving the structure of chemical plumes and locating the odor source. The antennule is also adapted to maintain lifelong function in a changing environment. For example, it has specific secretory glands, grooming structures, and behaviors to stay clean and functional. Antennular sensilla and the annuli on which they reside are also added and replaced, leading to a complete turnover of the antennule over several molts. Thus, the antennule is a complex and dynamic sensory-motor integrator that is intricately engaged in most aspects of the lives of crustaceans.
Collapse
|
17
|
Hou JB, Hughes NC, Hopkins MJ. The trilobite upper limb branch is a well-developed gill. SCIENCE ADVANCES 2021; 7:eabe7377. [PMID: 33789898 PMCID: PMC8011964 DOI: 10.1126/sciadv.abe7377] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Whether the upper limb branch of Paleozoic "biramous" arthropods, including trilobites, served a respiratory function has been much debated. Here, new imaging of the trilobite Triarthrus eatoni shows that dumbbell-shaped filaments in the upper limb branch are morphologically comparable with gill structures in crustaceans that aerate the hemolymph. In Olenoides serratus, the upper limb's partial articulation to the body via an extended arthrodial membrane is morphologically comparable to the junction of the respiratory book gill of Limulus and differentiates it from the typically robust exopod junction in Chelicerata or Crustacea. Apparently limited mechanical rotation of the upper branch may have protected the respiratory structures. Partial attachment of the upper branch to the body wall may represent an intermediate state in the evolution of limb branch fusion between dorsal attachment to the body wall, as in Radiodonta, and ventral fusion to the limb base, as in extant Euarthropoda.
Collapse
Affiliation(s)
- Jin-Bo Hou
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA.
| | - Nigel C Hughes
- Department of Earth and Planetary Sciences, University of California, Riverside, CA 92521, USA
- Geological Studies Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Melanie J Hopkins
- Division of Paleontology (Invertebrates), American Museum of Natural History, New York, NY 10024, USA
| |
Collapse
|
18
|
Zeng H, Zhao F, Niu K, Zhu M, Huang D. An early Cambrian euarthropod with radiodont-like raptorial appendages. Nature 2020; 588:101-105. [PMID: 33149303 DOI: 10.1038/s41586-020-2883-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 08/14/2020] [Indexed: 12/19/2022]
Abstract
Resolving the early evolution of euarthropods is one of the most challenging problems in metazoan evolution1,2. Exceptionally preserved fossils from the Cambrian period have contributed important palaeontological data to deciphering this evolutionary process3,4. Phylogenetic studies have resolved Radiodonta (also known as anomalocaridids) as the closest group to all euarthropods that have frontalmost appendages on the second head segment (Deuteropoda)5-9. However, the interrelationships among major Cambrian euarthropod groups remain disputed1,2,4,7, which impedes our understanding of the evolutionary gap between Radiodonta and Deuteropoda. Here we describe Kylinxia zhangi gen. et. sp. nov., a euarthropod from the early Cambrian Chengjiang biota of China. Kylinxia possesses not only deuteropod characteristics such as a fused head shield, a fully arthrodized trunk and jointed endopodites, but also five eyes (as in Opabinia) as well as radiodont-like raptorial frontalmost appendages. Our phylogenetic reconstruction recovers Kylinxia as a transitional taxon that bridges Radiodonta and Deuteropoda. The most basal deuteropods are retrieved as a paraphyletic lineage that features plesiomorphic raptorial frontalmost appendages and includes Kylinxia, megacheirans, panchelicerates, 'great-appendage' bivalved euarthropods and isoxyids. This phylogenetic topology supports the idea that the radiodont and megacheiran frontalmost appendages are homologous, that the chelicerae of Chelicerata originated from megacheiran great appendages and that the sensorial antennae in Mandibulata derived from ancestral raptorial forms. Kylinxia thus provides important insights into the phylogenetic relationships among early euarthropods, the evolutionary transformations and disparity of frontalmost appendages, and the origin of crucial evolutionary innovations in this clade.
Collapse
Affiliation(s)
- Han Zeng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.,Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China.,Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China. .,Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China. .,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Kecheng Niu
- Yingliang Stone Natural History Museum, Nan'an, China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China.,Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Diying Huang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China. .,Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
19
|
Edgecombe GD. Arthropod Origins: Integrating Paleontological and Molecular Evidence. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-124437] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phylogenomics underpins a stable and mostly well-resolved hypothesis for the interrelationships of extant arthropods. Exceptionally preserved fossils are integrated into this framework by coding their morphological characters, as exemplified by total-evidence dating approaches that treat fossils as dated tips in analyses numerically dominated by molecular data. Cambrian fossils inform on the sequence of character acquisition in the arthropod stem group and in the stems of its main extant clades. The arthropod head problem incorporates unique appendage combinations and remains of the nervous system in fossils into a scheme mostly based on neuroanatomy and Hox expression domains for extant forms. Molecular estimates of arthropod origins in the Cryogenian or Ediacaran predate a coherent picture from the arthropod fossil record, which commences as trace fossils in the earliest Cambrian. Probabilistic morphological clock analysis of trilobites, which exemplify the earliest arthropod body fossils, supports a Cambrian origin, without the need to posit an unfossilized Ediacaran history.
Collapse
Affiliation(s)
- Gregory D. Edgecombe
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
20
|
Haug C. The evolution of feeding within Euchelicerata: data from the fossil groups Eurypterida and Trigonotarbida illustrate possible evolutionary pathways. PeerJ 2020. [DOI: 10.7717/peerj.9696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When the evolution of Euarthropoda is discussed, often the lineage of Chelicerata s. str. is assumed to be the more ‘primitive’ or ‘basal’ part of the tree, especially when compared to the other major lineage, Mandibulata. This claimed primitiveness is (at least partly) based on the assumption that different morphological structures are still in an ancestral state and did not evolve any further. One of these sets of structures is the feeding apparatus, which has been stated to be highly advanced in Mandibulata, but not ‘properly’ developed, or at least not to such a high degree, within Chelicerata s. str. In this study, I reinvestigate the feeding apparatus of different ingroups of Euchelicerata, with a focus on assumed ‘primitive’ groups such as Eurypterida and Trigonotarbida. The basis of this study is a large amount of material from different museum collections, with fossils with the entire feeding apparatuses being exceptionally well preserved. Based on high-resolution micro-photography and three-dimensional imaging, it is possible to resolve fine details of the feeding apparatuses. The results make clear that the feeding apparatuses of different ingroups of Euchelicerata are highly specialised and often possess morphological structures comparable to those of the feeding apparatuses of representatives of Mandibulata, apparently convergently evolved. Though the reconstruction of the evolution of the feeding apparatus within Euchelicerata is to a certain degree hampered by unclear phylogenetic relationships, there was clearly a shortening of the feeding apparatus from posterior (i.e. only the anterior appendages being involved in the feeding apparatus), probably linked to the colonisation of land in Arachnida.
Collapse
Affiliation(s)
- Carolin Haug
- Department of Biology II, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
21
|
Siomava N, Fuentes JSM, Diogo R. Deconstructing the long‐standing a priori assumption that serial homology generally involves ancestral similarity followed by anatomical divergence. J Morphol 2020; 281:1110-1132. [DOI: 10.1002/jmor.21236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Natalia Siomava
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| | | | - Rui Diogo
- Department of Anatomy Howard University College of Medicine Washington District of Columbia USA
| |
Collapse
|
22
|
Liu Y, Ortega-Hernández J, Chen H, Mai H, Zhai D, Hou X. Computed tomography sheds new light on the affinities of the enigmatic euarthropod Jianshania furcatus from the early Cambrian Chengjiang biota. BMC Evol Biol 2020; 20:62. [PMID: 32487135 PMCID: PMC7268425 DOI: 10.1186/s12862-020-01625-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background The Chengjiang biota is one of the most species-rich Cambrian Konservat-Lagerstätten, and preserves a community dominated by non-biomineralized euarthropods. However, several Chengjiang euarthropods have an unfamiliar morphology, are extremely rare, or incompletely preserved. Results We employed micro-computed tomography to restudy the enigmatic euarthropod Jianshania furcatus. We reveal new morphological details, and demonstrate that the specimens assigned to this species represent two different taxa. The holotype of J. furcatus features a head shield with paired anterolateral notches, stalked lateral eyes, and an articulated tailspine with a bifurcate termination. The other specimen is formally redescribed as Xiaocaris luoi gen. et sp. nov., and is characterized by stalked eyes connected to an anterior sclerite, a subtrapezoidal head shield covering three small segments with reduced tergites, a trunk with 15 overlapping tergites with a well-developed dorsal keel, and paired tail flukes. Conclusions The presence of antennae, biramous appendages with endopods composed of 15 articles, and multiple appendage pairs associated with the trunk tergites identify X. luoi nov. as a representative of Fuxianhuiida, an early branching group of stem-group euarthropods endemic to the early Cambrian of Southwest China. X. luoi nov. represents the fifth fuxianhuiid species described from the Chengjiang biota, and its functional morphology illuminates the ecological diversity of this important clade for understanding the early evolutionary history of euarthropods.
Collapse
Affiliation(s)
- Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China. .,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China.
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Hong Chen
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, 650500, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650500, China
| |
Collapse
|
23
|
Edgecombe GD, Strullu-Derrien C, Góral T, Hetherington AJ, Thompson C, Koch M. Aquatic stem group myriapods close a gap between molecular divergence dates and the terrestrial fossil record. Proc Natl Acad Sci U S A 2020; 117:8966-8972. [PMID: 32253305 PMCID: PMC7183169 DOI: 10.1073/pnas.1920733117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Identifying marine or freshwater fossils that belong to the stem groups of the major terrestrial arthropod radiations is a longstanding challenge. Molecular dating and fossils of their pancrustacean sister group predict that myriapods originated in the Cambrian, much earlier than their oldest known fossils, but uncertainty about stem group Myriapoda confounds efforts to resolve the timing of the group's terrestrialization. Among a small set of candidates for membership in the stem group of Myriapoda, the Cambrian to Triassic euthycarcinoids have repeatedly been singled out. The only known Devonian euthycarcinoid, Heterocrania rhyniensis from the Rhynie and Windyfield cherts hot spring complex in Scotland, reveals details of head structures that constrain the evolutionary position of euthycarcinoids. The head capsule houses an anterior cuticular tentorium, a feature uniquely shared by myriapods and hexapods. Confocal microscopy recovers myriapod-like characters of the preoral chamber, such as a prominent hypopharynx supported by tentorial bars and superlinguae between the mandibles and hypopharynx, reinforcing an alliance between euthycarcinoids and myriapods recovered in recent phylogenetic analysis. The Cambrian occurrence of the earliest euthycarcinoids supplies the oldest compelling evidence for an aquatic stem group for either Myriapoda or Hexapoda, previously a lacuna in the body fossil record of these otherwise terrestrial lineages until the Silurian and Devonian, respectively. The trace fossil record of euthycarcinoids in the Cambrian and Ordovician reveals amphibious locomotion in tidal environments and fills a gap between molecular estimates for myriapod origins in the Cambrian and a post-Ordovician crown group fossil record.
Collapse
Affiliation(s)
- Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom;
| | - Christine Strullu-Derrien
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
- Institut de Systématique, Evolution, Biodiversité, UMR 7205, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - Tomasz Góral
- Imaging and Analysis Centre, The Natural History Museum, London SW7 5BD, United Kingdom
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | | | - Christine Thompson
- Department of Natural Sciences, National Museums Scotland, Edinburgh EH1 1JF, United Kingdom
| | - Markus Koch
- Senckenberg Society for Nature Research, Leibniz Institution for Biodiversity and Earth System Research, 60325 Frankfurt am Main, Germany
- Institute for Evolutionary Biology and Ecology, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|
24
|
Ortega-Hernández J, Lerosey-Aubril R, Pates S. Proclivity of nervous system preservation in Cambrian Burgess Shale-type deposits. Proc Biol Sci 2019; 286:20192370. [PMID: 31822253 PMCID: PMC6939931 DOI: 10.1098/rspb.2019.2370] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent investigations on neurological tissues preserved in Cambrian fossils have clarified the phylogenetic affinities and head segmentation in pivotal members of stem-group Euarthropoda. However, palaeoneuroanatomical features are often incomplete or described from single exceptional specimens, raising concerns about the morphological interpretation of fossilized neurological structures and their significance for early euarthropod evolution. Here, we describe the central nervous system (CNS) of the short great-appendage euarthropod Alalcomenaeus based on material from two Cambrian Burgess Shale-type deposits of the American Great Basin, the Pioche Formation (Stage 4) and the Marjum Formation (Drumian). The specimens reveal complementary ventral and lateral views of the CNS, preserved as a dark carbonaceous compression throughout the body. The head features a dorsal brain connected to four stalked ventral eyes, and four pairs of segmental nerves. The first to seventh trunk tergites overlie a ventral nerve cord with seven ganglia, each associated with paired sets of segmental nerve bundles. Posteriorly, the nerve cord features elongate thread-like connectives. The Great Basin fossils strengthen the original description—and broader evolutionary implications—of the CNS in Alalcomenaeus from the early Cambrian (Stage 3) Chengjiang deposit of South China. The spatio-temporal recurrence of fossilized neural tissues in Cambrian Konservat-Lagerstätten across North America (Pioche, Burgess Shale, Marjum) and South China (Chengjiang, Xiaoshiba) indicates that their preservation is consistent with the mechanism of Burgess Shale-type fossilization, without the need to invoke alternative taphonomic pathways or the presence of microbial biofilms.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
25
|
Chen X, Ortega-Hernández J, Wolfe JM, Zhai D, Hou X, Chen A, Mai H, Liu Y. The appendicular morphology of Sinoburius lunaris and the evolution of the artiopodan clade Xandarellida (Euarthropoda, early Cambrian) from South China. BMC Evol Biol 2019; 19:165. [PMID: 31387545 PMCID: PMC6685191 DOI: 10.1186/s12862-019-1491-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/29/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Artiopodan euarthropods represent common and abundant faunal components in sites with exceptional preservation during the Cambrian. The Chengjiang biota in South China contains numerous taxa that are exclusively known from this deposit, and thus offer a unique perspective on euarthropod diversity during the early Cambrian. One such endemic taxon is the non-trilobite artiopodan Sinoburius lunaris, which has been known for approximately three decades, but few details of its anatomy are well understood due to its rarity within the Chengjiang, as well as technical limitations for the study of these fossils. Furthermore, the available material does not provide clear information on the ventral organization of this animal, obscuring our understanding of phylogenetically significant details such as the appendages. RESULTS We employed X-ray computed tomography to study the non-biomineralized morphology of Sinoburius lunaris. Due to the replacement of the delicate anatomy with pyrite typical of Chengjiang fossils, computed tomography reveals substantial details of the ventral anatomy of Sinoburius lunaris, and allow us to observe in detail the three-dimensionally preserved appendicular organization of this taxon for the first time. The dorsal exoskeleton consists of a crescent-shaped head shield with well-developed genal spines, a thorax with seven freely articulating tergites, and a fused pygidium with lateral and median spines. The head bears a pair of ventral stalked eyes that are accommodated by dorsal exoskeletal bulges, and an oval elongate ventral hypostome. The appendicular organization of the head is unique among Artiopoda. The deutocerebral antennae are reduced, consisting of only five podomeres, and bear an antennal scale on the second podomere that most likely represents an exite rather than a true ramus. The head includes four post-antennal biramous limb pairs. The first two biramous appendages are differentiated from the rest. The first appendage pair consists of a greatly reduced endopod coupled with a greatly elongated exopod with a potentially sensorial function. The second appendage pair carries a more conventionally sized endopod, but also has an enlarged exopod. The remaining biramous appendages are homonomous in their construction, but decrease in size towards the posterior end of the body. They consist of a basipodite with ridge-like crescentic endites, an endopod with seven podomeres and a terminal claw, and a lamellae-bearing exopod with a slender shaft. Contrary to previous reports, we confirm the presence of segmental mismatch in Sinoburius lunaris, expressed as diplotergites in the thorax. Maximum parsimony and Bayesian phylogenetic analyses support the monophyly of Xandarellida within Artiopoda, and illuminate the internal relationships within this enigmatic clade. Our results allow us to propose a transformation series explaining the origin of archetypical xandarellid characters, such as the evolution of eye slits in Xandarella spectaculum and Phytophilaspis pergamena as derivates from the anterolateral notches in the head shield observed in Cindarella eucalla and Luohuilinella species. In this context, Sinoburius lunaris is found to feature several derived characters within the group, such as the secondary loss of eye slits and a high degree of appendicular tagmosis. Contrary to previous findings, our analyses strongly support close affinities between Sinoburius lunaris, Xandarella spectaculum and Phytophilaspis pergamena, although the precise relationships between these taxa are sensitive to different methodologies. CONCLUSIONS The revised morphology of Sinoburius lunaris, made possible through the use of computed tomography to resolve details of its three-dimensionally preserved appendicular anatomy, contributes towards an improved understanding of the morphology of this taxon and the evolution of Xandarellida more broadly. Our results indicate that Sinoburius lunaris possesses an unprecedented degree of appendicular tagmosis otherwise unknown within Artiopoda, with the implication that this iconic group of Palaeozoic euarthropods likely had a more complex ecology and functional morphology than previously considered. The application of computer tomographic techniques to the study of Chengjiang euarthropods holds exceptional promise for understanding the morphological diversity of these organisms, and also better reconstructing their phylogenetic relationships and evolutionary history.
Collapse
Affiliation(s)
- Xiaohan Chen
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Dayou Zhai
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Ailin Chen
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
- Research Center of Paleobiology, Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Huijuan Mai
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, North Cuihu Road 2, Kunming, 650091, China.
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
26
|
Liu J, Steiner M, Dunlop JA, Shu D. Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids. Proc Biol Sci 2019; 285:rspb.2018.0051. [PMID: 29643211 DOI: 10.1098/rspb.2018.0051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/15/2018] [Indexed: 11/12/2022] Open
Abstract
The Chengjiang fossil Lagerstätte (Cambrian Stage 3) from Yunnan, southern China is renowned for its soft-tissue preservation. Accordingly structures in fuxianhuiids, radiodontans and great appendage arthropods have been interpreted as the nervous and cardiovascular systems, including brains, hearts and blood vessels. That such delicate organ systems survive the fossilization process seems remarkable; given that this mode of preservation involves major taphonomic changes, such as flattening, microbial degradation, chemical alteration and replacement. Here, we document a range of taphonomic preservation states in numerous articulated individuals of Fuxianhuia protensa We suggest that organic (partly iron mineral-replaced) bulbous structures in the head region, previously interpreted as brain tissue, along with sagittally located organic strands interpreted as part of the cardiovascular system or as nerve cords, may be better explained as microbial biofilms that developed following decomposition of the intestine, muscle and other connective tissues, forming halos surrounding the original organic remains.
Collapse
Affiliation(s)
- Jianni Liu
- Early Life Institute, Shaanxi Key Laboratory of Early Life and Environments, The Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, People's Republic of China
| | - Michael Steiner
- Department of Earth Science, Freie Universität Berlin, 12249, Berlin, Germany
| | - Jason A Dunlop
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany
| | - Degan Shu
- Early Life Institute, Shaanxi Key Laboratory of Early Life and Environments, The Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, People's Republic of China.,School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, People's Republic of China
| |
Collapse
|
27
|
Du KS, Ortega-Hernández J, Yang J, Zhang XG. A soft-bodied euarthropod from the early Cambrian Xiaoshiba Lagerstätte of China supports a new clade of basal artiopodans with dorsal ecdysial sutures. Cladistics 2019; 35:269-281. [PMID: 34622993 DOI: 10.1111/cla.12344] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2018] [Indexed: 11/28/2022] Open
Abstract
We describe the exceptionally well-preserved non-trilobite artiopodan Zhiwenia coronata gen. et sp. nov. from the Cambrian Stage 3 Xiaoshiba Lagerstätte in Yunnan, China. The exoskeleton consists of a cephalic shield with dorsal sutures expressed as lateral notches that accommodate stalked lateral eyes, an elongate trunk composed of 20 tergites-the first of which is reduced-and a short tailspine with marginal spines. Appendicular data include a pair of multi-segmented antennae, and homonomous biramous trunk limbs consisting of an endopod with at least seven podomeres and a flattened exopod with lamellae. Although the presence of cephalic notches and a reduced first trunk tergite invites comparisons with the petalopleurans Xandarella, Luohiniella and Cindarella, the proportions and exoskeletal tagmosis of Zhiwenia do not closely resemble those of any major group within Trilobitomorpha. Parsimony and Bayesian phylogenetic analyses consistently support Zhiwenia as sister-taxon to the Emu Bay Shale artiopodan Australimicola spriggi, and both of them as closely related to Acanthomeridion from the Chengjiang. This new monophyletic clade, Protosutura nov., occupies a basal phylogenetic position within Artiopoda as sister-group to Trilobitomorpha and Vicissicaudata, illuminates the ancestral organization of these successful euarthropods, and leads to a re-evaluation of the evolution of ecdysial dorsal sutures within the group.
Collapse
Affiliation(s)
- Kun-Sheng Du
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.,Museum of Comparative Zoology and, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.,MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| |
Collapse
|
28
|
Yang J, Ortega-Hernández J, Drage HB, Du KS, Zhang XG. Ecdysis in a stem-group euarthropod from the early Cambrian of China. Sci Rep 2019; 9:5709. [PMID: 30952888 PMCID: PMC6450865 DOI: 10.1038/s41598-019-41911-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/20/2019] [Indexed: 11/26/2022] Open
Abstract
Moulting is a fundamental component of the ecdysozoan life cycle, but the fossil record of this strategy is susceptible to preservation biases, making evidence of ecdysis in soft-bodied organisms extremely rare. Here, we report an exceptional specimen of the fuxianhuiid Alacaris mirabilis preserved in the act of moulting from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China. The specimen displays a flattened and wrinkled head shield, inverted overlap of the trunk tergites over the head shield, and duplication of exoskeletal elements including the posterior body margins and telson. We interpret this fossil as a discarded exoskeleton overlying the carcass of an emerging individual. The moulting behaviour of A. mirabilis evokes that of decapods, in which the carapace is separated posteriorly and rotated forward from the body, forming a wide gape for the emerging individual. A. mirabilis illuminates the moult strategy of stem-group Euarthropoda, offers the stratigraphically and phylogenetically earliest direct evidence of ecdysis within total-group Euarthropoda, and represents one of the oldest examples of this growth strategy in the evolution of Ecdysozoa.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Harriet B Drage
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015, Lausanne, Switzerland
| | - Kun-Sheng Du
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
- MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.
- MEC International Joint Laboratory for Palaeoenvironment, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
29
|
Fu D, Tong G, Dai T, Liu W, Yang Y, Zhang Y, Cui L, Li L, Yun H, Wu Y, Sun A, Liu C, Pei W, Gaines RR, Zhang X. The Qingjiang biota-A Burgess Shale-type fossil Lagerstätte from the early Cambrian of South China. Science 2019; 363:1338-1342. [PMID: 30898931 DOI: 10.1126/science.aau8800] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
Burgess Shale-type fossil Lagerstätten provide the best evidence for deciphering the biotic patterns and magnitude of the Cambrian explosion. Here, we report a Lagerstätte from South China, the Qingjiang biota (~518 million years old), which is dominated by soft-bodied taxa from a distal shelf setting. The Qingjiang biota is distinguished by pristine carbonaceous preservation of labile organic features, a very high proportion of new taxa (~53%), and preliminary taxonomic diversity that suggests it could rival the Chengjiang and Burgess Shale biotas. Defining aspects of the Qingjiang biota include a high abundance of cnidarians, including both medusoid and polypoid forms; new taxa resembling extant kinorhynchs; and abundant larval or juvenile forms. This distinctive composition holds promise for providing insights into the evolution of Cambrian ecosystems across environmental gradients.
Collapse
Affiliation(s)
- Dongjing Fu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Guanghui Tong
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Tao Dai
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Wei Liu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Yuning Yang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yuan Zhang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Linhao Cui
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Luoyang Li
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Hao Yun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Yu Wu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Ao Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Cong Liu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Wenrui Pei
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China
| | - Robert R Gaines
- Department of Geology, Pomona College, Claremont, CA 91711, USA
| | - Xingliang Zhang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life and Environment, Department of Geology, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
30
|
Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China. BMC Evol Biol 2018; 18:147. [PMID: 30268090 PMCID: PMC6162911 DOI: 10.1186/s12862-018-1262-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022] Open
Abstract
Background Extended parental care is a complex reproductive strategy in which progenitors actively look after their offspring up to – or beyond – the first juvenile stage in order to maximize their fitness. Although the euarthropod fossil record has produced several examples of brood-care, the appearance of extended parental care within this phylum remains poorly constrained given the scarcity of developmental data for Palaeozoic stem-group representatives that would link juvenile and adult forms in an ontogenetic sequence. Results Here, we describe the post-embryonic growth of Fuxianhuia protensa from the early Cambrian Chengjiang Lagerstätte in South China. Our data demonstrate anamorphic post-embryonic development for F. protensa, in which new tergites were sequentially added from a posterior growth zone, the number of tergites varies from eight to 30. The growth of F. protensa is typified by the alternation between segment addition, followed by the depletion of the anteriormost abdominal segment into the thoracic region. The transformation of abdominal into thoracic tergite is demarcated by the development of laterally tergopleurae, and biramous walking legs. The new ontogeny data leads to the recognition of the rare Chengjiang euarthropod Pisinnocaris subconigera as a junior synonym of Fuxianhuia. Comparisons between different species of Fuxianhuia and with other genera within Fuxianhuiida suggest that heterochrony played a prominent role in the morphological diversification of fuxianhuiids. Functional analogy with the flexible trunk ontogeny of Cambrian and Silurian olenimorphic trilobites suggests an adaptation to sporadic low oxygen conditions in Chengjiang deposits for F. protensa. Finally, understanding the growth of F. protensa allows for the interpretation of an exceptional life assemblage consisting of a sexually mature adult alongside four ontogenetically coeval juveniles, which constitutes the oldest occurrence of extended parental care by prolonged cohabitation in the panarthropod fossil record. Conclusions Our findings constitute the most detailed characterization of the post-embryonic development in a soft-bodied upper stem-group euarthropod available to date. The new ontogeny data illuminates the systematics, trunk segmentation and palaeoecology of F. protensa, offers insights on the macroevolutionary processes involved in the diversification of this clade, and contributes towards an improved understanding of complex post-embryonic reproductive ecology in Cambrian euarthropods. Electronic supplementary material The online version of this article (10.1186/s12862-018-1262-6) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Chen A, Chen H, Legg DA, Liu Y, Hou XG. A redescription of Liangwangshania biloba Chen, 2005, from the Chengjiang biota (Cambrian, China), with a discussion of possible sexual dimorphism in fuxianhuiid arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:552-561. [PMID: 30125735 DOI: 10.1016/j.asd.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/13/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
Material attributed to Liangwangshania biloba, a fuxianhuiid arthropod from the lower Cambrian (Series 2, Stage 3) of southwest China, is redescribed, with many specimens illustrated for the first time. Newly recognized features include, potential optical neuropils, a stout posterolateral carapace spine, serrated tergal pleurae, two rows of mediolateral carinae, an abdomen composed of seven segments, the last possessing a tripartite lateral flap, and a triangular telson. The presence of tergal carinae, a prothorax composed of six segments, and a trunk composed of 43 segments tipped with a flap-like terminal segment, increase similarities with the previously described Shankouia zhenghei, thus prompting a reevaluation of the potential synonymy of these taxa. These previously recognized species also show considerable overlap in body size, and the ratios of selected body features, such as the carapace. This, combined with their co-occurrence over a temporally and geographically limited range, further support their synonymy. L. biloba is considered the senior synonym in accordance with ICZN rulings, with morphological differences, specifically the presence of posterolateral spines on the carapace, serrated tergopleurae, and spines on the terminal abdominal segment, attributed to sexual variation. An evaluation of potential sexual dimorphism in other fuxianhuiids, and a reassessment of terminology applied to this group is also provided.
Collapse
Affiliation(s)
- Ailin Chen
- Research Center of Paleobiology, Yuxi Normal University, Yuxi, Yunnan 653100, China.
| | - Hong Chen
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, Yunnan 650091, China; MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, Yunnan 650091, China; School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou 553004, China
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, Yunnan 650091, China; MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, Yunnan 650091, China
| | - Xian-Guang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, Yunnan 650091, China; MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
32
|
Vannier J, Aria C, Taylor RS, Caron JB. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172206. [PMID: 30110460 PMCID: PMC6030330 DOI: 10.1098/rsos.172206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/04/2018] [Indexed: 05/12/2023]
Abstract
Waptia fieldensis Walcott, 1912 is one of the iconic animals from the middle Cambrian Burgess Shale biota that had lacked a formal description since its discovery at the beginning of the twentieth century. This study, based on over 1800 specimens, finds that W. fieldensis shares general characteristics with pancrustaceans, as previous authors had suggested based mostly on its overall aspect. The cephalothorax is covered by a flexible, bivalved carapace and houses a pair of long multisegmented antennules, palp-bearing mandibles, maxillules, and four pairs of appendages with five-segmented endopods-the anterior three pairs with long and robust enditic basipods, the fourth pair with proximal annulations and lamellae. The post-cephalothorax has six pairs of lamellate and fully annulated appendages which appear to be extensively modified basipods rather than exopods. The front part of the body bears a pair of stalked eyes with the first ommatidia preserved in a Burgess Shale arthropod, and a median 'labral' complex flanked by lobate projections with possible affinities to hemi-ellipsoid bodies. Waptia confirms the mandibulate affinity of hymenocarines, retrieved here as part of an expanded Pancrustacea, thereby providing a novel perspective on the evolutionary history of this hyperdiverse group. We construe that Waptia was an active swimming predator of soft prey items, using its anterior appendages for food capture and manipulation, and also potentially for clinging to epibenthic substrates.
Collapse
Affiliation(s)
- Jean Vannier
- Université de Lyon, Université Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, Bâtiment Géode, 2, rue Raphaël Dubois, Villeurbanne 69622, France
| | - Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39, East Beijing Road, Nanjing 210008, People's Republic of China
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, CanadaM5S 2C6
| | - Rod S. Taylor
- Manuels River Hibernia Interpretation Centre, 7 Conception Bay South Highway, CBS, Newfoundland, CanadaA1W 3A2
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland, CanadaA1B 3X5
| | - Jean-Bernard Caron
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, CanadaM5S 2C6
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, CanadaM5S 3B2, Toronto, Ontario, CanadaM5S 3B2
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, CanadaM5S 3B1
| |
Collapse
|
33
|
Daley AC, Antcliffe JB, Drage HB, Pates S. Early fossil record of Euarthropoda and the Cambrian Explosion. Proc Natl Acad Sci U S A 2018; 115:5323-5331. [PMID: 29784780 PMCID: PMC6003487 DOI: 10.1073/pnas.1719962115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Euarthropoda is one of the best-preserved fossil animal groups and has been the most diverse animal phylum for over 500 million years. Fossil Konservat-Lagerstätten, such as Burgess Shale-type deposits (BSTs), show the evolution of the euarthropod stem lineage during the Cambrian from 518 million years ago (Ma). The stem lineage includes nonbiomineralized groups, such as Radiodonta (e.g., Anomalocaris) that provide insight into the step-by-step construction of euarthropod morphology, including the exoskeleton, biramous limbs, segmentation, and cephalic structures. Trilobites are crown group euarthropods that appear in the fossil record at 521 Ma, before the stem lineage fossils, implying a ghost lineage that needs to be constrained. These constraints come from the trace fossil record, which show the first evidence for total group Euarthropoda (e.g., Cruziana, Rusophycus) at around 537 Ma. A deep Precambrian root to the euarthropod evolutionary lineage is disproven by a comparison of Ediacaran and Cambrian lagerstätten. BSTs from the latest Ediacaran Period (e.g., Miaohe biota, 550 Ma) are abundantly fossiliferous with algae but completely lack animals, which are also missing from other Ediacaran windows, such as phosphate deposits (e.g., Doushantuo, 560 Ma). This constrains the appearance of the euarthropod stem lineage to no older than 550 Ma. While each of the major types of fossil evidence (BSTs, trace fossils, and biomineralized preservation) have their limitations and are incomplete in different ways, when taken together they allow a coherent picture to emerge of the origin and subsequent radiation of total group Euarthropoda during the Cambrian.
Collapse
Affiliation(s)
- Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland;
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Oxford University Museum of Natural History, OX1 3PW Oxford, United Kingdom
| | - Jonathan B Antcliffe
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Oxford University Museum of Natural History, OX1 3PW Oxford, United Kingdom
| | - Harriet B Drage
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
- Oxford University Museum of Natural History, OX1 3PW Oxford, United Kingdom
| | - Stephen Pates
- Institute of Earth Sciences, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland
- Department of Zoology, University of Oxford, OX1 3PS Oxford, United Kingdom
| |
Collapse
|
34
|
Yang J, Ortega-Hernández J, Legg DA, Lan T, Hou JB, Zhang XG. Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nat Commun 2018; 9:470. [PMID: 29391458 PMCID: PMC5794847 DOI: 10.1038/s41467-017-02754-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Euarthropods owe their evolutionary and ecological success to the morphological plasticity of their appendages. Although this variability is partly expressed in the specialization of the protopodite for a feeding function in the post-deutocerebral limbs, the origin of the former structure among Cambrian representatives remains uncertain. Here, we describe Alacaris mirabilis gen. et sp. nov. from the early Cambrian Xiaoshiba Lagerstätte in China, which reveals the proximal organization of fuxianhuiid appendages in exceptional detail. Proximally, the post-deutocerebral limbs possess an antero-posteriorly compressed protopodite with robust spines. The protopodite is attached to an endopod with more than a dozen podomeres, and an oval flap-shaped exopod. The gnathal edges of the protopodites form an axial food groove along the ventral side of the body, indicating a predatory/scavenging autecology. A cladistic analysis indicates that the fuxianhuiid protopodite represents the phylogenetically earliest occurrence of substantial proximal differentiation within stem-group Euarthropoda illuminating the origin of gnathobasic feeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China
| | - Jin-Bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
35
|
Abstract
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | - Xiaoya Ma
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
36
|
Jockusch EL. Developmental and Evolutionary Perspectives on the Origin and Diversification of Arthropod Appendages. Integr Comp Biol 2017; 57:533-545. [DOI: 10.1093/icb/icx063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
37
|
|
38
|
Setton EVW, March LE, Nolan ED, Jones TE, Cho H, Wheeler WC, Extavour CG, Sharma PP. Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Dev Biol 2017; 430:224-236. [PMID: 28764892 DOI: 10.1016/j.ydbio.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
The deutocerebral (second) head segment is putatively homologous across Arthropoda, in spite of remarkable disparity of form and function of deutocerebral appendages. In Mandibulata this segment bears a pair of sensory antennae, whereas in Chelicerata the same segment bears a pair of feeding appendages called chelicerae. Part of the evidence for the homology of deutocerebral appendages is the conserved function of homothorax (hth), which has been shown to specify antennal or cheliceral fate in the absence of Hox signaling, in both mandibulate and chelicerate exemplars. However, the genetic basis for the morphological disparity of antenna and chelicera is not understood. To test whether downstream targets of hth have diverged in a lineage-specific manner, we examined the evolution of the function and expression of spineless (ss), which in two holometabolous insects is known to act as a hth target and distal antennal determinant. Toward expanding phylogenetic representation of gene expression data, here we show that strong expression of ss is observed in developing antennae of a hemimetabolous insect, a centipede, and an amphipod crustacean. By contrast, ss orthologs are not expressed throughout the cheliceral limb buds of spiders or harvestmen during developmental stages when appendage fate is specified. RNA interference-mediated knockdown of ss in Oncopeltus fasciatus, which bears a simple plesiomorphic antenna, resulted in homeotic distal antenna-to-leg transformation, comparable to data from holometabolous insect counterparts. Knockdown of hth in Oncopeltus fasciatus abrogated ss expression, suggesting conservation of upstream regulation. These data suggest that ss may be a flagellar (distal antennal) determinant more broadly, and that this function was acquired at the base of Mandibulata.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Holly Cho
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
39
|
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:354-379. [PMID: 27989966 DOI: 10.1016/j.asd.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 05/14/2023]
Abstract
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| |
Collapse
|
40
|
Burgess Shale fossils illustrate the origin of the mandibulate body plan. Nature 2017; 545:89-92. [DOI: 10.1038/nature22080] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/16/2017] [Indexed: 11/09/2022]
|
41
|
Ortega-Hernández J, Azizi A, Hearing TW, Harvey THP, Edgecombe GD, Hafid A, El Hariri K. A xandarellid artiopodan from Morocco - a middle Cambrian link between soft-bodied euarthropod communities in North Africa and South China. Sci Rep 2017; 7:42616. [PMID: 28211461 PMCID: PMC5314411 DOI: 10.1038/srep42616] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
Xandarellida is a well-defined clade of Lower Palaeozoic non-biomineralized artiopodans that is exclusively known from the early Cambrian (Stage 3) Chengjiang biota of South China. Here we describe a new member of this group, Xandarella mauretanica sp. nov., from the middle Cambrian (Stage 5) Tatelt Formation of Morocco, making this the first non-trilobite Cambrian euarthropod known from North Africa. X. mauretanica sp. nov. represents the youngest occurrence of Xandarellida - extending its stratigraphic range by approximately 10 million years - and expands the palaeobiogeographic distribution of the group to the high southern palaeolatitudes of West Gondwana. The new species provides insights into the lightly sclerotized ventral anatomy of Xandarellida, and offers stratigraphically older evidence for a palaeobiogeographic connection between Burgess Shale-type euarthropod communities in North Africa and South China, relative to the (Tremadocian) Fezouata biota.
Collapse
Affiliation(s)
| | - Abdelfattah Azizi
- Département Sciences de la Terre, Faculté des Sciences et Techniques-Guéliz, Université Cadi Ayyad, Avenue Abdelkrim el Khattabi BP 549, 40000 Marrakech, Morocco
| | - Thomas W. Hearing
- Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
- British Geological Survey, Keyworth, NG12 5GG, UK
| | - Thomas H. P. Harvey
- Department of Geology, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Gregory D. Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ahmid Hafid
- Département Sciences de la Terre, Faculté des Sciences et Techniques-Guéliz, Université Cadi Ayyad, Avenue Abdelkrim el Khattabi BP 549, 40000 Marrakech, Morocco
| | - Khadija El Hariri
- Département Sciences de la Terre, Faculté des Sciences et Techniques-Guéliz, Université Cadi Ayyad, Avenue Abdelkrim el Khattabi BP 549, 40000 Marrakech, Morocco
| |
Collapse
|
42
|
Yang J, Ortega-Hernández J, Lan T, Hou JB, Zhang XG. A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China. Sci Rep 2016; 6:27709. [PMID: 27283406 PMCID: PMC4901283 DOI: 10.1038/srep27709] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/24/2016] [Indexed: 11/08/2022] Open
Abstract
Bivalved euarthropods represent a conspicuous component of exceptionally-preserved fossil biotas throughout the Lower Palaeozoic. However, most of these taxa are known from isolated valves, and thus there is a limited understanding of their morphological organization and palaeoecology in the context of early animal-dominated communities. The bivalved euarthropod Clypecaris serrata sp. nov., recovered from the Cambrian (Stage 3) Hongjingshao Formation in Kunming, southern China, is characterized by having a robust first pair of raptorial appendages that bear well-developed ventral-facing spines, paired dorsal spines on the trunk, and posteriorly oriented serrations on the anteroventral margins of both valves. The raptorial limbs of C. serrata were adapted for grasping prey employing a descending stroke for transporting it close the mouth, whereas the backwards-facing marginal serrations of the bivalved carapace may have helped to secure the food items during feeding. The new taxon offers novel insights on the morphology of the enigmatic genus Clypecaris, and indicates that the possession of paired dorsal spines is a diagnostic trait of the Family Clypecarididae within upper stem-group Euarthropoda. C. serrata evinces functional adaptations for an active predatory lifestyle within the context of Cambrian bivalved euarthropods, and contributes towards the better understanding of feeding diversity in early ecosystems.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| | | | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Jin-bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| | - Xi-guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| |
Collapse
|
43
|
Briggs DEG, Siveter DJ, Siveter DJ, Sutton MD, Legg D. Tiny individuals attached to a new Silurian arthropod suggest a unique mode of brood care. Proc Natl Acad Sci U S A 2016; 113:4410-5. [PMID: 27044103 PMCID: PMC4843443 DOI: 10.1073/pnas.1600489113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The ∼430-My-old Herefordshire, United Kingdom, Lagerstätte has yielded a diversity of remarkably preserved invertebrates, many of which provide fundamental insights into the evolutionary history and ecology of particular taxa. Here we report a new arthropod with 10 tiny arthropods tethered to its tergites by long individual threads. The head of the host, which is covered by a shield that projects anteriorly, bears a long stout uniramous antenna and a chelate limb followed by two biramous appendages. The trunk comprises 11 segments, all bearing limbs and covered by tergites with long slender lateral spines. A short telson bears long parallel cerci. Our phylogenetic analysis resolves the new arthropod as a stem-group mandibulate. The evidence suggests that the tethered individuals are juveniles and the association represents a complex brooding behavior. Alternative possibilities-that the tethered individuals represent a different epizoic or parasitic arthropod-appear less likely.
Collapse
Affiliation(s)
- Derek E G Briggs
- Department of Geology and Geophysics, Yale University, New Haven, CT 06520-8109; Yale Peabody Museum of Natural History, Yale University, New Haven, CT 06520-8109;
| | - Derek J Siveter
- Oxford University Museum of Natural History, Oxford OX1 3PW, United Kingdom; Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom
| | - David J Siveter
- Department of Geology, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Mark D Sutton
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2BP, United Kingdom
| | - David Legg
- Oxford University Museum of Natural History, Oxford OX1 3PW, United Kingdom
| |
Collapse
|
44
|
Yang J, Ortega-Hernández J, Butterfield NJ, Liu Y, Boyan GS, Hou JB, Lan T, Zhang XG. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proc Natl Acad Sci U S A 2016; 113:2988-93. [PMID: 26933218 PMCID: PMC4801254 DOI: 10.1073/pnas.1522434113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | | | - Nicholas J Butterfield
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Yu Liu
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China; Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany; GeoBio-Center Ludwig-Maximilians-Universität, Munich 80333, Germany
| | - George S Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Jin-Bo Hou
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Xi-Guang Zhang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China;
| |
Collapse
|
45
|
Ortega-Hernández J, Budd GE. The nature of non-appendicular anterior paired projections in Palaeozoic total-group Euarthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:185-199. [PMID: 26802876 DOI: 10.1016/j.asd.2016.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 05/14/2023]
Abstract
Recent studies have clarified the segmental organization of appendicular and exoskeletal structures in the anterior region of Cambrian stem-group Euarthropoda, and thus led to better understanding of the deep evolutionary origins of the head region in this successful animal group. However, there are aspects of the anterior organization of Palaeozoic euarthropods that remain problematic, such as the morphological identity and significance of minute limb-like projections on the anterior region in stem and crown-group representatives. Here, we draw attention to topological and morphological similarities between the frontal filaments of extant Crustacea and the embryonic frontal processes of Onychophora, and distinctive anterior paired projections observed in several extinct total-group Euarthropoda. Anterior paired projections are redescribed in temporally and phylogenetically distant fossil taxa, including the gilled lobopodians Kerygmachela kierkegaardi and Pambdelurion whittingtoni, the bivalved stem-euarthropod Canadaspis perfecta, the larval pycnogonid Cambropycnogon klausmuelleri, and the mandibulate Tanazios dokeron. Developmental data supporting the homology of the 'primary antennae' of Onychophora, the 'frontal appendages' of lower-stem Euarthropoda, and the hypostome/labrum complex of Deuteropoda, argue against the morphological identity of the anterior paired projections of extant and extinct panarthropods as a pair of pre-ocular appendages. Instead, we regard the paired projections of fossil total-group euarthropods as non-appendicular evaginations with a likely protocerebral segmental association, and a possible sensorial function. The widespread occurrence of pre-ocular paired projections among extant and extinct taxa suggests their potential homology as fundamentally ancestral features of the anterior body organization in Panarthropoda. Non-appendicular paired projections with a sensorial function may reflect a critical--yet previously overlooked--component of the panarthropod ground pattern.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EQ, UK.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Norbyvägen 22, Uppsala SE 752 36, Sweden
| |
Collapse
|
46
|
Strausfeld NJ. Waptia revisited: Intimations of behaviors. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:173-184. [PMID: 26365952 DOI: 10.1016/j.asd.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/15/2015] [Accepted: 09/01/2015] [Indexed: 05/14/2023]
Abstract
The middle Cambrian taxon Waptia fieldensis offers insights into early evolution of sensory arrangements that may have supported a range of actions such as exploratory behavior, burrowing, scavenging, swimming, and escape, amongst others. Less elaborate than many modern pancrustaceans, specific features of Waptia that suggest a possible association with the pancrustacean evolutionary trajectory, include mandibulate mouthparts, a single pair of antennae, reflective triplets on the head comparable to ocelli, and traces of brain and optic lobes that conform to the pancrustacean ground pattern. This account revisits an earlier description of Waptia to further interpret the distribution of its overall morphology and receptor arrangements in the context of plausible behavioral repertoires.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience, Center for Insect Science, University of Arizona, Tucson, USA.
| |
Collapse
|
47
|
Edgecombe GD, Ma X, Strausfeld NJ. Unlocking the early fossil record of the arthropod central nervous system. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150038. [PMID: 26554038 PMCID: PMC4650122 DOI: 10.1098/rstb.2015.0038] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2015] [Indexed: 12/01/2022] Open
Abstract
Extant panarthropods (euarthropods, onychophorans and tardigrades) are hallmarked by stunning morphological and taxonomic diversity, but their central nervous systems (CNS) are relatively conserved. The timing of divergences of the ground pattern CNS organization of the major panarthropod clades has been poorly constrained because of a scarcity of data from their early fossil record. Although the CNS has been documented in three-dimensional detail in insects from Cenozoic ambers, it is widely assumed that these tissues are too prone to decay to withstand other styles of fossilization or geologically older preservation. However, Cambrian Burgess Shale-type compressions have emerged as sources of fossilized brains and nerve cords. CNS in these Cambrian fossils are preserved as carbon films or as iron oxides/hydroxides after pyrite in association with carbon. Experiments with carcasses compacted in fine-grained sediment depict preservation of neural tissue for a more prolonged temporal window than anticipated by decay experiments in other media. CNS and compound eye characters in exceptionally preserved Cambrian fossils predict divergences of the mandibulate and chelicerate ground patterns by Cambrian Stage 3 (ca 518 Ma), a dating that is compatible with molecular estimates for these splits.
Collapse
Affiliation(s)
- Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xiaoya Ma
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK Yunnan Key Laboratory for Palaebiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Nicholas J Strausfeld
- Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
48
|
Chipman AD. An embryological perspective on the early arthropod fossil record. BMC Evol Biol 2015; 15:285. [PMID: 26678148 PMCID: PMC4683962 DOI: 10.1186/s12862-015-0566-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/10/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Our understanding of the early evolution of the arthropod body plan has recently improved significantly through advances in phylogeny and developmental biology and through new interpretations of the fossil record. However, there has been limited effort to synthesize data from these different sources. Bringing an embryological perspective into the fossil record is a useful way to integrate knowledge from different disciplines into a single coherent view of arthropod evolution. RESULTS I have used current knowledge on the development of extant arthropods, together with published descriptions of fossils, to reconstruct the germband stages of a series of key taxa leading from the arthropod lower stem group to crown group taxa. These reconstruction highlight the main evolutionary transitions that have occurred during early arthropod evolution, provide new insights into the types of mechanisms that could have been active and suggest new questions and research directions. CONCLUSIONS The reconstructions suggest several novel homology hypotheses - e.g. the lower stem group head shield and head capsules in the crown group are all hypothesized to derive from the embryonic head lobes. The homology of anterior segments in different groups is resolved consistently. The transition between "lower-stem" and "upper-stem" arthropods is highlighted as a major transition with a concentration of novelties and innovations, suggesting a gap in the fossil record. A close relationship between chelicerates and megacheirans is supported by the embryonic reconstructions, and I suggest that the depth of the mandibulate-chelicerate split should be reexamined.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel. .,The Department of Paleobiology, The Smithsonian Museum of Natural History, Washington, DC, USA.
| |
Collapse
|
49
|
Ma X, Edgecombe GD, Hou X, Goral T, Strausfeld NJ. Preservational Pathways of Corresponding Brains of a Cambrian Euarthropod. Curr Biol 2015; 25:2969-75. [PMID: 26526373 DOI: 10.1016/j.cub.2015.09.063] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/16/2015] [Accepted: 09/24/2015] [Indexed: 01/20/2023]
Abstract
The record of arthropod body fossils is traceable back to the "Cambrian explosion," marked by the appearance of most major animal phyla. Exceptional preservation provides crucial evidence for panarthropod early radiation. However, due to limited representation in the fossil record of internal anatomy, particularly the CNS, studies usually rely on exoskeletal and appendicular morphology. Recent studiesshow that despite extreme morphological disparities, euarthropod CNS evolution appears to have been remarkably conservative. This conclusion is supported by descriptions from Cambrian panarthropods of neural structures that contribute to understanding early evolution of nervous systems and resolving controversies about segmental homologies. However, the rarity of fossilized CNSs, even when exoskeletons and appendages show high levels of integrity, brought into question data reproducibility because all but one of the aforementioned studies were based on single specimens. Foremost among objections is the lack of taphonomic explanation for exceptional preservation of a tissue that some see as too prone to decay to be fossilized. Here we describe newly discovered specimens of the Chengjiang euarthropod Fuxianhuia protensa with fossilized brains revealing matching profiles, allowing rigorous testing of the reproducibility of cerebral structures. Their geochemical analyses provide crucial insights of taphonomic pathways for brain preservation, ranging from uniform carbon compressions to complete pyritization, revealing that neural tissue was initially preserved as carbonaceous film and subsequently pyritized. This mode of preservation is consistent with the taphonomic pathways of gross anatomy, indicating that no special mode is required for fossilization of labile neural tissue.
Collapse
Affiliation(s)
- Xiaoya Ma
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| | - Tomasz Goral
- Imaging and Analysis Centre, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Nicholas J Strausfeld
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
50
|
Yang J, Ortega-Hernández J, Gerber S, Butterfield NJ, Hou JB, Lan T, Zhang XG. A superarmored lobopodian from the Cambrian of China and early disparity in the evolution of Onychophora. Proc Natl Acad Sci U S A 2015; 112:8678-83. [PMID: 26124122 PMCID: PMC4507230 DOI: 10.1073/pnas.1505596112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We describe Collinsium ciliosum from the early Cambrian Xiaoshiba Lagerstätte in South China, an armored lobopodian with a remarkable degree of limb differentiation including a pair of antenna-like appendages, six pairs of elongate setiferous limbs for suspension feeding, and nine pairs of clawed annulated legs with an anchoring function. Collinsium belongs to a highly derived clade of lobopodians within stem group Onychophora, distinguished by a substantial dorsal armature of supernumerary and biomineralized spines (Family Luolishaniidae). As demonstrated here, luolishaniids display the highest degree of limb specialization among Paleozoic lobopodians, constitute more than one-third of the overall morphological disparity of stem group Onychophora, and are substantially more disparate than crown group representatives. Despite having higher disparity and appendage complexity than other lobopodians and extant velvet worms, the specialized mode of life embodied by luolishaniids became extinct during the Early Paleozoic. Collinsium and other superarmored lobopodians exploited a unique paleoecological niche during the Cambrian explosion.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | | | - Sylvain Gerber
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Nicholas J Butterfield
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Jin-Bo Hou
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | - Tian Lan
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | - Xi-guang Zhang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China;
| |
Collapse
|