1
|
Feng T, Xie F, Lyu Y, Yu P, Chen B, Yu J, Zhang G, To KF, Tsang CM, Kang W. The arginine metabolism and its deprivation in cancer therapy. Cancer Lett 2025; 620:217680. [PMID: 40157492 DOI: 10.1016/j.canlet.2025.217680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Arginine deprivation has emerged as a promising therapeutic strategy in cancer treatment due to the auxotrophy of certain tumors. Many cancers, such as pancreatic, colorectal, and hepatocellular carcinoma, exhibit downregulated argininosuccinate synthetase, making them reliant on external arginine sources. This dependency allows targeted therapies that deplete arginine, inhibiting tumor growth while sparing normal cells. Arginine is crucial for various cellular processes, including protein synthesis and immune function. Its deprivation affects both tumor metabolism and immune responses, potentially enhancing cancer therapy. Studies have explored using enzymes like arginine deiminase and arginase, often modified for increased stability and reduced immunogenicity, to effectively lower arginine levels in the tumor microenvironment. These approaches show promise, particularly in tumors with low argininosuccinate synthetase expression. However, the impact on immune cells and the potential for resistance highlight the need for further research. Combining arginine deprivation with other treatments might improve outcomes, offering a novel approach to combat arginine-dependent cancers.
Collapse
Affiliation(s)
- Tiejun Feng
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Yang Lyu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Peiyao Yu
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China
| | - Jun Yu
- Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; Department of Medicine and Therapeutics, The Chinese University of Hong Kong, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Chi Man Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China.
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, Prince of Wales Hospital, The Chinese University of Hong Kong, China; Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, China; CUHK-Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
2
|
Vo VTA, Tran LN, Bui TT, Lee HW, Jeong Y. Etoposide-induced protein 2.4 homolog promotes argininosuccinate synthase 1 and cancer cell survival upon arginine deprivation. Cell Mol Biol Lett 2025; 30:52. [PMID: 40253325 PMCID: PMC12008907 DOI: 10.1186/s11658-025-00726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/03/2025] [Indexed: 04/21/2025] Open
Abstract
BACKGROUND Arginine auxotrophy has been reported in a subset of cancers with inherently defective de novo arginine synthesis. However, the use of arginine deprivation therapy seems to be unequally effective, partially owing to the resistance acquired by cancer cells. Study of underlying factors involved in this response thus becomes of utmost importance. Meanwhile, the function of etoposide-induced 2.4 homolog (EI24) in cancer metabolism, and specifically in arginine metabolism, remains unknown. METHODS EI24 was overexpressed in cancer cells using a doxycycline-inducible system or adenovirus transduction, while siRNA was used to knockdown EI24. Amino acid(s) deprivation medium was exploited with a cell viability assay to check the reliance of cancer cell survival on arginine. Protein expression and activation were examined through western blot and co-immunoprecipitation blot. Furthermore, global and specific protein translation were assessed through the SUnSET assay and polysome fractionation analysis. Gene expression and arginine level were downloaded from public cancer datasets for in silico validation including gene set enrichment and survival analysis to objectively evaluate the association between EI24 and arginine metabolism. RESULTS EI24 promoted cancer survival under arginine starvation. Mechanistically, EI24 replenished translation of argininosuccinate synthase 1 (ASS1) by inducing the inactive S-nitrosylated form of phosphatase and tensin homolog (PTEN), leading to release of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) axis. This tumor-promoting action of EI24 could be found in multiple ASS1-deficient cancer cells regardless of p53 status. Furthermore, expression of EI24 was linked to enrichment of arginine metabolism pathway as well as poor survival of patients with cancer across various cancer types, suggesting its role in cancer resistance to arginine deprivation. CONCLUSIONS This study is the first to report the role of EI24 in promoting cancer survival via translational regulation of the metabolic enzyme ASS1, thus paving a route for further investigation into the link between EI24 and cancer metabolism.
Collapse
Affiliation(s)
- Vu T A Vo
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Organelle Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Le Nhat Tran
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Organelle Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Thu Thanh Bui
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
- Organelle Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yangsik Jeong
- Department of Biochemistry, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea.
- Organelle Medicine Research Center, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea.
- Institute of Mitochondrial Medicine, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea.
- ONCOin, Ltd., Startup cube #2 - 204, 1 Kangwondaehakgil, Chuncheon, Republic of Korea.
| |
Collapse
|
3
|
Do LK, Lee HM, Ha YS, Lee CH, Kim J. Amino acids in cancer: Understanding metabolic plasticity and divergence for better therapeutic approaches. Cell Rep 2025; 44:115529. [PMID: 40193251 DOI: 10.1016/j.celrep.2025.115529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/09/2025] Open
Abstract
Metabolic reprogramming is a hallmark of malignant transformation. While initial studies in the field of cancer metabolism focused on central carbon metabolism, the field has expanded to metabolism beyond glucose and glutamine and uncovered the important role of amino acids in tumorigenesis and tumor immunity as energy sources, signaling molecules, and precursors for (epi)genetic modification. As a result of the development and application of new technologies, a multifaceted picture has emerged, showing that context-dependent heterogeneity in amino acid metabolism exists between tumors and even within distinct regions of solid tumors. Understanding the complexity and flexibility of amino acid metabolism in cancer is critical because it can influence therapeutic responses and predict clinical outcomes. This overview discusses the current findings on the heterogeneity in amino acid metabolism in cancer and how understanding the metabolic diversity of amino acids can be translated into more clinically relevant therapeutic interventions.
Collapse
Affiliation(s)
- Linda K Do
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Hyun Min Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Chan-Hyeong Lee
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Jiyeon Kim
- Department of Urology, Yale School of Medicine, New Haven, CT 06519, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06519, USA.
| |
Collapse
|
4
|
Wen J, Wen K, Tao M, Zhou Z, He X, Wang W, Huang Z, Lin Q, Li H, Liu H, Yan Y, Xiao Z. Integrated analysis reveals an immune evasion prognostic signature for predicting the overall survival in patients with hepatocellular carcinoma. Cancer Cell Int 2025; 25:101. [PMID: 40102844 PMCID: PMC11916977 DOI: 10.1186/s12935-025-03743-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND The development of immunotherapy has enriched the treatment of hepatocellular carcinoma (HCC), but the efficacy is not as expected, which may be due to immune evasion. Immune evasion is related to the immune microenvironment of HCC, but there is little research on it. METHODS We employed unsupervised clustering analysis to categorize patients from TCGA based on 182 immune evasion-related genes (IEGs). We utilized single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT to calculate differences in immune cell infiltration between clusters. The differences in immune cells and immune-related pathways were assessed using GSEA. We constructed an immune escape prognosis signature (IEPS) using univariate Cox and LASSO Cox algorithms and evaluated the predictive performance of IEPS with receiver operating characteristic (ROC) curves and survival curves. Additionally, we established a nomogram for clinical application based on IEPS. IHC validated the expression of Carbamoyl phosphate synthetase 2, Aspartate transcarbamylase, and Dihydroorotase (CAD) and Phosphatidylinositol Glycan Anchor Biosynthesis Class U (PIGU) in HCC. We transfected liver cancer cell lines with siRNA and overexpression plasmids, and confirmed the relationship between CAD, PIGU, and the potential downstream TGF-β1 in HCC using qRT-PCR and Western blot. Finally, we validated the tumor response of CAD overexpression using an animal model. RESULTS Unsupervised clustering analysis based on IEGs divided HCC patients from TCGA into two groups. There were significant differences in prognosis and immune characteristics between the two groups of patients. Scoring of TCGA patients using IEPS revealed that higher scores were associated with poorer overall survival (OS). Validation was performed using the ICGC database. TIME analysis indicated that patients in the high-IEPS group were in an immunosuppressive state, possibly due to a significant increase in Treg infiltration. Compared to normal liver cells, HCC cells expressed higher levels of CAD and PIGU. Cellular experimental results showed a positive correlation between CAD, PIGU and the potential downstream TGF-β1 expression. Animal experiments demonstrated that CAD significantly promoted tumor progression, with an increase in Treg infiltration. CONCLUSION IEPS has strong prognostic value for HCC patients, and CAD and PIGU provide perspectives on new biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Jiahua Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Tao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xing He
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Biliary and Pancreatic Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weidong Wang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zian Huang
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiaohong Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Haohan Liu
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Fan S, Wang W, Che W, Xu Y, Jin C, Dong L, Xia Q. Nanomedicines Targeting Metabolic Pathways in the Tumor Microenvironment: Future Perspectives and the Role of AI. Metabolites 2025; 15:201. [PMID: 40137165 PMCID: PMC11943624 DOI: 10.3390/metabo15030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Tumor cells engage in continuous self-replication by utilizing a large number of resources and capabilities, typically within an aberrant metabolic regulatory network to meet their own demands. This metabolic dysregulation leads to the formation of the tumor microenvironment (TME) in most solid tumors. Nanomedicines, due to their unique physicochemical properties, can achieve passive targeting in certain solid tumors through the enhanced permeability and retention (EPR) effect, or active targeting through deliberate design optimization, resulting in accumulation within the TME. The use of nanomedicines to target critical metabolic pathways in tumors holds significant promise. However, the design of nanomedicines requires the careful selection of relevant drugs and materials, taking into account multiple factors. The traditional trial-and-error process is relatively inefficient. Artificial intelligence (AI) can integrate big data to evaluate the accumulation and delivery efficiency of nanomedicines, thereby assisting in the design of nanodrugs. Methods: We have conducted a detailed review of key papers from databases, such as ScienceDirect, Scopus, Wiley, Web of Science, and PubMed, focusing on tumor metabolic reprogramming, the mechanisms of action of nanomedicines, the development of nanomedicines targeting tumor metabolism, and the application of AI in empowering nanomedicines. We have integrated the relevant content to present the current status of research on nanomedicines targeting tumor metabolism and potential future directions in this field. Results: Nanomedicines possess excellent TME targeting properties, which can be utilized to disrupt key metabolic pathways in tumor cells, including glycolysis, lipid metabolism, amino acid metabolism, and nucleotide metabolism. This disruption leads to the selective killing of tumor cells and disturbance of the TME. Extensive research has demonstrated that AI-driven methodologies have revolutionized nanomedicine development, while concurrently enabling the precise identification of critical molecular regulators involved in oncogenic metabolic reprogramming pathways, thereby catalyzing transformative innovations in targeted cancer therapeutics. Conclusions: The development of nanomedicines targeting tumor metabolic pathways holds great promise. Additionally, AI will accelerate the discovery of metabolism-related targets, empower the design and optimization of nanomedicines, and help minimize their toxicity, thereby providing a new paradigm for future nanomedicine development.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Dong
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| | - Qin Xia
- State Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (S.F.); (W.W.); (W.C.); (Y.X.); (C.J.)
| |
Collapse
|
6
|
Tang W, Ma X. Identification of Causal Plasma Proteins in Hepatocellular Carcinoma via Two-Sample Mendelian Randomization and Integrative Transcriptomic‒Proteomic Analysis. CANCER RESEARCH COMMUNICATIONS 2025; 5:433-443. [PMID: 39991825 PMCID: PMC11897958 DOI: 10.1158/2767-9764.crc-24-0553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
SIGNIFICANCE In this study, we identified several causal proteins in HCC using UK Biobank Pharma Proteomics Project proteomic data via two-sample MR. We performed colocalization and sensitivity analyses, utilized single-cell RNA sequencing data for validation, and discovered potential drugs through molecular docking.
Collapse
Affiliation(s)
- Weihao Tang
- College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida
| | - Xiaoke Ma
- School of Computer Science and Technology, Xidian University, Xi’an, China
| |
Collapse
|
7
|
Fung TS, Ryu KW, Thompson CB. Arginine: at the crossroads of nitrogen metabolism. EMBO J 2025; 44:1275-1293. [PMID: 39920310 DOI: 10.1038/s44318-025-00379-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 02/09/2025] Open
Abstract
L-arginine is the most nitrogen-rich amino acid, acting as a key precursor for the synthesis of nitrogen-containing metabolites and an essential intermediate in the clearance of excess nitrogen. Arginine's side chain possesses a guanidino group which has unique biochemical properties, and plays a primary role in nitrogen excretion (urea), cellular signaling (nitric oxide) and energy buffering (phosphocreatine). The post-translational modification of protein-incorporated arginine by guanidino-group methylation also contributes to epigenetic gene control. Most human cells do not synthesize sufficient arginine to meet demand and are dependent on exogenous arginine. Thus, dietary arginine plays an important role in maintaining health, particularly upon physiologic stress. How cells adapt to changes in extracellular arginine availability is unclear, mostly because nearly all tissue culture media are supplemented with supraphysiologic levels of arginine. Evidence is emerging that arginine-deficiency can influence disease progression. Here, we review new insights into the importance of arginine as a metabolite, emphasizing the central role of mitochondria in arginine synthesis/catabolism and the recent discovery that arginine can act as a signaling molecule regulating gene expression and organelle dynamics.
Collapse
Affiliation(s)
- Tak Shun Fung
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Keun Woo Ryu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Xia J, Liu W, Ni Y, Shahzad A, Cui K, Xu Z, Zhang J, Wei Z, Teng Z, Yang Z, Zhang Q. Advances in the impact of ASS1 dysregulation on metabolic reprogramming of tumor cells. Cell Signal 2025; 127:111593. [PMID: 39778698 DOI: 10.1016/j.cellsig.2025.111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
ASS1(argininosuccinate synthase 1) is a rate-limiting enzyme in the urea cycle, catalyzing the synthesis of argininosuccinate from citrulline and aspartate to ultimately produce arginine and support cellular metabolism. Increasing evidence suggests that ASS1 is commonly dysregulated in the tumor microenvironment, promoting tumor cell metastasis and infiltration. With a deeper understanding of tumor metabolic reprogramming in recent years, the impact of ASS1 dysregulation on abnormal tumor metabolism has attracted growing interest among researchers. In tumors with lacked or downregulated expression of ASS1, tumor cells become 'addicted' to exogenous arginine. Several strategies for arginine deprivation have been developed and entered clinical trials for treating such tumors. Therefore, we focus on elucidating the commonalities and characteristics of ASS1 dysregulation in tumors, as well as its implications for diagnosis, treatment, and prognosis. The mechanisms by which ASS1 gene dysregulation leads to metabolic abnormalities in tumor cells vary across different types of tumors. Extensive experimental studies have demonstrated that overexpression or low expression of ASS1 exhibits varying effects-either inhibitory or stimulatory proliferation-on tumor cells across different types. Restoring its expression can inhibit proliferation in some tumors lacking or downregulating ASS1 but can promote metastasis and infiltration in others (e.g., resistance to arginine deprivation therapy). Additionally, the expression level of ASS1 dynamically changes during tumorigenesis and progression. Finally, this review discusses the diagnostic, therapeutic, and prognostic value of ASS1 in future clinical practice.
Collapse
Affiliation(s)
- Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Yueli Ni
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhe Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China; Qujing Medical College, Qujing 655011, Yunnan Province, China
| | - Jinshan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China
| | - Zhenyan Wei
- Yunnan Center for Disease Control and Prevention, Kunming 650022, China
| | - Zhuoran Teng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| | - Zhe Yang
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Yunnan, Kunming 650032, PR China.
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Yunnan, Kunming 650500, PR China.
| |
Collapse
|
9
|
Hart ML, Davidsen K, Danquah S, Zheng E, Sokolov D, Sullivan LB. Succinate Dehydrogenase loss causes cascading metabolic effects that impair pyrimidine biosynthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638948. [PMID: 40027747 PMCID: PMC11870577 DOI: 10.1101/2025.02.18.638948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Impaired availability of the amino acid aspartate can be a metabolic constraint of cell proliferation in diverse biological contexts. However, the kinetics of aspartate depletion, and its ramifications on downstream metabolism and cell proliferation, remain poorly understood. Here, we deploy the aspartate biosensor jAspSnFR3 with live cell imaging to resolve temporal relationships between aspartate and cell proliferation from genetic, pharmacological, and nutritional manipulations. In cells with impaired aspartate acquisition from mitochondrial complex I inhibition or constrained uptake in aspartate auxotrophs, we find that the proliferation defects lag changes in aspartate levels and only manifest once aspartate levels fall below a critical threshold, supporting the functional link between aspartate levels and cell proliferation in these contexts. In another context of aspartate synthesis inhibition, impairing succinate dehydrogenase (SDH), we find a more complex metabolic interaction, with initial aspartate depletion followed by a rebound of aspartate levels over time. We find that this aspartate rebound effect results from SDH inhibition disproportionately impairing pyrimidine synthesis by inhibiting aspartate transcarbamoylase (ATCase) through the dual effect of diminishing aspartate substrate availability while accumulating succinate, which functions as a competitive inhibitor of aspartate utilization. Finally, we uncover that the nucleotide imbalance from SDH inhibition causes replication stress and introduces a vulnerability to ATR kinase inhibition. Altogether, these findings identify a mechanistic role for succinate in modulating nucleotide synthesis and demonstrate how cascading metabolic interactions can unfold to impact cell function.
Collapse
Affiliation(s)
- Madeleine L. Hart
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Kristian Davidsen
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Serwah Danquah
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Eric Zheng
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - David Sokolov
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Lucas B. Sullivan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| |
Collapse
|
10
|
Huang CY. The Loop-In Binding Mode of Dihydroorotase: Implications for Ligand Binding and Therapeutic Targeting. Int J Mol Sci 2025; 26:1359. [PMID: 39941127 PMCID: PMC11818841 DOI: 10.3390/ijms26031359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/16/2025] Open
Abstract
Dihydroorotase (DHOase; EC 3.5.2.3) is a zinc-dependent metalloenzyme that plays a key role in the de novo pyrimidine biosynthesis pathway, catalyzing the reversible cyclization of N-carbamoyl aspartate to dihydroorotate. This reaction is essential for the production of uridine monophosphate, the precursor of all pyrimidine nucleotides required for DNA and RNA synthesis. Despite its conserved enzymatic function, DHOase exhibits significant structural diversity across species, particularly in its oligomeric states, gene fusion patterns, and active site architecture. A crucial structural feature of DHOase is its flexible active site loop, which undergoes dynamic conformational changes during catalysis. Previously, the loop-in conformation was associated with substrate binding, whereas the loop-out conformation was linked to product release and non-substrate ligand binding. However, recent crystallographic studies challenge this paradigm, revealing that certain non-substrate ligands and inhibitors, including malate, 5-fluoroorotate, plumbagin, 5-aminouracil, and 5-fluorouracil, interact with DHOase via a loop-in binding mechanism rather than the previously assumed loop-out mode. These findings necessitate a reassessment of the catalytic mechanism of DHOase and underscore the active site loop as a potential target for drug development. This review revisits the structural and biochemical mechanisms of DHOase, with a focus on recent crystallographic insights that redefine the loop-in binding mode for ligand interaction. By leveraging the unique conformational dynamics of the active site loop, novel inhibitors may be developed to selectively target pyrimidine biosynthesis in cancer cells and microbial pathogens. These insights emphasize the crucial role of structural biology in therapeutic design and highlight DHOase as a promising drug target.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
11
|
Yang Z, Cai J, Li J, Liu X, Liu W, Cui K, Bai Z, Dong Y, Peng D, Duan Q, Shahzad A, Zhang Q. The Mechanism of TRIM21 Inhibiting the Invasion and Migration of ccRCC by Stabilizing ASS1. Mol Carcinog 2025; 64:260-278. [PMID: 39513657 DOI: 10.1002/mc.23840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/13/2024] [Accepted: 10/22/2024] [Indexed: 11/15/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is characterized by its aggressive invasion and metastasis, presenting significant clinical challenges. Gaining insights into the molecular mechanisms underlying its progression is crucial for the development of effective therapeutic strategies. Addressing a critical knowledge gap in understanding ccRCC tumorigenesis, this study aims to elucidate the expression patterns of TRIM21 in ccRCC, unravel its impact on ccRCC patient prognosis, and investigate the regulatory role of TRIM21 in ASS1 expression and urea cycle dysregulation within the context of ccRCC. The results demonstrate that TRIM21 is downregulated in ccRCC, and low expression of TRIM21 predicts an unfavorable prognosis for ccRCC patients. Furthermore, the upregulation of TRIM21 can inhibit the migration and invasion of ccRCC cells by regulating the ubiquitination modification of ASS1. This not only expands the functional role of TRIM21 in ccRCC tumorigenesis but also demonstrates its ability to reverse urea cycle dysregulation through stabilizing ASS1 expression. Specifically, abnormal downregulation of TRIM21 in ccRCC reduces K63 ubiquitination modification of ASS1, leading to decreased stability of the ASS1 protein, aggravated urea cycle dysregulation, and facilitated migration and invasion of ccRCC cells. Additionally, reduction in ASS1 reverses the depressed migration and invasion caused by overexpression of TRIM21 in ccRCC cells. In summary, our findings contribute to a deeper understanding of the functional role played by TRIM21 in ccRCC progression, pinpoint a unique and novel regulatory mechanism involving ectopic downregulation-mediated ASS1 ubiquitination modification and urea cycle dysfunction during ccRCC progression, and provide fresh insights for further investigation into the pathogenesis and metabolic reprogramming associated with ccRCC.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jihao Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ziyuan Bai
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yurong Dong
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Dongmei Peng
- Departments of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiuxin Duan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
12
|
Dunlap KN, Bender A, Bowles A, Bott AJ, Tay J, Grossmann AH, Rutter J, Ducker GS. SLC7A5 is required for cancer cell growth under arginine-limited conditions. Cell Rep 2025; 44:115130. [PMID: 39756034 DOI: 10.1016/j.celrep.2024.115130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/09/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Tumor cells must optimize metabolite acquisition between synthesis and uptake from a microenvironment characterized by hypoxia, lactate accumulation, and depletion of many amino acids, including arginine. We performed a metabolism-focused functional screen using CRISPR-Cas9 to identify pathways and factors that enable tumor growth in an arginine-depleted environment. Our screen identified the SLC-family transporter SLC7A5 as required for growth, and we hypothesized that this protein functions as a high-affinity citrulline transporter. Using isotope tracing experiments, we show that citrulline uptake and metabolism into arginine are dependent upon expression of SLC7A5. Pharmacological inhibition of SLC7A5 blocks growth under low-arginine conditions across a diverse group of cancer cell lines. Loss of SLC7A5 reduces tumor growth and citrulline import in a mouse tumor model. We identify a conditionally essential role for SLC7A5 in arginine metabolism, and we propose that SLC7A5-targeting therapeutic strategies in cancer may be effective in the context of arginine limitation.
Collapse
Affiliation(s)
- Kyle N Dunlap
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Austin Bender
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alexis Bowles
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Joshua Tay
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Allie H Grossmann
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
Gupta A, Choueiry F, Reardon J, Pramod N, Kulkarni A, Shankar E, Sizemore ST, Stover DG, Zhu J, Ramaswamy B, Majumder S. Invasive lobular carcinoma integrated multi-omics analysis reveals silencing of Arginosuccinate synthase and upregulation of nucleotide biosynthesis in tamoxifen resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633236. [PMID: 39868332 PMCID: PMC11761122 DOI: 10.1101/2025.01.16.633236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Invasive Lobular Carcinoma (ILC), a distinct subtype of breast cancer is hallmarked by E-Cadherin loss, slow proliferation, and strong hormone receptor positivity. ILC faces significant challenges in clinical management due to advanced stage at diagnosis, late recurrence, and development of resistance to endocrine therapy - a cornerstone of ILC treatment. To elucidate the mechanisms underlying endocrine resistance in ILC, ILC cell lines (MDA-MB-134-VI, SUM44PE) were generated to be resistant to tamoxifen, a selective estrogen receptor modulator. The tamoxifen-resistant (TAMR) cells exhibit a 2-fold increase tamoxifen IC50 relative to parental cells. Metabolomics and RNA-sequencing revealed deregulation of alanine, aspartate, and glutamate metabolism, purine metabolism, and arginine and proline metabolism in TAMR cells. Among the fifteen commonly dysregulated genes in these pathways, low ASS1 expression was identified in the TAMR cells and was significantly correlated with poor outcome in ILC patients, specifically in the context of endocrine therapy. Our study reveals methylation mediated silencing of ASS1 in TAMR cells as a likely mechanism of downregulation. Demethylation restored ASS1 expression and correspondingly reduced tamoxifen IC50 toward parental levels. Nucleic acid biosynthesis is augmented in TAMR cells, evidenced by increase in nucleotide intermediates. Both TAMR cell lines demonstrated increased expression of several nucleic acid biosynthesis enzymes, including PAICS, PRPS1, ADSS2, CAD, and DHODH. Furthermore, CAD, the key multifunctional protein of de novo pyrimidine biosynthesis pathway is differentially activated in TAMR cells. Treating TAMR cell with Decitabine, a demethylating agent, or Farudodstat, a pyrimidine biosynthesis inhibitor, markedly augmented efficacy of tamoxifen. Collectively, our study unveils ASS1 downregulation as a novel mechanism underlying acquired tamoxifen resistance in ILC and establishes a metabolic link between ASS1 and nucleic acid biosynthesis. Restoring ASS1 expression or inhibiting pyrimidine biosynthesis restored tamoxifen sensitivity. ASS1 could be a potential biomarker and therapeutic target in tamoxifen resistant ILC patients, warranting further investigation.
Collapse
Affiliation(s)
- Annapurna Gupta
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Fouad Choueiry
- Department of Human Sciences, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Jesse Reardon
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Nikhil Pramod
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Anagh Kulkarni
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Eswar Shankar
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Steven T. Sizemore
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Daniel G. Stover
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Bhuvaneswari Ramaswamy
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sarmila Majumder
- Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
14
|
Mao Y, Xia Z, Xia W, Jiang P. Metabolic reprogramming, sensing, and cancer therapy. Cell Rep 2024; 43:115064. [PMID: 39671294 DOI: 10.1016/j.celrep.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/15/2024] Open
Abstract
The metabolic reprogramming of tumor cells is a crucial strategy for their survival and proliferation, involving tissue- and condition-dependent remodeling of certain metabolic pathways. While it has become increasingly clear that tumor cells integrate extracellular and intracellular signals to adapt and proliferate, nutrient and metabolite sensing also exert direct or indirect influences, although the underlying mechanisms remain incompletely understood. Furthermore, metabolic changes not only support the rapid growth and dissemination of tumor cells but also promote immune evasion by metabolically "educating" immune cells in the tumor microenvironment (TME). Recent studies have highlighted the profound impact of metabolic reprogramming on the TME and the potential of targeting metabolic pathways as a therapeutic strategy, with several enzyme inhibitors showing promising results in clinical trials. Thus, understanding how tumor cells alter their metabolic pathways and metabolically remodel the TME to support their survival and proliferation may offer new strategies for metabolic therapy and immunotherapy.
Collapse
Affiliation(s)
- Youxiang Mao
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Ziyan Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Wenjun Xia
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China
| | - Peng Jiang
- State Key Laboratory of Molecular Oncology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
15
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
16
|
Soon JW, Manca MA, Laskowska A, Starkova J, Rohlenova K, Rohlena J. Aspartate in tumor microenvironment and beyond: Metabolic interactions and therapeutic perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167451. [PMID: 39111633 DOI: 10.1016/j.bbadis.2024.167451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/11/2024]
Abstract
Aspartate is a proteinogenic non-essential amino acid with several essential functions in proliferating cells. It is mostly produced in a cell autonomous manner from oxalacetate via glutamate oxalacetate transaminases 1 or 2 (GOT1 or GOT2), but in some cases it can also be salvaged from the microenvironment via transporters such as SLC1A3 or by macropinocytosis. In this review we provide an overview of biosynthetic pathways that produce aspartate endogenously during proliferation. We discuss conditions that favor aspartate uptake as well as possible sources of exogenous aspartate in the microenvironment of tumors and bone marrow, where most available data have been generated. We highlight metabolic fates of aspartate, its various functions, and possible approaches to target aspartate metabolism for cancer therapy.
Collapse
Affiliation(s)
- Julian Wong Soon
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Maria Antonietta Manca
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Agnieszka Laskowska
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic
| | - Julia Starkova
- CLIP (Childhood Leukaemia Investigation Prague), Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Katerina Rohlenova
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| | - Jakub Rohlena
- Institute of Biotechnology of the Czech Academy of Sciences, Prumyslova 595, 252 50 Vestec, Prague-West, Czech Republic.
| |
Collapse
|
17
|
Shahzad A, Liu W, Sun Y, Liu X, Xia J, Cui K, Sai B, Zhu Y, Yang Z, Zhang Q. Flavonoids as modulators of metabolic reprogramming in renal cell carcinoma (Review). Oncol Rep 2024; 52:167. [PMID: 39422066 PMCID: PMC11526433 DOI: 10.3892/or.2024.8826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Renal cell carcinoma (RCC) is distinguished by its varied metabolic reprogramming driven by tumor suppressor gene dysregulation and oncogene activation. Tumors can adapt nutrient uptake and metabolism pathways to meet the altered biosynthetic, bioenergetic and redox demands of cancer cells, whereas conventional chemotherapeutics and molecular inhibitors predominantly target individual metabolic pathways without addressing this adaptability. Flavonoids, which are well‑known for their antioxidant and anti‑inflammatory properties, offer a unique approach by influencing multiple metabolic targets. The present comprehensive review reveals the intricate processes of RCC metabolic reprogramming, encompassing glycolysis, mitochondrial oxidative phosphorylation and fatty acid biosynthesis. The insights derived from the present review may contribute to the understanding of the specific anticancer mechanisms of flavonoids, potentially paving the way for the development of natural antitumor drugs focused on the metabolic reprogramming of RCC.
Collapse
Affiliation(s)
- Asif Shahzad
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yijian Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xiangjie Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaojiao Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Kun Cui
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Buqing Sai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuechun Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Zhe Yang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Qiao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
18
|
Caldovic L, Ahn JJ, Andricovic J, Balick VM, Brayer M, Chansky PA, Dawson T, Edwards AC, Felsen SE, Ismat K, Jagannathan SV, Mann BT, Medina JA, Morizono T, Morizono M, Salameh S, Vashist N, Williams EC, Zhou Z, Morizono H. Datamining approaches for examining the low prevalence of N-acetylglutamate synthase deficiency and understanding transcriptional regulation of urea cycle genes. J Inherit Metab Dis 2024; 47:1175-1193. [PMID: 37847851 PMCID: PMC11586597 DOI: 10.1002/jimd.12687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Ammonia, which is toxic to the brain, is converted into non-toxic urea, through a pathway of six enzymatically catalyzed steps known as the urea cycle. In this pathway, N-acetylglutamate synthase (NAGS, EC 2.3.1.1) catalyzes the formation of N-acetylglutamate (NAG) from glutamate and acetyl coenzyme A. NAGS deficiency (NAGSD) is the rarest of the urea cycle disorders, yet is unique in that ureagenesis can be restored with the drug N-carbamylglutamate (NCG). We investigated whether the rarity of NAGSD could be due to low sequence variation in the NAGS genomic region, high NAGS tolerance for amino acid replacements, and alternative sources of NAG and NCG in the body. We also evaluated whether the small genomic footprint of the NAGS catalytic domain might play a role. The small number of patients diagnosed with NAGSD could result from the absence of specific disease biomarkers and/or short NAGS catalytic domain. We screened for sequence variants in NAGS regulatory regions in patients suspected of having NAGSD and found a novel NAGS regulatory element in the first intron of the NAGS gene. We applied the same datamining approach to identify regulatory elements in the remaining urea cycle genes. In addition to the known promoters and enhancers of each gene, we identified several novel regulatory elements in their upstream regions and first introns. The identification of cis-regulatory elements of urea cycle genes and their associated transcription factors holds promise for uncovering shared mechanisms governing urea cycle gene expression and potentially leading to new treatments for urea cycle disorders.
Collapse
Affiliation(s)
- Ljubica Caldovic
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Julie J. Ahn
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Jacklyn Andricovic
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Veronica M. Balick
- Department of Biochemistry and Molecular MedicineThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
| | - Mallory Brayer
- Department of Biological SciencesThe George Washington UniversityWashingtonDCUSA
| | - Pamela A. Chansky
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Tyson Dawson
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- AMPEL BioSolutions LLCCharlottesvilleVirginiaUSA
| | - Alex C. Edwards
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Sara E. Felsen
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Center for Neuroscience ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
| | - Karim Ismat
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Sveta V. Jagannathan
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Brendan T. Mann
- Department of Microbiology, Immunology, and Tropical MedicineSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Jacob A. Medina
- The Institute for Biomedical ScienceSchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
| | - Toshio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Michio Morizono
- College of Science and EngineeringUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Shatha Salameh
- Department of Pharmacology & PhysiologySchool of Medicine and Health Sciences, George Washington UniversityWashingtonDCUSA
- Sheikh Zayed Institute for Pediatric Surgical InnovationChildren's National HospitalWashingtonDCUSA
| | - Neerja Vashist
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| | - Emily C. Williams
- Department of Anatomy and Cell BiologyThe George Washington University School of Medicine and Health SciencesWashingtonDCUSA
- The George Washington University Cancer Center, School of Medicine and Health SciencesGeorge Washington UniversityWashingtonDCUSA
| | - Zhe Zhou
- Department of Civil and Environmental EngineeringThe George Washington UniversityWashingtonDCUSA
| | - Hiroki Morizono
- Center for Genetic Medicine ResearchChildren's National Research Institute, Children's National HospitalWashingtonDCUSA
- Department of Genomics and Precision Medicine, School of Medicine and Health SciencesThe George Washington UniversityWashingtonDCUSA
| |
Collapse
|
19
|
Zhang H, Liu J, Yuan W, Zhang Q, Luo X, Li Y, Peng Y, Feng J, Liu X, Chen J, Zhou Y, Lv J, Zhou N, Ma J, Tang K, Huang B. Ammonia-induced lysosomal and mitochondrial damage causes cell death of effector CD8 + T cells. Nat Cell Biol 2024; 26:1892-1902. [PMID: 39261719 DOI: 10.1038/s41556-024-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Ammonia is thought to be a cytotoxin and its increase in the blood impairs cell function. However, whether and how this toxin triggers cell death under pathophysiological conditions remains unclear. Here we show that ammonia induces a distinct form of cell death in effector T cells. We found that rapidly proliferating T cells use glutaminolysis to release ammonia in the mitochondria, which is then translocated to and stored in the lysosomes. Excessive ammonia accumulation increases lysosomal pH and results in the termination of lysosomal ammonia storage and ammonia reflux into mitochondria, leading to mitochondrial damage and cell death, which is characterized by lysosomal alkalization, mitochondrial swelling and impaired autophagic flux. Inhibition of glutaminolysis or blocking lysosomal alkalization prevents ammonia-induced T cell death and improves T cell-based antitumour immunotherapy. These findings identify a distinct form of cell death that differs from previously known mechanisms.
Collapse
Affiliation(s)
- Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Yuan
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Luo
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yue'e Peng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jingyu Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
20
|
Hu C, Shao Z, Wu W, Wang J. Untargeted Metabolite Profiling Reveals Acute Toxicity of Pentosidine on Adipose Tissue of Rats. Metabolites 2024; 14:539. [PMID: 39452920 PMCID: PMC11509468 DOI: 10.3390/metabo14100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/26/2024] [Accepted: 10/06/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Pentosidine is an advanced glycation end product that is commonly found in heat-processed foods. Pentosidine has been involved in the occurrence and development of some chronic diseases. It was reported that pentosidine exposure can impair the function of the liver and kidneys. Adipose tissue, as an active endocrine organ, plays an important role in maintaining the normal physiological function of cells. However, the metabolic mechanism that causes pentosidine to induce toxicity in adipose tissue remains unclear. Methods: In the study, thirty male Sprague-Dawley rats were divided into a normal diet group, low dose group, and high dose group. A non-targeted metabolomics approach was used to compare the metabolic profiles of adipose tissue between the pentosidine and normal diet groups. Furthermore, histopathological observation and body weight change analysis were performed to test the results of the metabolomics analysis. Results: A total of forty-two differential metabolites were identified. Pentosidine mainly disturbed twelve metabolic pathways, such as ascorbate and aldarate metabolism, glycine, serine, and threonine metabolism, sulfur metabolism, pyruvate metabolism, etc. Additionally, pyruvic acid was identified as a possible key upregulated metabolite involved in thirty-four metabolic pathways. α-Ketoglutaric acid was named as a probable key downregulated metabolite involved in nineteen metabolic pathways based on enrichment network analysis. In addition, histopathological analysis and body weight changes confirmed the results of the metabolomics analysis. Conclusions: These results provided a new perspective for the molecular mechanisms of adipose tissue toxicity induced by pentosidine.
Collapse
Affiliation(s)
- Chuanqin Hu
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China; (C.H.)
| | - Zhenzhen Shao
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China; (C.H.)
| | - Wei Wu
- School of Light Industry Science and Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing 100048, China; (C.H.)
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
21
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
22
|
Moosa NY, Azeem SA, Lodge JK, Cheung W, Ahmed SU. Vitamin B6 Pathway Maintains Glioblastoma Cell Survival in 3D Spheroid Cultures. Int J Mol Sci 2024; 25:10428. [PMID: 39408757 PMCID: PMC11476381 DOI: 10.3390/ijms251910428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a deadly brain cancer. The prognosis of GBM patients has marginally improved over the last three decades. The response of GBMs to initial treatment is inevitably followed by relapse. Thus, there is an urgent need to identify and develop new therapeutics to target this cancer and improve both patient outcomes and long-term survival. Metabolic reprogramming is considered one of the hallmarks of cancers. However, cell-based studies fail to accurately recapitulate the in vivo tumour microenvironment that influences metabolic signalling and rewiring. Against this backdrop, we conducted global, untargeted metabolomics analysis of the G7 and R24 GBM 2D monolayers and 3D spheroid cultures under identical cell culture conditions. Our studies revealed that the levels of multiple metabolites associated with the vitamin B6 pathway were significantly altered in 3D spheroids compared to the 2D monolayer cultures. Importantly, we show that pharmacological intervention with hydralazine, a small molecule that reduces vitamin B6 levels, resulted in the cell death of 3D GBM spheroid cultures. Thus, our study shows that inhibition of the vitamin B6 pathway is a novel therapeutic strategy for the development of targeted therapies in GBMs.
Collapse
Affiliation(s)
- Najla Yussuf Moosa
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| | - Sara Abdullah Azeem
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| | - John K. Lodge
- School of Human Sciences, London Metropolitan University, Tower Building, Holloway Road, London N7 8DB, UK;
| | - William Cheung
- Department of Applied Sciences, Northumbria University, Ellison Building, Northumberland Road, Newcastle Upon Tyne NE1 8ST, UK;
| | - Shafiq Uddin Ahmed
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| |
Collapse
|
23
|
Shi J, Wen K, Mui S, Li H, Liao H, He C, Yan Y, Zhou Z, Xiao Z. Integrated analysis reveals an aspartate metabolism-related gene signature for predicting the overall survival in patients with hepatocellular carcinoma. Clin Transl Oncol 2024; 26:2181-2197. [PMID: 38472558 DOI: 10.1007/s12094-024-03431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Deregulating cellular metabolism is one of the prominent hallmarks of malignancy, with a critical role in tumor survival and growth. However, the role of reprogramming aspartate metabolism in hepatocellular carcinoma (HCC) are largely unknown. METHODS The multi-omics data of HCC patients were downloaded from public databases. Univariate and multivariate stepwise Cox regression were used to establish an aspartate metabolism-related gene signature (AMGS) in HCC. The Kaplan-Meier and receiver operating characteristic curve analyses were performed to evaluate the predictive ability for overall survival (OS) in HCC patients. Gene set enrichment analysis and immune infiltration analysis were operated to determine the potential mechanisms underlying the AMGS. Single-cell RNA sequencing (scRNA-seq) data of liver cancer stem cells were visualized by t-SNE algorithm. In vivo and in vitro experiments were implemented to investigate the biological function of CAD in HCC. In addition, a nomogram based on the AMGS and clinicopathologic characteristics was constructed by univariate and multivariate Cox regression analyses. RESULTS Patients in the high-AMGS subgroup exerted advanced tumor status and poor prognosis. Mechanistically, the high-AMGS subgroup patients had significantly enhanced proliferation and stemness-related pathways, increased infiltration of regulatory T cells and upregulated expression levels of suppressive immune checkpoints in the tumor immune microenvironment. Notably, scRNA-seq data revealed CAD, one of the aspartate metabolism-related gene, is significantly upregulated in liver cancer stem cells. Silencing CAD inhibited proliferative capacity and stemness properties of HCC cells in vitro and in vivo. Finally, a novel nomogram based on the AMGS showed an accurate prediction in HCC patients. CONCLUSIONS The AMGS represents a promising prognostic value for HCC patients, providing a perspective for finding novel biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Juanyi Shi
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Kai Wen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Sintim Mui
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Huoming Li
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Hao Liao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Chuanchao He
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Zhenyu Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China.
- Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, 516621, Guangdong, China.
| |
Collapse
|
24
|
Hellweg L, Pfeifer M, Tarnawski M, Thing-Teoh S, Chang L, Bergner A, Kress J, Hiblot J, Wiedmer T, Superti-Furga G, Reinhardt J, Johnsson K, Leippe P. AspSnFR: A genetically encoded biosensor for real-time monitoring of aspartate in live cells. Cell Chem Biol 2024; 31:1529-1541.e12. [PMID: 38806058 DOI: 10.1016/j.chembiol.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024]
Abstract
Aspartate is crucial for nucleotide synthesis, ammonia detoxification, and maintaining redox balance via the malate-aspartate-shuttle (MAS). To disentangle these multiple roles of aspartate metabolism, tools are required that measure aspartate concentrations in real time and in live cells. We introduce AspSnFR, a genetically encoded green fluorescent biosensor for intracellular aspartate, engineered through displaying and screening biosensor libraries on mammalian cells. In live cells, AspSnFR is able to precisely and quantitatively measure cytosolic aspartate concentrations and dissect its production from glutamine. Combining high-content imaging of AspSnFR with pharmacological perturbations exposes differences in metabolic vulnerabilities of aspartate levels based on nutrient availability. Further, AspSnFR facilitates tracking of aspartate export from mitochondria through SLC25A12, the MAS' key transporter. We show that SLC25A12 is a rapidly responding and direct route to couple Ca2+ signaling with mitochondrial aspartate export. This establishes SLC25A12 as a crucial link between cellular signaling, mitochondrial respiration, and metabolism.
Collapse
Affiliation(s)
- Lars Hellweg
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Heidelberg University, Heidelberg, Germany
| | - Martin Pfeifer
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Shao Thing-Teoh
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lena Chang
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Andrea Bergner
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Jana Kress
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Julien Hiblot
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Tabea Wiedmer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Jürgen Reinhardt
- Novartis Biomedical Research, Discovery Science, Basel, Switzerland
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Philipp Leippe
- Department of Chemical Biology, Max Planck Institute for Medical Research, Heidelberg, Germany; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
25
|
Wang Z, Wang H, Wang Q, Huang T, Guo C, Ji J, Su M, Xu W, Cao Y, Dong Z. Transcriptome analysis of anaerobic glycolysis effects on Jurkat T cell proliferation. Cent Eur J Immunol 2024; 49:194-202. [PMID: 39381560 PMCID: PMC11457565 DOI: 10.5114/ceji.2024.142116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/11/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction To explore the effects of anaerobic glycolysis on Jurkat T cell proliferation and clarify the possible mechanism via transcriptomic analysis. Material and methods The monocarboxylate transporter 1 inhibitor AZD3965 was used to target and block the transmembrane transport of lactate, thereby inhibiting anaerobic glycolysis in Jurkat T cells. Then, genes with differential expression between treated and untreated cells were detected by transcriptomic analysis, and constructs were generated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses as well as protein-protein interaction (PPI) network analysis were performed to explore the potential mechanism. Results Inhibition of anaerobic glycolysis reduced Jurkat T-cell proliferation. RNA sequencing identified 1723 transcripts that were differentially expressed, including 1460 upregulated genes and 263 downregulated genes. GO functional enrichment analysis showed that the differentially expressed genes were mainly involved in the biological processes of response to unfolded protein, response to topologically incorrect protein, and protein folding. KEGG pathway analysis of differentially expressed genes or hub genes from the PPI network analysis revealed enrichment in the estrogen signaling and PI3K-Akt pathways. Conclusions Anaerobic glycolysis contributes to the regulation of Jurkat T-cell proliferation. The underlying mechanism may involve the estrogen signaling pathway or PI3K-Akt signaling pathway as well as protein metabolism.
Collapse
Affiliation(s)
- Ziyu Wang
- The Affiliated Hospital of Qingdao University, China
| | - Hongyang Wang
- The Affiliated Hospital of Qingdao University, China
| | - Qinghai Wang
- The Affiliated Hospital of Qingdao University, China
| | - Tao Huang
- The Affiliated Hospital of Qingdao University, China
| | - Chen Guo
- The Affiliated Hospital of Qingdao University, China
| | - Jianlei Ji
- The Affiliated Hospital of Qingdao University, China
| | - Meijie Su
- The Affiliated Hospital of Qingdao University, China
| | - Weijia Xu
- The Affiliated Hospital of Qingdao University, China
| | - Yanwei Cao
- The Affiliated Hospital of Qingdao University, China
| | - Zhen Dong
- The Affiliated Hospital of Qingdao University, China
| |
Collapse
|
26
|
Mi W, You J, Li L, Zhu L, Xia X, Yang L, Li F, Xu Y, Bi J, Liu P, Chen L, Li F. BET inhibition induces GDH1-dependent glutamine metabolic remodeling and vulnerability in liver cancer. LIFE METABOLISM 2024; 3:loae016. [PMID: 39872506 PMCID: PMC11749653 DOI: 10.1093/lifemeta/loae016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 01/30/2025]
Abstract
Bromodomain and extra-terminal domain (BET) proteins, which function partly through MYC proto-oncogene (MYC), are critical epigenetic readers and emerging therapeutic targets in cancer. Whether and how BET inhibition simultaneously induces metabolic remodeling in cancer cells remains unclear. Here we find that even transient BET inhibition by JQ-1 and other pan-BET inhibitors (pan-BETis) blunts liver cancer cell proliferation and tumor growth. BET inhibition decreases glycolytic gene expression but enhances mitochondrial glucose and glutamine oxidative metabolism revealed by metabolomics and isotope labeling analysis. Specifically, BET inhibition downregulates miR-30a to upregulate glutamate dehydrogenase 1 (GDH1) independent of MYC, which produces α-ketoglutarate for mitochondrial oxidative phosphorylation (OXPHOS). Targeting GDH1 or OXPHOS is synthetic lethal to BET inhibition, and combined BET and OXPHOS inhibition therapeutically prevents liver tumor growth in vitro and in vivo. Together, we uncover an important epigenetic-metabolic crosstalk whereby BET inhibition induces MYC-independent and GDH1-dependent glutamine metabolic remodeling that can be exploited for innovative combination therapy of liver cancer.
Collapse
Affiliation(s)
- Wen Mi
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Jianwei You
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Liucheng Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Lingzhi Zhu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Xinyi Xia
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Li Yang
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
- Frontier Innovation Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yi Xu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Junfeng Bi
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Pingyu Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Li Chen
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| | - Fuming Li
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China
| |
Collapse
|
27
|
Lim LQJ, Adler L, Hajaj E, Soria LR, Perry RBT, Darzi N, Brody R, Furth N, Lichtenstein M, Bab-Dinitz E, Porat Z, Melman T, Brandis A, Malitsky S, Itkin M, Aylon Y, Ben-Dor S, Orr I, Pri-Or A, Seger R, Shaul Y, Ruppin E, Oren M, Perez M, Meier J, Brunetti-Pierri N, Shema E, Ulitsky I, Erez A. ASS1 metabolically contributes to the nuclear and cytosolic p53-mediated DNA damage response. Nat Metab 2024; 6:1294-1309. [PMID: 38858597 PMCID: PMC11272581 DOI: 10.1038/s42255-024-01060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/30/2024] [Indexed: 06/12/2024]
Abstract
Downregulation of the urea cycle enzyme argininosuccinate synthase (ASS1) in multiple tumors is associated with a poor prognosis partly because of the metabolic diversion of cytosolic aspartate for pyrimidine synthesis, supporting proliferation and mutagenesis owing to nucleotide imbalance. Here, we find that prolonged loss of ASS1 promotes DNA damage in colon cancer cells and fibroblasts from subjects with citrullinemia type I. Following acute induction of DNA damage with doxorubicin, ASS1 expression is elevated in the cytosol and the nucleus with at least a partial dependency on p53; ASS1 metabolically restrains cell cycle progression in the cytosol by restricting nucleotide synthesis. In the nucleus, ASS1 and ASL generate fumarate for the succination of SMARCC1, destabilizing the chromatin-remodeling complex SMARCC1-SNF5 to decrease gene transcription, specifically in a subset of the p53-regulated cell cycle genes. Thus, following DNA damage, ASS1 is part of the p53 network that pauses cell cycle progression, enabling genome maintenance and survival. Loss of ASS1 contributes to DNA damage and promotes cell cycle progression, likely contributing to cancer mutagenesis and, hence, adaptability potential.
Collapse
Affiliation(s)
- Lisha Qiu Jin Lim
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Medicine D, Beilinson Hospital, Petah Tikva, Israel
| | - Leandro R Soria
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Rotem Ben-Tov Perry
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Darzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruchama Brody
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Lichtenstein
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elizabeta Bab-Dinitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevie Melman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shifra Ben-Dor
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Irit Orr
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Pri-Or
- The De Botton Protein Profiling Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Rony Seger
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Shaul
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Minervo Perez
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Jordan Meier
- Cancer Data Science Lab, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
- Department of Translational Medicine, Medical Genetics, University of Naples Federico II, Naples, Italy
- Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Igor Ulitsky
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
28
|
Gai X, Liu Y, Lan X, Chen L, Yuan T, Xu J, Li Y, Zheng Y, Yan Y, Yang L, Fu Y, Tang S, Cao S, Dai X, Zhu H, Geng M, Ding J, Pu C, Huang M. Oncogenic KRAS Induces Arginine Auxotrophy and Confers a Therapeutic Vulnerability to SLC7A1 Inhibition in Non-Small Cell Lung Cancer. Cancer Res 2024; 84:1963-1977. [PMID: 38502865 DOI: 10.1158/0008-5472.can-23-2095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/08/2023] [Accepted: 03/12/2024] [Indexed: 03/21/2024]
Abstract
The urea cycle is frequently rewired in cancer cells to meet the metabolic demands of cancer. Elucidation of the underlying mechanism by which oncogenic signaling mediates urea cycle reprogramming could help identify targetable metabolic vulnerabilities. In this study, we discovered that oncogenic activation of KRAS in non-small cell lung cancer (NSCLC) silenced the expression of argininosuccinate synthase 1 (ASS1), a urea cycle enzyme that catalyzes the production of arginine from aspartate and citrulline, and thereby diverted the utilization of aspartate to pyrimidine synthesis to meet the high demand for DNA replication. Specifically, KRAS signaling facilitated a hypoacetylated state in the promoter region of the ASS1 gene in a histone deacetylase 3-dependent manner, which in turn impeded the recruitment of c-MYC for ASS1 transcription. ASS1 suppression in KRAS-mutant NSCLC cells impaired the biosynthesis of arginine and rendered a dependency on the arginine transmembrane transporter SLC7A1 to import extracellular arginine. Depletion of SLC7A1 in both patient-derived organoid and xenograft models inhibited KRAS-driven NSCLC growth. Together, these findings uncover the role of oncogenic KRAS in rewiring urea cycle metabolism and identify SLC7A1-mediated arginine uptake as a therapeutic vulnerability for treating KRAS-mutant NSCLC. SIGNIFICANCE ASS1 deficiency is induced by mutant KRAS in NSCLC to facilitate DNA synthesis and creates a dependency on SLC7A1, revealing dietary arginine restriction and SLC7A1 inhibition as potential therapeutic strategies.
Collapse
Affiliation(s)
- Xiameng Gai
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yingluo Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaojing Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Luoyi Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tao Yuan
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jun Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yize Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yiyang Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liya Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yixian Fu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shuai Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Siyuwei Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoyang Dai
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Institute of Pharmacology and Toxicology, Zhejiang Province Key laboratory of Anticancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jian Ding
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Congying Pu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| |
Collapse
|
29
|
Wolkersdorfer A, Bergmann B, Adelmann J, Ebbinghaus M, Günther E, Gutmann M, Hahn L, Hurwitz R, Krähmer R, Leenders F, Lühmann T, Schueler J, Schmidt L, Teifel M, Meinel L, Rudel T. PEGylated Recombinant Aplysia punctata Ink Toxin Depletes Arginine and Lysine and Inhibits the Growth of Tumor Xenografts. ACS Biomater Sci Eng 2024; 10:3825-3832. [PMID: 38722049 PMCID: PMC11168412 DOI: 10.1021/acsbiomaterials.4c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 06/11/2024]
Abstract
In recent years, a novel treatment method for cancer has emerged, which is based on the starvation of tumors of amino acids like arginine. The deprivation of arginine in serum is based on enzymatic degradation and can be realized by arginine deaminases like the l-amino acid oxidase found in the ink toxin of the sea hare Aplysia punctata. Previously isolated from the ink, the l-amino acid oxidase was described to oxidate the essential amino acids l-lysine and l-arginine to their corresponding deaminated alpha-keto acids. Here, we present the recombinant production and functionalization of the amino acid oxidase Aplysia punctata ink toxin (APIT). PEGylated APIT (APIT-PEG) increased the blood circulation time. APIT-PEG treatment of patient-derived xenografted mice shows a significant dose-dependent reduction of tumor growth over time mediated by amino acid starvation of the tumor. Treatment of mice with APIT-PEG, which led to deprivation of arginine, was well tolerated.
Collapse
Affiliation(s)
- Alena
M. Wolkersdorfer
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Birgit Bergmann
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
| | - Juliane Adelmann
- Institute
of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Matthias Ebbinghaus
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Eckhard Günther
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Marcus Gutmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Lukas Hahn
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Robert Hurwitz
- Max-Planck-Institute
for Infection Biology, Virchowweg 12, 10117 Berlin, Germany
| | - Ralf Krähmer
- Celares
GmbH, Otto-Warburg-Haus, 13125 Berlin, Germany
| | | | - Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Julia Schueler
- Charles
River Laboratories Germany GmbH, Am Flughafen 12−14, 79108 Freiburg, Germany
| | - Luisa Schmidt
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
| | - Michael Teifel
- Aeterna
Zentaris GmbH, Weismuellerstr. 50, 60314 Frankfurt am Main, Germany
| | - Lorenz Meinel
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| | - Thomas Rudel
- Chair
of Microbiology, Biocentre, University of
Würzburg, 97074 Würzburg, Germany
- Helmholtz-Institute
for RNA-based Infection Research (HIRI), Josef-Schneider-Straße 2, 97080 Würzburg, Germany
| |
Collapse
|
30
|
Su HH, Lin ES, Huang YH, Lien Y, Huang CY. Inhibition of SARS-CoV-2 Nsp9 ssDNA-Binding Activity and Cytotoxic Effects on H838, H1975, and A549 Human Non-Small Cell Lung Cancer Cells: Exploring the Potential of Nepenthes miranda Leaf Extract for Pulmonary Disease Treatment. Int J Mol Sci 2024; 25:6120. [PMID: 38892307 PMCID: PMC11173125 DOI: 10.3390/ijms25116120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Carnivorous pitcher plants from the genus Nepenthes are renowned for their ethnobotanical uses. This research explores the therapeutic potential of Nepenthes miranda leaf extract against nonstructural protein 9 (Nsp9) of SARS-CoV-2 and in treating human non-small cell lung carcinoma (NSCLC) cell lines. Nsp9, essential for SARS-CoV-2 RNA replication, was expressed and purified, and its interaction with ssDNA was assessed. Initial tests with myricetin and oridonin, known for targeting ssDNA-binding proteins and Nsp9, respectively, did not inhibit the ssDNA-binding activity of Nsp9. Subsequent screenings of various N. miranda extracts identified those using acetone, methanol, and ethanol as particularly effective in disrupting Nsp9's ssDNA-binding activity, as evidenced by electrophoretic mobility shift assays. Molecular docking studies highlighted stigmast-5-en-3-ol and lupenone, major components in the leaf extract of N. miranda, as potential inhibitors. The cytotoxic properties of N. miranda leaf extract were examined across NSCLC lines H1975, A549, and H838, focusing on cell survival, apoptosis, and migration. Results showed a dose-dependent cytotoxic effect in the following order: H1975 > A549 > H838 cells, indicating specificity. Enhanced anticancer effects were observed when the extract was combined with afatinib, suggesting synergistic interactions. Flow cytometry indicated that N. miranda leaf extract could induce G2 cell cycle arrest in H1975 cells, potentially inhibiting cancer cell proliferation. Gas chromatography-mass spectrometry (GC-MS) enabled the tentative identification of the 19 most abundant compounds in the leaf extract of N. miranda. These outcomes underscore the dual utility of N. miranda leaf extract in potentially managing SARS-CoV-2 infection through Nsp9 inhibition and offering anticancer benefits against lung carcinoma. These results significantly broaden the potential medical applications of N. miranda leaf extract, suggesting its use not only in traditional remedies but also as a prospective treatment for pulmonary diseases. Overall, our findings position the leaf extract of N. miranda as a promising source of natural compounds for anticancer therapeutics and antiviral therapies, warranting further investigation into its molecular mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Yi Lien
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
31
|
Li G, Xiao K, Li Y, Gao J, He S, Li T. CHIP promotes CAD ubiquitination and degradation to suppress the proliferation and colony formation of glioblastoma cells. Cell Oncol (Dordr) 2024; 47:851-865. [PMID: 37982961 DOI: 10.1007/s13402-023-00899-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2023] [Indexed: 11/21/2023] Open
Abstract
PURPOSE Cancer cells are characterized as the uncontrolled proliferation, which demands high levels of nucleotides that are building blocks for DNA synthesis and replication. CAD (carbamoyl-phosphate synthetase 2, aspartate transcarbamylase and dihydroorotase) is a trifunctional enzyme that initiates the de novo pyrimidine synthesis, which is normally enhanced in cancer cells to preserve the pyrimidine pool for cell division. Glioma, representing most brain cancer, is highly addicted to nucleotides like pyrimidine to sustain the abnormal growth and proliferation of cells. CAD is previously reported to be dysregulated in glioma, but the underlying mechanism remains unclear. METHODS The expression of CAD and CHIP (carboxyl terminus of Hsc70-interacting protein) protein in normal brain cells and three glioblastoma (GBM) cell lines were measured by immunoblots. Lentiviruses-mediated expression of target proteins or shRNAs were used to specifically overexpress or knock down CAD and CHIP. Cell counting, colony formation, apoptosis and cell cycle assays were used to assess the roles of CAD and CHIP in GBM cell proliferation and survival. Co-immunoprecipitation and ubiquitination assays were used to examine the interaction of CHIP with CAD and the ubiquitination of CAD. The correlation of CAD and CHIP expression with GBM patients' survival was obtained by analyzing the GlioVis database. RESULTS In this study, we showed that the expression of CAD was upregulated in glioma, which was positively correlated with the tumor grade and survival of glioma patients. Knockdown of CAD robustly inhibited the cell proliferation and colony formation of GBM cells, indicating the essential role of CAD in the pathogenesis of GBM. Mechanistically, we firstly identified that CAD was modified by the K29-linked polyubiquitination, which was mediated by the E3 ubiquitin ligase CHIP. By interacting with and ubiquitinating CAD, CHIP enhanced its proteasomal and lysosomal degradation, which accounted for the anti-proliferative role of CHIP in GBM cells. To sustain the expression of CAD, CHIP is significantly downregulated, which is correlated with the poor prognosis and survival of GBM patients. Notably, the low level of CHIP and high level of CAD overall predict the short survival of GBM patients. CONCLUSION Altogether, these results illustrated the essential role of CAD in GBM and revealed a novel therapeutic strategy for CAD-positive and CHIP-negative cancer.
Collapse
Affiliation(s)
- Guanya Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Kai Xiao
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yinan Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Jianfang Gao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Shanping He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| | - Tingting Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, School of Life Sciences, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Zhao J, Tian XC, Zhang JQ, Huang C, Sun Y, Qiao S, Jiang SL. Mechanism Exploration of Euphorbia fischeriana Steud. for Liver Cancer Based on Aspartic Acid Identification in Metabolomics. Chin J Integr Med 2024; 30:507-514. [PMID: 37861961 DOI: 10.1007/s11655-023-3706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE To investigate the anti-liver cancer effects and aspartic acid (Asp)-related action mechanism of Euphorbia fischeriana Steud. (Lang Du, LD). METHODS The mice model of liver cancer was established by injection of H22 cells. After 5 days, mice were randomly divided into model group, sorafenib group (20 mg/kg), LD high-dose (LDH, 1.36 g/kg) group, LD medium-dose (LDM, 0.68 g/kg) group, and LD low-dose (LDL, 0.34 g/kg) group, 10 mice each group. Drugs were intragastrically administered to the mice once daily for 10 days, respectively. Body weight, tumor size and tumor weight were recorded. Hepatic index was calculated. Pathological changes of liver cancer tissues were evaluated by hematoxylin and eosin staining and TUNEL staining. Liquid chromatography-mass spectrometer was used to analyze different metabolites between the model and LDH groups. RESULTS After LD treatment, tumor weight, tumor size and hepatic index were reduced compared with the model group. Necrocytosis and karyorrhexis of tumor cells were found. Moreover, 61 differential metabolites (18 up-regulated, 43 down-regulated) were affirmed and 20 pathways of KEGG (P<0.05) were gotten. In addition, Bel-7402, HepG2 and H22 cell viabilities were significantly increased after adding Asp into the medium. And then, the cell proliferation effect induced by Asp was ameliorated by LD. CONCLUSION The anti-liver cancer efficacy of LD extract was validated in H22 mice model, and inhibition of Asp level might be the underlying mechanism.
Collapse
Affiliation(s)
- Jing Zhao
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Xin-Chen Tian
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
- Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Jia-Qi Zhang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Chen Huang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Yan Sun
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Sen Qiao
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China
| | - Shu-Long Jiang
- Clinical Medical Laboratory Center, Jining First People's Hospital, Jining, Shandong Province, 272000, China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| |
Collapse
|
33
|
Yang C, Pataskar A, Feng X, Montenegro Navarro J, Paniagua I, Jacobs JJL, Zaal EA, Berkers CR, Bleijerveld OB, Agami R. Arginine deprivation enriches lung cancer proteomes with cysteine by inducing arginine-to-cysteine substitutants. Mol Cell 2024; 84:1904-1916.e7. [PMID: 38759626 PMCID: PMC11129317 DOI: 10.1016/j.molcel.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/30/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.
Collapse
Affiliation(s)
- Chao Yang
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abhijeet Pataskar
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Xiaodong Feng
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jasmine Montenegro Navarro
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Inés Paniagua
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jacqueline J L Jacobs
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Esther A Zaal
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Celia R Berkers
- Division of Cell Biology, Metabolism & Cancer, Department Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Onno B Bleijerveld
- NKI Proteomics Facility, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Erasmus MC, Department of Genetics, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
34
|
Xie T, Qin C, Savas AC, Yeh WW, Feng P. The emerging roles of glutamine amidotransferases in metabolism and immune defense. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:783-797. [PMID: 38743960 PMCID: PMC11561158 DOI: 10.1080/15257770.2024.2351135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
Glutamine amidotransferases (GATs) catalyze the synthesis of nucleotides, amino acids, glycoproteins and an enzyme cofactor, thus serving as key metabolic enzymes for cell proliferation. Carbamoyl-phosphate synthetase, Aspartate transcarbamoylase, and Dihydroorotase (CAD) is a multifunctional enzyme of the GAT family and catalyzes the first three steps of the de novo pyrimidine synthesis. Following our findings that cellular GATs are involved in immune evasion during herpesvirus infection, we discovered that CAD reprograms cellular metabolism to fuel aerobic glycolysis and nucleotide synthesis via deamidating RelA. Deamidated RelA activates the expression of key glycolytic enzymes, rather than that of the inflammatory NF-κB-responsive genes. As such, cancer cells prime RelA for deamidation via up-regulating CAD activity or accumulating RelA mutations. Interestingly, the recently emerged SARS-CoV-2 also activates CAD to couple evasion of inflammatory response to activated nucleotide synthesis. A small molecule inhibitor of CAD depletes nucleotide supply and boosts antiviral inflammatory response, thus greatly reducing SARS-CoV-2 replication. Additionally, we also found that CTP synthase 1 (CTPS1) deamidates interferon (IFN) regulatory factor 3 (IRF3) to mute IFN induction. Our previous studies have implicated phosphoribosyl formylglycinamidine synthase (PFAS) and phosphoribosyl pyrophosphate amidotransferase (PPAT) in deamidating retinoic acid-inducible gene I (RIG-I) and evading dsRNA-induced innate immune defense in herpesvirus infection. Overall, these studies have uncovered an unconventional enzymatic activity of cellular GATs in metabolism and immune defense, offering a molecular link intimately coupling these fundamental biological processes.
Collapse
Affiliation(s)
- Taolin Xie
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Chao Qin
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Ali Can Savas
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Wayne Wei Yeh
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
35
|
Luo W, Zou Z, Nie Y, Luo J, Ming Z, Hu X, Luo T, Ouyang M, Liu M, Tang H, Xie Y, Peng K, Chen L, Zhou J, Luo Z. ASS1 inhibits triple-negative breast cancer by regulating PHGDH stability and de novo serine synthesis. Cell Death Dis 2024; 15:319. [PMID: 38710705 PMCID: PMC11074131 DOI: 10.1038/s41419-024-06672-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024]
Abstract
Argininosuccinate synthase (ASS1), a critical enzyme in the urea cycle, acts as a tumor suppressor in many cancers. To date, the anticancer mechanism of ASS1 has not been fully elucidated. Here, we found that phosphoglycerate dehydrogenase (PHGDH), a key rate-limiting enzyme in serine synthesis, is a pivotal protein that interacts with ASS1. Our results showed that ASS1 directly binds to PHGDH and promotes its ubiquitination-mediated degradation to inhibit serine synthesis, consequently suppressing tumorigenesis. Importantly, the tumor suppressive effects of ASS1 were strongly abrogated by PHGDH knockout. In addition, ASS1 knockout and knockdown partially rescued cell proliferation when serine and glycine were depleted, while the inhibitory effect of ASS1 overexpression on cell proliferation was restored by the addition of serine and glycine. These findings unveil a novel role of ASS1 and suggest that the ASS1/PHGDH serine synthesis pathway is a promising target for cancer therapy.
Collapse
Affiliation(s)
- Wensong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zizheng Zou
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Yiyang Key Laboratory of Chemical Small Molecule Anti-Tumor Targeted Therapy, Department of Scientific Research, Yiyang Medical College, Yiyang, 413000, China
| | - Yuan Nie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Junli Luo
- The Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhengnan Ming
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xiyuan Hu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tiao Luo
- Hunan Key Laboratory of Oral Health Research & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, China
| | - Min Ouyang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mingquan Liu
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Huicheng Tang
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yuanzhu Xie
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kunjian Peng
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ling Chen
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Jiang Zhou
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhiyong Luo
- Department of Biochemistry and Molecular Biology, Hunan Province Key Laboratory of Basic and Applied Hematology, Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
36
|
Szlosarek PW, Creelan BC, Sarkodie T, Nolan L, Taylor P, Olevsky O, Grosso F, Cortinovis D, Chitnis M, Roy A, Gilligan D, Kindler H, Papadatos-Pastos D, Ceresoli GL, Mansfield AS, Tsao A, O’Byrne KJ, Nowak AK, Steele J, Sheaff M, Shiu CF, Kuo CL, Johnston A, Bomalaski J, Zauderer MG, Fennell DA. Pegargiminase Plus First-Line Chemotherapy in Patients With Nonepithelioid Pleural Mesothelioma: The ATOMIC-Meso Randomized Clinical Trial. JAMA Oncol 2024; 10:475-483. [PMID: 38358753 PMCID: PMC10870227 DOI: 10.1001/jamaoncol.2023.6789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/29/2023] [Indexed: 02/16/2024]
Abstract
Importance Arginine deprivation using ADI-PEG20 (pegargiminase) combined with chemotherapy is untested in a randomized study among patients with cancer. ATOMIC-Meso (ADI-PEG20 Targeting of Malignancies Induces Cytotoxicity-Mesothelioma) is a pivotal trial comparing standard first-line chemotherapy plus pegargiminase or placebo in patients with nonepithelioid pleural mesothelioma. Objective To determine the effect of pegargiminase-based chemotherapy on survival in nonepithelioid pleural mesothelioma, an arginine-auxotrophic tumor. Design, Setting, and Participants This was a phase 2-3, double-blind randomized clinical trial conducted at 43 centers in 5 countries that included patients with chemotherapy-naive nonepithelioid pleural mesothelioma from August 1, 2017, to August 15, 2021, with at least 12 months' follow-up. Final follow-up was on August 15, 2022. Data analysis was performed from March 2018 to June 2023. Intervention Patients were randomly assigned (1:1) to receive weekly intramuscular pegargiminase (36.8 mg/m2) or placebo. All patients received intravenous pemetrexed (500 mg/m2) and platinum (75-mg/m2 cisplatin or carboplatin area under the curve 5) chemotherapy every 3 weeks up to 6 cycles. Pegargiminase or placebo was continued until progression, toxicity, or 24 months. Main Outcomes and Measures The primary end point was overall survival, and secondary end points were progression-free survival and safety. Response rate by blinded independent central review was assessed in the phase 2 portion only. Results Among 249 randomized patients (mean [SD] age, 69.5 [7.9] years; 43 female individuals [17.3%] and 206 male individuals [82.7%]), all were included in the analysis. The median overall survival was 9.3 months (95% CI, 7.9-11.8 months) with pegargiminase-chemotherapy as compared with 7.7 months (95% CI, 6.1-9.5 months) with placebo-chemotherapy (hazard ratio [HR] for death, 0.71; 95% CI, 0.55-0.93; P = .02). The median progression-free survival was 6.2 months (95% CI, 5.8-7.4 months) with pegargiminase-chemotherapy as compared with 5.6 months (95% CI, 4.1-5.9 months) with placebo-chemotherapy (HR, 0.65; 95% CI, 0.46-0.90; P = .02). Grade 3 to 4 adverse events with pegargiminase occurred in 36 patients (28.8%) and with placebo in 21 patients (16.9%); drug hypersensitivity and skin reactions occurred in the experimental arm in 3 patients (2.4%) and 2 patients (1.6%), respectively, and none in the placebo arm. Rates of poststudy treatments were comparable in both arms (57 patients [45.6%] with pegargiminase vs 58 patients [46.8%] with placebo). Conclusions and Relevance In this randomized clinical trial of arginine depletion with pegargiminase plus chemotherapy, survival was extended beyond standard chemotherapy with a favorable safety profile in patients with nonepithelioid pleural mesothelioma. Pegargiminase-based chemotherapy as a novel antimetabolite strategy for mesothelioma validates wider clinical testing in oncology. Trial Registration ClinicalTrials.gov Identifier: NCT02709512.
Collapse
Affiliation(s)
- Peter W. Szlosarek
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
- The Mid and South Essex University Hospitals Group, Chelmsford, United Kingdom
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | | | - Thomas Sarkodie
- The Mid and South Essex University Hospitals Group, Chelmsford, United Kingdom
| | - Luke Nolan
- Southampton University Hospital NHS Foundation Trust, Southampton, United Kingdom
| | - Paul Taylor
- Manchester University NHS Foundation Trust, Wythenshawe Hospital, Manchester, United Kingdom
| | - Olga Olevsky
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Federica Grosso
- Mesothelioma Unit, Azienda Ospedaliera SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | | | - Meenali Chitnis
- Oxford Cancer and Haematology Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Amy Roy
- University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - David Gilligan
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Hedy Kindler
- University of Chicago Medicine, Chicago, Illinois
| | | | | | | | - Anne Tsao
- The University of Texas MD Anderson Cancer Center, Houston
| | - Kenneth J. O’Byrne
- Princess Alexandra Hospital and Queensland University of Technology, Brisbane, Australia
| | - Anna K. Nowak
- Medical School, The University of Western Australia and Sir Charles Gairdner Hospital, Perth, Western Australia
| | - Jeremy Steele
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | - Michael Sheaff
- Barts Cancer Centre, St Bartholomew’s Hospital, London, United Kingdom
| | | | | | | | | | - Marjorie G. Zauderer
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York
| | - Dean A. Fennell
- University of Leicester & University Hospitals of Leicester NHS, United Kingdom
| |
Collapse
|
37
|
Hajaj E, Pozzi S, Erez A. From the Inside Out: Exposing the Roles of Urea Cycle Enzymes in Tumors and Their Micro and Macro Environments. Cold Spring Harb Perspect Med 2024; 14:a041538. [PMID: 37696657 PMCID: PMC10982720 DOI: 10.1101/cshperspect.a041538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Catabolic pathways change in anabolic diseases such as cancer to maintain metabolic homeostasis. The liver urea cycle (UC) is the main catabolic pathway for disposing excess nitrogen. Outside the liver, the UC enzymes are differentially expressed based on each tissue's needs for UC intermediates. In tumors, there are changes in the expression of UC enzymes selected for promoting tumorigenesis by increasing the availability of essential UC substrates and products. Consequently, there are compensatory changes in the expression of UC enzymes in the cells that compose the tumor microenvironment. Moreover, extrahepatic tumors induce changes in the expression of the liver UC, which contribute to the systemic manifestations of cancer, such as weight loss. Here, we review the multilayer changes in the expression of UC enzymes throughout carcinogenesis. Understanding the changes in UC expression in the tumor and its micro and macro environment can help identify biomarkers for early cancer diagnosis and vulnerabilities that can be targeted for therapy.
Collapse
Affiliation(s)
- Emma Hajaj
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sabina Pozzi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
38
|
Pan W, Huang W, Zheng J, Meng Z, Pan X. Construction of a prognosis model of head and neck squamous cell carcinoma pyroptosis and an analysis of immuno-phenotyping based on bioinformatics. Transl Cancer Res 2024; 13:299-316. [PMID: 38410218 PMCID: PMC10894328 DOI: 10.21037/tcr-23-922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/20/2023] [Indexed: 02/28/2024]
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is currently the sixth most common cancer worldwide, and its prevalence and recurrence rates are gradually increasing. To study the relationship between HNSCC and cell pyroptosis and provide new treatment options for HNSCC, a prognostic model of pyroptosis-related genes (PRGs) was established to predict the prognosis of patients with HNSCC, and an immune correlation analysis was performed. Methods A total of 53 PRGs were selected. We comprehensively analyzed the role of these PRGs in HNSCC through multiple omics data-set integration. We then identified two different molecular subtypes and found that changes in multi-layer PRGs were associated with clinicopathological characteristics, prognosis, and tumor microenvironment cell-infiltration characteristics in patients. Next, prognostic models were generated for nine PRGs; that is, cytotoxic T lymphocyte antigen 4 (CTLA4), V-set and immunoglobulin domain containing 4 (VSIG4), heparin-binding-epidermal growth factor (HBEGF), aquaporin-1 (AQP1), sodium channel epithelial 1 subunit delta (SCNN1D), argininosuccinate synthase 1 (ASS1), family with sequence similarity 83 member (FAM83), cyclin dependent kinase inhibitor 2A (CDKN2A), and serine protease inhibitor Kazal 6 (SPINK6). Finally, a risk-score model was constructed, and the Kaplan-Meier method was used to evaluate overall survival. In addition, the immune environment and drug sensitivity were analyzed. Results This study showed that pyroptosis is closely related to HNSCC. The scores generated by the risk markers based on the new nine PRGs were identified as independent risk factors for predicting HNSCC. The differentially expressed genes between the low- and high-risk groups were further found to be related to the tumor immune cells and pathways. In addition, the risk score was found to be significantly correlated with chemosensitivity. Conclusions Our comprehensive analysis of PRGs revealed their potential role in the tumor immune microenvironment, clinicopathological characteristics, and prognosis. These findings may improve our understanding of pyroptosis in HNSCC and may provide new ideas for evaluating prognosis and developing more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Wenna Pan
- Department of Maxillofacial Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Hepatobiliary Surgery II, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiajun Zheng
- Department of Neurosurgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zilu Meng
- Department of Maxillofacial Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuan Pan
- Department of Maxillofacial Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
39
|
Sukjoi W, Young C, Acland M, Siritutsoontorn S, Roytrakul S, Klingler-Hoffmann M, Hoffmann P, Jitrapakdee S. Proteomic analysis of holocarboxylase synthetase deficient-MDA-MB-231 breast cancer cells revealed the biochemical changes associated with cell death, impaired growth signaling, and metabolism. Front Mol Biosci 2024; 10:1250423. [PMID: 38283944 PMCID: PMC10812114 DOI: 10.3389/fmolb.2023.1250423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
We have previously shown that the holocarboxylase synthetase (HLCS) is overexpressed in breast cancer tissue of patients, and silencing of its expression in triple-negative cancer cell line inhibits growth and migration. Here we investigated the global biochemical changes associated with HLCS knockdown in MDA-MB-231 cells to discern the pathways that involve HLCS. Proteomic analysis of two independent HLCS knockdown cell lines identified 347 differentially expressed proteins (DEPs) whose expression change > 2-fold (p < 0.05) relative to the control cell line. GO enrichment analysis showed that these DEPs were mainly associated with the cellular process such as cellular metabolic process, cellular response to stimulus, and cellular component organization or biogenesis, metabolic process, biological regulation, response to stimuli, localization, and signaling. Among the 347 identified DEPs, 64 proteins were commonly found in both HLCS knockdown clones, confirming their authenticity. Validation of some of these DEPs by Western blot analysis showed that plasminogen activator inhibitor type 2 (SerpinB2) and interstitial collagenase (MMP1) were approximately 90% decreased in HLCS knockdown cells, consistent with a 50%-60% decrease in invasion ability of knockdown cells. Notably, argininosuccinate synthase 1 (ASS1), one of the enzymes in the urea cycle, showed approximately a 10-fold increase in the knockdown cells, suggesting the crucial role of HLCS in supporting the urea cycle in the triple-negative cancer cell line. Collectively, our proteomic data provide biochemical insights into how suppression of HLCS expression perturbs global changes in cellular processes and metabolic pathways, impairing cell growth and invasion.
Collapse
Affiliation(s)
- Witchuda Sukjoi
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Clifford Young
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Mitchell Acland
- Adelaide Proteomics Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Agency, Pathumthani, Thailand
| | | | - Peter Hoffmann
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sarawut Jitrapakdee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
40
|
Jimenez J, Dubey P, Carter B, Koomen JM, Markowitz J. A metabolic perspective on nitric oxide function in melanoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189038. [PMID: 38061664 PMCID: PMC11380350 DOI: 10.1016/j.bbcan.2023.189038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Nitric oxide (NO) generated from nitric oxide synthase (NOS) exerts a dichotomous effect in melanoma, suppressing or promoting tumor progression. This dichotomy is thought to depend on the intracellular NO concentration and the cell type in which it is generated. Due to its central role in the metabolism of multiple critical constituents involved in signaling and stress, it is crucial to explore NO's contribution to the metabolic dysfunction of melanoma. This review will discuss many known metabolites linked to NO production in melanoma. We discuss the synthesis of these metabolites, their role in biochemical pathways, and how they alter the biological processes observed in the melanoma tumor microenvironment. The metabolic pathways altered by NO and the corresponding metabolites reinforce its dual role in melanoma and support investigating this effect for potential avenues of therapeutic intervention.
Collapse
Affiliation(s)
- John Jimenez
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, FL 33612, USA
| | - Parul Dubey
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bethany Carter
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Flow Cytometry Core Facility, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John M Koomen
- Molecular Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; Department of Oncologic Sciences, University of South Florida Morsani School of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
41
|
Pan M, Ge CC, Niu SZ, Duan YY, Fan YM, Jin QW, Chen X, Tao JP, Huang SY. Functional analyses of Toxoplasma gondii dihydroorotase reveal a promising anti-parasitic target. FASEB J 2024; 38:e23397. [PMID: 38149908 DOI: 10.1096/fj.202301493r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/20/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Toxoplasma gondii relies heavily on the de novo pyrimidine biosynthesis pathway for fueling the high uridine-5'-monophosphate (UMP) demand during parasite growth. The third step of de novo pyrimidine biosynthesis is catalyzed by dihydroorotase (DHO), a metalloenzyme that catalyzes the reversible condensation of carbamoyl aspartate to dihydroorotate. Here, functional analyses of TgDHO reveal that tachyzoites lacking DHO are impaired in overall growth due to decreased levels of UMP, and the noticeably growth restriction could be partially rescued after supplementation with uracil or high concentrations of L-dihydroorotate in vitro. When pyrimidine salvage pathway is disrupted, both DHOH35A and DHOD284E mutant strains proliferated much slower than DHO-expressing parasites, suggesting an essential role of both TgDHO His35 and Asp284 residues in parasite growth. Additionally, DHO deletion causes the limitation of bradyzoite growth under the condition of uracil supplementation or uracil deprivation. During the infection in mice, the DHO-deficient parasites are avirulent, despite the generation of smaller tissue cysts. The results reveal that TgDHO contributes to parasite growth both in vitro and in vivo. The significantly differences between TgDHO and mammalian DHO reflect that DHO can be exploited to produce specific inhibitors targeting apicomplexan parasites. Moreover, potential DHO inhibitors exert beneficial effects on enzymatic activity of TgDHO and T. gondii growth in vitro. In conclusion, these data highlight the important role of TgDHO in parasite growth and reveal that it is a promising anti-parasitic target for future control of toxoplasmosis.
Collapse
Affiliation(s)
- Ming Pan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Ceng-Ceng Ge
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Shui-Zhu Niu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yin-Yan Duan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Yi-Min Fan
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Qi-Wang Jin
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| | - Xiang Chen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Jian-Ping Tao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
| | - Si-Yang Huang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Jiangsu Key Laboratory of Zoonosis, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu Province, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
42
|
Ali ES, Ben-Sahra I. Regulation of nucleotide metabolism in cancers and immune disorders. Trends Cell Biol 2023; 33:950-966. [PMID: 36967301 PMCID: PMC10518033 DOI: 10.1016/j.tcb.2023.03.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
Nucleotides are the foundational elements of life. Proliferative cells acquire nutrients for energy production and the synthesis of macromolecules, including proteins, lipids, and nucleic acids. Nucleotides are continuously replenished through the activation of the nucleotide synthesis pathways. Despite the importance of nucleotides in cell physiology, there is still much to learn about how the purine and pyrimidine synthesis pathways are regulated in response to intracellular and exogenous signals. Over the past decade, evidence has emerged that several signaling pathways [Akt, mechanistic target of rapamycin complex I (mTORC1), RAS, TP53, and Hippo-Yes-associated protein (YAP) signaling] alter nucleotide synthesis activity and influence cell function. Here, we examine the mechanisms by which these signaling networks affect de novo nucleotide synthesis in mammalian cells. We also discuss how these molecular links can be targeted in diseases such as cancers and immune disorders.
Collapse
Affiliation(s)
- Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
43
|
Liu Q, Bode AM, Chen X, Luo X. Metabolic reprogramming in nasopharyngeal carcinoma: Mechanisms and therapeutic opportunities. Biochim Biophys Acta Rev Cancer 2023; 1878:189023. [PMID: 37979733 DOI: 10.1016/j.bbcan.2023.189023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
The high prevalence of metabolic reprogramming in nasopharyngeal carcinoma (NPC) offers an abundance of potential therapeutic targets. This review delves into the distinct mechanisms underlying metabolic reprogramming in NPC, including enhanced glycolysis, nucleotide synthesis, and lipid metabolism. All of these changes are modulated by Epstein-Barr virus (EBV) infection, hypoxia, and tumor microenvironment. We highlight the role of metabolic reprogramming in the development of NPC resistance to standard therapies, which represents a challenging barrier in treating this malignancy. Furthermore, we dissect the state of the art in therapeutic strategies that target these metabolic changes, evaluating the successes and failures of clinical trials and the strategies to tackle resistance mechanisms. By providing a comprehensive overview of the current knowledge and future directions in this field, this review sets the stage for new therapeutic avenues in NPC.
Collapse
Affiliation(s)
- Qian Liu
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
44
|
Rattigan KM, Zarou MM, Brabcova Z, Prasad B, Zerbst D, Sarnello D, Kalkman ER, Ianniciello A, Scott MT, Dunn K, Shokry E, Sumpton D, Copland M, Tardito S, Vande Voorde J, Mussai F, Cheng P, Helgason GV. Arginine dependency is a therapeutically exploitable vulnerability in chronic myeloid leukaemic stem cells. EMBO Rep 2023; 24:e56279. [PMID: 37489735 PMCID: PMC10561355 DOI: 10.15252/embr.202256279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
To fuel accelerated proliferation, leukaemic cells undergo metabolic deregulation, which can result in specific nutrient dependencies. Here, we perform an amino acid drop-out screen and apply pre-clinical models of chronic phase chronic myeloid leukaemia (CML) to identify arginine as a nutrient essential for primary human CML cells. Analysis of the Microarray Innovations in Leukaemia (MILE) dataset uncovers reduced ASS1 levels in CML compared to most other leukaemia types. Stable isotope tracing reveals repressed activity of all urea cycle enzymes in patient-derived CML CD34+ cells, rendering them arginine auxotrophic. Thus, arginine deprivation completely blocks proliferation of CML CD34+ cells and induces significantly higher levels of apoptosis when compared to arginine-deprived cell lines. Similarly, primary CML cells, but not normal CD34+ samples, are particularly sensitive to treatment with the arginine-depleting enzyme, BCT-100, which induces apoptosis and reduces clonogenicity. Moreover, BCT-100 is highly efficacious in a patient-derived xenograft model, causing > 90% reduction in the number of human leukaemic stem cells (LSCs). These findings indicate arginine depletion to be a promising and novel strategy to eradicate therapy resistant LSCs.
Collapse
Affiliation(s)
- Kevin M Rattigan
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Martha M Zarou
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Zuzana Brabcova
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Bodhayan Prasad
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Désirée Zerbst
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Daniele Sarnello
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Eric R Kalkman
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Angela Ianniciello
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Mary T Scott
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Karen Dunn
- Paul O'Gorman Leukaemia Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Engy Shokry
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| | - Saverio Tardito
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
- Cancer Research UK Beatson InstituteGlasgowUK
| | | | - Francis Mussai
- Institute of Immunology and ImmunotherapyUniversity of BirminghamBirminghamUK
| | - Paul Cheng
- Bio‐cancer Treatment International Ltd, Hong Kong Science ParkShatinNew TerritoriesHong Kong
| | - G Vignir Helgason
- Wolfson Wohl Cancer Research Centre, School of Cancer SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
45
|
Guo X, Guo Y, Li J, Liu Q, Wu H. Arginine Expedites Erastin-Induced Ferroptosis through Fumarate. Int J Mol Sci 2023; 24:14595. [PMID: 37834044 PMCID: PMC10572513 DOI: 10.3390/ijms241914595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 10/15/2023] Open
Abstract
Ferroptosis is a newly characterized form of programmed cell death. The fundamental biochemical feature of ferroptosis is the lethal accumulation of iron-catalyzed lipid peroxidation. It has gradually been recognized that ferroptosis is implicated in the pathogenesis of a variety of human diseases. Increasing evidence has shed light on ferroptosis regulation by amino acid metabolism. Herein, we report that arginine deprivation potently inhibits erastin-induced ferroptosis, but not RSL3-induced ferroptosis, in several types of mammalian cells. Arginine presence reduces the intracellular glutathione (GSH) level by sustaining the biosynthesis of fumarate, which functions as a reactive α,β-unsaturated electrophilic metabolite and covalently binds to GSH to generate succinicGSH. siRNA-mediated knockdown of argininosuccinate lyase, the critical urea cycle enzyme directly catalyzing the biosynthesis of fumarate, significantly decreases cellular fumarate and thus relieves erastin-induced ferroptosis in the presence of arginine. Furthermore, fumarate is decreased during erastin exposure, suggesting that a protective mechanism exists to decelerate GSH depletion in response to pro-ferroptotic insult. Collectively, this study reveals the ferroptosis regulation by the arginine metabolism and expands the biochemical functionalities of arginine.
Collapse
Affiliation(s)
- Xinxin Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (Y.G.); (J.L.); (Q.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yubo Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (Y.G.); (J.L.); (Q.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiahuan Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (Y.G.); (J.L.); (Q.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Qian Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (Y.G.); (J.L.); (Q.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Hao Wu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (X.G.); (Y.G.); (J.L.); (Q.L.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
46
|
Xu F, Jiang HL, Feng WW, Fu C, Zhou JC. Characteristics of amino acid metabolism in colorectal cancer. World J Clin Cases 2023; 11:6318-6326. [PMID: 37900242 PMCID: PMC10601002 DOI: 10.12998/wjcc.v11.i27.6318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2023] [Accepted: 08/18/2023] [Indexed: 09/20/2023] Open
Abstract
In recent years, metabolomics research has become a hot spot in the screening and treatment of cancer. It is a popular technique for the quantitative characterization of small molecular compounds in biological cells, tissues, organs or organisms. Further study of the tumor revealed that amino acid changes may occur early in the tumor. The rapid growth and metabolism required for survival result in tumors exhibiting an increased demand for amino acids. An abundant supply of amino acids is important for cancer to maintain its proliferative driving force. Changes in amino acid metabolism can be used to screen malignant tumors and improve therapeutic outcomes. Therefore, it is particularly important to study the characteristics of amino acid metabolism in colorectal cancer. This article reviews several specific amino acid metabolism characteristics in colorectal cancer.
Collapse
Affiliation(s)
- Fen Xu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Hong-Liang Jiang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Wei-Wei Feng
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Chen Fu
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| | - Jiang-Chang Zhou
- Department of Gastroenterology, Xinhua Hospital Affiliated to Dalian University, Dalian 116000, Liaoning Province, China
| |
Collapse
|
47
|
Shen J, Sun N, Wang J, Zens P, Kunzke T, Buck A, Prade VM, Wang Q, Feuchtinger A, Hu R, Berezowska S, Walch A. Patterns of Carbon-Bound Exogenous Compounds Impact Disease Pathophysiology in Lung Cancer Subtypes in Different Ways. ACS NANO 2023; 17:16396-16411. [PMID: 37639684 PMCID: PMC10510585 DOI: 10.1021/acsnano.2c11161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 08/23/2023] [Indexed: 08/31/2023]
Abstract
Carbon-bound exogenous compounds, such as polycyclic aromatic hydrocarbons (PAHs), tobacco-specific nitrosamines, aromatic amines, and organohalogens, are known to affect both tumor characteristics and patient outcomes in lung squamous cell carcinoma (LUSC); however, the roles of these compounds in lung adenocarcinoma (LUAD) remain unclear. We analyzed 11 carbon-bound exogenous compounds in LUAD and LUSC samples using in situ high mass-resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging and performed a cluster analysis to compare the patterns of carbon-bound exogenous compounds between these two lung cancer subtypes. Correlation analyses were conducted to investigate associations among exogenous compounds, endogenous metabolites, and clinical data, including patient survival outcomes and smoking behaviors. Additionally, we examined differences in exogenous compound patterns between normal and tumor tissues. Our analyses revealed that PAHs, aromatic amines, and organohalogens were more abundant in LUAD than in LUSC, whereas the tobacco-specific nitrosamine nicotine-derived nitrosamine ketone was more abundant in LUSC. Patients with LUAD and LUSC could be separated according to carbon-bound exogenous compound patterns detected in the tumor compartment. The same compounds had differential impacts on patient outcomes, depending on the cancer subtype. Correlation and network analyses indicated substantial differences between LUAD and LUSC metabolomes, associated with substantial differences in the patterns of the carbon-bound exogenous compounds. These data suggest that the contributions of these carcinogenic compounds to cancer biology may differ according to the cancer subtypes.
Collapse
Affiliation(s)
- Jian Shen
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
- Nanxishan
Hospital of Guangxi Zhuang Autonomous Region, Institute of Pathology, Guilin 541002, People’s Republic of China
| | - Na Sun
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Jun Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Philipp Zens
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Graduate
School for Health Sciences, University of
Bern, Mittelstrasse 43, Bern 3012, Switzerland
| | - Thomas Kunzke
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Achim Buck
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Verena M. Prade
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Qian Wang
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Annette Feuchtinger
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Ronggui Hu
- Center
for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200030, People’s
Republic of China
| | - Sabina Berezowska
- Institute
of Tissue Medicine and Pathology, University
of Bern, Murtenstrasse 31, Bern 3008, Switzerland
- Department
of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne 1011, Switzerland
| | - Axel Walch
- Research
Unit Analytical Pathology, Helmholtz Zentrum
München − German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
48
|
Marrugal Á, Ferrer I, Quintanal-Villalonga Á, Ojeda L, Pastor MD, García-Luján R, Carnero A, Paz-Ares L, Molina-Pinelo S. Inhibition of HSP90 in Driver Oncogene-Defined Lung Adenocarcinoma Cell Lines: Key Proteins Underpinning Therapeutic Efficacy. Int J Mol Sci 2023; 24:13830. [PMID: 37762133 PMCID: PMC10530904 DOI: 10.3390/ijms241813830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The use of 90 kDa heat shock protein (HSP90) inhibition as a therapy in lung adenocarcinoma remains limited due to moderate drug efficacy, the emergence of drug resistance, and early tumor recurrence. The main objective of this research is to maximize treatment efficacy in lung adenocarcinoma by identifying key proteins underlying HSP90 inhibition according to molecular background, and to search for potential biomarkers of response to this therapeutic strategy. Inhibition of the HSP90 chaperone was evaluated in different lung adenocarcinoma cell lines representing the most relevant molecular alterations (EGFR mutations, KRAS mutations, or EML4-ALK translocation) and wild-type genes found in each tumor subtype. The proteomic technique iTRAQ was used to identify proteomic profiles and determine which biological pathways are involved in the response to HSP90 inhibition in lung adenocarcinoma. We corroborated the greater efficacy of HSP90 inhibition in EGFR mutated or EML4-ALK translocated cell lines. We identified proteins specifically and significantly deregulated after HSP90 inhibition for each molecular alteration. Two proteins, ADI1 and RRP1, showed independently deregulated molecular patterns. Functional annotation of the altered proteins suggested that apoptosis was the only pathway affected by HSP90 inhibition across all molecular subgroups. The expression of ADI1 and RRP1 could be used to monitor the correct inhibition of HSP90 in lung adenocarcinoma. In addition, proteins such as ASS1, ITCH, or UBE2L3 involved in pathways related to the inhibition of a particular molecular background could be used as potential response biomarkers, thereby improving the efficacy of this therapeutic approach to combat lung adenocarcinoma.
Collapse
Affiliation(s)
- Ángela Marrugal
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
| | - Irene Ferrer
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
| | | | - Laura Ojeda
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
| | - María Dolores Pastor
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| | - Ricardo García-Luján
- Respiratory Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
| | - Amancio Carnero
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| | - Luis Paz-Ares
- H12O-CNIO Lung Cancer Clinical Research Unit, Instituto de Investigación Hospital 12 de Octubre & Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain (L.P.-A.)
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Medical Oncology Department, Hospital Universitario Doce de Octubre, 28041 Madrid, Spain
- Medical School, Universidad Complutense, 28040 Madrid, Spain
| | - Sonia Molina-Pinelo
- CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain;
- Instituto de Biomedicina de Sevilla (IBiS) (HUVR, CSIC, Universidad de Sevilla), 41013 Sevilla, Spain
| |
Collapse
|
49
|
Wang R, Hu Q, Wu Y, Guan N, Han X, Guan X. Intratumoral lipid metabolic reprogramming as a pro-tumoral regulator in the tumor milieu. Biochim Biophys Acta Rev Cancer 2023; 1878:188962. [PMID: 37541532 DOI: 10.1016/j.bbcan.2023.188962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Reprogramming of the tumor microenvironment (TME) is a hallmark of cancer. Metabolic reprogramming is a vital approach to sustaining the energy supply in the TME. This alteration exists in both cancer cells and TME cells, collectively establishing an immunotolerant niche to facilitate tumor progression. Limited resources lead to metabolic competition and hinder the biological functions of anti-tumoral immunity. Reprogramming of lipid metabolism and tumor progression is closely related to each other. Due to the complexity of fatty acid (FA) types and the lack of an effective approach for detection, the mechanisms and effects of FA metabolic reprogramming have been unclear. Herein, we review FA metabolism in the tumor milieu, summarize how FA metabolic reprogramming influences antitumor immune response, suggest the mechanisms by which FAs affect immunotherapy against cancer, and discuss the potential of FA metabolism-based drugs in cancer treatment.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qin Hu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yueyao Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nan Guan
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xin Han
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
50
|
Rogers LC, Kremer JC, Brashears CB, Lin Z, Hu Z, Bastos AC, Baker A, Fettig N, Zhou D, Shoghi KI, Dehner CA, Chrisinger JS, Bomalaski JS, Garcia BA, Oyama T, White EP, Van Tine BA. Discovery and Targeting of a Noncanonical Mechanism of Sarcoma Resistance to ADI-PEG20 Mediated by the Microenvironment. Clin Cancer Res 2023; 29:3189-3202. [PMID: 37339179 PMCID: PMC10425734 DOI: 10.1158/1078-0432.ccr-22-2642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 04/11/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
PURPOSE Many cancers lack argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme of arginine biosynthesis. This deficiency causes arginine auxotrophy, targetable by extracellular arginine-degrading enzymes such as ADI-PEG20. Long-term tumor resistance has thus far been attributed solely to ASS1 reexpression. This study examines the role of ASS1 silencing on tumor growth and initiation and identifies a noncanonical mechanism of resistance, aiming to improve clinical responses to ADI-PEG20. EXPERIMENTAL DESIGN Tumor initiation and growth rates were measured for a spontaneous Ass1 knockout (KO) murine sarcoma model. Tumor cell lines were generated, and resistance to arginine deprivation therapy was studied in vitro and in vivo. RESULTS Conditional Ass1 KO affected neither tumor initiation nor growth rates in a sarcoma model, contradicting the prevalent idea that ASS1 silencing confers a proliferative advantage. Ass1 KO cells grew robustly through arginine starvation in vivo, while ADI-PEG20 remained completely lethal in vitro, evidence that pointed toward a novel mechanism of resistance mediated by the microenvironment. Coculture with Ass1-competent fibroblasts rescued growth through macropinocytosis of vesicles and/or cell fragments, followed by recycling of protein-bound arginine through autophagy/lysosomal degradation. Inhibition of either macropinocytosis or autophagy/lysosomal degradation abrogated this growth support effect in vitro and in vivo. CONCLUSIONS Noncanonical, ASS1-independent tumor resistance to ADI-PEG20 is driven by the microenvironment. This mechanism can be targeted by either the macropinocytosis inhibitor imipramine or the autophagy inhibitor chloroquine. These safe, widely available drugs should be added to current clinical trials to overcome microenvironmental arginine support of tumors and improve patient outcomes.
Collapse
Affiliation(s)
- Leonard C. Rogers
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeff C. Kremer
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Caitlyn B. Brashears
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Zongtao Lin
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri
| | - Zhixian Hu
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Alliny C.S. Bastos
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Adriana Baker
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Nicole Fettig
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Dong Zhou
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - Kooresh I. Shoghi
- Department of Radiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Carina A. Dehner
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, St. Louis, Missouri
| | | | - Benjamin A. Garcia
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri
| | - Toshinao Oyama
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
| | - Eileen P. White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey
| | - Brian A. Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri
- Division of Pediatric Hematology/Oncology, St. Louis Children's Hospital, St. Louis, Missouri
- Siteman Cancer Center, St. Louis, Missouri
| |
Collapse
|