1
|
Chen B, Wang C, Li W. Comprehensive genetic analysis based on multi - omics reveals novel therapeutic targets for mitral valve prolapse and drug molecular dynamics simulation. Int J Cardiol 2025; 433:133325. [PMID: 40311696 DOI: 10.1016/j.ijcard.2025.133325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 03/19/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
OBJECTIVE Mitral valve prolapse (MVP), the most prevalent primary valvular disease, serves as a direct risk factor for multiple cardiovascular disorders and exhibits a high prevalence in the general population. As no specific pharmacological therapies currently exist for MVP, the identification of precise therapeutic targets is imperative. METHOD We conducted comprehensive causal genetic inference by integrating genetic data from expression quantitative trait loci (eQTL) and genome-wide association studies (GWAS). Analytical approaches included Mendelian Randomization (MR), colocalization analysis, Summary-data-based Mendelian Randomization (SMR), Linkage Disequilibrium Score Regression (LDSC), and High-Definition Likelihood (HDL) analysis. Protein quantitative trait loci (pQTL) were utilized to validate gene expression. Replication analyses were performed using additional exposure datasets. Methylation quantitative trait loci (mQTL) were employed to elucidate regulatory roles of methylation sites on genes and disease pathogenesis. Phenome-Wide Association Study (PheWAS) was conducted to predict potential adverse effects of gene-targeted therapies. Drug candidates targeting identified genes were predicted via the Drug Signature Database (DSigDB) and validated through molecular docking. Core targets were identified using the STRING database, followed by molecular dynamics simulations. RESULT Two-sample MR analysis showed that genetically predicted 266 genes had positive or negative causal relationships with MVP. Colocalization analysis indicated that 9 genes had a posterior probability greater than 0.75. Subsequent SMR analysis excluded the gene GAPVD1. HDL analysis showed that except for the gene PTPN1, the remaining 7 genes were all significantly genetically associated with MVP, and LDSC analysis further showed that only NMB was associated with MVP. Validation using pQTL data confirmed that increased NMB protein expression reduced the risk of MVP. Replication analysis further verified this conclusion. In addition, SMR analysis of methylation sites for 8 genes indicated that multiple methylation sites played a key role in gene regulation of mitral valve prolapse. PheWAS results showed that targeted therapy for 8 genes did not detect other causal associations at the genome-wide significance level. Molecular docking showed that quercetin had good binding ability with 8 target genes. The STRING database identified 3 core target proteins, and molecular dynamics simulations further verified the binding ability of quercetin with core target proteins. CONCLUSION This study successfully predicted the potential of multiple druggable genes as effective therapeutic targets for MVP through genetic methods, validated the potential of quercetin as a drug, and provided new ideas for drug treatment strategies for MVP.
Collapse
Affiliation(s)
- Bohang Chen
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Chuqiao Wang
- Liaoning Health Industry Group Fukuang General Hospital, Fushun, Liaoning 113008, China.
| | - Wenjie Li
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110032, China
| |
Collapse
|
2
|
Agam N, Dolgin V, Star A, Freund O, Jean MM, Safran A, Poleg T, Zahger D, Birk OS. Mitral Valve Prolapse Caused by TLL1 Gain-of-Function Mutation. Can J Cardiol 2025; 41:928-935. [PMID: 39880331 DOI: 10.1016/j.cjca.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/06/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common cardiac valvular anomaly that can be caused by mutations in genes of various biologic pathways. Individuals of 3 generations of a kindred presented with an apparently dominant heredity of isolated MVP. METHODS Clinical evaluation and echocardiography were performed for all complying members of a family (n = 13). Whole exome and genome sequencing data of 2 affected individuals were analyzed, delineating shared heterozygous variants, and then further tested for segregation within the kindred (Sanger sequencing). Tolloid-like 1 (TLL1) enzymatic activity was assayed in media of HEK293 cells transfected with wild-type vs mutant TLL1. RESULTS The only heterozygous variant segregating in the affected kindred as expected for dominant heredity of MVP was p.T253A, within the catalytic domain of TLL1. Of 8 heterozygotes, 6 had MVP and 2 had trivial mitral regurgitation. An activity assay in the extracellular media of the HEK293-transfected cells showed that, over time (12 hours), the enzymatic activity of the mutated TLL1 protein was 3.4-fold higher than that of the wild-type. CONCLUSIONS Our genetic and biochemical studies show that a TLL1 gain-of-function mutation, prolonging the half-life of TLL1 active protein in the extracellular matrix, causes autosomal dominant MVP with variable expressivity. TLL1 encodes an extracellular metalloprotease regulating extracellular matrix composition and maintenance. In previous work, heterozygous loss-of-function TLL1 mutations have been shown to cause autosomal dominant atrial septal defects. Our findings enable novel insights into the molecular pathways of valvular physiology and disease, the role of TLL1 in human development, and the differing phenotypes in loss-of-function and gain-of-function mutations of the same gene.
Collapse
Affiliation(s)
- Nadav Agam
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Artyom Star
- Department of Cardiology, Soroka University Medical Center, Affiliated to the Faculty of Health Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Ofek Freund
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Matan M Jean
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Amit Safran
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Tomer Poleg
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Doron Zahger
- Department of Cardiology, Soroka University Medical Center, Affiliated to the Faculty of Health Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel; Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel.
| |
Collapse
|
3
|
Bossé Y, Thériault S, Mathieu P. Editorial Commentary to Mapping the Monogenic and Polygenic Architecture of Mitral Valve Prolapse. Can J Cardiol 2025; 41:936-938. [PMID: 39884461 DOI: 10.1016/j.cjca.2025.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Affiliation(s)
- Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada; Department of Molecular Medicine, Université Laval, Quebec City, Canada.
| | - Sébastien Thériault
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada
| | - Patrick Mathieu
- Institut universitaire de cardiologie et de pneumologie de Québec - Université Laval, Quebec City, Canada
| |
Collapse
|
4
|
Nageswaran V, Carreras A, Reinshagen L, Beck KR, Steinfeldt J, Henricsson M, Ramezani Rad P, Peters L, Strässler ET, Lim J, Verhaar BJ, Döring Y, Weber C, König M, Steinhagen-Thiessen E, Demuth I, Kränkel N, Leistner DM, Potente M, Nieuwdorp M, Knaus P, Kuebler WM, Ferrell M, Nemet I, Hazen SL, Landmesser U, Bäckhed F, Haghikia A. Gut Microbial Metabolite Imidazole Propionate Impairs Endothelial Cell Function and Promotes the Development of Atherosclerosis. Arterioscler Thromb Vasc Biol 2025; 45:823-839. [PMID: 40143816 PMCID: PMC12017598 DOI: 10.1161/atvbaha.124.322346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The microbially produced amino acid-derived metabolite imidazole propionate (ImP) contributes to the pathogenesis of type 2 diabetes. However, the effects of ImP on endothelial cell (EC) physiology and its role in atherosclerotic coronary artery disease are unknown. Using both human and animal model studies, we investigated the potential contributory role of ImP in the development of atherosclerosis. METHODS Plasma levels of ImP were measured in patients undergoing elective cardiac angiography (n=831) by ultra-high performance liquid chromatography coupled to tandem mass spectrometry. Odds ratios and corresponding 95% confidence intervals for coronary artery disease were calculated based on the ImP quartiles using both univariable and multivariable logistic regression models. The effects of ImP on functional properties of ECs were assessed using HAECs (human aortic endothelial cells). In a mouse model of carotid artery injury, the impact of ImP on vascular regeneration was examined. Additionally, atheroprone Apoe-/- mice fed a high-fat diet were treated with and without ImP (800 µg), and aortic atherosclerotic lesion area was evaluated after 12 weeks. Next-generation sequencing, Western blot analysis, small interfering RNA-based gene knockdown, and tamoxifen-inducible Cre-loxP experiments were performed to investigate ImP-mediated molecular mechanisms. RESULTS Plasma ImP levels in subjects undergoing cardiac evaluation were associated with increased risk of prevalent coronary artery disease. We found that ImP dose dependently impaired migratory and angiogenic properties of human ECs and promoted an increased inflammatory response. Long-term exposure to ImP compromised the repair potential of the endothelium after an arterial insult. In atheroprone Apoe-/- (apolipoprotein E-/-) mice, ImP increased atherosclerotic lesion size. Mechanistically, ImP attenuated insulin receptor signaling by suppressing the PI3K (phosphoinositide 3-kinase)/AKT pathway leading to sustained activation of the FOXO1 (forkhead box protein O1) transcription factor. Genetic inactivation of endothelial FOXO1 signaling in ImP-treated mice enhanced the angiogenic activity and preserved the vascular repair capacity of ECs after carotid injury. CONCLUSIONS Our findings reveal a hitherto unknown role of the microbially produced histidine-derived metabolite ImP in endothelial dysfunction and atherosclerosis, suggesting that ImP metabolism is a potential therapeutic target in atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Vanasa Nageswaran
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany (V.N., P.K.)
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Germany (V.N., L.R., A.H.)
| | - Alba Carreras
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
| | - Leander Reinshagen
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Germany (V.N., L.R., A.H.)
| | - Katharina R. Beck
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
| | - Jakob Steinfeldt
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.S., U.L., A.H.)
| | - Marcus Henricsson
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
| | - Pegah Ramezani Rad
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
| | - Lisa Peters
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (L.P., W.M.K.)
- Institute of Biology, Freie Universität Berlin, Germany (L.P.)
| | - Elisabeth T. Strässler
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
| | - Joseph Lim
- Angiogenesis and Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.L., M.P.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.L., M.P.)
| | - Barbara J.H. Verhaar
- Department of Internal Medicine-Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), the Netherlands (B.J.H.V., M.N.)
- Department of Vascular Medicine, Amsterdam UMC, the Netherlands (B.J.H.V., M.N.)
| | - Yvonne Döring
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Germany (Y.D., C.W.)
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Switzerland (Y.D.)
- Department for BioMedical Research (DBMR), University of Bern, Switzerland (Y.D.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Germany (Y.D., C.W.)
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University of Munich, Germany (Y.D., C.W.)
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Germany (Y.D., C.W.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, the Netherlands (C.W.)
- Munich Cluster for Systems Neurology, Germany (C.W.)
| | - Maximilian König
- Department of Internal Medicine D–Geriatrics, University Medicine Greifswald, Germany (M.K.)
| | - Elisabeth Steinhagen-Thiessen
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (E.S.-T., I.D.)
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (E.S.-T., I.D.)
- Charité–Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Germany (I.D.)
| | - Nicolle Kränkel
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
| | - David M. Leistner
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt Rhine-Main, Germany (D.M.L.)
- Department of Medicine, Cardiology and Angiology, Goethe University Hospital, Frankfurt, Germany (D.M.L.)
| | - Michael Potente
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Angiogenesis and Metabolism Laboratory, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.L., M.P.)
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (J.L., M.P.)
| | - Max Nieuwdorp
- Department of Internal Medicine-Geriatrics, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center (UMC), the Netherlands (B.J.H.V., M.N.)
- Department of Vascular Medicine, Amsterdam UMC, the Netherlands (B.J.H.V., M.N.)
| | - Petra Knaus
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Germany (V.N., P.K.)
- Berlin-Brandenburg School for Regenerative Therapies, Germany (P.K.)
- International Max-Planck Research School for Biology and Computation, Berlin, Germany (P.K.)
| | - Wolfgang M. Kuebler
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Institute of Physiology, Charité-Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (L.P., W.M.K.)
- German Center for Lung Research (DZL), Berlin, Germany (W.M.K.)
- Keenan Research Centre for Biomedical Science at St. Michael’s, Toronto, Canada (W.M.K.)
- Departments of Surgery and Physiology, University of Toronto, Canada (W.M.K.)
| | - Marc Ferrell
- Departments of Cardiovascular and Metabolic Sciences, and Cardiovascular Medicine, Cleveland Clinic, OH (M.F., I.N., S.L.H.)
| | - Ina Nemet
- Departments of Cardiovascular and Metabolic Sciences, and Cardiovascular Medicine, Cleveland Clinic, OH (M.F., I.N., S.L.H.)
| | - Stanley L. Hazen
- Departments of Cardiovascular and Metabolic Sciences, and Cardiovascular Medicine, Cleveland Clinic, OH (M.F., I.N., S.L.H.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, OH (S.L.H.)
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.S., U.L., A.H.)
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, Wallenberg Laboratory, Sahlgrenska University Hospital, University of Gothenburg, Sweden (A.C., K.R.B., M.H., F.B.)
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden (F.B.)
| | - Arash Haghikia
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany (V.N., L.R., J.S., P.R.R., E.T.S., N.K., U.L., A.H.)
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Germany (V.N., L.R., P.R.R., L.P., E.T.S., N.K., M.P., W.M.K., U.L., A.H.)
- Friede Springe-Cardiovascular Prevention Center at Charité, Charité-Universitätsmedizin Berlin, Germany (V.N., J.S., E.S.-T., N.K., U.L., A.H.)
- University Hospital St. Josef-Hospital Bochum, Cardiology and Rhythmology, Ruhr University Bochum, Germany (V.N., L.R., A.H.)
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Germany (J.S., U.L., A.H.)
| |
Collapse
|
5
|
van Wijngaarden AL, Koopmann TT, Ruivenkamp CAL, Wu HW, Ajmone Marsan N, Barge‐Schaapveld DQCM. A PDLIM7 Variant in Familial Mitral Valve Prolapse: A Case Series. Clin Case Rep 2025; 13:e70282. [PMID: 40161031 PMCID: PMC11952993 DOI: 10.1002/ccr3.70282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 02/11/2025] [Accepted: 02/17/2025] [Indexed: 04/02/2025] Open
Abstract
In the presented case of familial mitral valve prolapse, whole exome sequencing was used to reveal a missense variant in the PDLIM7 gene. This gene is considered a possible novel candidate gene for familial MVP based on PDLIM7 knock-out mice and zebrafish showing mitral valve abnormalities.
Collapse
Affiliation(s)
| | - Tamara T. Koopmann
- Department of Clinical GeneticsLeiden University Medical CenterLeidenthe Netherlands
| | | | - Hoi W. Wu
- Department of CardiologyLeiden University Medical CenterLeidenthe Netherlands
| | - Nina Ajmone Marsan
- Department of CardiologyLeiden University Medical CenterLeidenthe Netherlands
| | | |
Collapse
|
6
|
Wang Q, Zhao J, Huang H. Whole exome sequencing of 80 cases of sporadic mitral valve prolapse reveals novel disease-associated genes and variants in a Southern Chinese population. Genes Genomics 2025:10.1007/s13258-025-01626-x. [PMID: 40131712 DOI: 10.1007/s13258-025-01626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common valvular disorder with a complex genetic basis. While familial MVP-related genes have been identified, the genetic determinants of sporadic MVP remain unclear. OBJECTIVE This study aims to identify causative genes associated with sporadic MVP and analyze genotype-phenotype correlations in a southern Chinese population. METHODS Whole-exome sequencing (WES) was performed on 80 patients with sporadic MVP. Pathogenic variants were screened using population databases and bioinformatic tools. Gene enrichment and genotype-phenotype correlation analyses were conducted. RESULTS A total of 145 variants in 104 MVP-associated genes were identified. Five known MVP genes (COL1A2, FLNA, FLNC, TGFB1, TTN) were found in 14 patients. Three novel MVP-related genes (PRDM5, ZNF469, COL11A1) were identified, predominantly in fibroelastic deficiency cases. These patients had younger onset and higher early diastolic peak velocities. CONCLUSIONS Sporadic MVP exhibits genetic heterogeneity, with pathogenic mutations linked to early-onset disease and left ventricular dilation. Early genetic screening may improve diagnosis and risk assessment.
Collapse
Affiliation(s)
- Qiuji Wang
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, People's Republic of China
- Guangdong Cardiovascular Institute, Guangzhou, 510030, People's Republic of China
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, People's Republic of China
| | - Junfei Zhao
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, People's Republic of China.
- Guangdong Cardiovascular Institute, Guangzhou, 510030, People's Republic of China.
| | - Huanlei Huang
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510080, Guangdong, People's Republic of China.
- Guangdong Cardiovascular Institute, Guangzhou, 510030, People's Republic of China.
- Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangzhou, People's Republic of China.
- School of Medicine, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
7
|
Wang M, Li W, Shao Y, Wang F, Huang Y, Wei C, Li P, Sun K, Yan X, Gou Z. Connexin 43 dephosphorylation mediates the Dchs1/YAP/TEAD signaling pathway to induce cardiac fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119919. [PMID: 39938686 DOI: 10.1016/j.bbamcr.2025.119919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND The gap junction protein connexin 43 (Cx43) has been implicated in the development of cardiac fibrosis. Our previous findings revealed that Cx43 dephosphorylation at serine 282 (S282) is related to cardiomyocyte apoptosis and arrhythmias in hearts damaged by ischemia/reperfusion. In this study, we investigated the role of Cx43 S282 phosphorylation in cardiac fibrosis. METHODS We used angiotensin II (Ang II) intervention in mice to establish an in vivo cardiac fibrosis model and transforming growth factor β-1 (TGF-β1) intervention in cardiac myofibroblasts to establish an in vitro fibrosis model. The expression of Cx43 S282 phosphorylation was examined in the in vivo and in vitro models. To further confirm the effect of Cx43 S282 phosphorylation on cardiac fibrosis, we transfected cardiac myofibroblasts with lentiviral bodies in vitro, and injected myocardium with adenovirus in vivo to establish the over-expression of phosphorylation of Cx43 S282 locus and mutant groups. We sequenced the mRNA of the in vitro group using gene set enrichment analysis (GSEA) and normalized enrichment scoring (NES) to investigate the signaling pathway by which p282-Cx43 affects myocardial fibrosis (MF). The role of the Hippo signaling pathway in phosphorylation at the Cx43 282 site was further validated. RESULTS In an in vivo and in vitro model of cardiac fibrosis, the level of phosphorylation of Cx43 S282 was reduced. Mutation of Cx43 S282 to a less phosphorylatable form (S282A) resulted in elevated levels of fibrosis markers, suggesting a critical antifibrotic role for phosphorylated Cx43 S282. Increased phosphorylation of Cx43 S282 produced an inhibitory effect on fibrosis. Enrichment analysis of mRNA sequencing in the mutant model group indicated that the Hippo signaling pathway was involved in the fibrosis process. Cx43 S282 phosphorylation increased the expression of Dchs1 gene, which activates the phosphorylation of yes-associated protein (YAP) and inhibits the YAP/TEAD signaling pathway to inhibit fibrosis development. CONCLUSIONS This study suggests that the phosphorylation of Cx43 S282 could be an effective antifibrotic target in cardiac fibroblasts. This indicates a novel mechanism and a molecular target that may hold promise for treating cardiac fibrosis.
Collapse
Affiliation(s)
- Min Wang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Wanning Li
- Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Yaqing Shao
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Feng Wang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ying Huang
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Chenchen Wei
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Ping Li
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Kangyun Sun
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China
| | - Xinxin Yan
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China; Department of Pharmacology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| | - Zhongshan Gou
- Center for Cardiovascular Disease, Suzhou Key Laboratory of Cardiovascular Disease, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu 215008, PR China.
| |
Collapse
|
8
|
Martin SS, Aday AW, Allen NB, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Bansal N, Beaton AZ, Commodore-Mensah Y, Currie ME, Elkind MSV, Fan W, Generoso G, Gibbs BB, Heard DG, Hiremath S, Johansen MC, Kazi DS, Ko D, Leppert MH, Magnani JW, Michos ED, Mussolino ME, Parikh NI, Perman SM, Rezk-Hanna M, Roth GA, Shah NS, Springer MV, St-Onge MP, Thacker EL, Urbut SM, Van Spall HGC, Voeks JH, Whelton SP, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2025 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2025; 151:e41-e660. [PMID: 39866113 DOI: 10.1161/cir.0000000000001303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2025 AHA Statistical Update is the product of a full year's worth of effort in 2024 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. This year's edition includes a continued focus on health equity across several key domains and enhanced global data that reflect improved methods and incorporation of ≈3000 new data sources since last year's Statistical Update. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
9
|
Stark CM, Hughes BN, Schacht JP, Urbina TM. Decoding Hearts: Genetic Insights and Clinical Strategies in Congenital Heart Disease. Neoreviews 2025; 26:e73-e88. [PMID: 39889766 DOI: 10.1542/neo.26-2-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/02/2024] [Indexed: 02/03/2025]
Abstract
Structural congenital heart disease (CHD) represents a heterogeneous group of cardiac anomalies of variable embryologic and molecular origins. A basic understanding of the genetics implicated in nonsyndromic (isolated) and syndromic structural CHD can better inform management decisions and family counseling. When a fetus or neonate develops CHD as a result of a genetic cause, it can be due to a mutation or a monogenic, oligogenic, or polygenic pathogenic variant. In this review, we summarize basic cardiac embryology in the context of genetic signaling pathways and proteins that are commonly implicated in syndromic and nonsyndromic structural CHD. We also provide an overview of the basic genetic evaluation in infants with common syndromic structural CHD.
Collapse
Affiliation(s)
- Christopher M Stark
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Brian N Hughes
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - John Paul Schacht
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, Maryland
| | - Theresa M Urbina
- Department of Pediatrics, Madigan Army Medical Center, Tacoma, Washington
| |
Collapse
|
10
|
d’Apolito M, Santoro F, Ranaldi A, Cannito S, Santacroce R, Ragnatela I, Margaglione A, D’Andrea G, Brunetti ND, Margaglione M. Genetic Background and Clinical Phenotype in an Italian Cohort with Inherited Arrhythmia Syndromes and Arrhythmogenic Cardiomyopathy (ACM): A Whole-Exome Sequencing Study. Int J Mol Sci 2025; 26:1200. [PMID: 39940965 PMCID: PMC11818934 DOI: 10.3390/ijms26031200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Inherited arrhythmia syndromes include several different diseases, as well as Brugada syndrome (BrS), long QT syndrome (LQTS), catecholaminergic polymorphic ventricular tachycardia (CPVT), and short QT syndrome (SQTS). They represent, together with arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C), an important cause of sudden cardiac death in the young. Most arrhythmia syndromes are inherited in an autosomal dominant manner, and genetic studies are suggested.: to report the spectrum of genetic variations and clinical phenotype in an Italian cohort with confirmed inherited arrhythmia syndromes and arrhythmogenic cardiomyopathy using whole-exome sequencing (WES). Patients with confirmed inherited arrhythmia syndromes and hereditary cardiomyopathy were recruited at the Cardiology Unit, University Polyclinic Hospital of Foggia, Italy and were included in this study. Genomic DNA samples were extracted from peripheral blood and conducted for WES. The variants were annotated using BaseSpace Variant Interpreter Annotation Engine 3.15.0.0 (Illumina). Reported variants were investigated using ClinVar, VarSome Franklin and a literature review. They were categorised agreeing to the criteria of the American College of Medical Genetics and Genomics. Overall, 62 patients were enrolled. Most of them had a clinical diagnosis of BrS (n 48, 77%). The remaining patients included in the present study had diagnosis of confirmed LQT (n 7, 11%), AR-DCM (n 4, 6.5%), ARVD (n 2, 3%), and SQT (n 1, 1.6%). Using the WES technique, 22 variants in 15 genes associated with Brugada syndrome were identified in 21 patients (34%). Among these, the SCN5A gene had the highest number of variants (6 variants, 27%), followed by KCNJ5 and CASQ2 (2 variants). Only one variant was identified in the remaining genes. In 27 patients with a clinical diagnosis of BrS, no gene variant was detected. In patients with confirmed LQT, SQT, 10 variants in 9 genes were identified. Among patients with ARVD and AR-DCM, 6 variants in 5 genes were found. Variants found in our cohort were classified as pathogenic (6), likely pathogenic (3), of uncertain significance (26), and benign (1). Two additional gene variants were classified as risk factors. In this study, 13 novel genetic variations were recognized to be associated with inherited arrhythmogenic cardiomyopathies. Our understanding of inherited arrhythmia syndromes continues to progress. The era of next-generation sequencing has advanced quickly, given new genetic evidence including pathogenicity, background genetic noise, and increased discovery of variants of uncertain significance. Although NGS study has some limits in finding the full genetic data of probands, large-scale gene sequencing can promptly be applied in real clinical practices, especially in inherited and possibly fatal arrhythmia syndromes.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Francesco Santoro
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (I.R.); (N.D.B.)
- Cardiology Unit, University Polyclinic Hospital of Foggia, 71122 Foggia, Italy;
| | - Alessandra Ranaldi
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Sara Cannito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Ilaria Ragnatela
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (I.R.); (N.D.B.)
| | | | - Giovanna D’Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| | - Natale Daniele Brunetti
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy; (F.S.); (I.R.); (N.D.B.)
- Cardiology Unit, University Polyclinic Hospital of Foggia, 71122 Foggia, Italy;
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (M.d.); (A.R.); (S.C.); (R.S.); (G.D.)
| |
Collapse
|
11
|
Shpitzen S, Rosen H, Ben-Zvi A, Meir K, Levin G, Gudgold A, Ben Dor S, Haffner R, Zwas DR, Leibowitz D, Slaugenhaupt SA, Banin E, Mizrachi R, Obolensky A, Levine RA, Gilon D, Leitersdorf E, Tessler I, Reshef N, Durst R. Characterization of LTBP2 mutation causing mitral valve prolapse. EUROPEAN HEART JOURNAL OPEN 2025; 5:oeae106. [PMID: 39882270 PMCID: PMC11775471 DOI: 10.1093/ehjopen/oeae106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 12/17/2024] [Indexed: 01/31/2025]
Abstract
Aims Mitral valve prolapse (MVP) is a common valvular disorder associated with significant morbidity and mortality, with a strong genetic basis. This study aimed to identify a mutation in a family with MVP and to characterize the valve phenotype in LTBP2 knockout (KO) mice. Methods and results Exome sequencing and segregation analysis were performed on a large family with MVP. Two mouse strains were generated: a complete KO of the LTBP2 gene and a knockin (KI) of the human mutation. At 6 months, phenotyping was conducted using echocardiography, histology, eye optical coherence tomography, and quantitative polymerase chain reaction analysis for TGF-β signalling targets (periostin/POSTN, RUNX2, and CTGF) in valve tissues. LTBP2 rs117800773 V1506M mutation exhibited segregation with MVP. LTBP2 KO mice had a higher incidence of myxomatous changes by histology (7 of 9 of KO vs. 0 of 7 control animals, P = 0.00186) and echocardiography (7 of 9 vs. 0 of 8, P = 0.0011). LTBP2 KI mice for the human mutation showed a significantly elevated myxomatous histological phenotype (8 of 8 vs. 0 of 9, P = 0.00004) as well as by echocardiography (6 of 8 vs. 0 of 9, P = 0.00123). Knockout mice demonstrated an increase in the depth of the anterior chamber as well as reduced visual acuity. LTBP2 KO mice demonstrated overexpression of both TGF-β signalling targets RUNX2 and periostin (P = 0.0144 and P = 0.001826, respectively). Conclusion We report a KO mouse strain with an LTBP2 mutation, demonstrating a valve phenotype, alongside a family with a novel mutation linked to MVP.
Collapse
Affiliation(s)
- Shoshi Shpitzen
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Haim Rosen
- The Kuvin Center for the Study of Infectious and Tropical Diseases, Institute for Medical Research-Israel-Canada, Hebrew University—Hadassah Medical School, 9112001 Jerusalem, Israel
| | - Ayal Ben-Zvi
- Developmental Biology and Cancer Research, Hadassah—Hebrew University Medical School, 9112001 Jerusalem, Israel
| | - Karen Meir
- Department of Pathology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Galina Levin
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Amichay Gudgold
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Shifra Ben Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Herzl St 234, 7610001 Rehovot, Israel
| | - Rebecca Haffner
- Department of Veterinary Resources, Weizmann Institute of Science, Herzl St 234, 7610001 Rehovot, Israel
| | - Donna R Zwas
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - David Leibowitz
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Susan A Slaugenhaupt
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, 185 Cambridge Street, Boston, MA 02114, USA
| | - Eyal Banin
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 911200120 Jerusalem, Israel
| | - Rotem Mizrachi
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 911200120 Jerusalem, Israel
| | - Alexey Obolensky
- Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 911200120 Jerusalem, Israel
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Dan Gilon
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Eran Leitersdorf
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Idit Tessler
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
- Sheba Medical Center, Ramat Gan, P.O. Box 12000, 911200120 Jerusalem, Israel
- Faculty of Medicine, Tel-Aviv University, P.O. Box 12000, 911200120 Tel-Aviv, Israel
| | - Noga Reshef
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| | - Ronen Durst
- Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
- Department of Cardiology, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel
| |
Collapse
|
12
|
Bu T, Wang L, Wu X, Gao S, Yun D, Mao B, Li L, Sun F, Cheng CY. Interacting Fat1 and Dchs Planar Cell Polarity Proteins Supported by Fjx1 Serve as Heterodimeric Intercellular Bridges Crucial to Support Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:355-374. [PMID: 40301264 DOI: 10.1007/978-3-031-82990-1_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Studies of the planar cell polarity (PCP) protein complexes Fat1/Fjx1 and Dchs/Fjx1 that form heterotypic interacting bridges of Fat1-Dchs between adjacent cells to confer PCP, as noted in Drosophila, are also found in mammalian cells and tissues as orthologs, such as in Sertoli cells and condensed spermatids in the seminiferous epithelium of the testis. Recent studies have shown that these two interacting PCP protein complexes are also crucial regulators of microtubule and actin dynamics, modulating the polymerization of both microtubules and actin filaments in the testis. In this review, we provide a brief update and thought-provoking concept on the PCP core proteins and the associated downstream signaling pathways utilized by PCP proteins to confer PCP and regulation of the microtubule and actin cytoskeletons in the testis. However, we focus on recent data in the field on the Fat1/Fjx1 and Dchs/Fjx1 protein complexes, which are also heterotypic interacting protein complexes, and their functional role in modulating the microtubule and actin cytoskeletal organization. Based on these recent findings, we formulate a hypothetic model depicting the role of these two PCP protein complexes in modulating the timely "opening" and "closing" of the blood-testis barrier (BTB) formed by adjacent Sertoli cells near the base of the seminiferous epithelium. Additionally, these two PCP protein complexes also modulate cytoskeletal dynamics between Sertoli cells and condensed spermatids to support haploid spermatid transport across the seminiferous epithelium during their structural transformation through spermiogenesis, and their eventual release at spermiation during the epithelial cycle of spermatogenesis. This hypothetical model will provide a useful framework for designing functional experiments to understand the role of PCP proteins in supporting spermatogenesis.
Collapse
Affiliation(s)
- Tiao Bu
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang City, Guangdong, China
| | - Lingling Wang
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Gao
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Damin Yun
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baiping Mao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fei Sun
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - C Yan Cheng
- Department of Urology and Andrology, Sir Run-run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
13
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. Development 2024; 151:dev202919. [PMID: 39503213 PMCID: PMC11634027 DOI: 10.1242/dev.202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here, we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain that contribute to Dachsous activity. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with key partners, including Lowfat, Dachs, Spiny-legs, Fat and MyoID. Subdivision of the D motif identified distinct regions that preferentially contribute to different Dachsous activities. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D. Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
14
|
Dahawi M, de Sainte Agathe JM, Elmagzoub MS, Ahmed EA, Buratti J, Courtin T, Noé E, Bogoin J, Copin B, Elmugadam FA, Abdelgadir WA, Ahmed AKMA, Daldoum MA, Altayeb RMI, Bashir M, Khalid LM, Gamil S, Baldassari S, Elsayed L, Keren B, Nuel G, Ahmed AE, Leguern E. Genetic heterogeneity in familial forms of genetic generalized epilepsy: from mono- to oligogenism. Hum Genomics 2024; 18:130. [PMID: 39574152 PMCID: PMC11583555 DOI: 10.1186/s40246-024-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/16/2024] [Indexed: 11/24/2024] Open
Abstract
Genetic generalized epilepsy (GGE) including childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures (TCS) (GGE-TCS), is genetically influenced with a two- to four- fold increased risk in the first-degree relatives of patients. Since large families with GGE are very rare, international studies have focused on sporadic GGE patients using whole exome sequencing, suggesting that GGE are highly genetically heterogeneous and rather involve rare or ultra-rare variants. Moreover, a polygenic mode of inheritance is suspected in most cases. We performed SNP microarrays and whole exome sequencing in 20 families from Sudan, focusing on those with at least four affected members. Standard genetic filters and Endeavour algorithm for functional prioritization of genes selected likely susceptibility variants in FAT1, DCHS1 or ASTN2 genes. FAT1 and DCHS1 are adhesion transmembrane proteins interacting during brain development, while ASTN2 is involved in dendrite development. Our approach on familial forms of GGE is complementary to large-scale collaborative consortia studies of sporadic cases. Our study reinforces the hypothesis that GGE is genetically heterogeneous, even in a relatively limited geographic area, and mainly oligogenic, as supported by the low familial penetrance of GGE and by the Bayesian algorithm that we developed in a large pedigree with JME. Since populations with founder effect and endogamy are appropriate to study autosomal recessive pathologies, they would be also adapted to decipher genetic components of complex diseases, using the reported bayesian model.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France.
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan.
| | - Jean-Madeleine de Sainte Agathe
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Mohamed S Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Elhami A Ahmed
- Faculty of Dentistry, Shendi University, Shendi, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Julien Buratti
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Thomas Courtin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Julie Bogoin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Bruno Copin
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | | | - Wasma A Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Ahmed K M A Ahmed
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mohamed A Daldoum
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Division of Neurology, Sudan Medical Council, Khartoum, Sudan
| | | | - Mohamed Bashir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Sahar Gamil
- Department of Basic Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, AL-Kharj, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
| | - Liena Elsayed
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, P.O.Box 84428, 11671, Riyadh, Saudi Arabia
| | - Boris Keren
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
| | - Gregory Nuel
- Stochastics and Biology Group (MAV), Probability and Statistics (LPSM, CNRS 8001), Sorbonne Université, Paris, France
| | - Ammar E Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS - Hôpital La Pitié-Salpêtrière, Paris, France
- Department of Medical Genetics, Sorbonne Université, AP-HP Sorbonne Université, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
15
|
Rimbert A, Duval D, Trujillano D, Kyndt F, Jobbe-Duval A, Lindenbaum P, Tucker N, Lecointe S, Labbé P, Toquet C, Karakachoff M, Roussel JC, Baufreton C, Bruneval P, Cueff C, Donal E, Redon R, Olaso R, Boland A, Deleuze JF, Estivill X, Slaugenhaupt S, Markwald RR, Norris RA, Verhoye JP, Probst V, Hagège A, Levine R, Jeunemaitre X, Marec HL, Capoulade R, Bouatia-Naji N, Dina C, Milan D, Ossowski S, Schott JJ, Mérot J, Scouarnec SL, Tourneau TL. Isolated prolapse of the posterior mitral valve leaflet: phenotypic refinement, heritability and genetic etiology. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.16.24315096. [PMID: 39484266 PMCID: PMC11527059 DOI: 10.1101/2024.10.16.24315096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
BACKGROUND Isolated posterior leaflet mitral valve prolapse (PostMVP), a common form of MVP, often referred as fibroelastic deficiency, is considered a degenerative disease. PostMVP patients are usually asymptomatic and often undiagnosed until chordal rupture. The present study aims to characterize familial PostMVP phenotype and familial recurrence, its genetic background, and the pathophysiological processes involved. METHODS We prospectively enrolled 284 unrelated MVP probands, of whom 178 (63%) had bi-leaflet MVP and 106 had PostMVP (37%). Familial screening within PostMVP patients allowed the identification of 20 families with inherited forms of PostMVP for whom whole genome sequencing was carried out in probands. Functional in vivo and in vitro investigations were performed in zebrafishand in Hek293T cells. RESULTS In the 20 families with inherited form of PostMVP, 38.8% of relatives had a MVP/prodromal form, mainly of the posterior leaflet, with transmission consistent with an autosomal dominant mode of inheritance. Compared with control relatives, PostMVP family patients have clear posterior leaflet dystrophy on echocardiography. Patients with PostMVP present a burden of rare genetic variants in ARHGAP24. ARHGAP24 encodes the filamin A binding RhoGTPase-activating protein FilGAP and its silencing in zebrafish leads to atrioventricular regurgitation. In vitro functional studies showed that variants of FilGAP, found in PostMVP families, are loss-of-function variants impairing cellular adhesion and mechano-transduction capacities. CONCLUSIONS PostMVP should not only be considered an isolated degenerative pathology but as a specific heritable phenotypic trait with genetic and functional pathophysiological origins. The identification of loss-of-function variants in ARHGAP24 further reinforces the pivotal role of mechano-transduction pathways in the pathogenesis of MVP. CLINICAL PERSPECTIVE Isolated posterior mitral valve prolapse (PostMVP), often called fibro-elastic deficiency MVP, is at least in some patients, a specific inherited phenotypic traitPostMVP has both genetic and functional pathophysiological origins Genetic variants in the ARHGAP24 gene, which encodes for the FilGAP protein, cause progressive Post MVP in familial cases, and impair cell adhesion and mechano-transduction capacities.
Collapse
|
16
|
Opris CE, Suciu H, Flamand S, Opris CI, Hamida AH, Gurzu S. Update on the genetic profile of mitral valve development and prolapse. Pathol Res Pract 2024; 262:155535. [PMID: 39182449 DOI: 10.1016/j.prp.2024.155535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/21/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
The purpose of this review is to present a comprehensive overview of the literature published up to February 2024 on the PubMed database regarding the development of mitral valve disease, with detailed reference to mitral valve prolapse, from embryology to a genetic profile. Out of the 3291 publications that deal with mitral valve embryology, 215 refer to mitral valve genetics and 83 were selected for further analysis. After reviewing these data, we advocate for the importance of a gene-based therapy that should be available soon, to prevent or treat non-invasively the valvular degeneration.
Collapse
Affiliation(s)
- Carmen Elena Opris
- Department of Adult and Children Cardiovascular Recovery, Emergency Institute for Cardio-Vascular Diseases and Transplantation, Targu Mures 540139, Romania; Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Horatiu Suciu
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Romanian Academy of Medical Sciences, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Sanziana Flamand
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Cosmin Ioan Opris
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania; Department of Cardiovascular Surgery, Emergency University Hospital, Romania
| | - Al Hussein Hamida
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology, Targu Mures 540139, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures , Romania; Romanian Academy of Medical Sciences, Romania; Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
| |
Collapse
|
17
|
Small AM, Yutzey KE, Binstadt BA, Voigts Key K, Bouatia-Naji N, Milan D, Aikawa E, Otto CM, St Hilaire C. Unraveling the Mechanisms of Valvular Heart Disease to Identify Medical Therapy Targets: A Scientific Statement From the American Heart Association. Circulation 2024; 150:e109-e128. [PMID: 38881493 PMCID: PMC11542557 DOI: 10.1161/cir.0000000000001254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Valvular heart disease is a common cause of morbidity and mortality worldwide and has no effective medical therapy. Severe disease is managed with valve replacement procedures, which entail high health care-related costs and postprocedural morbidity and mortality. Robust ongoing research programs have elucidated many important molecular pathways contributing to primary valvular heart disease. However, there remain several key challenges inherent in translating research on valvular heart disease to viable molecular targets that can progress through the clinical trials pathway and effectively prevent or modify the course of these common conditions. In this scientific statement, we review the basic cellular structures of the human heart valves and discuss how these structures change in primary valvular heart disease. We focus on the most common primary valvular heart diseases, including calcific aortic stenosis, bicuspid aortic valves, mitral valve prolapse, and rheumatic heart disease, and outline the fundamental molecular discoveries contributing to each. We further outline potential therapeutic molecular targets for primary valvular heart disease and discuss key knowledge gaps that might serve as future research priorities.
Collapse
|
18
|
Zeng Y, Tan X, Xu S, Wang K, Li X, Jiang Y. Generation of an integration-free induced pluripotent stem cell (iPSC) line (SDHI001-A) from a 65-year old adult mitral valve prolapse (MVP) patient. Stem Cell Res 2024; 78:103464. [PMID: 38865834 DOI: 10.1016/j.scr.2024.103464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024] Open
Abstract
Human iPSC line, SDHi001-A, was generated from 65-year-old male patient with mitral valve prolapse, using non-integrative reprogramming method. This cell line shows pluripotency both in vitro and in vivo, and has a normal karyotype.
Collapse
Affiliation(s)
- Yiyao Zeng
- Department of Cardiology, The Fourth Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, No 9, Chongwen Road, Suzhou City 215000, China
| | - Xin Tan
- Department of Cardiology, The Fourth Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, No 9, Chongwen Road, Suzhou City 215000, China
| | - Shuai Xu
- Department of Cardiology, The Fourth Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, No 9, Chongwen Road, Suzhou City 215000, China
| | - Kuangyi Wang
- Department of Cardiology, The Fourth Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, No 9, Chongwen Road, Suzhou City 215000, China
| | - Xian Li
- Department of Cardiology, The Fourth Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, No 9, Chongwen Road, Suzhou City 215000, China
| | - Yufeng Jiang
- Department of Cardiology, The Fourth Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou Dushu Lake Hospital, No 9, Chongwen Road, Suzhou City 215000, China.
| |
Collapse
|
19
|
Gabriel GC, Ganapathiraju M, Lo CW. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Annu Rev Genomics Hum Genet 2024; 25:309-327. [PMID: 38724024 DOI: 10.1146/annurev-genom-121222-105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Congenital heart disease (CHD) can affect up to 1% of live births, and despite abundant evidence of a genetic etiology, the genetic landscape of CHD is still not well understood. A large-scale mouse chemical mutagenesis screen for mutations causing CHD yielded a preponderance of cilia-related genes, pointing to a central role for cilia in CHD pathogenesis. The genes uncovered by the screen included genes that regulate ciliogenesis and cilia-transduced cell signaling as well as many that mediate endocytic trafficking, a cell process critical for both ciliogenesis and cell signaling. The clinical relevance of these findings is supported by whole-exome sequencing analysis of CHD patients that showed enrichment for pathogenic variants in ciliome genes. Surprisingly, among the ciliome CHD genes recovered were many that encoded direct protein-protein interactors. Assembly of the CHD genes into a protein-protein interaction network yielded a tight interactome that suggested this protein-protein interaction may have functional importance and that its disruption could contribute to the pathogenesis of CHD. In light of these and other findings, we propose that an interactome enriched for ciliome genes may provide the genomic context for the complex genetics of CHD and its often-observed incomplete penetrance and variable expressivity.
Collapse
Affiliation(s)
- George C Gabriel
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| | - Madhavi Ganapathiraju
- Carnegie Mellon University in Qatar, Doha, Qatar
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA;
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; ,
| |
Collapse
|
20
|
Minvielle Moncla LH, Briend M, Sokhna Sylla M, Mathieu S, Rufiange A, Bossé Y, Mathieu P. Mendelian randomization reveals interactions of the blood proteome and immunome in mitral valve prolapse. COMMUNICATIONS MEDICINE 2024; 4:108. [PMID: 38844506 PMCID: PMC11156961 DOI: 10.1038/s43856-024-00530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Mitral valve prolapse (MVP) is a common heart disorder characterized by an excessive production of proteoglycans and extracellular matrix in mitral valve leaflets. Large-scale genome-wide association study (GWAS) underlined that MVP is heritable. The molecular underpinnings of the disease remain largely unknown. METHODS We interrogated cross-modality data totaling more than 500,000 subjects including GWAS, 4809 molecules of the blood proteome, and genome-wide expression of mitral valves to identify candidate drivers of MVP. Data were investigated through Mendelian randomization, network analysis, ligand-receptor inference and digital cell quantification. RESULTS In this study, Mendelian randomization identify that 33 blood proteins, enriched in networks for immunity, are associated with the risk of MVP. MVP- associated blood proteins are enriched in ligands for which their cognate receptors are differentially expressed in mitral valve leaflets during MVP and enriched in cardiac endothelial cells and macrophages. MVP-associated blood proteins are involved in the renewal-polarization of macrophages and regulation of adaptive immune response. Cytokine activity profiling and digital cell quantification show in MVP a shift toward cytokine signature promoting M2 macrophage polarization. Assessment of druggability identify CSF1R, CX3CR1, CCR6, IL33, MMP8, ENPEP and angiotensin receptors as actionable targets in MVP. CONCLUSIONS Hence, integrative analysis identifies networks of candidate molecules and cells involved in immune control and remodeling of the extracellular matrix, which drive the risk of MVP.
Collapse
Affiliation(s)
| | - Mewen Briend
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Mame Sokhna Sylla
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Samuel Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Anne Rufiange
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec City, QC, Canada
| | - Patrick Mathieu
- Genomic Medicine Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec City, QC, Canada.
- Department of Surgery, Laval University, Quebec City, QC, Canada.
| |
Collapse
|
21
|
Delwarde C, Toquet C, Boureau AS, Le Ruz R, Le Scouarnec S, Mérot J, Kyndt F, Bernstein D, Bernstein JA, Aalberts JJJ, Le Marec H, Schott JJ, Roussel JC, Le Tourneau T, Capoulade R. Filamin A heart valve disease as a genetic cause of inherited bicuspid and tricuspid aortic valve disease. Heart 2024; 110:666-674. [PMID: 38148157 DOI: 10.1136/heartjnl-2023-323491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
OBJECTIVE Variants in the FLNA gene have been associated with mitral valve dystrophy (MVD), and even polyvalvular disease has been reported. This study aimed to analyse the aortic valve and root involvement in FLNA-MVD families and its impact on outcomes. METHODS 262 subjects (37 (18-53) years, 140 male, 79 carriers: FLNA+) from 4 FLNA-MVD families were included. Echocardiography was performed in 185 patients and histological analysis in 3 explanted aortic valves. The outcomes were defined as aortic valve surgery or all-cause mortality. RESULTS Aortic valve alterations were found in 58% of FLNA+ compared with 6% of FLNA- (p<0.001). 9 (13.4%) FLNA+ had bicuspid aortic valve compared with 4 (3.4%) FLNA- (p=0.03). Overall, the transvalvular mean gradient was slightly increased in FLNA+ (4.8 (4.1-6.1) vs 4.0 (2.9-4.9) mm Hg, p=0.02). The sinuses of Valsalva and sinotubular junction diameters were enlarged in FLNA+ subjects (all p<0.05). 8 FLNA+ patients underwent aortic valve surgery (0 in relatives; p<0.001). Myxomatous remodelling with an infiltration of immune cells was observed. Overall survival was similar between FLNA+ versus FLNA- subjects (86±5% vs 85±6%, p=0.36). There was no statistical evidence for an interaction between genetic status and sex (p=0.15), but the survival tended to be impaired in FLNA+ men (p=0.06) whereas not in women (p=0.71). CONCLUSION The patients with FLNA variants present frequent aortic valve disease and worse outcomes. Bicuspid aortic valve is more frequent in patients carrying the FLNA-MVD variants. These unique features should be factored into the management of patients with dystrophic and/or bicuspid aortic valve.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Claire Toquet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Anne Sophie Boureau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Robin Le Ruz
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Solena Le Scouarnec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Jean Mérot
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Florence Kyndt
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jonathan A Bernstein
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jan J J Aalberts
- Department of Cardiology, Reinier de Graaf Hospital, Delft, Netherlands
| | - Hervé Le Marec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Jean-Christian Roussel
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, Nantes, France
| |
Collapse
|
22
|
Singh A, Thale S, Leibner T, Lamparter L, Ricker A, Nüsse H, Klingauf J, Galic M, Ohlberger M, Matis M. Dynamic interplay of microtubule and actomyosin forces drive tissue extension. Nat Commun 2024; 15:3198. [PMID: 38609383 PMCID: PMC11014958 DOI: 10.1038/s41467-024-47596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Sameedha Thale
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Tobias Leibner
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Lucas Lamparter
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Milos Galic
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Mario Ohlberger
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany.
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
23
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587940. [PMID: 38617303 PMCID: PMC11014530 DOI: 10.1101/2024.04.03.587940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain required for normal development. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with four key partners: Lowfat, Dachs, Spiny-legs, and MyoID. Subdivision of the D motif identified distinct regions that are preferentially responsible for association with Lft versus Dachs. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
|
24
|
Martin M, Chen CY, McCowan T, Wells S. Differential Development of the Chordae Tendineae and Anterior Leaflet of the Bovine Mitral Valve. J Cardiovasc Dev Dis 2024; 11:106. [PMID: 38667724 PMCID: PMC11050492 DOI: 10.3390/jcdd11040106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
There is increasing evidence that some adult mitral valve pathologies may have developmental origins involving errors in cell signaling and protein deposition during valvulogenesis. While early and late gestational stages are well-documented in zebrafish, chicks, and small mammalian models, longitudinal studies in large mammals with a similar gestational period to humans are lacking. Further, the mechanism of chordae tendineae formation and multiplication remains unclear. The current study presents a comprehensive examination of mitral anterior leaflet and chordae tendineae development in a bovine model (a large mammal with the same gestational period as humans). Remarkably distinct from small mammals, bovine development displayed early branched chordae, with increasing attachments only until birth, while the anterior leaflet grew both during gestation and postnatally. Chordae also exhibited accelerated collagen deposition, maturation, and crimp development during gestation. These findings suggest that the bovine anterior leaflet and chordae tendineae possess unique processes of development despite being a continuous collagenous structure and could provide greater insight into human valve development.
Collapse
Affiliation(s)
- Meghan Martin
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Chih-Ying Chen
- Medical Sciences Program, Faculties of Science and Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (C.-Y.C.); (T.M.)
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Timothy McCowan
- Medical Sciences Program, Faculties of Science and Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (C.-Y.C.); (T.M.)
- Integrated Science Program, Faculty of Science, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sarah Wells
- School of Biomedical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada;
- Medical Sciences Program, Faculties of Science and Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada; (C.-Y.C.); (T.M.)
| |
Collapse
|
25
|
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Barone Gibbs B, Beaton AZ, Boehme AK, Commodore-Mensah Y, Currie ME, Elkind MSV, Evenson KR, Generoso G, Heard DG, Hiremath S, Johansen MC, Kalani R, Kazi DS, Ko D, Liu J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Perman SM, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Tsao CW, Urbut SM, Van Spall HGC, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Palaniappan LP. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association. Circulation 2024; 149:e347-e913. [PMID: 38264914 DOI: 10.1161/cir.0000000000001209] [Citation(s) in RCA: 826] [Impact Index Per Article: 826.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
BACKGROUND The American Heart Association (AHA), in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, nutrition, sleep, and obesity) and health factors (cholesterol, blood pressure, glucose control, and metabolic syndrome) that contribute to cardiovascular health. The AHA Heart Disease and Stroke Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, brain health, complications of pregnancy, kidney disease, congenital heart disease, rhythm disorders, sudden cardiac arrest, subclinical atherosclerosis, coronary heart disease, cardiomyopathy, heart failure, valvular disease, venous thromboembolism, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The AHA, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States and globally to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2024 AHA Statistical Update is the product of a full year's worth of effort in 2023 by dedicated volunteer clinicians and scientists, committed government professionals, and AHA staff members. The AHA strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional global data, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
26
|
Farhat B, Bordeu I, Jagla B, Ibrahim S, Stefanovic S, Blanc H, Loulier K, Simons BD, Beaurepaire E, Livet J, Pucéat M. Understanding the cell fate and behavior of progenitors at the origin of the mouse cardiac mitral valve. Dev Cell 2024; 59:339-350.e4. [PMID: 38198889 DOI: 10.1016/j.devcel.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 09/08/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Congenital heart malformations include mitral valve defects, which remain largely unexplained. During embryogenesis, a restricted population of endocardial cells within the atrioventricular canal undergoes an endothelial-to-mesenchymal transition to give rise to mitral valvular cells. However, the identity and fate decisions of these progenitors as well as the behavior and distribution of their derivatives in valve leaflets remain unknown. We used single-cell RNA sequencing (scRNA-seq) of genetically labeled endocardial cells and microdissected mouse embryonic and postnatal mitral valves to characterize the developmental road. We defined the metabolic processes underlying the specification of the progenitors and their contributions to subtypes of valvular cells. Using retrospective multicolor clonal analysis, we describe specific modes of growth and behavior of endocardial cell-derived clones, which build up, in a proper manner, functional valve leaflets. Our data identify how both genetic and metabolic mechanisms specifically drive the fate of a subset of endocardial cells toward their distinct clonal contribution to the formation of the valve.
Collapse
Affiliation(s)
- Batoul Farhat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France
| | - Ignacio Bordeu
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 9160000, Chile
| | - Bernd Jagla
- Pasteur Institute UtechS CB & Hub de Bioinformatique et Biostatistiques, C3BI, Paris, France
| | - Stéphanie Ibrahim
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Sonia Stefanovic
- C2VN Aix-Marseille Université, INSERM 1263, INRAE 1260, Marseille 13885, France
| | - Hugo Blanc
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Karine Loulier
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Benjamin D Simons
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK; Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 A0W, UK
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences, Ecole Polytechnique, CNRS, INSERM, IP Paris, Palaiseau 91120, France
| | - Jean Livet
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris 75012, France
| | - Michel Pucéat
- INSERM U1251/Aix-Marseille Université, Marseille 13885, France.
| |
Collapse
|
27
|
Coll M, Fernández-Falgueras A, Iglesias A, Brugada R. Valvulopathies and Genetics: Where are We? Rev Cardiovasc Med 2024; 25:40. [PMID: 39077344 PMCID: PMC11263169 DOI: 10.31083/j.rcm2502040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 07/31/2024] Open
Abstract
Valvulopathies are among the most common cardiovascular diseases, significantly increasing morbidity and mortality. While many valvular heart diseases are acquired later in life, an important genetic component has been described, particularly in mitral valve prolapse and bicuspid aortic valve. These conditions can arise secondary to genetic syndromes such as Marfan disease (associated with mitral valve prolapse) or Turner syndrome (linked to the bicuspid aortic valve) or may manifest in a non-syndromic form. When cardiac valve disease is the primary cause, it can appear in a familial clustering or sporadically, with a clear genetic component. The identification of new genes, regulatory elements, post-transcriptional modifications, and molecular pathways is crucial to identify at-risk familial carriers and for developing novel therapeutic strategies. In the present review we will discuss the numerous genetic contributors of heart valve diseases.
Collapse
Affiliation(s)
- Mònica Coll
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Anna Fernández-Falgueras
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
| | - Anna Iglesias
- Unitat de Genòmica i Medicina Personalitzada, Laboratori Clínic Territorial, Institut Català de la Salut, 17003 Salt, Spain
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
| | - Ramon Brugada
- Cardiovascular Genetics Center, University of Girona-Institut d'Investigacions Biomèdiques de Girona (IDIBGI), 17003 Salt, Spain
- Cardiology Service, Hospital Josep Trueta, University of Girona, 17004 Girona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), 28014 Madrid, Spain
- Medical Science Department, School of Medicine, University of Girona, 17004 Girona, Spain
| |
Collapse
|
28
|
Yang VK, Moyer N, Zhou R, Carnevale SZ, Meola DM, Robinson SR, Li G, Das S. Defining the Role of the miR-145-KLF4-αSMA Axis in Mitral Valvular Interstitial Cell Activation in Myxomatous Mitral Valve Prolapse Using the Canine Model. Int J Mol Sci 2024; 25:1468. [PMID: 38338749 PMCID: PMC10855421 DOI: 10.3390/ijms25031468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
Mitral valve prolapse (MVP) is a common valvular disease, affecting 2-3% of the adult human population and is a degenerative condition. A total of 5-10% of the afflicted will develop severe mitral regurgitation, cardiac dysfunction, congestive heart failure, and sudden cardiac death. Naturally occurring myxomatous MVP in dogs closely resembles MVP in humans structurally, and functional consequences are similar. In both species, valvular interstitial cells (VICs) in affected valves exhibit phenotype consistent with activated myofibroblasts with increased alpha-smooth muscle actin (αSMA) expression. Using VICs collected from normal and MVP-affected valves of dogs, we analyzed the miRNA expression profile of the cells and their associated small extracellular vesicles (sEV) using RNA sequencing to understand the role of non-coding RNAs and sEV in MVP pathogenesis. miR-145 was shown to be upregulated in both the affected VICs and sEV, and overexpression of miR-145 by mimic transfection in quiescent VIC recapitulates the activated myofibroblastic phenotype. Concurrently, KLF4 expression was noted to be suppressed by miR-145, confirming the miR-145-KLF4-αSMA axis. Targeting this axis may serve as a potential therapy in controlling pathologic abnormalities found in MVP valves.
Collapse
Affiliation(s)
- Vicky K. Yang
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Nicole Moyer
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Runzi Zhou
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Sally Z. Carnevale
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Dawn M. Meola
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Sally R. Robinson
- Department of Clinical Science, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA 01536, USA (S.R.R.)
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
29
|
Zhou N, Zhao Q, Li R, Cheng R, Wu Q, Cheng J, Chen Y. Mutation in mitral valve prolapse susceptible gene DCHS1 causes familial mitral annular disjunction. J Med Genet 2024; 61:125-131. [PMID: 37399314 DOI: 10.1136/jmg-2023-109278] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Mitral annular disjunction (MAD) is an under-recognised phenotype associated with severe ventricular arrhythmias. Limited knowledge has been gained on its molecular genesis. METHODS A total of 150 unrelated deceased Chinese were collected for whole-exome sequencing, with analysis focusing on a panel of 118 genes associated with 'abnormal mitral valve morphology'. Cases were prespecified as 'longitudinally extensive MAD (LE-MAD)' or 'longitudinally less-extensive MAD (LLE-MAD)' according to the gross disjunctional length with a cut-off of 4.0 mm. The pedigree investigation was conducted on a case carrying an ultra-rare (minor allele frequency <0.1%) deleterious variant in DCHS1. RESULTS Seventy-seven ultra-rare deleterious variants were finally identified. Exclusively, 12 ultra-rare deleterious variants distributed in nine genes occurred in LE-MAD, which were ANK1, COL3A1, DCHS1, FBN2, GNPTAB, LZTR1, PLD1, RYR1 and VPS13B. Ultra-rare deleterious variants in those nine genes were predominantly distributed in LE-MAD compared with LLE-MAD (28% vs 5%, OR 7.30, 95% CI 2.33 to 23.38; p<0.001), and the only gene related to LE-MAD with borderline significance was DCHS1. LE-MAD was consistently observed in a sizeable Chinese family, in which LE-MAD independently co-segregated with an ultra-rare deleterious variant in DCHS1, rs145429962. CONCLUSION This study initially proposed that isolated LE-MAD might be a particular phenotype of MAD with a complex genetic predisposition. Deleterious variants in DCHS1 might be associated with the morphogenesis of LE-MAD.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Molecular Mechanisms and Translation in Major Cardiovascular Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianhao Zhao
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Rui Li
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ruofei Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qiuping Wu
- Department of Pathology, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangzhou Key Laboratory of Molecular Mechanisms and Translation in Major Cardiovascular Disease, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
30
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
31
|
Ajmone Marsan N, Graziani F, Meucci MC, Wu HW, Lillo R, Bax JJ, Burzotta F, Massetti M, Jukema JW, Crea F. Valvular heart disease and cardiomyopathy: reappraisal of their interplay. Nat Rev Cardiol 2024; 21:37-50. [PMID: 37563454 DOI: 10.1038/s41569-023-00911-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
Cardiomyopathies and valvular heart diseases are typically considered distinct diagnostic categories with dedicated guidelines for their management. However, the interplay between these conditions is increasingly being recognized and they frequently coexist, as in the paradigmatic examples of dilated cardiomyopathy and hypertrophic cardiomyopathy, which are often complicated by the occurrence of mitral regurgitation. Moreover, cardiomyopathies and valvular heart diseases can have a shared aetiology because several genetic or acquired diseases can affect both the cardiac valves and the myocardium. In addition, the association between cardiomyopathies and valvular heart diseases has important prognostic and therapeutic implications. Therefore, a better understanding of their shared pathophysiological mechanisms, as well as of the prevalence and predisposing factors to their association, might lead to a different approach in the risk stratification and management of these diseases. In this Review, we discuss the different scenarios in which valvular heart diseases and cardiomyopathies coexist, highlighting the need for an improved classification and clustering of these diseases with potential repercussions in the clinical management and, particularly, personalized therapeutic approaches.
Collapse
Affiliation(s)
- Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Francesca Graziani
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Maria Chiara Meucci
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Hoi W Wu
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Rosa Lillo
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Heart Center, University of Turku and Turku University Hospital, Turku, Finland
| | - Francesco Burzotta
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Filippo Crea
- Department of Cardiovascular Science, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
32
|
Delgado V, Ajmone Marsan N, Bonow RO, Hahn RT, Norris RA, Zühlke L, Borger MA. Degenerative mitral regurgitation. Nat Rev Dis Primers 2023; 9:70. [PMID: 38062018 PMCID: PMC11895844 DOI: 10.1038/s41572-023-00478-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
Degenerative mitral regurgitation is a major threat to public health and affects at least 24 million people worldwide, with an estimated 0.88 million disability-adjusted life years and 34,000 deaths in 2019. Improving access to diagnostic testing and to timely curative therapies such as surgical mitral valve repair will improve the outcomes of many individuals. Imaging such as echocardiography and cardiac magnetic resonance allow accurate diagnosis and have provided new insights for a better definition of the most appropriate timing for intervention. Advances in surgical techniques allow minimally invasive treatment with durable results that last for ≥20 years. Transcatheter therapies can provide good results in select patients who are considered high risk for surgery and have a suitable anatomy; the durability of such repairs is up to 5 years. Translational science has provided new knowledge on the pathophysiology of degenerative mitral regurgitation and may pave the road to the development of medical therapies that could be used to halt the progression of the disease.
Collapse
Affiliation(s)
| | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Robert O Bonow
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rebecca T Hahn
- Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Liesl Zühlke
- South African Medical Research Council, Cape Town, South Africa
- Division of Paediatric Cardiology, Department of Paediatrics, Institute of Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael A Borger
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| |
Collapse
|
33
|
Ren Z, Mao X, Wang S, Wang X. Cilia-related diseases. J Cell Mol Med 2023; 27:3974-3979. [PMID: 37830491 PMCID: PMC10746950 DOI: 10.1111/jcmm.17990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
More and more attention is paid to diseases such as internal transfer and brain malformation which are caused by the abnormal morphogenesis of cilia. These cilia-related diseases are divided into two categories: ciliopathy resulting from defects of primary cilia and primary ciliary dyskinesia (PCD) caused by functional dysregulation of motile cilia. Cilia are widely distributed, and their related diseases can cover many human organs and tissues. Recent studies prove that primary cilia play a key role in maintaining homeostasis in the cardiovascular system. However, molecular mechanisms of cilia-related diseases remain elusive. Here, we reviewed recent research progresses on characteristics, molecular mechanisms and treatment methods of ciliopathy and PCD. Our review is beneficial to the further research on the pathogenesis and treatment strategies of cilia-related diseases.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xiaoxiao Mao
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
- School of Basic Medical SciencesXianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Siqi Wang
- Hubei Key Laboratory of Diabetes and AngiopathyMedicine Research Institute, Xianning Medical College, Hubei University of Science and TechnologyXianningP. R. China
| | - Xin Wang
- School of Mathematics and StatisticsHubei University of Science and TechnologyXianningP. R. China
| |
Collapse
|
34
|
Iske J, Roesel MJ, Cesarovic N, Pitts L, Steiner A, Knoedler L, Nazari-Shafti TZ, Akansel S, Jacobs S, Falk V, Kempfert J, Kofler M. The Potential of Intertwining Gene Diagnostics and Surgery for Mitral Valve Prolapse. J Clin Med 2023; 12:7441. [PMID: 38068501 PMCID: PMC10707074 DOI: 10.3390/jcm12237441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/29/2023] [Indexed: 12/13/2024] Open
Abstract
Mitral valve prolapse (MVP) is common among heart valve disease patients, causing severe mitral regurgitation (MR). Although complications such as cardiac arrhythmias and sudden cardiac death are rare, the high prevalence of the condition leads to a significant number of such events. Through next-generation gene sequencing approaches, predisposing genetic components have been shown to play a crucial role in the development of MVP. After the discovery of the X-linked inheritance of filamin A, autosomal inherited genes were identified. In addition, the study of sporadic MVP identified several genes, including DZIP1, TNS1, LMCD1, GLIS1, PTPRJ, FLYWCH, and MMP2. The early screening of these genetic predispositions may help to determine the patient population at risk for severe complications of MVP and impact the timing of reconstructive surgery. Surgical mitral valve repair is an effective treatment option for MVP, resulting in excellent short- and long-term outcomes. Repair rates in excess of 95% and low complication rates have been consistently reported for minimally invasive mitral valve repair performed in high-volume centers. We therefore conceptualize a potential preventive surgical strategy for the treatment of MVP in patients with genetic predisposition, which is currently not considered in guideline recommendations. Further genetic studies on MVP pathology and large prospective clinical trials will be required to support such an approach.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, 10117 Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Department of Health Sciences and Technology, ETH Zuerich, 8092 Zuerich, Switzerland
| | - Leonard Pitts
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Serdar Akansel
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Stephan Jacobs
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité-Universitätsmedizin, Berlin, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Joerg Kempfert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Markus Kofler
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité (DHZC), 13353 Berlin, Germany; (J.I.); (M.J.R.); (N.C.); (L.P.); (T.Z.N.-S.); (S.A.); (S.J.); (V.F.); (J.K.)
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
35
|
Levy S, Sharaf Dabbagh G, Giudicessi JR, Haqqani H, Khanji MY, Obeng-Gyimah E, Betts MN, Ricci F, Asatryan B, Bouatia-Naji N, Nazarian S, Chahal CAA. Genetic mechanisms underlying arrhythmogenic mitral valve prolapse: Current and future perspectives. Heart Rhythm O2 2023; 4:581-591. [PMID: 37744942 PMCID: PMC10513923 DOI: 10.1016/j.hroo.2023.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023] Open
Abstract
Mitral valve prolapse (MVP) is a heart valve disease that is often familial, affecting 2%-3% of the general population. MVP with or without mitral regurgitation can be associated with an increased risk of ventricular arrhythmias and sudden cardiac death (SCD). Research on familial MVP has specifically focused on genetic factors, which may explain the heritable component of the disease estimated to be present in 20%-35%. Furthermore, the structural and electrophysiological substrates underlying SCD/ventricular arrhythmia risk in MVP have been studied postmortem and in the electrophysiology laboratory, respectively. Understanding how familial MVP and rhythm disorders are related may help patients with MVP by individualizing risk and working to develop effective management strategies. This contemporary, state-of-the-art, expert review focuses on genetic factors and familial components that underlie MVP and arrhythmia and encapsulates clinical, genetic, and electrophysiological issues that should be the objectives of future research.
Collapse
Affiliation(s)
- Sydney Levy
- Byram Hills High School, Armonk, New York
- Harvard College, Cambridge, Massachusetts
| | - Ghaith Sharaf Dabbagh
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - John R. Giudicessi
- Divisions of Heart Rhythm Services and Circulatory Failure, Departments of Cardiovascular Medicine, Molecular Pharmacology, and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | | | - Mohammed Y. Khanji
- Byram Hills High School, Armonk, New York
- NIHR Barts Biomedical Research Centre, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
- Newham University Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Edmond Obeng-Gyimah
- Clinical Cardiac Electrophysiology, VT and Complex Ablation Program, WellSpan Health, York, Pennsylvania
| | - Megan N. Betts
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania
| | - Fabrizio Ricci
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Fondazione Villaserena per la Ricerca, Città Sant’Angelo, Italy
| | - Babken Asatryan
- Department of Medicine, Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Saman Nazarian
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - C. Anwar A. Chahal
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, Pennsylvania
- Barts Heart Centre, Barts Health NHS Trust, London, West Smithfield, United Kingdom
- Cardiac Electrophysiology, Cardiovascular Division, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
36
|
Ronco D, Buttiglione G, Garatti A, Parolari A. Biology of mitral valve prolapse: from general mechanisms to advanced molecular patterns-a narrative review. Front Cardiovasc Med 2023; 10:1128195. [PMID: 37332582 PMCID: PMC10272793 DOI: 10.3389/fcvm.2023.1128195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Mitral valve prolapse (MVP) represents the most frequent cause of primary mitral regurgitation. For several years, biological mechanisms underlying this condition attracted the attention of investigators, trying to identify the pathways responsible for such a peculiar condition. In the last ten years, cardiovascular research has moved from general biological mechanisms to altered molecular pathways activation. Overexpression of TGF-β signaling, for instance, was shown to play a key role in MVP, while angiotensin-II receptor blockade was found to limit MVP progression by acting on the same signaling pathway. Concerning extracellular matrix organization, the increased valvular interstitial cells density and dysregulated production of catalytic enzymes (matrix metalloproteinases above all) altering the homeostasis between collagen, elastin and proteoglycan components, have been shown to possibly provide a mechanistic basis contributing to the myxomatous MVP phenotype. Moreover, it has been observed that high levels of osteoprotegerin may contribute to the pathogenesis of MVP by increasing collagen deposition in degenerated mitral leaflets. Although MVP is believed to represent the result of multiple genetic pathways alterations, it is important to distinguish between syndromic and non-syndromic conditions. In the first case, such as in Marfan syndrome, the role of specific genes has been clearly identified, while in the latter a progressively increasing number of genetic loci have been thoroughly investigated. Moreover, genomics is gaining more interest as potential disease-causing genes and loci possibly associated with MVP progression and severity have been identified. Animal models could be of help in better understanding the molecular basis of MVP, possibly providing sufficient information to tackle specific mechanisms aimed at slowing down MVP progression, therefore developing non-surgical therapies impacting on the natural history of this condition. Although continuous progress has been made in this field, further translational studies are advocated to improve our knowledge of biological mechanisms underlying MVP development and progression.
Collapse
Affiliation(s)
- Daniele Ronco
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Cardiothoracic Surgery, Heart and Vascular Centre, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Gianpiero Buttiglione
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Andrea Garatti
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
| | - Alessandro Parolari
- Department of Universitary Cardiac Surgery, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
37
|
Bu T, Li X, Wang L, Wu X, Gao S, Yun D, Li L, Sun F, Cheng CY. Regulation of sertoli cell function by planar cell polarity (PCP) protein Fjx1. Mol Cell Endocrinol 2023; 571:111936. [PMID: 37119967 DOI: 10.1016/j.mce.2023.111936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Four-jointed box kinase 1 (Fjx1) is a planar cell protein (PCP) and a member of the Fat (FAT atypical cadherin 1)/Dchs (Dachsous cadherin-related protein)/Fjx1 PCP complex. Fjx1 is also a non-receptor Ser/Thr protein kinase capable of phosphorylating Fat1 at is extracellular cadherin domains when it is transport across the Golgi system. As such, Fjx1 is a Golgi-based regulator of Fat1 function by determining its extracellular deposition. Herein, Fjx1 was found to localize across the Sertoli cell cytoplasm, partially co-localized with the microtubules (MTs) across the seminiferous epithelium. It was most notable at the apical ES (ectoplasmic specialization) and basal ES, displaying distinctive stage-specific expression. The apical ES and basal ES are the corresponding testis-specific cell adhesion ultrastructures at the Sertoli-elongated spermatid and Sertoli cell-cell interface, respectively, consistent with the role of Fjx1 as a Golgi-associated Ser/Thr kinase that modulates the Fat (and/or Dchs) integral membrane proteins. Its knockdown (KD) by RNAi using specific Fjx1 siRNA duplexes versus non-targeting negative control siRNA duplexes was found to perturb the Sertoli cell tight junction function, as well as perturbing the function and organization of MT and actin. While Fjx1 KD did not affect the steady-state levels of almost two dozens of BTB-associated Sertoli cell proteins, including structural and regulatory proteins, its KD was found to down-regulate Fat1 (but not Fat2, 3, and 4) and to up-regulate Dchs1 (but not Dchs2) expression. Based on results of biochemical analysis, Fjx1 KD was found to be capable of abolishing phosphorylation of its putative substrate Fat1 at its Ser/Thr sites, but not at its Tyr site, illustrating an intimate functional relationship of Fjx1 and Fat1 in Sertoli cells.
Collapse
Affiliation(s)
- Tiao Bu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xinyao Li
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Lingling Wang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Xiaolong Wu
- Department of Urology and Andrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310016, China
| | - Sheng Gao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Damin Yun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China
| | - Linxi Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fei Sun
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| | - C Yan Cheng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
38
|
Li D, Yi Z, Wu Q, Huang Y, Yao H, Tan Z, Yang Y, Zhang W. De novo DCHS1 splicing mutation in a patient with mitral valve prolapse. QJM 2023; 116:121-122. [PMID: 36053189 DOI: 10.1093/qjmed/hcac214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/26/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- D Li
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Z Yi
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Q Wu
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Y Huang
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - H Yao
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Z Tan
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Y Yang
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - W Zhang
- From the Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
39
|
Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, Baker-Smith CM, Beaton AZ, Boehme AK, Buxton AE, Commodore-Mensah Y, Elkind MSV, Evenson KR, Eze-Nliam C, Fugar S, Generoso G, Heard DG, Hiremath S, Ho JE, Kalani R, Kazi DS, Ko D, Levine DA, Liu J, Ma J, Magnani JW, Michos ED, Mussolino ME, Navaneethan SD, Parikh NI, Poudel R, Rezk-Hanna M, Roth GA, Shah NS, St-Onge MP, Thacker EL, Virani SS, Voeks JH, Wang NY, Wong ND, Wong SS, Yaffe K, Martin SS. Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association. Circulation 2023; 147:e93-e621. [PMID: 36695182 DOI: 10.1161/cir.0000000000001123] [Citation(s) in RCA: 2286] [Impact Index Per Article: 1143.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND The American Heart Association, in conjunction with the National Institutes of Health, annually reports the most up-to-date statistics related to heart disease, stroke, and cardiovascular risk factors, including core health behaviors (smoking, physical activity, diet, and weight) and health factors (cholesterol, blood pressure, and glucose control) that contribute to cardiovascular health. The Statistical Update presents the latest data on a range of major clinical heart and circulatory disease conditions (including stroke, congenital heart disease, rhythm disorders, subclinical atherosclerosis, coronary heart disease, heart failure, valvular disease, venous disease, and peripheral artery disease) and the associated outcomes (including quality of care, procedures, and economic costs). METHODS The American Heart Association, through its Epidemiology and Prevention Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update with review of published literature through the year before writing. The 2023 Statistical Update is the product of a full year's worth of effort in 2022 by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. The American Heart Association strives to further understand and help heal health problems inflicted by structural racism, a public health crisis that can significantly damage physical and mental health and perpetuate disparities in access to health care, education, income, housing, and several other factors vital to healthy lives. This year's edition includes additional COVID-19 (coronavirus disease 2019) publications, as well as data on the monitoring and benefits of cardiovascular health in the population, with an enhanced focus on health equity across several key domains. RESULTS Each of the chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics. CONCLUSIONS The Statistical Update represents a critical resource for the lay public, policymakers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
Collapse
|
40
|
Structure of the planar cell polarity cadherins Fat4 and Dachsous1. Nat Commun 2023; 14:891. [PMID: 36797229 PMCID: PMC9935876 DOI: 10.1038/s41467-023-36435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.
Collapse
|
41
|
Delwarde C, Capoulade R, Mérot J, Le Scouarnec S, Bouatia-Naji N, Yu M, Huttin O, Selton-Suty C, Sellal JM, Piriou N, Schott JJ, Dina C, Le Tourneau T. Genetics and pathophysiology of mitral valve prolapse. Front Cardiovasc Med 2023; 10:1077788. [PMID: 36873395 PMCID: PMC9978496 DOI: 10.3389/fcvm.2023.1077788] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Mitral valve prolapse (MVP) is a common condition affecting 2-3% of the general population, and the most complex form of valve pathology, with a complication rate up to 10-15% per year in advanced stages. Complications include mitral regurgitation which can lead to heart failure and atrial fibrillation, but also life-threatening ventricular arrhythmia and cardiovascular death. Sudden death has been recently brought to the forefront of MVP disease, increasing the complexity of management and suggesting that MVP condition is not properly understood. MVP can occur as part of syndromic conditions such as Marfan syndrome, but the most common form is non-syndromic, isolated or familial. Although a specific X-linked form of MVP was initially identified, autosomal dominant inheritance appears to be the primary mode of transmission. MVP can be stratified into myxomatous degeneration (Barlow), fibroelastic deficiency, and Filamin A-related MVP. While FED is still considered a degenerative disease associated with aging, myxomatous MVP and FlnA-MVP are recognized as familial pathologies. Deciphering genetic defects associated to MVP is still a work in progress; although FLNA, DCHS1, and DZIP1 have been identified as causative genes in myxomatous forms of MVP thanks to familial approaches, they explain only a small proportion of MVP. In addition, genome-wide association studies have revealed the important role of common variants in the development of MVP, in agreement with the high prevalence of this condition in the population. Furthermore, a potential genetic link between MVP and ventricular arrhythmia or a specific type of cardiomyopathy is considered. Animal models that allow to advance in the genetic and pathophysiological knowledge of MVP, and in particular those that can be easily manipulated to express a genetic defect identified in humans are detailed. Corroborated by genetic data and animal models, the main pathophysiological pathways of MVP are briefly addressed. Finally, genetic counseling is considered in the context of MVP.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Jean Mérot
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Solena Le Scouarnec
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | | | - Mengyao Yu
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Olivier Huttin
- Service de Cardiologie, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, CHU de Nancy, Nancy, France
| | - Christine Selton-Suty
- Service de Cardiologie, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, CHU de Nancy, Nancy, France
| | - Jean-Marc Sellal
- Service de Cardiologie, Institut Lorrain du Coeur et des Vaisseaux Louis Mathieu, CHU de Nancy, Nancy, France
| | - Nicolas Piriou
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Jean-Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Christian Dina
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, L'institut du Thorax, Nantes, France
| |
Collapse
|
42
|
Delling FN, Noseworthy PA, Adams DH, Basso C, Borger M, Bouatia-Naji N, Elmariah S, Evans F, Gerstenfeld E, Hung J, Le Tourneau T, Lewis J, Miller MA, Norris RA, Padala M, Perazzolo-Marra M, Shah DJ, Weinsaft JW, Enriquez-Sarano M, Levine RA. Research Opportunities in the Treatment of Mitral Valve Prolapse: JACC Expert Panel. J Am Coll Cardiol 2022; 80:2331-2347. [PMID: 36480975 PMCID: PMC9981237 DOI: 10.1016/j.jacc.2022.09.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 12/10/2022]
Abstract
In light of the adverse prognosis related to severe mitral regurgitation, heart failure, or sudden cardiac death in a subset of patients with mitral valve prolapse (MVP), identifying those at higher risk is key. For the first time in decades, researchers have the means to rapidly advance discovery in the field of MVP thanks to state-of-the-art imaging techniques, novel omics methodologies, and the potential for large-scale collaborations using web-based platforms. The National Heart, Lung, and Blood Institute recently initiated a webinar-based workshop to identify contemporary research opportunities in the treatment of MVP. This report summarizes 3 specific areas in the treatment of MVP that were the focus of the workshop: 1) improving management of degenerative mitral regurgitation and associated left ventricular systolic dysfunction; 2) preventing sudden cardiac death in MVP; and 3) understanding the mechanisms and progression of MVP through genetic studies and small and large animal models, with the potential of developing medical therapies.
Collapse
Affiliation(s)
- Francesca N Delling
- Department of Medicine (Cardiovascular Division), University of California-San Francisco, San Francisco, California, USA.
| | - Peter A Noseworthy
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - David H Adams
- Department of Cardiovascular Surgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cristina Basso
- Cardiovascular Pathology, Department of Cardiac, Thoracic and Vascular Sciences, University of Padua, Padua, Italy
| | | | | | - Sammy Elmariah
- Department of Medicine (Cardiovascular Division), University of California-San Francisco, San Francisco, California, USA; Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Frank Evans
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Edward Gerstenfeld
- Department of Medicine (Cardiovascular Division), University of California-San Francisco, San Francisco, California, USA
| | - Judy Hung
- Department of Medicine, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'Institut du Thorax, Nantes, France
| | - John Lewis
- Heart Valve Voice US, Washington, DC, USA
| | - Marc A Miller
- Helmsley Electrophysiology Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Russell A Norris
- Department of Regenerative Medicine and Cell Biology, Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Muralidhar Padala
- Department of Surgery (Cardiothoracic Surgery Division), Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Dipan J Shah
- Department of Cardiology, Houston Methodist, Weill Cornell Medical College, Houston, Texas, USA
| | | | | | - Robert A Levine
- Massachusetts General Hospital Cardiac Ultrasound Laboratory, Boston, Massachusetts, USA
| |
Collapse
|
43
|
Sabbag A, Essayagh B, Barrera JDR, Basso C, Berni A, Cosyns B, Deharo JC, Deneke T, Di Biase L, Enriquez-Sarano M, Donal E, Imai K, Lim HS, Marsan NA, Turagam MK, Peichl P, Po SS, Haugaa KH. EHRA expert consensus statement on arrhythmic mitral valve prolapse and mitral annular disjunction complex in collaboration with the ESC Council on valvular heart disease and the European Association of Cardiovascular Imaging endorsed cby the Heart Rhythm Society, by the Asia Pacific Heart Rhythm Society, and by the Latin American Heart Rhythm Society. Europace 2022; 24:1981-2003. [PMID: 35951656 PMCID: PMC11636573 DOI: 10.1093/europace/euac125] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022] Open
Affiliation(s)
- Avi Sabbag
- The Davidai Center for Rhythm Disturbances and Pacing, Chaim Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Benjamin Essayagh
- Department of Cardiovascular Medicine, Simone Veil Hospital, Cannes 06400, France
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester 55905, Minnesota
| | | | - Cristina Basso
- Dipartimento di Scienze Cardio-Toraco-Vascolari e Sanità Pubblica, Università degli Studi di Padova, Padova 35128, Italy
| | - Ana Berni
- Cardiology and Cardiac Electrophysiology, EP Lab. Hospital Angeles Pedregal. Mexico City 10700, Board member, Mexican Society of Cardiology
| | - Bernard Cosyns
- Cardiology Department, Centrum voor hart en vaatziekten, Universitair Ziekenhuis Brussel, Free University of Brussels, Brussels 1090, Belgium
| | - Jean-Claude Deharo
- Department of Cardiology, L’hôpital de la Timone, Marseille, 13005, France
| | - Thomas Deneke
- Clinic for Interventional Electrophysiology, Heart Center RHÖN-KLINIKUM Campus Bad Neustadt, 97616, Germany
| | - Luigi Di Biase
- Albert Einstein College of Medicine at Montefiore Hospital, New York, NY 10467, USA
| | | | - Erwan Donal
- Service de Cardiologie, CCP-CHU Pontchaillou, Rennes 35033, France
| | - Katsuhiko Imai
- Department of Cardiovascular Surgery, National Hospital Organization Kure Medical Center and Chugoku Cancer Center, Hiroshima 737-0023, Japan
| | - Han S Lim
- Department of Cardiology, Austin and Northern Health, University of Melbourne, Melbourne 3010, Australia
| | | | - Mohit K Turagam
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Petr Peichl
- Department of Cardiology, Institute for Clinical and Experimental Medicine (IKEM), Prague 73117, Czech Republic
| | - Sunny S Po
- Heart Rhythm Institute and Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center, Oklahoma City, OK 0372, USA
| | - Kristina Hermann Haugaa
- ProCardio Center for Innovation, Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
44
|
Mu D, Wu X, Feijó A, Wu W, Wen Z, Cheng J, Xia L, Yang Q, Shan W, Ge D. Transcriptome analysis of pika heart tissue reveals mechanisms underlying the adaptation of a keystone species on the roof of the world. Front Genet 2022; 13:1020789. [PMID: 36506315 PMCID: PMC9728954 DOI: 10.3389/fgene.2022.1020789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
High-altitude environments impose intense stresses on living organisms and drive striking phenotypic and genetic adaptations, such as hypoxia resistance, cold tolerance, and increases in metabolic capacity and body mass. As one of the most successful and dominant mammals on the Qinghai-Tibetan Plateau (QHTP), the plateau pika (Ochotona curzoniae) has adapted to the extreme environments of the highest altitudes of this region and exhibits tolerance to cold and hypoxia, in contrast to closely related species that inhabit the peripheral alpine bush or forests. To explore the potential genetic mechanisms underlying the adaptation of O. curzoniae to a high-altitude environment, we sequenced the heart tissue transcriptomes of adult plateau pikas (comparing specimens from sites at two different altitudes) and Gansu pikas (O. cansus). Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were used to identify differentially expressed genes (DEGs) and their primary functions. Key genes and pathways related to high-altitude adaptation were identified. In addition to the biological processes of signal transduction, energy metabolism and material transport, the identified plateau pika genes were mainly enriched in biological pathways such as the negative regulation of smooth muscle cell proliferation, the apoptosis signalling pathway, the cellular response to DNA damage stimulus, and ossification involved in bone maturation and heart development. Our results showed that the plateau pika has adapted to the extreme environments of the QHTP via protection against cardiomyopathy, tissue structure alterations and improvements in the blood circulation system and energy metabolism. These adaptations shed light on how pikas thrive on the roof of the world.
Collapse
Affiliation(s)
- Danping Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China,Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinlai Wu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,Key Laboratory of Zoological Systematics and Application, School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Anderson Feijó
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Zhixin Wen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jilong Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lin Xia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qisen Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Shan
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China,*Correspondence: Wenjuan Shan, ; Deyan Ge,
| | - Deyan Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China,*Correspondence: Wenjuan Shan, ; Deyan Ge,
| |
Collapse
|
45
|
Jaouadi H, Théron A, Hourdain J, Martel H, Nguyen K, Habachi R, Deharo JC, Collart F, Avierinos JF, Zaffran S. SCN5A Variants as Genetic Arrhythmias Triggers for Familial Bileaflet Mitral Valve Prolapse. Int J Mol Sci 2022; 23:ijms232214447. [PMID: 36430924 PMCID: PMC9692711 DOI: 10.3390/ijms232214447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Mitral valve prolapse (MVP) is a common valvular heart defect with variable outcomes. Several studies reported MVP as an underestimated cause of life-threatening arrhythmias and sudden cardiac death (SCD), mostly in young adult women. Herein, we report a clinical and genetic investigation of a family with bileaflet MVP and a history of syncopes and resuscitated sudden cardiac death. Using family based whole exome sequencing, we identified two missense variants in the SCN5A gene. A rare variant SCN5A:p.Ala572Asp and the well-known functional SCN5A:p.His558Arg polymorphism. Both variants are shared between the mother and her daughter with a history of resuscitated SCD and syncopes, respectively. The second daughter with prodromal MVP as well as her healthy father and sister carried only the SCN5A:p.His558Arg polymorphism. Our study is highly suggestive of the contribution of SCN5A mutations as the potential genetic cause of the electric instability leading to ventricular arrhythmias in familial MVP cases with syncope and/or SCD history.
Collapse
Affiliation(s)
- Hager Jaouadi
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Correspondence: (H.J.); (S.Z.); Tel.: +33-4-9132-4936 (H.J. & S.Z.); Fax: +33-4-9179-7227 (H.J. & S.Z.)
| | - Alexis Théron
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Department of Cardiac Surgery, La Timone Hospital, 13005 Marseille, France
| | - Jérôme Hourdain
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | - Hélène Martel
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | - Karine Nguyen
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Department of Medical Genetics, Timone Enfant Hospital, 13005 Marseille, France
| | - Raja Habachi
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | | | - Frédéric Collart
- Department of Cardiac Surgery, La Timone Hospital, 13005 Marseille, France
| | - Jean-François Avierinos
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Department of Cardiology, La Timone Hospital, 13005 Marseille, France
| | - Stéphane Zaffran
- Marseille Medical Genetics, INSERM, Aix Marseille Université, U1251 Marseille, France
- Correspondence: (H.J.); (S.Z.); Tel.: +33-4-9132-4936 (H.J. & S.Z.); Fax: +33-4-9179-7227 (H.J. & S.Z.)
| |
Collapse
|
46
|
Delwarde C, Toquet C, Aumond P, Kayvanjoo AH, Foucal A, Le Vely B, Baudic M, Lauzier B, Blandin S, Véziers J, Paul-Gilloteaux P, Lecointe S, Baron E, Massaiu I, Poggio P, Rémy S, Anegon I, Le Marec H, Monassier L, Schott JJ, Mass E, Barc J, Le Tourneau T, Merot J, Capoulade R. Multimodality imaging and transciptomics to phenotype mitral valve dystrophy in a unique knock-in Filamin-A rat model. Cardiovasc Res 2022; 119:759-771. [PMID: 36001550 DOI: 10.1093/cvr/cvac136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/29/2022] [Accepted: 07/26/2022] [Indexed: 11/12/2022] Open
Abstract
AIMS Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique Knock-In (KI) rat model for the FlnA-P637Q mutation associated-MVD. METHODS AND RESULTS WT and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signaling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm versus 1.8 ± 0.1, p = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% versus WT, p = 0.02). Histological analyses revealed a myxomatous remodeling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signaling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of TGF-β and inflammation in the disease. CONCLUSION The KI FlnA-P637Q rat model mimics human myxomatous mitral valve dystrophy, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signaling pathways leading to myxomatous mitral valve dystrophy. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.
Collapse
Affiliation(s)
- Constance Delwarde
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Claire Toquet
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Pascal Aumond
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Amir Hossein Kayvanjoo
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Adrien Foucal
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Le Vely
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Manon Baudic
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Benjamin Lauzier
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Stéphanie Blandin
- Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Joëlle Véziers
- INSERM, UMR 1229, RMeS, CHU Nantes PHU4 OTONN, Nantes Univ, Nantes, France
| | - Perrine Paul-Gilloteaux
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France.,Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UAR 3556, F-44000 Nantes, France
| | - Simon Lecointe
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Estelle Baron
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | | | - Paolo Poggio
- Centro Cardiologico Monzino IRCCS, Milano, Italy
| | - Séverine Rémy
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064-CR2TI, Transgenic Rats ImmunoPhenomic, Nantes, France
| | - Hervé Le Marec
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Laurent Monassier
- Laboratoire de Pharmacologie et Toxicologie NeuroCardiovasculaire UR7296, Université de Strasbourg, Strasbourg, France
| | - Jean Jacques Schott
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Elvira Mass
- Developmental Biology of the Immune System, Life & Medical Sciences (LIMES) Institute, University of Bonn; 53115 Bonn, Germany
| | - Julien Barc
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Thierry Le Tourneau
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Jean Merot
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| | - Romain Capoulade
- Nantes Université, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France
| |
Collapse
|
47
|
Hedgehog Morphogens Act as Growth Factors Critical to Pre- and Postnatal Cardiac Development and Maturation: How Primary Cilia Mediate Their Signal Transduction. Cells 2022; 11:cells11121879. [PMID: 35741008 PMCID: PMC9221318 DOI: 10.3390/cells11121879] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
Primary cilia are crucial for normal cardiac organogenesis via the formation of cyto-architectural, anatomical, and physiological boundaries in the developing heart and outflow tract. These tiny, plasma membrane-bound organelles function in a sensory-integrative capacity, interpreting both the intra- and extra-cellular environments and directing changes in gene expression responses to promote, prevent, and modify cellular proliferation and differentiation. One distinct feature of this organelle is its involvement in the propagation of a variety of signaling cascades, most notably, the Hedgehog cascade. Three ligands, Sonic, Indian, and Desert hedgehog, function as growth factors that are most commonly dependent on the presence of intact primary cilia, where the Hedgehog receptors Patched-1 and Smoothened localize directly within or at the base of the ciliary axoneme. Hedgehog signaling functions to mediate many cell behaviors that are critical for normal embryonic tissue/organ development. However, inappropriate activation and/or upregulation of Hedgehog signaling in postnatal and adult tissue is known to initiate oncogenesis, as well as the pathogenesis of other diseases. The focus of this review is to provide an overview describing the role of Hedgehog signaling and its dependence upon the primary cilium in the cell types that are most essential for mammalian heart development. We outline the breadth of developmental defects and the consequential pathologies resulting from inappropriate changes to Hedgehog signaling, as it pertains to congenital heart disease and general cardiac pathophysiology.
Collapse
|
48
|
Uphoff K, Dittmann S, Ott P, Stallmeyer B, Schulze-Bahr E. Non-syndromal mitral valve prolapse (MVP): a common entity, but not commonly associated with DCHS1 or FLNA mutations. J Thorac Dis 2022; 14:2440-2442. [PMID: 35813742 PMCID: PMC9264077 DOI: 10.21037/jtd-22-173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Katharina Uphoff
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Sven Dittmann
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Patricia Ott
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Birgit Stallmeyer
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Disease (IfGH), Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
49
|
Sai X, Ikawa Y, Nishimura H, Mizuno K, Kajikawa E, Katoh TA, Kimura T, Shiratori H, Takaoka K, Hamada H, Minegishi K. Planar cell polarity-dependent asymmetric organization of microtubules for polarized positioning of the basal body in node cells. Development 2022; 149:275058. [PMID: 35420656 DOI: 10.1242/dev.200315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/30/2022] [Indexed: 12/31/2022]
Abstract
For left-right symmetry breaking in the mouse embryo, the basal body must become positioned at the posterior side of node cells, but the precise mechanism for this has remained unknown. Here, we examined the role of microtubules (MTs) and actomyosin in this basal body positioning. Exposure of mouse embryos to agents that stabilize or destabilize MTs or F-actin impaired such positioning. Active myosin II was detected at the anterior side of node cells before the posterior shift of the basal body, and this asymmetric activation was lost in Prickle and dachsous mutant embryos. The organization of basal-body associated MTs (baMTs) was asymmetric between the anterior and posterior sides of node cells, with anterior baMTs extending horizontally and posterior baMTs extending vertically. This asymmetry became evident after polarization of the PCP core protein Vangl1 and before the posterior positioning of the basal body, and it also required the PCP core proteins Prickle and dachsous. Our results suggest that the asymmetry in baMT organization may play a role in correct positioning of the basal body for left-right symmetry breaking.
Collapse
Affiliation(s)
- Xiaorei Sai
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yayoi Ikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiromi Nishimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsutoshi Mizuno
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Takanobu A Katoh
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Toshiya Kimura
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Hidetaka Shiratori
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsuyoshi Takaoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Hiroshi Hamada
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| | - Katsura Minegishi
- Laboratory for Organismal Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0011, Japan
| |
Collapse
|
50
|
Saigusa R, Roy P, Freuchet A, Gulati R, Ghosheh Y, Suthahar SSA, Durant CP, Hanna DB, Kiosses WB, Orecchioni M, Wen L, Wu R, Kuniholm MH, Landay AL, Anastos K, Tien PC, Gange SJ, Kassaye S, Vallejo J, Hedrick CC, Kwok WW, Sette A, Hodis HN, Kaplan RC, Ley K. Single cell transcriptomics and TCR reconstruction reveal CD4 T cell response to MHC-II-restricted APOB epitope in human cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:462-475. [PMID: 35990517 PMCID: PMC9383695 DOI: 10.1038/s44161-022-00063-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/04/2022] [Indexed: 02/02/2023]
Abstract
Atherosclerosis is accompanied by a CD4 T cell response to apolipoprotein B (APOB). Major Histocompatibility Complex (MHC)-II tetramers can be used to isolate antigen-specific CD4 T cells by flow sorting. Here, we produce, validate and use an MHC-II tetramer, DRB1*07:01 APOB-p18, to sort APOB-p18-specific cells from peripheral blood mononuclear cell samples from 8 DRB1*07:01+ women with and without subclinical cardiovascular disease (sCVD). Single cell RNA sequencing showed that transcriptomes of tetramer+ cells were between regulatory and memory T cells in healthy women and moved closer to memory T cells in women with sCVD. TCR sequencing of tetramer+ cells showed clonal expansion and V and J segment usage similar to those found in regulatory T cells. These findings suggest that APOB-specific regulatory T cells may switch to a more memory-like phenotype in women with atherosclerosis. Mouse studies showed that such switched cells promote atherosclerosis.
Collapse
Affiliation(s)
| | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - David B. Hanna
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA
| | | | | | - Lai Wen
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Runpei Wu
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Mark H. Kuniholm
- University at Albany, Department of Epidemiology and Biostatistics, Rensselaer, NY, USA
| | - Alan L. Landay
- Rush University Medical Center, Department of Internal Medicine, Chicago, IL, USA
| | - Kathryn Anastos
- Albert Einstein College of Medicine, Departments of Medicine and Epidemiology & Population Health, Bronx NY, USA
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA; Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Stephen J. Gange
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore MD, USA
| | - Seble Kassaye
- Georgetown University, Georgetown University Medical Center, Washington, DC, USA
| | | | | | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Tetramer Core Laboratory, Seattle, WA, USA
| | | | - Howard N. Hodis
- Keck School of Medicine, University of Southern California Departments of Medicine and Population and Public Health Sciences, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Robert C. Kaplan
- Albert Einstein College of Medicine, Department of Epidemiology and Population Health, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA
- University of California San Diego, San Diego, CA, USA
| |
Collapse
|