1
|
Soni K, Horvath A, Dybkov O, Schwan M, Trakansuebkul S, Flemming D, Wild K, Urlaub H, Fischer T, Sinning I. Structures of aberrant spliceosome intermediates on their way to disassembly. Nat Struct Mol Biol 2025; 32:914-925. [PMID: 39833470 PMCID: PMC12086092 DOI: 10.1038/s41594-024-01480-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-Bact spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly. We identify the DEAH-box helicase-G-patch protein pair (Gih35-Gpl1, homologous to human DHX35-GPATCH1) and show how it maintains catalytic dormancy. In both structures, Gpl1 recognizes a remodeled active site introduced by an overstabilization of the U5 loop I interaction with the 5' exon leading to a single-nucleotide insertion at the 5' splice site. Remodeling is communicated to the spliceosome surface and the Ntr1 complex that mediates disassembly is recruited. Our data pave the way for a targeted analysis of splicing quality control.
Collapse
Affiliation(s)
- Komal Soni
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| | - Attila Horvath
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Olexandr Dybkov
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Merlin Schwan
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Sasanan Trakansuebkul
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Dirk Flemming
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tamás Fischer
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany.
| |
Collapse
|
2
|
Galej WP. The green side of splicing: algal spliceosome shows remarkable structural conservation. EMBO J 2025; 44:1889-1890. [PMID: 40050675 PMCID: PMC11961591 DOI: 10.1038/s44318-025-00403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
A new study solves the Cryo-EM structure of a Chlamydomonas reinhardtii spliceosome.
Collapse
|
3
|
Feng Q, Lin Z, Zhao D, Li M, Yang S, Xiang AP, Ye C, Yao C. Functional inhibition of core spliceosomal machinery activates intronic premature cleavage and polyadenylation of pre-mRNAs. Cell Rep 2025; 44:115376. [PMID: 40019833 DOI: 10.1016/j.celrep.2025.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/06/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
The catalytic role of U6 snRNP in pre-mRNA splicing has been well established. In this study, we utilize an antisense morpholino oligonucleotide (AMO) specifically targeting catalytic sites of U6 snRNA to achieve functional knockdown of U6 snRNP in HeLa cells. The data show a significant increase in global intronic premature cleavage and polyadenylation (PCPA) events, similar to those observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Mechanistically, we provide evidence that U6 AMO-mediated splicing inhibition might be the driving force for PCPA as application of another specific AMO targeting U2 snRNP results in similar global PCPA effects. Together with our recently published findings that demonstrate the global inhibitory effect of U4 snRNP on intronic PCPA, our data highlight the critical role of splicing in suppressing intronic PCPA and support a model in which splicing and polyadenylation may compete with each other within introns during co-transcriptional mRNA processing.
Collapse
Affiliation(s)
- Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Zejin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Danhui Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengzhao Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Sheng Yang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Leitão AL, Enguita FJ. The Unpaved Road of Non-Coding RNA Structure-Function Relationships: Current Knowledge, Available Methodologies, and Future Trends. Noncoding RNA 2025; 11:20. [PMID: 40126344 PMCID: PMC11932211 DOI: 10.3390/ncrna11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025] Open
Abstract
The genomes from complex eukaryotes are enriched in non-coding genes whose transcription products (non-coding RNAs) are involved in the regulation of genomic output at different levels. Non-coding RNA action is predominantly driven by sequence and structural motifs that interact with specific functional partners. Despite the exponential growth in primary RNA sequence data facilitated by next-generation sequencing studies, the availability of tridimensional RNA data is comparatively more limited. The subjacent reasons for this relative lack of information regarding RNA structure are related to the specific chemical nature of RNA molecules and the limitations of the currently available methods for structural characterization of biomolecules. In this review, we describe and analyze the different structural motifs involved in non-coding RNA function and the wet-lab and computational methods used to characterize their structure-function relationships, highlighting the current need for detailed structural studies to explore the molecular determinants of non-coding RNA function.
Collapse
Affiliation(s)
- Ana Lúcia Leitão
- Departamento de Química, Faculdade de Ciências e Tecologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal;
| | - Francisco J. Enguita
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
5
|
Mirinezhad MR, Mirzaei F, Salmaninejad A, Esfehani RJ, Seyedtaghia MR, Farahmand S, Toosi MB, Hashemian S, Lewis MES. Reporting a Homozygous Case of Neurodevelopmental Disorder Associated With a Novel PRPF8 Variant. Mol Genet Genomic Med 2025; 13:e70084. [PMID: 40066647 PMCID: PMC11894437 DOI: 10.1002/mgg3.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/20/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND While recently identified heterozygous PRPF8 variants have been linked to various human diseases, their role in neurodevelopmental disorders (NDDs) remains ambiguous. This study investigates the potential association between homozygous PRPF8 variants and NDDs. Most PRPF8 variants are primarily associated with retinal diseases; however, we analyze a family with multiple members diagnosed with NDDs. METHODS Using exome sequencing (ES), the cause of behavioral problems and intellectual disabilities (IDs) of two sisters from a consanguineous parents was solved, and the results confirmed by direct sanger sequencing method likewise protein modeling to assess the structural impact of the identified variant on the PRPF8 protein has been done. RESULTS ES identified a novel homozygous variant, PRPF8 c.257G>T, p.R86M. To the best of our knowledge at the time of writing this manuscript, the mentioned variant has not been reported in relation to NDDs. Protein modeling provided another line of evidence proving the pathogenicity of the novel variant. CONCLUSION Our findings indicate that the p.R86M variant may disrupt normal protein function by changing its structure and probably its interaction, potentially leading to the observed neurodevelopmental phenotypes. This study highlights the first link between the PRPF8 variant and NDDs, suggesting a distinct role for specific PRPF8 variants in the etiology of NDDs. These results warrant further investigation into the mechanisms by which PRPF8 variants contribute to NDDs, emphasizing the need for comprehensive genetic screening in families with unexplained neurodevelopmental conditions.
Collapse
Affiliation(s)
- Mohammad Reza Mirinezhad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Farzaneh Mirzaei
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Arash Salmaninejad
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Reza Jafarzadeh Esfehani
- Department of Medical GeneticsFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
- Blood Borne Infections Research Center, Academic Center for Education, Culture & Research (ACECR)Razavi Khorasan BranchMashhadIran
| | - Mohammad Reza Seyedtaghia
- Department of Medical Genetics, Faculty of MedicineHormozgan University of Medical SciencesBandar AbbasIran
| | - Sheyda Farahmand
- Department of BiologyMashhad Branch, Islamic Azad UniversityMashhadIran
| | - Mehran Beiraghi Toosi
- Pediatric WardSchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Pediatric Neurology Research CenterMashhad University of Medical SciencesMashhadIran
| | | | - M. E. Suzzane Lewis
- Department of Medical GeneticsUniversity of British Columbia (UBC)VancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| |
Collapse
|
6
|
Huang G, Wang D, Xue J. Research Progress on the Relationship Between PRPF8 and Cancer. Curr Issues Mol Biol 2025; 47:150. [PMID: 40136404 PMCID: PMC11941625 DOI: 10.3390/cimb47030150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
Alternative splicing (AS) plays a crucial role in regulating gene expression and protein diversity, influencing both normal cellular function and pathological conditions, including cancer. Protein pre-mRNA processing factor 8 (PRPF8), a core component of the spliceosome, is integral to the splicing process, ensuring accurate gene transcription and spliceosome assembly. Disruptions in PRPF8 function are linked to a variety of cancers, as mutations in this gene can induce abnormal splicing events that contribute to tumorigenesis, metastasis, and drug resistance. This review provides an in-depth analysis of the mechanisms by which PRPF8 regulates tumorigenesis through AS, exploring its role in diverse cancer types, including breast, liver, myeloid, and colorectal cancers. Furthermore, we examine the molecular pathways associated with PRPF8 dysregulation and their impact on cancer progression. We also discuss the emerging potential of targeting PRPF8 in cancer therapy, highlighting challenges in drug development.
Collapse
Affiliation(s)
- Guoqing Huang
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin 150001, China
| | | | | |
Collapse
|
7
|
Qiao Y, Zia A, Wu G, Liu Z, Guo J, Chu M, He H, Wang F, Xu B. Context-Dependent Heterotypic Assemblies of Intrinsically Disordered Peptides. J Am Chem Soc 2025; 147:2978-2983. [PMID: 39808585 PMCID: PMC11841035 DOI: 10.1021/jacs.4c12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Despite their critical role in context-dependent interactions for protein functions, intrinsically disordered regions (IDRs) are often overlooked for designing peptide assemblies. Here, we exploit IDRs to enable context-dependent heterotypic assemblies of intrinsically disordered peptides, where "context-dependent" refers to assembly behavior driven by interactions with other molecules. By attaching an aromatic segment to oppositely charged intrinsically disordered peptides, we achieve a nanofiber formation. Although the same-charged peptides cannot self-assemble, oppositely charged peptides form heterotypic nanofibers. Cryo-EM analysis reveals a β-sheet arrangement within the ordered core of these nanofibers, conformational heterogeneity, and a disorder-to-order continuum and shows a high number of hydrogen bonds between tyrosine and lysine ε-amine. Additionally, this work demonstrates a post-assembly morphological change resulting from local conformational flexibility. While equal molar mixtures of the charged intrinsically disordered peptides yield nanofibers, doubling the positively charged peptides after assembly produces bundles of nanofibers. Furthermore, reducing the number of aromatic amino acid residues reduces bundle formation. Demonstrating context-dependent self-assembly of intrinsically disordered peptides and revealing atomistic insights into heterotypic assemblies of intrinsically disordered peptides for the first time, this work illustrates a straightforward approach to enable heterotypic intrinsically disordered peptides to self-assemble for the design of adaptive, multifunctional peptide nanomaterials.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Ayisha Zia
- Department
of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Grace Wu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Zhiyu Liu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Matthew Chu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Fengbin Wang
- Department
of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Bing Xu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| |
Collapse
|
8
|
Jin C, Lu Z, Chen Y, Hu H, Zhou M, Zhang Y, Ouyang G, Li T, Sheng L. Identification of biomarkers for chronic lymphocytic leukemia risk: a proteome-wide Mendelian randomization study. Discov Oncol 2025; 16:2. [PMID: 39751938 PMCID: PMC11699013 DOI: 10.1007/s12672-024-01699-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is a common hematologic malignancy. Although previous research has explored associations between plasma proteins and CLL, the causal relationships remain unclear. This study used Mendelian randomization (MR) to investigate the causal relationship between 7156 plasma proteins and CLL risk. METHODS A two-sample MR analysis assessed the impact of specific plasma proteins on CLL risk, using data from the Finngen Proteomics project (analyzing 828 participants) and the UK Biobank. Additional analyses included colocalization, phenomenon-wide MR, and protein-protein interaction networks. RESULTS The study identified nine plasma proteins significantly associated with CLL risk. Increased levels of Peptidyl-prolyl cis-trans isomerase E (PPIE) (OR = 1.66, 95% CI 1.22-2.27, P = 0.001) were associated with an increased risk of developing CLL, whereas Protein O-Mannosyltransferase 2 (POMGNT2) (OR = 0.62, 95% CI 0.41-0.91, P = 0.017) and C-C Motif Chemokine Ligand 14(CCL14) (OR = 0.80, 95% CI 0.67-0.94, P = 0.010) were associated with a reduced risk of CLL. Colocalization analysis suggested that PPIE may share pathogenic variants with CLL (PP.H4 = 0.758). Phenomenon-wide MR analysis of PPIE also indicated associations with other clinical features, including rheumatic diseases and type 2 diabetes. Protein-protein interaction and drug-gene interaction analyses highlighted CDC5L and SNW1 as potential therapeutic targets. CONCLUSION This study identifies nine plasma proteins linked to CLL risk, with PPIE offering new insights into the disease's pathogenesis. Further research is needed to validate these findings and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Changyu Jin
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China
| | - Zehong Lu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China
| | - Yuzhan Chen
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China
| | - Huijie Hu
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China
| | - Miao Zhou
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China
| | - Yanli Zhang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China
| | - Guifang Ouyang
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China.
| | - Tongyu Li
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China.
| | - Lixia Sheng
- Department of Hematology, The First Affiliated Hospital of Ningbo University, No.59 Liu-Ting Road, Ningbo, 315000, People's Republic of China.
| |
Collapse
|
9
|
Hu D, Thériault BL, Talebian V, Hoffer L, Owen J, Lim J, Blencowe BJ, Lima-Fernandes E, Saraon P, Marcellus R, Al-Awar R. CDC40 suppression induces CDCA5 splicing defects and anti-proliferative effects in lung cancer cells. Sci Rep 2025; 15:315. [PMID: 39747150 PMCID: PMC11696760 DOI: 10.1038/s41598-024-83337-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
High mortality and low response rates in lung cancer patients call for novel therapeutic targets. Data mining of whole-genome genetic dependency screens suggest Cell Division Cycle 40 (CDC40) to be an essential protein for lung cancer cell survival. We characterized CDC40 knockdown effects in multiple lung cancer cell lines, revealing induced cell cycle defects that resulted in strong growth inhibition and activation of apoptosis. Global transcriptional and splicing changes were also investigated, where CDC40 knockdown resulted in perturbation of splicing- and translation-related genes as well as more transcripts with intron retention. In the transcript of the cell cycle regulatory protein CDCA5, CDC40 knockdown was shown to induce retention of the first intron, leading to an increase in the unspliced CDCA5 transcript and subsequent decrease in CDCA5 protein expression. Additionally, protein-protein interactions of CDC40 were explored and spliceosome components were found to be its main binding partners, further highlighting the role of CDC40 in splicing. CDC40 mutation analysis suggests that it may be difficult to disrupt key interactions using small molecules within a large complex. Our results demonstrate that CDC40 is essential for lung cancer cell growth, and that its inhibition may represent a viable therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Die Hu
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Brigitte L Thériault
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- Currently at Fusion Pharmaceuticals Inc, Hamilton, ON, L8P 0A6, Canada
| | - Vida Talebian
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Laurent Hoffer
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Julie Owen
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Justin Lim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Evelyne Lima-Fernandes
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Punit Saraon
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
- RA Capital Management, L.P, Boston, MA, 02116, USA
| | - Richard Marcellus
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada
| | - Rima Al-Awar
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, ON, M5G 0A3, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
10
|
Embree CM, Stephanou A, Singh G. Direct and indirect effects of spliceosome disruption compromise gene regulation by Nonsense-Mediated mRNA Decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.27.630533. [PMID: 39763844 PMCID: PMC11703147 DOI: 10.1101/2024.12.27.630533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Pre-mRNA splicing, carried out in the nucleus by a large ribonucleoprotein machine known as the spliceosome, is functionally and physically coupled to the mRNA surveillance pathway in the cytoplasm called nonsense mediated mRNA decay (NMD). The NMD pathway monitors for premature translation termination signals, which can result from alternative splicing, by relying on the exon junction complex (EJC) deposited on exon-exon junctions by the spliceosome. Recently, multiple genetic screens in human cell lines have identified numerous spliceosome components as putative NMD factors. Using publicly available RNA-seq datasets from K562 and HepG2 cells depleted of 18 different spliceosome components, we find that natural NMD targeted mRNA isoforms are upregulated when members of the catalytic spliceosome are reduced. While some of this increase could be due to widespread pleiotropic effects of spliceosome dysfunction (e.g., reduced expression of NMD factors due to mis-splicing of their mRNAs), we identify that AQR, SF3B1, SF3B4 and CDC40 may have a more direct role in NMD. We also test the hypothesis that increased production of novel NMD substrates may overwhelm the pathway to find a direct correlation between the amount of novel NMD substrates detected and the degree of NMD inhibition observed. Finally, similar transcriptome alterations and NMD substrate upregulation are also observed in cells treated with spliceosome inhibitors and in cells derived from retinitis pigmentosa patients with mutations in PRPF8 and PRPF31. Overall, our results show that regardless of the cause, spliceosome disruption upregulates a broad set of NMD targets, which could contribute to cellular dysfunction in spliceosomopathies.
Collapse
Affiliation(s)
- Caleb M Embree
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Andreas Stephanou
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| | - Guramrit Singh
- Department of Molecular Genetics, Center for RNA Biology, The Ohio State University, Columbus, OH, 43210
| |
Collapse
|
11
|
Cerna-Chavez R, Ortega-Gasco A, Baig HMA, Ehrenreich N, Metais T, Scandura MJ, Bujakowska K, Pierce EA, Garita-Hernandez M. Optimized Prime Editing of Human Induced Pluripotent Stem Cells to Efficiently Generate Isogenic Models of Mendelian Diseases. Int J Mol Sci 2024; 26:114. [PMID: 39795970 PMCID: PMC11719581 DOI: 10.3390/ijms26010114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations, small insertions, and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA), which introduces the desired edit with great precision without creating double-strand breaks (DSBs). PE leads to minimal off-targets or indels when introducing single-strand breaks (SSB) in the DNA. Low efficiency can be an obstacle to its use in hiPSCs, especially when the genetic context precludes the screening of multiple pegRNAs, and other strategies must be employed to achieve the desired edit. We developed a PE platform to efficiently generate isogenic models of Mendelian disorders. We introduced the c.25G>A (p.V9M) mutation in the NMNAT1 gene with over 25% efficiency by optimizing the PE workflow. Using our optimized system, we generated other isogenic models of inherited retinal diseases (IRDs), including the c.1481C>T (p.T494M) mutation in PRPF3 and the c.6926A>C (p.H2309P) mutation in PRPF8. We modified several determinants of the hiPSC PE procedure, such as plasmid concentrations, PE component ratios, and delivery method settings, showing that our improved workflow increased the hiPSC editing efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Marcela Garita-Hernandez
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; (R.C.-C.); (A.O.-G.); (H.M.A.B.); (N.E.); (T.M.); (M.J.S.); (K.B.); (E.A.P.)
| |
Collapse
|
12
|
Hluchý M, Blazek D. CDK11, a splicing-associated kinase regulating gene expression. Trends Cell Biol 2024:S0962-8924(24)00161-2. [PMID: 39245599 DOI: 10.1016/j.tcb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024]
Abstract
The ability of a cell to properly express its genes depends on optimal transcription and splicing. RNA polymerase II (RNAPII) transcribes protein-coding genes and produces pre-mRNAs, which undergo, largely co-transcriptionally, intron excision by the spliceosome complex. Spliceosome activation is a major control step, leading to a catalytically active complex. Recent work has showed that cyclin-dependent kinase (CDK)11 regulates spliceosome activation via the phosphorylation of SF3B1, a core spliceosome component. Thus, CDK11 arises as a major coordinator of gene expression in metazoans due to its role in the rate-limiting step of pre-mRNA splicing. This review outlines the evolution of CDK11 and SF3B1 and their emerging roles in splicing regulation. It also discusses how CDK11 and its inhibition affect transcription and cell cycle progression.
Collapse
Affiliation(s)
- Milan Hluchý
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Dalibor Blazek
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic.
| |
Collapse
|
13
|
Meissner J, Eysmont K, Matylla-Kulińska K, Konarska MM. Characterization of Cwc2, U6 snRNA, and Prp8 interactions destabilized by Prp16 ATPase at the transition between the first and second steps of splicing. RNA (NEW YORK, N.Y.) 2024; 30:1199-1212. [PMID: 38876504 PMCID: PMC11331412 DOI: 10.1261/rna.079886.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The spliceosome performs two consecutive transesterification reactions using one catalytic center, thus requiring its rearrangement between the two catalytic steps of splicing. The Prp16 ATPase facilitates exit from the first-step conformation of the catalytic center by destabilizing some interactions important for catalysis. To better understand rearrangements within the Saccharomyces cerevisiae catalytic center, we characterize factors that modulate the function of Prp16: Cwc2, N-terminal domain of Prp8, and U6-41AACAAU46 region. Alleles of these factors were identified through genetic screens for mutants that correct cs defects of prp16-302 alleles. Several of the identified U6, cwc2, and prp8 alleles are located in close proximity of each other in cryo-EM structures of the spliceosomal catalytic conformations. Cwc2 and U6 interact with the intron sequences in the first step, but they do not seem to contribute to the stability of the second-step catalytic center. On the other hand, the N-terminal segment of Prp8 not only affects intron positioning for the first step, but it also makes important contacts in the proximity of the active site for both the first and second steps of splicing. By identifying interactions important for the stability of catalytic conformations, our genetic analyses indirectly inform us about features of the transition-state conformation of the spliceosome.
Collapse
Affiliation(s)
- Jadwiga Meissner
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| | | | | | - Maria M Konarska
- IMol, Polish Academy of Sciences, 02-247 Warsaw, Poland
- ReMedy-International Research Agenda Unit, 02-247 Warsaw, Poland
| |
Collapse
|
14
|
Feng Q, Zhao D, Lin Z, Li M, Xiang AP, Ye C, Yao C. U4 snRNP inhibits premature cleavage and polyadenylation of pre-mRNAs. Proc Natl Acad Sci U S A 2024; 121:e2406710121. [PMID: 38917004 PMCID: PMC11228486 DOI: 10.1073/pnas.2406710121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024] Open
Abstract
The essential role of U4 snRNP in pre-messenger RNA (mRNA) splicing has been well established. In this study, we utilized an antisense morpholino oligonucleotide (AMO) specifically targeting U4 snRNA to achieve functional knockdown of U4 snRNP in HeLa cells. Our results showed that this knockdown resulted in global intronic premature cleavage and polyadenylation (PCPA) events, comparable to the effects observed with U1 AMO treatment, as demonstrated by mRNA 3'-seq analysis. Furthermore, our study suggested that this may be a common phenomenon in both human and mouse cell lines. Additionally, we showed that U4 AMO treatment disrupted transcription elongation, as evidenced by chromatin immunoprecipitation sequencing (ChIP-seq) analysis for RNAPII. Collectively, our results identified a unique role for U4 snRNP in the inhibition of PCPA and indicated a model wherein splicing intrinsically inhibits intronic cleavage and polyadenylation in the context of cotranscriptional mRNA processing.
Collapse
Affiliation(s)
- Qiumin Feng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Danhui Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Zejin Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengzhao Li
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
| | - Congting Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Chengguo Yao
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
- Department of Genetics and Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
15
|
Kramárek M, Souček P, Réblová K, Grodecká L, Freiberger T. Splicing analysis of STAT3 tandem donor suggests non-canonical binding registers for U1 and U6 snRNAs. Nucleic Acids Res 2024; 52:5959-5974. [PMID: 38426935 PMCID: PMC11162779 DOI: 10.1093/nar/gkae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Tandem donor splice sites (5'ss) are unique regions with at least two GU dinucleotides serving as splicing cleavage sites. The Δ3 tandem 5'ss are a specific subclass of 5'ss separated by 3 nucleotides which can affect protein function by inserting/deleting a single amino acid. One 5'ss is typically preferred, yet factors governing particular 5'ss choice are not fully understood. A highly conserved exon 21 of the STAT3 gene was chosen as a model to study Δ3 tandem 5'ss splicing mechanisms. Based on multiple lines of experimental evidence, endogenous U1 snRNA most likely binds only to the upstream 5'ss. However, the downstream 5'ss is used preferentially, and the splice site choice is not dependent on the exact U1 snRNA binding position. Downstream 5'ss usage was sensitive to exact nucleotide composition and dependent on the presence of downstream regulatory region. The downstream 5'ss usage could be best explained by two novel interactions with endogenous U6 snRNA. U6 snRNA enables the downstream 5'ss usage in STAT3 exon 21 by two mechanisms: (i) binding in a novel non-canonical register and (ii) establishing extended Watson-Crick base pairing with the downstream regulatory region. This study suggests that U6:5'ss interaction is more flexible than previously thought.
Collapse
Affiliation(s)
- Michal Kramárek
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Přemysl Souček
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Kamila Réblová
- Centre of Molecular Biology and Genetics, University Hospital and Masaryk University, Brno, Czech Republic
| | - Lucie Kajan Grodecká
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, 656 91 Brno, Czech Republic
- Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
16
|
Ares M, Igel H, Katzman S, Donohue JP. Intron lariat spliceosomes convert lariats to true circles: implications for intron transposition. Genes Dev 2024; 38:322-335. [PMID: 38724209 PMCID: PMC11146597 DOI: 10.1101/gad.351764.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Rare, full-length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envisioned and tested a hypothesis for their formation using Saccharomyces cerevisiae, documenting full-length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full-length and processed circles. Postsplicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA;
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
- Genomics Institute, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - John P Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| |
Collapse
|
17
|
Ares M, Igel H, Katzman S, Donohue JP. Intron-lariat spliceosomes convert lariats to true circles: implications for intron transposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586863. [PMID: 38585890 PMCID: PMC10996645 DOI: 10.1101/2024.03.26.586863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Rare, full length circular intron RNAs distinct from lariats have been reported in several species, but their biogenesis is not understood. We envision and test a hypothesis for their formation using Saccharomyces cerevisiae, documenting full length and novel processed circular RNAs from multiple introns. Evidence implicates a previously undescribed catalytic activity of the intron-lariat spliceosome (ILS) in which the 3'-OH of the lariat tail (with optional trimming and adenylation by the nuclear 3' processing machinery) attacks the branch, joining the intron 3' end to the 5' splice site in a 3'-5' linked circle. Human U2 and U12 spliceosomes produce analogous full length and processed circles. Post-splicing catalytic activity of the spliceosome may promote intron transposition during eukaryotic genome evolution.
Collapse
Affiliation(s)
- Manuel Ares
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - Haller Igel
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| | - Sol Katzman
- Center for Molecular Biology of RNA, University of California, Santa Cruz
- Genomics Institute, Santa Cruz, CA 95064 USA
| | - John P. Donohue
- Center for Molecular Biology of RNA, University of California, Santa Cruz
| |
Collapse
|
18
|
Kwon YS, Jin SW, Song H. Global analysis of binding sites of U2AF1 and ZRSR2 reveals RNA elements required for mutually exclusive splicing by the U2- and U12-type spliceosome. Nucleic Acids Res 2024; 52:1420-1434. [PMID: 38088204 PMCID: PMC10853781 DOI: 10.1093/nar/gkad1180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/18/2023] [Accepted: 12/05/2023] [Indexed: 02/10/2024] Open
Abstract
Recurring mutations in genes encoding 3' splice-site recognition proteins, U2AF1 and ZRSR2 are associated with human cancers. Here, we determined binding sites of the proteins to reveal that U2-type and U12-type splice sites are recognized by U2AF1 and ZRSR2, respectively. However, some sites are spliced by both the U2-type and U12-type spliceosomes, indicating that well-conserved consensus motifs in some U12-type introns could be recognized by the U2-type spliceosome. Nucleotides flanking splice sites of U12-type introns are different from those flanking U2-type introns. Remarkably, the AG dinucleotide at the positions -1 and -2 of 5' splice sites of U12-type introns with GT-AG termini is not present. AG next to 5' splice site introduced by a single nucleotide substitution at the -2 position could convert a U12-type splice site to a U2-type site. The class switch of introns by a single mutation and the bias against G at the -1 position of U12-type 5' splice site support the notion that the identities of nucleotides in exonic regions adjacent to splice sites are fine-tuned to avoid recognition by the U2-type spliceosome. These findings may shed light on the mechanism of selectivity in U12-type intron splicing and the mutations that affect splicing.
Collapse
Affiliation(s)
- Young-Soo Kwon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Korea
| | - Sang Woo Jin
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| | - Hoseok Song
- BK21 Graduate Program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul 08308, Korea
| |
Collapse
|
19
|
Luo B, Jiang Q. Effect of RNA-binding proteins on osteogenic differentiation of bone marrow mesenchymal stem cells. Mol Cell Biochem 2024; 479:383-392. [PMID: 37072640 DOI: 10.1007/s11010-023-04742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 04/20/2023]
Abstract
Tissue regeneration mediated by mesenchymal stem cells (MSCs) is an ideal way to repair bone defects. RNA-binding proteins (RBPs) can affect cell function through post-transcriptional regulation. Exploring the role of RBPs in the process of osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is helpful to find a key method to promote the osteogenic efficiency of BMSCs. By reviewing the literature, we obtained a differentially expressed mRNA dataset during the osteogenic differentiation of BMSCs and a human RBP dataset. A total of 82 differentially expressed RBPs in the osteogenic differentiation of BMSCs were screened by intersection of the two datasets. Functional analysis showed that the differentially expressed RBPs were mainly involved in RNA transcription, translation and degradation through the formation of spliceosomes and ribonucleoprotein complexes. The top 15 RBPs determined by degree score were FBL, NOP58, DDX10, RPL9, SNRPD3, NCL, IFIH1, RPL18A, NAT10, EXOSC5, ALYREF, PA2G4, EIF5B, SNRPD1 and EIF6. The results of this study demonstrate that the expression of many RBPs changed during osteogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Bin Luo
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China
| | - Qingsong Jiang
- Department of Prosthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, No. 4 Tiantan Xili, Beijing, 100050, China.
| |
Collapse
|
20
|
Haack DB, Rudolfs B, Zhang C, Lyumkis D, Toor N. Structural basis of branching during RNA splicing. Nat Struct Mol Biol 2024; 31:179-189. [PMID: 38057551 PMCID: PMC10968580 DOI: 10.1038/s41594-023-01150-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
Branching is a critical step in RNA splicing that is essential for 5' splice site selection. Recent spliceosome structures have led to competing models for the recognition of the invariant adenosine at the branch point. However, there are no structures of any splicing complex with the adenosine nucleophile docked in the active site and positioned to attack the 5' splice site. Thus we lack a mechanistic understanding of adenosine selection and splice site recognition during RNA splicing. Here we present a cryo-electron microscopy structure of a group II intron that reveals that active site dynamics are coupled to the formation of a base triple within the branch-site helix that positions the 2'-OH of the adenosine for nucleophilic attack on the 5' scissile phosphate. This structure, complemented with biochemistry and comparative analyses to splicing complexes, supports a base triple model of adenosine recognition for branching within group II introns and the evolutionarily related spliceosome.
Collapse
Affiliation(s)
- Daniel B Haack
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| | - Boris Rudolfs
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Cheng Zhang
- Salk Institute, La Jolla, CA, USA
- Amgen, Thousand Oaks, CA, USA
| | | | - Navtej Toor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Zhang J, Xie J, Huang J, Liu X, Xu R, Tholen J, Galej WP, Tong L, Manley JL, Liu Z. Characterization of the SF3B1-SUGP1 interface reveals how numerous cancer mutations cause mRNA missplicing. Genes Dev 2023; 37:968-983. [PMID: 37977822 PMCID: PMC10760632 DOI: 10.1101/gad.351154.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
The spliceosomal gene SF3B1 is frequently mutated in cancer. While it is known that SF3B1 hotspot mutations lead to loss of splicing factor SUGP1 from spliceosomes, the cancer-relevant SF3B1-SUGP1 interaction has not been characterized. To address this issue, we show by structural modeling that two regions flanking the SUGP1 G-patch make numerous contacts with the region of SF3B1 harboring hotspot mutations. Experiments confirmed that all the cancer-associated mutations in these regions, as well as mutations affecting other residues in the SF3B1-SUGP1 interface, not only weaken or disrupt the interaction but also alter splicing similarly to SF3B1 cancer mutations. Finally, structural modeling of a trimeric protein complex reveals that the SF3B1-SUGP1 interaction "loops out" the G-patch for interaction with the helicase DHX15. Our study thus provides an unprecedented molecular view of a protein complex essential for accurate splicing and also reveals that numerous cancer-associated mutations disrupt the critical SF3B1-SUGP1 interaction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Jindou Xie
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Huang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Xiangyang Liu
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ruihong Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jonas Tholen
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | | | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA;
| | - Zhaoqi Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Lewis JS, van Oijen AM, Spenkelink LM. Embracing Heterogeneity: Challenging the Paradigm of Replisomes as Deterministic Machines. Chem Rev 2023; 123:13419-13440. [PMID: 37971892 PMCID: PMC10790245 DOI: 10.1021/acs.chemrev.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
The paradigm of cellular systems as deterministic machines has long guided our understanding of biology. Advancements in technology and methodology, however, have revealed a world of stochasticity, challenging the notion of determinism. Here, we explore the stochastic behavior of multi-protein complexes, using the DNA replication system (replisome) as a prime example. The faithful and timely copying of DNA depends on the simultaneous action of a large set of enzymes and scaffolding factors. This fundamental cellular process is underpinned by dynamic protein-nucleic acid assemblies that must transition between distinct conformations and compositional states. Traditionally viewed as a well-orchestrated molecular machine, recent experimental evidence has unveiled significant variability and heterogeneity in the replication process. In this review, we discuss recent advances in single-molecule approaches and single-particle cryo-EM, which have provided insights into the dynamic processes of DNA replication. We comment on the new challenges faced by structural biologists and biophysicists as they attempt to describe the dynamic cascade of events leading to replisome assembly, activation, and progression. The fundamental principles uncovered and yet to be discovered through the study of DNA replication will inform on similar operating principles for other multi-protein complexes.
Collapse
Affiliation(s)
- Jacob S. Lewis
- Macromolecular
Machines Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Antoine M. van Oijen
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Lisanne M. Spenkelink
- Molecular
Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
23
|
Roy KR, Gabunilas J, Neutel D, Ai M, Yeh Z, Samson J, Lyu G, Chanfreau GF. Splicing factor Prp18p promotes genome-wide fidelity of consensus 3'-splice sites. Nucleic Acids Res 2023; 51:12428-12442. [PMID: 37956322 PMCID: PMC10711555 DOI: 10.1093/nar/gkad968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The fidelity of splice site selection is critical for proper gene expression. In particular, proper recognition of 3'-splice site (3'SS) sequences by the spliceosome is challenging considering the low complexity of the 3'SS consensus sequence YAG. Here, we show that absence of the Prp18p splicing factor results in genome-wide activation of alternative 3'SS in S. cerevisiae, including highly unusual non-YAG sequences. Usage of these non-canonical 3'SS in the absence of Prp18p is enhanced by upstream poly(U) tracts and by their potential to interact with the first intronic nucleoside, allowing them to dock in the spliceosome active site instead of the normal 3'SS. The role of Prp18p in 3'SS fidelity is facilitated by interactions with Slu7p and Prp8p, but cannot be fulfilled by Slu7p, identifying a unique role for Prp18p in 3'SS fidelity. This fidelity function is synergized by the downstream proofreading activity of the Prp22p helicase, but is independent from another late splicing helicase, Prp43p. Our results show that spliceosomes exhibit remarkably relaxed 3'SS sequence usage in the absence of Prp18p and identify a network of spliceosomal interactions centered on Prp18p which are required to promote the fidelity of the recognition of consensus 3'SS sequences.
Collapse
Affiliation(s)
- Kevin R Roy
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Gabunilas
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Dean Neutel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Michelle Ai
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Zoe Yeh
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce Samson
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Guochang Lyu
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
24
|
Chung CS, Wai HL, Kao CY, Cheng SC. An ATP-independent role for Prp16 in promoting aberrant splicing. Nucleic Acids Res 2023; 51:10815-10828. [PMID: 37858289 PMCID: PMC10639067 DOI: 10.1093/nar/gkad861] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/03/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
The spliceosome is assembled through a step-wise process of binding and release of its components to and from the pre-mRNA. The remodeling process is facilitated by eight DExD/H-box RNA helicases, some of which have also been implicated in splicing fidelity control. In this study, we unveil a contrasting role for the prototypic splicing proofreader, Prp16, in promoting the utilization of aberrant 5' splice sites and mutated branchpoints. Prp16 is not essential for the branching reaction in wild-type pre-mRNA. However, when a mutation is present at the 5' splice site or if Cwc24 is absent, Prp16 facilitates the reaction and encourages aberrant 5' splice site usage independently of ATP. Prp16 also promotes the utilization of mutated branchpoints while preventing the use of nearby cryptic branch sites. Our study demonstrates that Prp16 can either enhance or impede the utilization of faulty splice sites by stabilizing or destabilizing interactions with other splicing components. Thus, Prp16 exerts dual roles in 5' splice site and branch site selection, via ATP-dependent and ATP-independent activities. Furthermore, we provide evidence that these functions of Prp16 are mediated through the step-one factor Cwc25.
Collapse
Affiliation(s)
- Che-Sheng Chung
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Ching-Yang Kao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
25
|
Pánek J, Roithová A, Radivojević N, Sýkora M, Prusty AB, Huston N, Wan H, Pyle AM, Fischer U, Staněk D. The SMN complex drives structural changes in human snRNAs to enable snRNP assembly. Nat Commun 2023; 14:6580. [PMID: 37852981 PMCID: PMC10584915 DOI: 10.1038/s41467-023-42324-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
Spliceosomal snRNPs are multicomponent particles that undergo a complex maturation pathway. Human Sm-class snRNAs are generated as 3'-end extended precursors, which are exported to the cytoplasm and assembled together with Sm proteins into core RNPs by the SMN complex. Here, we provide evidence that these pre-snRNA substrates contain compact, evolutionarily conserved secondary structures that overlap with the Sm binding site. These structural motifs in pre-snRNAs are predicted to interfere with Sm core assembly. We model structural rearrangements that lead to an open pre-snRNA conformation compatible with Sm protein interaction. The predicted rearrangement pathway is conserved in Metazoa and requires an external factor that initiates snRNA remodeling. We show that the essential helicase Gemin3, which is a component of the SMN complex, is crucial for snRNA structural rearrangements during snRNP maturation. The SMN complex thus facilitates ATP-driven structural changes in snRNAs that expose the Sm site and enable Sm protein binding.
Collapse
Affiliation(s)
- Josef Pánek
- Laboratory of Bioinformatics, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic.
| | - Adriana Roithová
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Regulation of Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Nenad Radivojević
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sýkora
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Nicholas Huston
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, USA
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, USA
- Department of Chemistry, Yale University, New Haven, USA
- Howard Hughes Medical Institute, Chevy Chase, USA
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Würzburg, Germany
| | - David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
26
|
Enders M, Neumann P, Dickmanns A, Ficner R. Structure and function of spliceosomal DEAH-box ATPases. Biol Chem 2023; 404:851-866. [PMID: 37441768 DOI: 10.1515/hsz-2023-0157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Splicing of precursor mRNAs is a hallmark of eukaryotic cells, performed by a huge macromolecular machine, the spliceosome. Four DEAH-box ATPases are essential components of the spliceosome, which play an important role in the spliceosome activation, the splicing reaction, the release of the spliced mRNA and intron lariat, and the disassembly of the spliceosome. An integrative approach comprising X-ray crystallography, single particle cryo electron microscopy, single molecule FRET, and molecular dynamics simulations provided deep insights into the structure, dynamics and function of the spliceosomal DEAH-box ATPases.
Collapse
Affiliation(s)
- Marieke Enders
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Piotr Neumann
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Justus-von-Liebig-Weg 11, D-37077 Göttingen, Germany
| |
Collapse
|
27
|
Black CS, Whelan TA, Garside EL, MacMillan AM, Fast NM, Rader SD. Spliceosome assembly and regulation: insights from analysis of highly reduced spliceosomes. RNA (NEW YORK, N.Y.) 2023; 29:531-550. [PMID: 36737103 PMCID: PMC10158995 DOI: 10.1261/rna.079273.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 01/06/2023] [Indexed: 05/06/2023]
Abstract
Premessenger RNA splicing is catalyzed by the spliceosome, a multimegadalton RNA-protein complex that assembles in a highly regulated process on each intronic substrate. Most studies of splicing and spliceosomes have been carried out in human or S. cerevisiae model systems. There exists, however, a large diversity of spliceosomes, particularly in organisms with reduced genomes, that suggests a means of analyzing the essential elements of spliceosome assembly and regulation. In this review, we characterize changes in spliceosome composition across phyla, describing those that are most frequently observed and highlighting an analysis of the reduced spliceosome of the red alga Cyanidioschyzon merolae We used homology modeling to predict what effect splicing protein loss would have on the spliceosome, based on currently available cryo-EM structures. We observe strongly correlated loss of proteins that function in the same process, for example, in interacting with the U1 snRNP (which is absent in C. merolae), regulation of Brr2, or coupling transcription and splicing. Based on our observations, we predict splicing in C. merolae to be inefficient, inaccurate, and post-transcriptional, consistent with the apparent trend toward its elimination in this lineage. This work highlights the striking flexibility of the splicing pathway and the spliceosome when viewed in the context of eukaryotic diversity.
Collapse
Affiliation(s)
- Corbin S Black
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
- Department of Anatomy and Cell Biology, McGill University, Montréal, Quebec, Canada H3A 0C7
| | - Thomas A Whelan
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Erin L Garside
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Andrew M MacMillan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | - Naomi M Fast
- Biodiversity Research Center and Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Stephen D Rader
- Department of Chemistry and Biochemistry, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
28
|
Rogalska ME, Vivori C, Valcárcel J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat Rev Genet 2023; 24:251-269. [PMID: 36526860 DOI: 10.1038/s41576-022-00556-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
The removal of introns from mRNA precursors and its regulation by alternative splicing are key for eukaryotic gene expression and cellular function, as evidenced by the numerous pathologies induced or modified by splicing alterations. Major recent advances have been made in understanding the structures and functions of the splicing machinery, in the description and classification of physiological and pathological isoforms and in the development of the first therapies for genetic diseases based on modulation of splicing. Here, we review this progress and discuss important remaining challenges, including predicting splice sites from genomic sequences, understanding the variety of molecular mechanisms and logic of splicing regulation, and harnessing this knowledge for probing gene function and disease aetiology and for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Malgorzata Ewa Rogalska
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Claudia Vivori
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain
- The Francis Crick Institute, London, UK
| | - Juan Valcárcel
- Genome Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
29
|
Choudhry M, Gamallat Y, Khosh Kish E, Seyedi S, Gotto G, Ghosh S, Bismar TA. Downregulation of BUD31 Promotes Prostate Cancer Cell Proliferation and Migration via Activation of p-AKT and Vimentin In Vitro. Int J Mol Sci 2023; 24:ijms24076055. [PMID: 37047027 PMCID: PMC10094631 DOI: 10.3390/ijms24076055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Among men, prostate cancer (PCa) is the second most frequently diagnosed cancer subtype and has demonstrated a high degree of prevalence globally. BUD31, also known as Functional Spliceosome-Associated Protein 17, is a protein that works at the level of the spliceosome; it is functionally implicated in pre-mRNA splicing as well as processing, while also acting as a transcriptional regulator of androgen receptor (AR) target genes. Clinically, the expression of BUD31 and its functions in the development and progression of PCa is yet to be elucidated. The BUD31 expression was assessed using IHC in a tissue microarray (TMA) constructed from a cohort of 284 patient samples. In addition, we analyzed the prostate adenocarcinoma (TCGAPRAD-) database. Finally, we used PCa cell lines to knockdown BUD31 to study the underlying mechanisms in vitro.Assesment of BUD31 protein expression revealed lower expression in incidental and advanced PCa, and significantly lower expression was observed in patients diagnosed with castrate-resistant prostate cancer. Additionally, bioinformatic analysis and GSEA revealed that BUD31 increased processes related to cancer cell migration and proliferation. In vitro results made evident that BUD31 knockdown in PC3 cells led to an increase in the G2 cell population, indicating a more active and proliferative state. Additionally, an investigation of metastatic processes revealed that knockdown of BUD31 significantly enhanced the ability of PC3 cells to migrate and invade. Our in vitro results showed BUD31 knockdown promotes cell proliferation and migration of prostate cancer cells via activation of p-AKT and vimentin. These results support the clinical data, where low expression of BUD31 was correlated to more advanced stages of PCa.
Collapse
Affiliation(s)
- Muhammad Choudhry
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yaser Gamallat
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Ealia Khosh Kish
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sima Seyedi
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Geoffrey Gotto
- Department of Surgery, Division of Urology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Sunita Ghosh
- Department of Medical Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada
- Departments of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada
| | - Tarek A Bismar
- Department of Pathology and Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Oncology, Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Arnie Charbonneau Cancer Institute and Tom Baker Cancer Center, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
30
|
Dybkov O, Preußner M, El Ayoubi L, Feng VY, Harnisch C, Merz K, Leupold P, Yudichev P, Agafonov DE, Will CL, Girard C, Dienemann C, Urlaub H, Kastner B, Heyd F, Lührmann R. Regulation of 3' splice site selection after step 1 of splicing by spliceosomal C* proteins. SCIENCE ADVANCES 2023; 9:eadf1785. [PMID: 36867703 PMCID: PMC9984181 DOI: 10.1126/sciadv.adf1785] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Alternative precursor messenger RNA splicing is instrumental in expanding the proteome of higher eukaryotes, and changes in 3' splice site (3'ss) usage contribute to human disease. We demonstrate by small interfering RNA-mediated knockdowns, followed by RNA sequencing, that many proteins first recruited to human C* spliceosomes, which catalyze step 2 of splicing, regulate alternative splicing, including the selection of alternatively spliced NAGNAG 3'ss. Cryo-electron microscopy and protein cross-linking reveal the molecular architecture of these proteins in C* spliceosomes, providing mechanistic and structural insights into how they influence 3'ss usage. They further elucidate the path of the 3' region of the intron, allowing a structure-based model for how the C* spliceosome potentially scans for the proximal 3'ss. By combining biochemical and structural approaches with genome-wide functional analyses, our studies reveal widespread regulation of alternative 3'ss usage after step 1 of splicing and the likely mechanisms whereby C* proteins influence NAGNAG 3'ss choices.
Collapse
Affiliation(s)
- Olexandr Dybkov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Marco Preußner
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Leyla El Ayoubi
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Vivi-Yun Feng
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Caroline Harnisch
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Kilian Merz
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Paula Leupold
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Peter Yudichev
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Dmitry E. Agafonov
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cindy L. Will
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Cyrille Girard
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Christian Dienemann
- Department of Molecular Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Henning Urlaub
- Research Group of Bioanalytical Mass Spectrometry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Robert-Koch-Straße 40, Göttingen D-37075, Germany
| | - Berthold Kastner
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Florian Heyd
- Institut für Chemie und Biochemie, RNA Biochemie, Freie Universität Berlin, Takustr. 6, Berlin 14195, Germany
| | - Reinhard Lührmann
- Cellular Biochemistry, Max-Planck-Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| |
Collapse
|
31
|
Rodrigues KS, Petroski LP, Utumi PH, Ferrasa A, Herai RH. IARA: a complete and curated atlas of the biogenesis of spliceosome machinery during RNA splicing. Life Sci Alliance 2023; 6:e202201593. [PMID: 36609432 PMCID: PMC9834665 DOI: 10.26508/lsa.202201593] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 01/09/2023] Open
Abstract
Splicing is one of the most important post-transcriptional processing systems and is responsible for the generation of transcriptome diversity in all living eukaryotes. Splicing is regulated by the spliceosome machinery, which is responsible for each step of primary RNA processing. However, current molecules and stages involved in RNA splicing are still spread over different studies. Thus, a curated atlas of spliceosome-related molecules and all involved stages during RNA processing can provide all researchers with a reliable resource to better investigate this important mechanism. Here, we present IARA (website access: https://pucpr-bioinformatics.github.io/atlas/), an extensively curated and constantly updated catalog of molecules involved in spliceosome machinery. IARA has a map of the steps involved in the human splicing mechanism, and it allows a detailed overview of the molecules involved throughout the distinct steps of splicing.
Collapse
Affiliation(s)
- Kelren S Rodrigues
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Luiz P Petroski
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Paulo H Utumi
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Adriano Ferrasa
- Informatics Department, Universidade Estadual de Ponta GrossaPonta Grossa, Brazil
| | - Roberto H Herai
- Laboratory of Bioinformatics and Neurogenetics, Graduate Program in Health Sciences (PPGCS), School of Medicine and Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
- Research Division, Buko Kaesemodel Institute, Curitiba, Brazil
| |
Collapse
|
32
|
Wang N, Guo S, Hao F, Zhang Y, Chen Y, Fei X, Wang J. Pseudogene SNRPFP1 derived long non-coding RNA facilitates hepatocellular carcinoma progress in vitro by sponging tumor-suppressive miR-126-5p. Sci Rep 2022; 12:21867. [PMID: 36535956 PMCID: PMC9763376 DOI: 10.1038/s41598-022-24597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022] Open
Abstract
Pseudogene-derived transcripts, especially those barely transcribed in normal tissues, have been regarded as a kind of non-coding RNAs, and present potential functions in tumorigenicity and tumor development in human beings. However, their exact effects on hepatocellular carcinoma (HCC) remain largely unknown. On basis of our previous research and the constructed online database for the non-coding RNAs related to HCC, a series of pseudogene transcripts have been discovered, and SNRPFP1, the homologous pseudogene of SNRPF, was found to produce an anomalously high expression long non-coding RNA in HCC. In this study, we validated the expression of the SNRPFP1 transcript in both HCC tissues and cell lines. The adverse correlation between SNRPFP1 expression and patients' outcomes was observed. And depletion of SNRPF1 in HCC cells significantly suppressed cell proliferation and apoptosis resistance. Meanwhile, the motility of HCC cells was potently impaired. Interestingly, miR-126-5p, one of the tumor-suppressive genes commonly decreased in HCC, was found negatively expressed and correlated with SNRPF1, and a specific region of SNRPF1 transcript is directly binding to miR-126-5p in a molecular sponge way. The rescue experiment by knock-out miR-126-5p significantly reversed the cell growth suppression and a higher ratio of cell apoptosis induced by SNRPF1 depletion. Lastly, we concluded that SNRPF1 is a pseudogene active in HCC, and its abnormally over-expressed transcript is a strong promoter of HCC cell progress in vitro by sponging miR-126-5p. We believe that the findings in this study provide new strategies for HCC prevention and therapeutic treatment.
Collapse
Affiliation(s)
- Nan Wang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People’s Republic of China
| | - Simin Guo
- grid.412277.50000 0004 1760 6738Department of Infectious Disease, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People’s Republic of China
| | - Fengjie Hao
- grid.412277.50000 0004 1760 6738Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People’s Republic of China
| | - Yifan Zhang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People’s Republic of China
| | - Yongjun Chen
- grid.412277.50000 0004 1760 6738Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People’s Republic of China
| | - Xiaochun Fei
- grid.412277.50000 0004 1760 6738Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People’s Republic of China
| | - Junqing Wang
- grid.412277.50000 0004 1760 6738Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai, 200025 People’s Republic of China
| |
Collapse
|
33
|
Preussner M, Santos KF, Alles J, Heroven C, Heyd F, Wahl MC, Weber G. Structural and functional investigation of the human snRNP assembly factor AAR2 in complex with the RNase H-like domain of PRPF8. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:1373-1383. [PMID: 36322420 PMCID: PMC9629490 DOI: 10.1107/s2059798322009755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022]
Abstract
The crystal structure of human AAR2 bound to the central spliceosomal factor PRPF8 and in vitro functional data yield insights into the structural basis of snRNP assembly in humans. Small nuclear ribonucleoprotein complexes (snRNPs) represent the main subunits of the spliceosome. While the assembly of the snRNP core particles has been well characterized, comparably little is known of the incorporation of snRNP-specific proteins and the mechanisms of snRNP recycling. U5 snRNP assembly in yeast requires binding of the the Aar2 protein to Prp8p as a placeholder to preclude premature assembly of the SNRNP200 helicase, but the role of the human AAR2 homolog has not yet been investigated in detail. Here, a crystal structure of human AAR2 in complex with the RNase H-like domain of the U5-specific PRPF8 (PRP8F RH) is reported, revealing a significantly different interaction between the two proteins compared with that in yeast. Based on the structure of the AAR2–PRPF8 RH complex, the importance of the interacting regions and residues was probed and AAR2 variants were designed that failed to stably bind PRPF8 in vitro. Protein-interaction studies of AAR2 with U5 proteins using size-exclusion chromatography reveal similarities and marked differences in the interaction patterns compared with yeast Aar2p and imply phosphorylation-dependent regulation of AAR2 reminiscent of that in yeast. It is found that in vitro AAR2 seems to lock PRPF8 RH in a conformation that is only compatible with the first transesterification step of the splicing reaction and blocks a conformational switch to the step 2-like, Mg2+-coordinated conformation that is likely during U5 snRNP biogenesis. These findings extend the picture of AAR2 PRP8 interaction from yeast to humans and indicate a function for AAR2 in the spliceosomal assembly process beyond its role as an SNRNP200 placeholder in yeast.
Collapse
|
34
|
Kumar A, Satpati P. Structure-based thermodynamics of ion selectivity (Mg 2+versus Ca 2+ and K +versus Na +) in the active site of the eukaryotic lariat group II intron from algae Pylaiella littoralis. Phys Chem Chem Phys 2022; 24:24192-24202. [PMID: 36168989 DOI: 10.1039/d2cp03472g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Group II introns are metalloenzymes that can catalyze self-splicing. Recently, the crystal structures of the eukaryotic group IIB lariat intron from the brown algae Pylaiella littoralis have been reported for two intermediate states (pre-hydrolytic (2s) and post-hydrolytic) along the self-splicing pathway. Three characteristic metal-ion binding sites (M1 and M2 sites for catalytic Mg2+ ions, and K1 site for K+) in the catalytic pocket of the lariat intron have been identified and proposed to be crucial for self-splicing. Using the X-ray structures as a template, we quantitatively estimated the energetics of divalent (Mg2+versus Ca2+) and monovalent (K+versus Na+) ion selectivity and established a direct link between the energetics and structures of this lariat intron (bound to cognate and near-cognate metal ions). Molecular dynamics (MD) free energy simulations showed that the lariat intron was strongly selective between divalent metal ions. The strength of divalent metal-ion selectivity was noticeably high in the post-hydrolytic state (ΔΔG ≈ 20 kcal mol-1) relative to its pre-hydrolytic (2s) state (ΔΔG ≈ 13 kcal mol-1). Quantum chemical calculations ensured that the sign of the estimated divalent metal-ion selectivity was correct. The M1-binding pocket was less solvent-exposed in the case of the post-hydrolytic state relative to the pre-hydrolytic (2s) state, which boosted the metal-ion selectivity of the former. Surprisingly, in contrast to the bacterial linear group II intron, the lariat intron was found to be non-selective between monovalent ions (K+versus Na+). The interaction network in the first coordination shell of Ca2+ in the M1-binding pocket was different relative to Mg2+. Mg2+ substitution by Ca2+ resulted in the substitution of a single M1-RNA interaction by the M1-water interaction. In the pre-hydrolytic (2s) state, Ca2+ substitution completely disrupted the M1⋯5'-exon interaction; thus, the nature of the divalent metal ion is critical for catalysis. The interaction network in the M2 site was independent of the nature of the divalent metal ions (Mg2+ or Ca2+). The monovalent ion was loosely bound in the wet binding pocket (K1 site) of the lariat intron; thus, the substitution of K+ by Na+ could not significantly alter the free energy of the complex. The metal ion selectivity was dependent on the solvent accessibility of the metal-ion-binding-pocket, dry pocket enhanced the selectivity.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Priyadarshi Satpati
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
35
|
Kashyap A, Tripathi G, Tripathi A, Rao R, Kashyap M, Bhat A, Kumar D, Rajhans A, Kumar P, Chandrashekar DS, Mahmood R, Husain A, Zayed H, Bharti AC, Kashyap MK. RNA splicing: a dual-edged sword for hepatocellular carcinoma. Med Oncol 2022; 39:173. [PMID: 35972700 DOI: 10.1007/s12032-022-01726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/30/2022] [Indexed: 10/15/2022]
Abstract
RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.
Collapse
Affiliation(s)
- Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Rashmi Rao
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | - Manju Kashyap
- Facultad de Ingeniería Y Tecnología, Universidad San Sebastián, Sede Concepción, Concepción, Chile
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, Delhi, 110067, India
| | - Anjali Bhat
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India
| | - Deepak Kumar
- ThermoFisher Scientific, Carlsbad, CA, 92008, USA
| | - Anjali Rajhans
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India
| | - Pravindra Kumar
- School of Life & Allied Health Sciences, The Glocal University, Saharanpur, UP, India
| | | | - Riaz Mahmood
- Department of Biotechnology and Bioinformatics, Kuvempu University, Shankaragatta (Shimoga), Jnanasahyadri, Karnataka, 577451, India
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, QU Health, Doha, Qatar
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Manesar (Gurugram), Panchgaon, Haryana (HR), 122413, India.
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
36
|
Mohamed AA, Vazquez Nunez R, Vos SM. Structural advances in transcription elongation. Curr Opin Struct Biol 2022; 75:102422. [PMID: 35816930 PMCID: PMC9398977 DOI: 10.1016/j.sbi.2022.102422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/22/2022] [Accepted: 06/02/2022] [Indexed: 11/03/2022]
Abstract
Transcription is the first step of gene expression and involves RNA polymerases. After transcription initiation, RNA polymerase enters elongation followed by transcription termination at the end of the gene. Only recently, structures of transcription elongation complexes bound to key transcription elongation factors have been determined in bacterial and eukaryotic systems. These structures have revealed numerous insights including the basis for transcriptional pausing, RNA polymerase interaction with large complexes such as the ribosome and the spliceosome, and the transition into productive elongation. Here, we review these structures and describe areas for future research.
Collapse
Affiliation(s)
- Abdallah A Mohamed
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/AMohamed_98
| | - Roberto Vazquez Nunez
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA. https://twitter.com/rjareth
| | - Seychelle M Vos
- Massachusetts Institute of Technology, Department of Biology, 31 Ames St., Cambridge, MA 02142, USA.
| |
Collapse
|
37
|
Chen YL, He W, Kirmizialtin S, Pollack L. Insights into the structural stability of major groove RNA triplexes by WAXS-guided MD simulations. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100971. [PMID: 35936555 PMCID: PMC9351628 DOI: 10.1016/j.xcrp.2022.100971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
RNA triple helices are commonly observed tertiary motifs that are associated with critical biological functions, including signal transduction. Because the recognition of their biological importance is relatively recent, their full range of structural properties has not yet been elucidated. The integration of solution wide-angle X-ray scattering (WAXS) with molecular dynamics (MD) simulations, described here, provides a new way to capture the structures of major-groove RNA triplexes that evade crystallographic characterization. This method yields excellent agreement between measured and computed WAXS profiles and allows for an atomically detailed visualization of these motifs. Using correlation maps, the relationship between well-defined features in the scattering profiles and real space characteristics of RNA molecules is defined, including the subtle conformational variations in the double-stranded RNA upon the incorporation of a third strand by base triples. This readily applicable approach has the potential to provide insight into interactions that stabilize RNA tertiary structure that enables function.
Collapse
Affiliation(s)
- Yen-Lin Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Weiwei He
- Department of Chemistry, New York University, New York, NY 10003, USA
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
- These authors contributed equally
| | - Serdal Kirmizialtin
- Chemistry Program, Science Division, New York University Abu Dhabi, Abu Dhabi 129188, UAE
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Lead contact
| |
Collapse
|
38
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
39
|
Hou TY, Kraus WL. Analysis of estrogen-regulated enhancer RNAs identifies a functional motif required for enhancer assembly and gene expression. Cell Rep 2022; 39:110944. [PMID: 35705040 PMCID: PMC9246336 DOI: 10.1016/j.celrep.2022.110944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/03/2022] Open
Abstract
To better understand the functions of non-coding enhancer RNAs (eRNAs), we annotated the estrogen-regulated eRNA transcriptome in estrogen receptor α (ERα)-positive breast cancer cells using PRO-cap and RNA sequencing. We then cloned a subset of the eRNAs identified, fused them to single guide RNAs, and targeted them to their ERα enhancers of origin using CRISPR/dCas9. Some of the eRNAs tested modulated the expression of cognate, but not heterologous, target genes after estrogen treatment by increasing ERα recruitment and stimulating p300-catalyzed H3K27 acetylation at the enhancer. We identified a ∼40 nucleotide functional eRNA regulatory motif (FERM) present in many eRNAs that was necessary and sufficient to modulate gene expression, but not the specificity of activation, after estrogen treatment. The FERM interacted with BCAS2, an RNA-binding protein amplified in breast cancers. The ectopic expression of a targeted eRNA controlling the expression of an oncogene resulted in increased cell proliferation, demonstrating the regulatory potential of eRNAs in breast cancer.
Collapse
Affiliation(s)
- Tim Y Hou
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Zhan X, Lu Y, Zhang X, Yan C, Shi Y. Mechanism of exon ligation by human spliceosome. Mol Cell 2022; 82:2769-2778.e4. [PMID: 35705093 DOI: 10.1016/j.molcel.2022.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Pre-mRNA splicing involves two sequential reactions: branching and exon ligation. The C complex after branching undergoes remodeling to become the C∗ complex, which executes exon ligation. Here, we report cryo-EM structures of two intermediate human spliceosomal complexes, pre-C∗-I and pre-C∗-II, both at 3.6 Å. In both structures, the 3' splice site is already docked into the active site, the ensuing 3' exon sequences are anchored on PRP8, and the step II factor FAM192A contacts the duplex between U2 snRNA and the branch site. In the transition of pre-C∗-I to pre-C∗-II, the step II factors Cactin, FAM32A, PRKRIP1, and SLU7 are recruited. Notably, the RNA helicase PRP22 is positioned quite differently in the pre-C∗-I, pre-C∗-II, and C∗ complexes, suggesting a role in 3' exon binding and proofreading. Together with information on human C and C∗ complexes, our studies recapitulate a molecular choreography of the C-to-C∗ transition, revealing mechanistic insights into exon ligation.
Collapse
Affiliation(s)
- Xiechao Zhan
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China.
| | - Yichen Lu
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; College of Life Sciences, Fudan University, Shanghai 200433, China
| | - Xiaofeng Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Chuangye Yan
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yigong Shi
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China; Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
41
|
Neuhaus D. Zinc finger structure determination by NMR: Why zinc fingers can be a handful. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 130-131:62-105. [PMID: 36113918 PMCID: PMC7614390 DOI: 10.1016/j.pnmrs.2022.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/07/2023]
Abstract
Zinc fingers can be loosely defined as protein domains containing one or more tetrahedrally-co-ordinated zinc ions whose role is to stabilise the structure rather than to be involved in enzymatic chemistry; such zinc ions are often referred to as "structural zincs". Although structural zincs can occur in proteins of any size, they assume particular significance for very small protein domains, where they are often essential for maintaining a folded state. Such small structures, that sometimes have only marginal stability, can present particular difficulties in terms of sample preparation, handling and structure determination, and early on they gained a reputation for being resistant to crystallisation. As a result, NMR has played a more prominent role in structural studies of zinc finger proteins than it has for many other types of proteins. This review will present an overview of the particular issues that arise for structure determination of zinc fingers by NMR, and ways in which these may be addressed.
Collapse
Affiliation(s)
- David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
42
|
Jo SH, Park HJ, Lee A, Jung H, Park JM, Kwon SY, Kim HS, Lee HJ, Kim YS, Jung C, Cho HS. The Arabidopsis cyclophilin CYP18-1 facilitates PRP18 dephosphorylation and the splicing of introns retained under heat stress. THE PLANT CELL 2022; 34:2383-2403. [PMID: 35262729 PMCID: PMC9134067 DOI: 10.1093/plcell/koac084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 03/05/2022] [Indexed: 05/13/2023]
Abstract
In plants, heat stress induces changes in alternative splicing, including intron retention; these events can rapidly alter proteins or downregulate protein activity, producing nonfunctional isoforms or inducing nonsense-mediated decay of messenger RNA (mRNA). Nuclear cyclophilins (CYPs) are accessory proteins in the spliceosome complexes of multicellular eukaryotes. However, whether plant CYPs are involved in pre-mRNA splicing remain unknown. Here, we found that Arabidopsis thaliana CYP18-1 is necessary for the efficient removal of introns that are retained in response to heat stress during germination. CYP18-1 interacts with Step II splicing factors (PRP18a, PRP22, and SWELLMAP1) and associates with the U2 and U5 small nuclear RNAs in response to heat stress. CYP18-1 binds to phospho-PRP18a, and increasing concentrations of CYP18-1 are associated with increasing dephosphorylation of PRP18a. Furthermore, interaction and protoplast transfection assays revealed that CYP18-1 and the PP2A-type phosphatase PP2A B'η co-regulate PRP18a dephosphorylation. RNA-seq and RT-qPCR analysis confirmed that CYP18-1 is essential for splicing introns that are retained under heat stress. Overall, we reveal the mechanism of action by which CYP18-1 activates the dephosphorylation of PRP18 and show that CYP18-1 is crucial for the efficient splicing of retained introns and rapid responses to heat stress in plants.
Collapse
Affiliation(s)
- Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology,
Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jeong Mee Park
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Suk-Yoon Kwon
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of
Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University
of Science and Technology, Daejeon 34113, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo
Bio, Anseong 17558, Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology
Institute/Green Bio Science and Technology, Seoul National University,
Pyeongchang 25354, Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major
in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National
University, Seoul 08826, Korea
| | | |
Collapse
|
43
|
Knapp B, Roedig J, Roedig H, Krzysko J, Horn N, Güler BE, Kusuluri DK, Yildirim A, Boldt K, Ueffing M, Liebscher I, Wolfrum U. Affinity Proteomics Identifies Interaction Partners and Defines Novel Insights into the Function of the Adhesion GPCR VLGR1/ADGRV1. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103108. [PMID: 35630584 PMCID: PMC9146371 DOI: 10.3390/molecules27103108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/20/2022]
Abstract
The very large G-protein-coupled receptor 1 (VLGR1/ADGRV1) is the largest member of the adhesion G-protein-coupled receptor (ADGR) family. Mutations in VLGR1/ADGRV1 cause human Usher syndrome (USH), a form of hereditary deaf-blindness, and have been additionally linked to epilepsy. In the absence of tangible knowledge of the molecular function and signaling of VLGR1, the pathomechanisms underlying the development of these diseases are still unknown. Our study aimed to identify novel, previously unknown protein networks associated with VLGR1 in order to describe new functional cellular modules of this receptor. Using affinity proteomics, we have identified numerous new potential binding partners and ligands of VLGR1. Tandem affinity purification hits were functionally grouped based on their Gene Ontology terms and associated with functional cellular modules indicative of functions of VLGR1 in transcriptional regulation, splicing, cell cycle regulation, ciliogenesis, cell adhesion, neuronal development, and retinal maintenance. In addition, we validated the identified protein interactions and pathways in vitro and in situ. Our data provided new insights into possible functions of VLGR1, related to the development of USH and epilepsy, and also suggest a possible role in the development of other neuronal diseases such as Alzheimer’s disease.
Collapse
Affiliation(s)
- Barbara Knapp
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jens Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Heiko Roedig
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Jacek Krzysko
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Nicola Horn
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Baran E. Güler
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Adem Yildirim
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
| | - Karsten Boldt
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Marius Ueffing
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, University of Tuebingen, 72076 Tuebingen, Germany; (N.H.); (K.B.); (M.U.)
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Faculty of Medicine, Leipzig University, 04103 Leipzig, Germany;
| | - Uwe Wolfrum
- Institute of Molecular Physiology (ImP), Molecular Cell Biology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; (B.K.); (J.R.); (H.R.); (J.K.); (B.E.G.); (D.K.K.); (A.Y.)
- Correspondence:
| |
Collapse
|
44
|
Zhao C, Xie W, Zhu H, Zhao M, Liu W, Wu Z, Wang L, Zhu B, Li S, Zhou Y, Jiang X, Xu Q, Ren C. LncRNAs and their RBPs: How to influence the fate of stem cells? Stem Cell Res Ther 2022; 13:175. [PMID: 35505438 PMCID: PMC9066789 DOI: 10.1186/s13287-022-02851-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Stem cells are distinctive cells that have self-renewal potential and unique ability to differentiate into multiple functional cells. Stem cell is a frontier field of life science research and has always been a hot spot in biomedical research. Recent studies have shown that long non-coding RNAs (lncRNAs) have irreplaceable roles in stem cell self-renewal and differentiation. LncRNAs play crucial roles in stem cells through a variety of regulatory mechanisms, including the recruitment of RNA-binding proteins (RBPs) to affect the stability of their mRNAs or the expression of downstream genes. RBPs interact with different RNAs to regulate gene expression at transcriptional and post-transcriptional levels and play important roles in determining the fate of stem cells. In this review, the functions of lncRNAs and their RBPs in self-renewal and differentiation of stem cell are summarized. We focus on the four regulatory mechanisms by which lncRNAs and their RBPs are involved in epigenetic regulation, signaling pathway regulation, splicing, mRNA stability and subcellular localization and further discuss other noncoding RNAs (ncRNAs) and their RBPs in the fate of stem cells. This work provides a more comprehensive understanding of the roles of lncRNAs in determining the fate of stem cells, and a further understanding of their regulatory mechanisms will provide a theoretical basis for the development of clinical regenerative medicine.
Collapse
Affiliation(s)
- Cong Zhao
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Wen Xie
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Hecheng Zhu
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Ming Zhao
- Changsha Kexin Cancer Hospital, Changsha, 410205, China
| | - Weidong Liu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Zhaoping Wu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lei Wang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Bin Zhu
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Shasha Li
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Yao Zhou
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China. .,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Qiang Xu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital of Xiangya Medical College, Central South University, Zhuzhou, 412007, China. .,School of Materials Science and Engineering, Central South University, Changsha, 410083, China.
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China. .,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, School of Basic Medicine, Central South University, Changsha, 410008, China.
| |
Collapse
|
45
|
Sherill-Rofe D, Raban O, Findlay S, Rahat D, Unterman I, Samiei A, Yasmeen A, Kaiser Z, Kuasne H, Park M, Foulkes WD, Bloch I, Zick A, Gotlieb WH, Tabach Y, Orthwein A. Multi-omics data integration analysis identifies the spliceosome as a key regulator of DNA double-strand break repair. NAR Cancer 2022; 4:zcac013. [PMID: 35399185 PMCID: PMC8991968 DOI: 10.1093/narcan/zcac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/25/2022] [Accepted: 03/23/2022] [Indexed: 11/14/2022] Open
Abstract
DNA repair by homologous recombination (HR) is critical for the maintenance of genome stability. Germline and somatic mutations in HR genes have been associated with an increased risk of developing breast (BC) and ovarian cancers (OvC). However, the extent of factors and pathways that are functionally linked to HR with clinical relevance for BC and OvC remains unclear. To gain a broader understanding of this pathway, we used multi-omics datasets coupled with machine learning to identify genes that are associated with HR and to predict their sub-function. Specifically, we integrated our phylogenetic-based co-evolution approach (CladePP) with 23 distinct genetic and proteomic screens that monitored, directly or indirectly, DNA repair by HR. This omics data integration analysis yielded a new database (HRbase) that contains a list of 464 predictions, including 76 gold standard HR genes. Interestingly, the spliceosome machinery emerged as one major pathway with significant cross-platform interactions with the HR pathway. We functionally validated 6 spliceosome factors, including the RNA helicase SNRNP200 and its co-factor SNW1. Importantly, their RNA expression correlated with BC/OvC patient outcome. Altogether, we identified novel clinically relevant DNA repair factors and delineated their specific sub-function by machine learning. Our results, supported by evolutionary and multi-omics analyses, suggest that the spliceosome machinery plays an important role during the repair of DNA double-strand breaks (DSBs).
Collapse
Affiliation(s)
- Dana Sherill-Rofe
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Oded Raban
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Steven Findlay
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Dolev Rahat
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Arash Samiei
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Amber Yasmeen
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| | - Zafir Kaiser
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Hellen Kuasne
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - William D Foulkes
- The Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Idit Bloch
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Aviad Zick
- Department of Oncology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Ein-Kerem, Jerusalem 91120, Israel
| | - Walter H Gotlieb
- Division of Gynecology Oncology, Segal Cancer Center, Jewish General Hospital, McGill University, Montreal, QC H3T 1E2, Canada
| | - Yuval Tabach
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 91120, Israel
| | - Alexandre Orthwein
- Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1E2, Canada
| |
Collapse
|
46
|
Sarnowski CP, Bikaki M, Leitner A. Cross-linking and mass spectrometry as a tool for studying the structural biology of ribonucleoproteins. Structure 2022; 30:441-461. [PMID: 35366400 DOI: 10.1016/j.str.2022.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/03/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022]
Abstract
Cross-linking and mass spectrometry (XL-MS) workflows represent an increasingly popular technique for low-resolution structural studies of macromolecular complexes. Cross-linking reactions take place in the solution state, capturing contact sites between components of a complex that represent the native, functionally relevant structure. Protein-protein XL-MS protocols are widely adopted, providing precise localization of cross-linking sites to single amino acid positions within a pair of cross-linked peptides. In contrast, protein-RNA XL-MS workflows are evolving rapidly and differ in their ability to localize interaction regions within the RNA sequence. Here, we review protein-protein and protein-RNA XL-MS workflows, and discuss their applications in studies of protein-RNA complexes. The examples highlight the complementary value of XL-MS in structural studies of protein-RNA complexes, where more established high-resolution techniques might be unable to produce conclusive data.
Collapse
Affiliation(s)
- Chris P Sarnowski
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland; Systems Biology PhD Program, University of Zürich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zurich, Switzerland.
| |
Collapse
|
47
|
Bergfort A, Preußner M, Kuropka B, Ilik İA, Hilal T, Weber G, Freund C, Aktaş T, Heyd F, Wahl MC. A multi-factor trafficking site on the spliceosome remodeling enzyme BRR2 recruits C9ORF78 to regulate alternative splicing. Nat Commun 2022; 13:1132. [PMID: 35241646 PMCID: PMC8894380 DOI: 10.1038/s41467-022-28754-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
The intrinsically unstructured C9ORF78 protein was detected in spliceosomes but its role in splicing is presently unclear. We find that C9ORF78 tightly interacts with the spliceosome remodeling factor, BRR2, in vitro. Affinity purification/mass spectrometry and RNA UV-crosslinking analyses identify additional C9ORF78 interactors in spliceosomes. Cryogenic electron microscopy structures reveal how C9ORF78 and the spliceosomal B complex protein, FBP21, wrap around the C-terminal helicase cassette of BRR2 in a mutually exclusive manner. Knock-down of C9ORF78 leads to alternative NAGNAG 3'-splice site usage and exon skipping, the latter dependent on BRR2. Inspection of spliceosome structures shows that C9ORF78 could contact several detected spliceosome interactors when bound to BRR2, including the suggested 3'-splice site regulating helicase, PRPF22. Together, our data establish C9ORF78 as a late-stage splicing regulatory protein that takes advantage of a multi-factor trafficking site on BRR2, providing one explanation for suggested roles of BRR2 during splicing catalysis and alternative splicing.
Collapse
Affiliation(s)
- Alexandra Bergfort
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Yale University, Molecular Biophysics and Biochemistry, New Haven, CT, USA
| | - Marco Preußner
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Berlin, Germany
| | | | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Core Facility BioSupraMol, Berlin, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Berlin, Germany
| | - Gert Weber
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Christian Freund
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Berlin, Germany
| | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Berlin, Germany. .,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany.
| |
Collapse
|
48
|
Gañez-Zapater A, Mackowiak SD, Guo Y, Tarbier M, Jordán-Pla A, Friedländer MR, Visa N, Östlund Farrants AK. The SWI/SNF subunit BRG1 affects alternative splicing by changing RNA binding factor interactions with nascent RNA. Mol Genet Genomics 2022; 297:463-484. [PMID: 35187582 PMCID: PMC8960663 DOI: 10.1007/s00438-022-01863-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022]
Abstract
BRG1 and BRM are ATPase core subunits of the human SWI/SNF chromatin remodelling complexes mainly associated with transcriptional initiation. They also have a role in alternative splicing, which has been shown for BRM-containing SWI/SNF complexes at a few genes. Here, we have identified a subset of genes which harbour alternative exons that are affected by SWI/SNF ATPases by expressing the ATPases BRG1 and BRM in C33A cells, a BRG1- and BRM-deficient cell line, and analysed the effect on splicing by RNA sequencing. BRG1- and BRM-affected sub-sets of genes favouring both exon inclusion and exon skipping, with only a minor overlap between the ATPase. Some of the changes in alternative splicing induced by BRG1 and BRM expression did not require the ATPase activity. The BRG1-ATPase independent included exons displayed an exon signature of a high GC content. By investigating three genes with exons affected by the BRG-ATPase-deficient variant, we show that these exons accumulated phosphorylated RNA pol II CTD, both serine 2 and serine 5 phosphorylation, without an enrichment of the RNA polymerase II. The ATPases were recruited to the alternative exons, together with both core and signature subunits of SWI/SNF complexes, and promoted the binding of RNA binding factors to chromatin and RNA at the alternative exons. The interaction with the nascent RNP, however, did not reflect the association to chromatin. The hnRNPL, hnRNPU and SAM68 proteins associated with chromatin in cells expressing BRG1 and BRM wild type, but the binding of hnRNPU to the nascent RNP was excluded. This suggests that SWI/SNF can regulate alternative splicing by interacting with splicing-RNA binding factor and influence their binding to the nascent pre-mRNA particle.
Collapse
Affiliation(s)
- Antoni Gañez-Zapater
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Center for Genomic Regulation, 08003, Barcelona, Spain
| | - Sebastian D Mackowiak
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Yuan Guo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Marcel Tarbier
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Antonio Jordán-Pla
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencies Biológicas, Valencia University, C/Dr. Moliner, 50, 46100, Burjassot, Spain
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91, Stockholm, Sweden
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden
| | - Ann-Kristin Östlund Farrants
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, The Arrhenius Laboratories F4, 106 91, Stockholm, Sweden.
| |
Collapse
|
49
|
Idrissou M, Maréchal A. The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Cancers (Basel) 2022; 14:878. [PMID: 35205626 PMCID: PMC8869861 DOI: 10.3390/cancers14040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/07/2022] Open
Abstract
mRNA processing factors are increasingly being recognized as important regulators of genome stability. By preventing and resolving RNA:DNA hybrids that form co-transcriptionally, these proteins help avoid replication-transcription conflicts and thus contribute to genome stability through their normal function in RNA maturation. Some of these factors also have direct roles in the activation of the DNA damage response and in DNA repair. One of the most intriguing cases is that of PRP19, an evolutionarily conserved essential E3 ubiquitin ligase that promotes mRNA splicing, but also participates directly in ATR activation, double-strand break resection and mitosis. Here, we review historical and recent work on PRP19 and its associated proteins, highlighting their multifarious cellular functions as central regulators of spliceosome activity, R-loop homeostasis, DNA damage signaling and repair and cell division. Finally, we discuss open questions that are bound to shed further light on the functions of PRP19-containing complexes in both normal and cancer cells.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| | - Alexandre Maréchal
- Faculty of Sciences, Department of Biology, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1H 5N3, Canada
| |
Collapse
|
50
|
Soubise B, Jiang Y, Douet-Guilbert N, Troadec MB. RBM22, a Key Player of Pre-mRNA Splicing and Gene Expression Regulation, Is Altered in Cancer. Cancers (Basel) 2022; 14:cancers14030643. [PMID: 35158909 PMCID: PMC8833553 DOI: 10.3390/cancers14030643] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023] Open
Abstract
RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing, playing the essential role of maintaining the conformation of the catalytic core of the spliceosome and acting as a bridge between the catalytic core and other essential protein components of the spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations, enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases. RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.
Collapse
Affiliation(s)
- Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
| | - Yan Jiang
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- Department of Hematology, The First Hospital of Jilin University, Changchun 130021, China
| | - Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (Y.J.); (N.D.-G.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- Correspondence: ; Tel.: +33-2-98-01-64-55
| |
Collapse
|