1
|
Yasukawa K, Shimada S, Akiyama Y, Taniai T, Igarashi Y, Tsukihara S, Tanji Y, Umemura K, Kamachi A, Nara A, Yamane M, Akahoshi K, Shimizu A, Soejima Y, Tanabe M, Tanaka S. ACVR2A attenuation impacts lactate production and hyperglycolytic conditions attracting regulatory T cells in hepatocellular carcinoma. Cell Rep Med 2025; 6:102038. [PMID: 40139191 PMCID: PMC12047472 DOI: 10.1016/j.xcrm.2025.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/01/2024] [Accepted: 03/03/2025] [Indexed: 03/29/2025]
Abstract
Although ACVR2A mutations are prevalent in non-viral hepatocellular carcinomas (HCCs), the underlying mechanism remains unelucidated. Our molecular investigation reveals that ACVR2A impairment induces hyperglycolysis through the inactivation of the SMAD signaling pathway. Using syngeneic transplantation models and human clinical samples, we clarify that ACVR2A-deficient HCC cells produce and secrete lactate via the upregulation of lactate dehydrogenase A (LDHA) and monocarboxylate transporter 4 (MCT4) expression levels, which promotes regulatory T (Treg) cell accumulation and then acquires resistance to immune checkpoint inhibitors. Remarkably, genetic knockdown and pharmacological inhibition of MCT4 ameliorate the high-lactate milieu in ACVR2A-deficient HCC, resulting in the suppression of intratumoral Treg cell recruitment and the restoration of the sensitivity to PD-1 blockade. These findings furnish compelling evidence that lactate attenuates anti-tumor immunity and that therapeutics targeting this pathway present a promising strategy for mitigating immunotherapy resistance in ACVR2A-deficient HCC.
Collapse
Affiliation(s)
- Koya Yasukawa
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Tomohiko Taniai
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Yosuke Igarashi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Shu Tsukihara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Yoshiaki Tanji
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Hepatobiliary and Pancreas Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo 105-8471, Japan
| | - Kentaro Umemura
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsushi Kamachi
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsushi Nara
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masahiro Yamane
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Keiichi Akahoshi
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Akira Shimizu
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yuji Soejima
- Division of Gastroenterological, Hepato-Biliary-Pancreatic, Transplantation and Pediatric Surgery, Department of Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Minoru Tanabe
- Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shinji Tanaka
- Department of Molecular Oncology, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Department of Hepato-Biliary-Pancreatic Surgery, Tokyo Medical and Dental University, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8519, Japan.
| |
Collapse
|
2
|
Graciotti M, Kandalaft LE. Vaccines for cancer prevention: exploring opportunities and navigating challenges. Nat Rev Drug Discov 2025; 24:134-150. [PMID: 39622986 DOI: 10.1038/s41573-024-01081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2024] [Indexed: 02/06/2025]
Abstract
Improved understanding of cancer immunology has gradually brought increasing attention towards cancer-preventive vaccines as an important tool in the fight against cancer. The aim of this approach is to reduce cancer occurrence by inducing a specific immune response targeting tumours at an early stage before they can fully develop. The great advantage of preventive cancer vaccines lies in the potential to harness a less-compromised immune system in vaccine recipients before their immune responses become affected by the advanced status of the disease itself or by aggressive treatments such as chemotherapy. Successful implementation of immunoprevention against oncogenic viruses such as hepatitis B and papillomavirus has led to a dramatic decrease in virally induced cancers. Extending this approach to other cancers holds great promise but remains a major challenge. Here, we provide a comprehensive review of preclinical evidence supporting this approach, encouraging results from pioneering clinical studies as well as a discussion on the key aspects and open questions to address in order to design potent prophylactic cancer vaccines in the near future.
Collapse
Affiliation(s)
- Michele Graciotti
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
- Department of Oncology, University of Lausanne (UNIL), Lausanne, Switzerland.
- AGORA Cancer Research Center, Lausanne, Lausanne, Switzerland.
- Swiss Medical Network, Genolier Innovation Network, Genolier Clinic, Genolier, Switzerland.
| |
Collapse
|
3
|
Rendo V, Schubert M, Khuu N, Suarez Peredo Rodriguez MF, Whyte D, Ling X, van den Brink A, Huang K, Swift M, He Y, Zerbib J, Smith R, Raaijmakers J, Bandopadhayay P, Guenther LM, Hwang JH, Iniguez A, Moody S, Seo JH, Stover EH, Garraway L, Hahn WC, Stegmaier K, Medema RH, Chowdhury D, Colomé-Tatché M, Ben-David U, Beroukhim R, Foijer F. A compendium of Amplification-Related Gain Of Sensitivity genes in human cancer. Nat Commun 2025; 16:1077. [PMID: 39870664 PMCID: PMC11772776 DOI: 10.1038/s41467-025-56301-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
While the effect of amplification-induced oncogene expression in cancer is known, the impact of copy-number gains on "bystander" genes is less understood. We create a comprehensive map of dosage compensation in cancer by integrating expression and copy number profiles from over 8000 tumors in The Cancer Genome Atlas and cell lines from the Cancer Cell Line Encyclopedia. Additionally, we analyze 17 cancer open reading frame screens to identify genes toxic to cancer cells when overexpressed. Combining these approaches, we propose a class of 'Amplification-Related Gain Of Sensitivity' (ARGOS) genes located in commonly amplified regions, yet expressed at lower levels than expected by their copy number, and toxic when overexpressed. We validate RBM14 as an ARGOS gene in lung and breast cancer cells, and suggest a toxicity mechanism involving altered DNA damage response and STING signaling. We additionally observe increased patient survival in a radiation-treated cancer cohort with RBM14 amplification.
Collapse
Affiliation(s)
- Veronica Rendo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | - Michael Schubert
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany.
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria.
| | - Nicholas Khuu
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Declan Whyte
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Xiao Ling
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Anouk van den Brink
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands
| | - Kaimeng Huang
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Yizhou He
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Johanna Zerbib
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ross Smith
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonne Raaijmakers
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Pratiti Bandopadhayay
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lillian M Guenther
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, TN, USA
| | - Justin H Hwang
- Division of Hematology, Oncology, and Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Iniguez
- Department of Cancer Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Moody
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ji-Heui Seo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Elizabeth H Stover
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Levi Garraway
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kimberly Stegmaier
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatrics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - René H Medema
- Oncode Institute, Division of Cell Biology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Dipanjan Chowdhury
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Maria Colomé-Tatché
- Institute of Computational Biology, Helmholtz Munich, Neuherberg, Germany
- Biomedical Center (BMC), Physiological Chemistry, Ludwig Maximilians University, Munich, Germany
| | - Uri Ben-David
- Department of Human Molecular Genetics & Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Rameen Beroukhim
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, Netherlands.
| |
Collapse
|
4
|
Mizutani T, Boretto M, Lim S, Drost J, González DM, Oka R, Geurts MH, Begthel H, Korving J, van Es JH, van Boxtel R, Clevers H. Recapitulating the adenoma-carcinoma sequence by selection of four spontaneous oncogenic mutations in mismatch-repair-deficient human colon organoids. NATURE CANCER 2024; 5:1852-1867. [PMID: 39487295 PMCID: PMC11663794 DOI: 10.1038/s43018-024-00841-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/23/2024] [Indexed: 11/04/2024]
Abstract
Carcinogenesis results from the sequential acquisition of oncogenic mutations that convert normal cells into invasive, metastasizing cancer cells. Colorectal cancer exemplifies this process through its well-described adenoma-carcinoma sequence, modeled previously using clustered regularly interspaced short palindromic repeats (CRISPR) to induce four consecutive mutations in wild-type human gut organoids. Here, we demonstrate that long-term culture of mismatch-repair-deficient organoids allows the selection of spontaneous oncogenic mutations through the sequential withdrawal of Wnt agonists, epidermal growth factor (EGF) agonists and the bone morphogenetic protein (BMP) antagonist Noggin, while TP53 mutations were selected through the addition of Nutlin-3. Thus, organoids sequentially acquired mutations in AXIN1 and AXIN2 (Wnt pathway), TP53, ACVR2A and BMPR2 (BMP pathway) and NRAS (EGF pathway), gaining complete independence from stem cell niche factors. Quadruple-pathway (Wnt, EGF receptor, p53 and BMP) mutant organoids formed solid tumors upon xenotransplantation. This demonstrates that carcinogenesis can be recapitulated in a DNA repair-mutant background through in vitro selection that targets four consecutive cancer pathways.
Collapse
Affiliation(s)
- Tomohiro Mizutani
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- Department of Gastroenterology and Hepatology, Institute of Science Tokyo, Tokyo, Japan
| | - Matteo Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sangho Lim
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jarno Drost
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Diego Montiel González
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Rurika Oka
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Jeroen Korving
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Johan H van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ruben van Boxtel
- Oncode Institute, Utrecht, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- Roche Pharmaceutical Research and Early Development, Basel, Switzerland.
| |
Collapse
|
5
|
Budczies J, Kazdal D, Menzel M, Beck S, Kluck K, Altbürger C, Schwab C, Allgäuer M, Ahadova A, Kloor M, Schirmacher P, Peters S, Krämer A, Christopoulos P, Stenzinger A. Tumour mutational burden: clinical utility, challenges and emerging improvements. Nat Rev Clin Oncol 2024; 21:725-742. [PMID: 39192001 DOI: 10.1038/s41571-024-00932-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Tumour mutational burden (TMB), defined as the total number of somatic non-synonymous mutations present within the cancer genome, varies across and within cancer types. A first wave of retrospective and prospective research identified TMB as a predictive biomarker of response to immune-checkpoint inhibitors and culminated in the disease-agnostic approval of pembrolizumab for patients with TMB-high tumours based on data from the Keynote-158 trial. Although the applicability of outcomes from this trial to all cancer types and the optimal thresholds for TMB are yet to be ascertained, research into TMB is advancing along three principal avenues: enhancement of TMB assessments through rigorous quality control measures within the laboratory process, including the mitigation of confounding factors such as limited panel scope and low tumour purity; refinement of the traditional TMB framework through the incorporation of innovative concepts such as clonal, persistent or HLA-corrected TMB, tumour neoantigen load and mutational signatures; and integration of TMB with established and emerging biomarkers such as PD-L1 expression, microsatellite instability, immune gene expression profiles and the tumour immune contexture. Given its pivotal functions in both the pathogenesis of cancer and the ability of the immune system to recognize tumours, a profound comprehension of the foundational principles and the continued evolution of TMB are of paramount relevance for the field of oncology.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| | - Daniel Kazdal
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Menzel
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Susanne Beck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Klaus Kluck
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Christian Altbürger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Constantin Schwab
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Michael Allgäuer
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Aysel Ahadova
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumour Biology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Applied Tumour Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
- Center for Personalized Medicine (ZPM), Heidelberg, Germany
| | - Solange Peters
- Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University, Lausanne, Switzerland
| | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Internal Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Petros Christopoulos
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Thoracic Oncology, Thoraxklinik and National Center for Tumour Diseases at Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany.
- Translational Lung Research Center (TLRC) Heidelberg, Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
- Center for Personalized Medicine (ZPM), Heidelberg, Germany.
| |
Collapse
|
6
|
Anwar K, Thaller G, Saeed-Zidane M. Genetic Variations in the NRF2 Microsatellite Contribute to the Regulation of Bovine Sperm-Borne Antioxidant Capacity. Cells 2024; 13:1601. [PMID: 39404365 PMCID: PMC11482559 DOI: 10.3390/cells13191601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Nuclear factor (erythroid-derived 2)-like 2 (NRF2) is a transcription factor protein-coding gene, considered a master regulator of the cellular stress response. The genetic variations of the NRF2 could influence its transcriptional profile and, subsequently, the stress resilience in all cell types, including sperm cells. Therefore, the sperm-borne antioxidants abundance in association with the genetic variation of a GCC microsatellite located at the 5' upstream region of the NRF2 gene was investigated in young (n = 8) and old (n = 8) Holstein bulls' sperm cells at different seasons. The sperm DNA was sequenced using Sanger sequencing, while- the sperm-borne mRNA analysis was carried out using the synthesized cDNA and qPCR. The data were statistically analyzed using GraphPad Prism 10.0.2 software. The results showed that two bulls had a heterozygous genotype of eight and nine GCC repeats, while biallelic of eight, nine, and fifteen repeats were identified in two, ten, and two bulls, respectively. The computational in silico analysis revealed that the NRF2 upstream sequence with 15, 9, and 8 GCC repeats bound with 725, 709, and 707 DNA-binding transcription factor proteins, respectively. Lower quality of sperm DNA was detected in the spring season compared to other seasons and in young bulls compared to old ones, particularly in the summer and autumn seasons. The mRNA expression analysis revealed that the PRDX1 gene was the abundant transcript among the studied sperm-borne antioxidants and was significantly determined in old bulls' spermatozoa. Moreover, two transcripts of the NRF2 gene and antioxidant (SOD1, CAT, GPX1, TXN1, NQO1) genes displayed differential expression patterns between the age groups across seasons in an antioxidant-dependent manner. The bulls with a heterozygous GCC sequence exhibited elevated sperm-borne mRNA levels of NRF2 and PRDX1 transcripts. Taken together, the findings suggest that the NRF2-GCC microsatellite may contribute to the transcription regulation of NRF2 transcripts and their subsequent downstream antioxidants in bovine sperm cells.
Collapse
Affiliation(s)
| | | | - Mohammed Saeed-Zidane
- Molecular Genetics Group, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24118 Kiel, Germany
| |
Collapse
|
7
|
Jia P, Yang X, Yang X, Wang T, Xu Y, Ye K. MSIsensor-RNA: Microsatellite Instability Detection for Bulk and Single-cell Gene Expression Data. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae004. [PMID: 39341794 PMCID: PMC12016039 DOI: 10.1093/gpbjnl/qzae004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 10/01/2024]
Abstract
Microsatellite instability (MSI) is an indispensable biomarker in cancer immunotherapy. Currently, MSI scoring methods by high-throughput omics methods have gained popularity and demonstrated better performance than the gold standard method for MSI detection. However, the MSI detection method on expression data, especially single-cell expression data, is still lacking, limiting the scope of clinical application and prohibiting the investigation of MSI at a single-cell level. Herein, we developed MSIsensor-RNA, an accurate, robust, adaptable, and standalone software to detect MSI status based on expression values of MSI-associated genes. We demonstrated the favorable performance and promise of MSIsensor-RNA in both bulk and single-cell gene expression data in multiplatform technologies including RNA sequencing (RNA-seq), microarray, and single-cell RNA-seq. MSIsensor-RNA is a versatile, efficient, and robust method for MSI status detection from both bulk and single-cell gene expression data in clinical studies and applications. MSIsensor-RNA is available at https://github.com/xjtu-omics/msisensor-rna.
Collapse
Affiliation(s)
- Peng Jia
- Department of Gynecology and Obstetrics, Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xuanhao Yang
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaofei Yang
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Tingjie Wang
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Yu Xu
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kai Ye
- Department of Gynecology and Obstetrics, Center for Mathematical Medical, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- MOE Key Lab for Intelligent Networks & Networks Security, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
- Genome Institute, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
8
|
Cornish AJ, Gruber AJ, Kinnersley B, Chubb D, Frangou A, Caravagna G, Noyvert B, Lakatos E, Wood HM, Thorn S, Culliford R, Arnedo-Pac C, Househam J, Cross W, Sud A, Law P, Leathlobhair MN, Hawari A, Woolley C, Sherwood K, Feeley N, Gül G, Fernandez-Tajes J, Zapata L, Alexandrov LB, Murugaesu N, Sosinsky A, Mitchell J, Lopez-Bigas N, Quirke P, Church DN, Tomlinson IPM, Sottoriva A, Graham TA, Wedge DC, Houlston RS. The genomic landscape of 2,023 colorectal cancers. Nature 2024; 633:127-136. [PMID: 39112709 PMCID: PMC11374690 DOI: 10.1038/s41586-024-07747-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Colorectal carcinoma (CRC) is a common cause of mortality1, but a comprehensive description of its genomic landscape is lacking2-9. Here we perform whole-genome sequencing of 2,023 CRC samples from participants in the UK 100,000 Genomes Project, thereby providing a highly detailed somatic mutational landscape of this cancer. Integrated analyses identify more than 250 putative CRC driver genes, many not previously implicated in CRC or other cancers, including several recurrent changes outside the coding genome. We extend the molecular pathways involved in CRC development, define four new common subgroups of microsatellite-stable CRC based on genomic features and show that these groups have independent prognostic associations. We also characterize several rare molecular CRC subgroups, some with potential clinical relevance, including cancers with both microsatellite and chromosomal instability. We demonstrate a spectrum of mutational profiles across the colorectum, which reflect aetiological differences. These include the role of Escherichia colipks+ colibactin in rectal cancers10 and the importance of the SBS93 signature11-13, which suggests that diet or smoking is a risk factor. Immune-escape driver mutations14 are near-ubiquitous in hypermutant tumours and occur in about half of microsatellite-stable CRCs, often in the form of HLA copy number changes. Many driver mutations are actionable, including those associated with rare subgroups (for example, BRCA1 and IDH1), highlighting the role of whole-genome sequencing in optimizing patient care.
Collapse
Affiliation(s)
- Alex J Cornish
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, Konstanz, Germany
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Ben Kinnersley
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
- University College London Cancer Institute, London, UK
| | - Daniel Chubb
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Anna Frangou
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | - Giulio Caravagna
- Department of Mathematics and Geosciences, University of Trieste, Trieste, Italy
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Boris Noyvert
- Cancer Research UK Centre and Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Eszter Lakatos
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Henry M Wood
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Steve Thorn
- Department of Oncology, University of Oxford, Oxford, UK
| | - Richard Culliford
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Claudia Arnedo-Pac
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Jacob Househam
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - William Cross
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Research Department of Pathology, University College London, UCL Cancer Institute, London, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Philip Law
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | | | - Aliah Hawari
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Connor Woolley
- Department of Oncology, University of Oxford, Oxford, UK
| | - Kitty Sherwood
- Department of Oncology, University of Oxford, Oxford, UK
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Nathalie Feeley
- Department of Oncology, University of Oxford, Oxford, UK
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Güler Gül
- Edinburgh Cancer Research, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Luis Zapata
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Nirupa Murugaesu
- Genomics England, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Alona Sosinsky
- Genomics England, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Jonathan Mitchell
- Genomics England, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Nuria Lopez-Bigas
- Institute for Research in Biomedicine Barcelona, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Philip Quirke
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - David N Church
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Andrea Sottoriva
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
- Computational Biology Research Centre, Human Technopole, Milan, Italy
| | - Trevor A Graham
- Centre for Evolution and Cancer, Institute of Cancer Research, London, UK
| | - David C Wedge
- Manchester Cancer Research Centre, Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| |
Collapse
|
9
|
Ooki A, Osumi H, Yoshino K, Yamaguchi K. Potent therapeutic strategy in gastric cancer with microsatellite instability-high and/or deficient mismatch repair. Gastric Cancer 2024; 27:907-931. [PMID: 38922524 PMCID: PMC11335850 DOI: 10.1007/s10120-024-01523-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Gastric cancer (GC) is a common malignancy that presents challenges in patient care worldwide. The mismatch repair (MMR) system is a highly conserved DNA repair mechanism that protects genome integrity during replication. Deficient MMR (dMMR) results in an increased accumulation of genetic errors in microsatellite sequences, leading to the development of a microsatellite instability-high (MSI-H) phenotype. Most MSI-H/dMMR GCs arise sporadically, mainly due to MutL homolog 1 (MLH1) epigenetic silencing. Unlike microsatellite-stable (MSS)/proficient MMR (pMMR) GCs, MSI-H/dMMR GCs are relatively rare and represent a distinct subtype with genomic instability, a high somatic mutational burden, favorable immunogenicity, different responses to treatment, and prognosis. dMMR/MSI-H status is a robust predictive biomarker for treatment with immune checkpoint inhibitors (ICIs) due to high neoantigen load, prominent tumor-infiltrating lymphocytes, and programmed cell death ligand 1 (PD-L1) overexpression. However, a subset of MSI-H/dMMR GC patients does not benefit from immunotherapy, highlighting the need for further research into predictive biomarkers and resistance mechanisms. This review provides a comprehensive overview of the clinical, molecular, immunogenic, and therapeutic aspects of MSI-H/dMMR GC, with a focus on the impact of ICIs in immunotherapy and their potential as neoadjuvant therapies. Understanding the complexity and diversity of the molecular and immunological profiles of MSI-H/dMMR GC will drive the development of more effective therapeutic strategies and molecular targets for future precision medicine.
Collapse
Affiliation(s)
- Akira Ooki
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan.
| | - Hiroki Osumi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Koichiro Yoshino
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| | - Kensei Yamaguchi
- Department of Gastroenterological Chemotherapy, Cancer Institute Hospital of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-Ku, Tokyo, 135-8550, Japan
| |
Collapse
|
10
|
Weinstein HNW, Hu K, Fish L, Chen YA, Allegakoen P, Pham JH, Hui KSF, Chang CH, Tutar M, Benitez-Rivera L, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a splicing regulator of MDM4. Cell Rep 2024; 43:114622. [PMID: 39146182 PMCID: PMC12035866 DOI: 10.1016/j.celrep.2024.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/16/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024] Open
Abstract
Microsatellite instability-high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion and cell proliferation and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses the expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N W Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Julia H Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Keliana S F Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Chih-Hao Chang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Meltem Tutar
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lorena Benitez-Rivera
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Maria B Baco
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Andrew O Giacomelli
- Tumor Immunotherapy Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Franklin W Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA; San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA.
| |
Collapse
|
11
|
Fan W, Liu H, Stachelek GC, Begum A, Davis CE, Dorado TE, Ernst G, Reinhold WC, Ozbek B, Zheng Q, De Marzo AM, Rajeshkumar NV, Barrow JC, Laiho M. Ribosomal RNA transcription governs splicing through ribosomal protein RPL22. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608201. [PMID: 39211199 PMCID: PMC11361076 DOI: 10.1101/2024.08.15.608201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Ribosome biosynthesis is a cancer vulnerability executed by targeting RNA polymerase I (Pol I) transcription. We developed advanced, specific Pol I inhibitors to identify drivers of this sensitivity. By integrating multi-omics features and drug sensitivity data from a large cancer cell panel, we discovered that RPL22 frameshift mutation conferred Pol I inhibitor sensitivity in microsatellite instable cancers. Mechanistically, RPL22 directly interacts with 28S rRNA and mRNA splice junctions, functioning as a splicing regulator. RPL22 deficiency, intensified by 28S rRNA sequestration, promoted the splicing of its paralog RPL22L1 and p53 negative regulator MDM4. Chemical and genetic inhibition of rRNA synthesis broadly remodeled mRNA splicing controlling hundreds of targets. Strikingly, RPL22-dependent alternative splicing was reversed by Pol I inhibition revealing a ribotoxic stress-initiated tumor suppressive pathway. We identify a mechanism that robustly connects rRNA synthesis activity to splicing and reveals their coordination by ribosomal protein RPL22.
Collapse
|
12
|
Németh E, Szüts D. The mutagenic consequences of defective DNA repair. DNA Repair (Amst) 2024; 139:103694. [PMID: 38788323 DOI: 10.1016/j.dnarep.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024]
Abstract
Multiple separate repair mechanisms safeguard the genome against various types of DNA damage, and their failure can increase the rate of spontaneous mutagenesis. The malfunction of distinct repair mechanisms leads to genomic instability through different mutagenic processes. For example, defective mismatch repair causes high base substitution rates and microsatellite instability, whereas homologous recombination deficiency is characteristically associated with deletions and chromosome instability. This review presents a comprehensive collection of all mutagenic phenotypes associated with the loss of each DNA repair mechanism, drawing on data from a variety of model organisms and mutagenesis assays, and placing greatest emphasis on systematic analyses of human cancer datasets. We describe the latest theories on the mechanism of each mutagenic process, often explained by reliance on an alternative repair pathway or the error-prone replication of unrepaired, damaged DNA. Aided by the concept of mutational signatures, the genomic phenotypes can be used in cancer diagnosis to identify defective DNA repair pathways.
Collapse
Affiliation(s)
- Eszter Németh
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| | - Dávid Szüts
- Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
13
|
Palova H, Das A, Pokorna P, Bajciova V, Pavelka Z, Jezova M, Pal K, Dimayacyac JR, Negm L, Stengs L, Bianchi V, Vejmelkova K, Noskova K, Jarosova M, Mejstrikova S, Mudry P, Kyr M, Merta T, Tinka P, Drabova K, Aulicka S, Jugas R, Tabori U, Slaby O, Sterba J. Precision immuno-oncology approach for four malignant tumors in siblings with constitutional mismatch repair deficiency syndrome. NPJ Precis Oncol 2024; 8:110. [PMID: 38773265 PMCID: PMC11109258 DOI: 10.1038/s41698-024-00597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 05/23/2024] Open
Abstract
Constitutional mismatch repair deficiency (CMMRD) is a rare syndrome characterized by an increased incidence of cancer. It is caused by biallelic germline mutations in one of the four mismatch repair genes (MMR) genes: MLH1, MSH2, MSH6, or PMS2. Accurate diagnosis accompanied by a proper molecular genetic examination plays a crucial role in cancer management and also has implications for other family members. In this report, we share the impact of the diagnosis and challenges during the clinical management of two brothers with CMMRD from a non-consanguineous family harbouring compound heterozygous variants in the PMS2 gene. Both brothers presented with different phenotypic manifestations and cancer spectrum. Treatment involving immune checkpoint inhibitors significantly contributed to prolonged survival in both patients affected by lethal gliomas. The uniform hypermutation also allowed immune-directed treatment using nivolumab for the B-cell lymphoma, thereby limiting the intensive chemotherapy exposure in this young patient who remains at risk for subsequent malignancies.
Collapse
Affiliation(s)
- Hana Palova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anirban Das
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Petra Pokorna
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Viera Bajciova
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Zdenek Pavelka
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Marta Jezova
- Department of Pathology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karol Pal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jose R Dimayacyac
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Logine Negm
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Stengs
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Vanessa Bianchi
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Klara Vejmelkova
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Kristyna Noskova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Clinical Pharmacy Section of Hospital Pharmacy, University Hospital Brno, Brno, Czech Republic
| | - Marie Jarosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sona Mejstrikova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Internal Medicine, Hematology and Oncology, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Peter Mudry
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Michal Kyr
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Tomas Merta
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Pavel Tinka
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic
| | - Klara Drabova
- Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stefania Aulicka
- Department of Pediatric Neurology, University Hospital Brno, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Robin Jugas
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Uri Tabori
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jaroslav Sterba
- Department of Pediatric Oncology, University Hospital Brno, and Faculty of Medicine, ERN PaedCan Center, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
14
|
Bolivar AM, Duzagac F, Deng N, Reyes-Uribe L, Chang K, Wu W, Bowen CM, Taggart MW, Thirumurthi S, Lynch PM, You YN, Rodriguez-Pascual J, Lipkin SM, Kopetz S, Scheet P, Lizee GA, Reuben A, Sinha KM, Vilar E. Genomic Landscape of Lynch Syndrome Colorectal Neoplasia Identifies Shared Mutated Neoantigens for Immunoprevention. Gastroenterology 2024; 166:787-801.e11. [PMID: 38244726 PMCID: PMC11034773 DOI: 10.1053/j.gastro.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
BACKGROUND & AIMS Lynch syndrome (LS) carriers develop mismatch repair-deficient neoplasia with high neoantigen (neoAg) rates. No detailed information on targetable neoAgs from LS precancers exists, which is crucial for vaccine development and immune-interception strategies. We report a focused somatic mutation and frameshift-neoAg landscape of microsatellite loci from colorectal polyps without malignant potential (PWOMP), precancers, and early-stage cancers in LS carriers. METHODS We generated paired whole-exome and transcriptomic sequencing data from 8 colorectal PWOMP, 41 precancers, 8 advanced precancers, and 12 early-stage cancers of 43 LS carriers. A computational pipeline was developed to predict, rank, and prioritize the top 100 detected mutated neoAgs that were validated in vitro using ELISpot and tetramer assays. RESULTS Mutation calling revealed >10 mut/Mb in 83% of cancers, 63% of advanced precancers, and 20% of precancers. Cancers displayed an average of 616 MHC-I neoAgs/sample, 294 in advanced precancers, and 107 in precancers. No neoAgs were detected in PWOMP. A total of 65% of our top 100 predicted neoAgs were immunogenic in vitro, and were present in 92% of cancers, 50% of advanced precancers, and 29% of precancers. We observed increased levels of naïve CD8+ and memory CD4+ T cells in mismatch repair-deficient cancers and precancers via transcriptomics analysis. CONCLUSIONS Shared frameshift-neoAgs are generated within unstable microsatellite loci at initial stages of LS carcinogenesis and can induce T-cell responses, generating opportunities for vaccine development, targeting LS precancers and early-stage cancers.
Collapse
Affiliation(s)
- Ana M Bolivar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fahriye Duzagac
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nan Deng
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Laura Reyes-Uribe
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyle Chang
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wenhui Wu
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles M Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa W Taggart
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Selvi Thirumurthi
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick M Lynch
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y Nancy You
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Colorectal Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Steven M Lipkin
- Division of Gastroenterology and Hepatology, Weill Cornell University, New York, New York
| | - Scott Kopetz
- Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory A Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
15
|
Gong B, Lababidi S, Kusko R, Bouri K, Prezek S, Thovarai V, Prasanna A, Maier EJ, Golkaram M, Sun X, Kyriakidis K, Kitajima JP, Ebrahim Sahraeian SM, Guo Y, Johanson E, Jones W, Tong W, Xu J. Towards accurate indel calling for oncopanel sequencing through an international pipeline competition at precisionFDA. Sci Rep 2024; 14:8165. [PMID: 38589653 PMCID: PMC11001604 DOI: 10.1038/s41598-024-58573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
Accurately calling indels with next-generation sequencing (NGS) data is critical for clinical application. The precisionFDA team collaborated with the U.S. Food and Drug Administration's (FDA's) National Center for Toxicological Research (NCTR) and successfully completed the NCTR Indel Calling from Oncopanel Sequencing Data Challenge, to evaluate the performance of indel calling pipelines. Top performers were selected based on precision, recall, and F1-score. The performance of many other pipelines was close to the top performers, which produced a top cluster of performers. The performance was significantly higher in high confidence regions and coding regions, and significantly lower in low complexity regions. Oncopanel capture and other issues may have occurred that affected the recall rate. Indels with higher variant allele frequency (VAF) may generally be called with higher confidence. Many of the indel calling pipelines had good performance. Some of them performed generally well across all three oncopanels, while others were better for a specific oncopanel. The performance of indel calling can further be improved by restricting the calls within high confidence intervals (HCIs) and coding regions, and by excluding low complexity regions (LCR) regions. Certain VAF cut-offs could be applied according to the applications.
Collapse
Affiliation(s)
- Binsheng Gong
- Division of Bioinformatics and Biostatistics, Office of Research, National Center for Toxicological Research, Office of the Chief Scientist, Office of the Commissioner, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Samir Lababidi
- Health Informatics Staff, Office of Data, Analytics, and Research, Office of Digital Transformation, Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Rebecca Kusko
- Cellino Biotech, 750 Main Street, Cambridge, MA, 02143, USA
| | - Khaled Bouri
- Office of Regulatory Science and Innovation, Office of the Chief Scientist, Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | | | | | | | | | | | | | | | | | | | - Yunfei Guo
- Roche Sequencing Solutions, Santa Clara, CA, 95050, USA
| | - Elaine Johanson
- Health Informatics Staff, Office of Data, Analytics, and Research, Office of Digital Transformation, Office of the Commissioner, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Wendell Jones
- Q squared Solutions Genomics, 2400 Elis Road, Durham, NC, 27703, USA
| | - Weida Tong
- Division of Bioinformatics and Biostatistics, Office of Research, National Center for Toxicological Research, Office of the Chief Scientist, Office of the Commissioner, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Joshua Xu
- Division of Bioinformatics and Biostatistics, Office of Research, National Center for Toxicological Research, Office of the Chief Scientist, Office of the Commissioner, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
16
|
Forster VJ, Aronson M, Zhang C, Chung J, Sudhaman S, Galati MA, Kelly J, Negm L, Ercan AB, Stengs L, Durno C, Edwards M, Komosa M, Oldfield LE, Nunes NM, Pedersen S, Wellum J, Siddiqui I, Bianchi V, Weil BR, Fox VL, Pugh TJ, Kamihara J, Tabori U. Biallelic EPCAM deletions induce tissue-specific DNA repair deficiency and cancer predisposition. NPJ Precis Oncol 2024; 8:69. [PMID: 38467830 PMCID: PMC10928233 DOI: 10.1038/s41698-024-00537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/08/2024] [Indexed: 03/13/2024] Open
Abstract
We report a case of Mismatch Repair Deficiency (MMRD) caused by germline homozygous EPCAM deletion leading to tissue-specific loss of MSH2. Through the use of patient-derived cells and organoid technologies, we performed stepwise in vitro differentiation of colonic and brain organoids from reprogrammed EPCAMdel iPSC derived from patient fibroblasts. Differentiation of iPSC to epithelial-colonic organoids exhibited continuous increased EPCAM expression and hypermethylation of the MSH2 promoter. This was associated with loss of MSH2 expression, increased mutational burden, MMRD signatures and MS-indel accumulation, the hallmarks of MMRD. In contrast, maturation into brain organoids and examination of blood and fibroblasts failed to show similar processes, preserving MMR proficiency. The combined use of iPSC, organoid technologies and functional genomics analyses highlights the potential of cutting-edge cellular and molecular analysis techniques to define processes controlling tumorigenesis and uncovers a new paradigm of tissue-specific MMRD, which affects the clinical management of these patients.
Collapse
Affiliation(s)
- V J Forster
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Aronson
- Zane Cohen Centre, Sinai Health System and Faculty of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - C Zhang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Chung
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Sudhaman
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M A Galati
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - J Kelly
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - L Negm
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - A B Ercan
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - L Stengs
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - C Durno
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Edwards
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - M Komosa
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - N M Nunes
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - S Pedersen
- University Health Network, Toronto, ON, Canada
| | - J Wellum
- University Health Network, Toronto, ON, Canada
| | - I Siddiqui
- Department of Paediatric Laboratory Medicine and Pathobiology, Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - V Bianchi
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - B R Weil
- Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - V L Fox
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, USA
| | - T J Pugh
- University Health Network, Toronto, ON, Canada
| | - J Kamihara
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - U Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada.
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
van Toledo DEFWM, Bleijenberg AGC, Venema A, de Wit MJ, van Eeden S, Meijer GA, Carvalho B, Dekker E, Henneman P, IJspeert JEG, van Noesel CJM. Aberrant PRDM2 methylation as an early event in serrated lesions destined to evolve into microsatellite-instable colorectal cancers. J Pathol Clin Res 2024; 10:e348. [PMID: 38380944 PMCID: PMC10880511 DOI: 10.1002/cjp2.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Accepted: 10/15/2023] [Indexed: 02/22/2024]
Abstract
Up to 30% of colorectal cancers (CRCs) develop from sessile serrated lesions (SSLs). Within the serrated neoplasia pathway, at least two principally distinct oncogenetic routes exist generating microsatellite-stable and microsatellite-instable CRCs, respectively. Aberrant DNA methylation (DNAm) is found early in the serrated pathway and might play a role in both oncogenetic routes. We studied a cohort of 23 SSLs with a small focus (<10 mm) of dysplasia or cancer, 10 of which were MLH1 deficient and 13 MLH1 proficient. By comparing, for each SSL, the methylation status of (1) the region of dysplasia or cancer (SSL-D), (2) the nondysplastic SSL (SSL), and (3) adjacent normal mucosa, differentially methylated probes (DMPs) and regions (DMRs) were assessed both genome-wide as well as in a tumor-suppressor gene-focused approach. By comparing DNAm of MLH1-deficient SSL-Ds with their corresponding SSLs, we identified five DMRs, including those annotating for PRDM2 and, not unexpectedly, MLH1. PRDM2 gene promotor methylation was associated with MLH1 expression status, as it was largely hypermethylated in MLH1-deficient SSL-Ds and hypomethylated in MLH1-proficient SSL-Ds. Significantly increased DNAm levels of PRDM2 and MLH1, in particular at 'critical' MLH1 probe sites, were to some extent already visible in SSLs as compared to normal mucosa (p = 0.02, p = 0.01, p < 0.0001, respectively). No DMRs, nor DMPs, were identified for SSLs destined to evolve into MLH1-proficient SSL-Ds. Our data indicate that, within both arms of the serrated CRC pathway, the majority of the epigenetic alterations are introduced early during SSL formation. Promoter hypermethylation of PRDM2 and MLH1 on the other hand specifically initiates in SSLs destined to transform into MLH1-deficient CRCs suggesting that the fate of SSLs may not necessarily result from a stochastic process but possibly is already imprinted and predisposed.
Collapse
Affiliation(s)
- David EFWM van Toledo
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Arne GC Bleijenberg
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Andrea Venema
- Department of Human Genetics, Epigenetics of disease, Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Mireille J de Wit
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| | - Susanne van Eeden
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| | - Gerrit A Meijer
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Beatrice Carvalho
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Peter Henneman
- Department of Human Genetics, Epigenetics of disease, Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Joep EG IJspeert
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centers, location Academic Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology and MetabolismAmsterdamThe Netherlands
- Cancer Center AmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterAmsterdamThe Netherlands
| | - Carel JM van Noesel
- Department of PathologyAmsterdamAmsterdam University Medical Centers, Location Academic Medical CenterThe Netherlands
| |
Collapse
|
18
|
Verbiest MA, Lundström O, Xia F, Baudis M, Bilgin Sonay T, Anisimova M. Short tandem repeat mutations regulate gene expression in colorectal cancer. Sci Rep 2024; 14:3331. [PMID: 38336885 PMCID: PMC10858039 DOI: 10.1038/s41598-024-53739-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
Short tandem repeat (STR) mutations are prevalent in colorectal cancer (CRC), especially in tumours with the microsatellite instability (MSI) phenotype. While STR length variations are known to regulate gene expression under physiological conditions, the functional impact of STR mutations in CRC remains unclear. Here, we integrate STR mutation data with clinical information and gene expression data to study the gene regulatory effects of STR mutations in CRC. We confirm that STR mutability in CRC highly depends on the MSI status, repeat unit size, and repeat length. Furthermore, we present a set of 1244 putative expression STRs (eSTRs) for which the STR length is associated with gene expression levels in CRC tumours. The length of 73 eSTRs is associated with expression levels of cancer-related genes, nine of which are CRC-specific genes. We show that linear models describing eSTR-gene expression relationships allow for predictions of gene expression changes in response to eSTR mutations. Moreover, we found an increased mutability of eSTRs in MSI tumours. Our evidence of gene regulatory roles for eSTRs in CRC highlights a mostly overlooked way through which tumours may modulate their phenotypes. Future extensions of these findings could uncover new STR-based targets in the treatment of cancer.
Collapse
Affiliation(s)
- Max A Verbiest
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Oxana Lundström
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Feifei Xia
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Michael Baudis
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tugce Bilgin Sonay
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Ecology, Evolution and Environmental Biology, Columbia University, New York, USA
| | - Maria Anisimova
- Institute of Computational Life Sciences, Zurich University of Applied Sciences, Wädenswil, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
19
|
Selves J, de Castro E Gloria H, Brunac AC, Saffi J, Guimbaud R, Brousset P, Hoffmann JS. Exploring the basis of heterogeneity of cancer aggressiveness among the mutated POLE variants. Life Sci Alliance 2024; 7:e202302290. [PMID: 37891003 PMCID: PMC10610022 DOI: 10.26508/lsa.202302290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
Germline pathogenic variants in the exonuclease domain of the replicative DNA polymerase Pol ε encoded by the POLE gene, predispose essentially to colorectal and endometrial tumors by inducing an ultramutator phenotype. It is still unclear whether all the POLE alterations influence similar strength tumorigenesis, immune microenvironment, and treatment response. In this review, we summarize the current understanding of the mechanisms and consequences of POLE mutations in human malignancies; we highlight the heterogeneity of mutation rate and cancer aggressiveness among POLE variants, propose some mechanistic basis underlining such heterogeneity, and discuss novel considerations for the choice and efficacy of therapies of POLE tumors.
Collapse
Affiliation(s)
- Janick Selves
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
| | - Helena de Castro E Gloria
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Anne-Cécile Brunac
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Jenifer Saffi
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Rosine Guimbaud
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Department of Digestive Oncology, Centre Hospitalier Universitaire (CHU), Toulouse, France
- Department of Digestive Surgery, Centre Hospitalier Universitaire (CHU), Toulouse, France
| | - Pierre Brousset
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Université Fédérale Toulouse Midi-Pyrénées, Université Toulouse III Paul Sabatier, INSERM, CRCT, Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| | - Jean-Sébastien Hoffmann
- Department of Pathology, Institut Universitaire du Cancer-Oncopole de Toulouse; Centre Hospitalier Universitaire (CHU), Toulouse, France
- Laboratoire d'Excellence Toulouse Cancer (TOUCAN), Toulouse, France
| |
Collapse
|
20
|
Weinstein HN, Hu K, Fish L, Chen YA, Allegakoen P, Hui KSF, Pham JH, Baco MB, Song H, Giacomelli AO, Vazquez F, Ghandi M, Goodarzi H, Huang FW. RPL22 is a tumor suppressor in MSI-high cancers and a key splicing regulator of MDM4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.10.570873. [PMID: 38106152 PMCID: PMC10723389 DOI: 10.1101/2023.12.10.570873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Microsatellite instability high (MSI-H) tumors are malignant tumors that, despite harboring a high mutational burden, often have intact TP53. One of the most frequent mutations in MSI-H tumors is a frameshift mutation in RPL22, a ribosomal protein. Here, we identified RPL22 as a modulator of MDM4 splicing through an alternative splicing switch in exon 6. RPL22 loss increases MDM4 exon 6 inclusion, cell proliferation, and augments resistance to the MDM inhibitor Nutlin-3a. RPL22 represses expression of its paralog, RPL22L1, by mediating the splicing of a cryptic exon corresponding to a truncated transcript. Therefore, damaging mutations in RPL22 drive oncogenic MDM4 induction and reveal a common splicing circuit in MSI-H tumors that may inform therapeutic targeting of the MDM4-p53 axis and oncogenic RPL22L1 induction.
Collapse
Affiliation(s)
- Hannah N.W. Weinstein
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Kevin Hu
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Lisa Fish
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Yih-An Chen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Paul Allegakoen
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Keliana S. F. Hui
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | - Julia H. Pham
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | - Hanbing Song
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| | | | | | | | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California; San Francisco, USA
| | - Franklin W. Huang
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, Bakar Computational Health Sciences Institute, Institute for Human Genetics, University of California; San Francisco, USA
| |
Collapse
|
21
|
Das A, Tabori U, Sambira Nahum LC, Collins NB, Deyell R, Dvir R, Faure-Conter C, Hassall TE, Minturn JE, Edwards M, Brookes E, Bianchi V, Levine A, Stone SC, Sudhaman S, Sanchez Ramirez S, Ercan AB, Stengs L, Chung J, Negm L, Getz G, Maruvka YE, Ertl-Wagner B, Ohashi PS, Pugh T, Hawkins C, Bouffet E, Morgenstern DA. Efficacy of Nivolumab in Pediatric Cancers with High Mutation Burden and Mismatch Repair Deficiency. Clin Cancer Res 2023; 29:4770-4783. [PMID: 37126021 PMCID: PMC10690097 DOI: 10.1158/1078-0432.ccr-23-0411] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
PURPOSE Checkpoint inhibitors have limited efficacy for children with unselected solid and brain tumors. We report the first prospective pediatric trial (NCT02992964) using nivolumab exclusively for refractory nonhematologic cancers harboring tumor mutation burden (TMB) ≥5 mutations/megabase (mut/Mb) and/or mismatch repair deficiency (MMRD). PATIENTS AND METHODS Twenty patients were screened, and 10 were ultimately included in the response cohort of whom nine had TMB >10 mut/Mb (three initially eligible based on MMRD) and one patient had TMB between 5 and 10 mut/Mb. RESULTS Delayed immune responses contributed to best overall response of 50%, improving on initial objective responses (20%) and leading to 2-year overall survival (OS) of 50% [95% confidence interval (CI), 27-93]. Four children, including three with refractory malignant gliomas are in complete remission at a median follow-up of 37 months (range, 32.4-60), culminating in 2-year OS of 43% (95% CI, 18.2-100). Biomarker analyses confirmed benefit in children with germline MMRD, microsatellite instability, higher activated and lower regulatory circulating T cells. Stochastic mutation accumulation driven by underlying germline MMRD impacted the tumor microenvironment, contributing to delayed responses. No benefit was observed in the single patient with an MMR-proficient tumor and TMB 7.4 mut/Mb. CONCLUSIONS Nivolumab resulted in durable responses and prolonged survival for the first time in a pediatric trial of refractory hypermutated cancers including malignant gliomas. Novel biomarkers identified here need to be translated rapidly to clinical care to identify children who can benefit from checkpoint inhibitors, including upfront management of cancer. See related commentary by Mardis, p. 4701.
Collapse
Affiliation(s)
- Anirban Das
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Uri Tabori
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Lauren C. Sambira Nahum
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Natalie B. Collins
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | | | - Rina Dvir
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | | | - Jane E. Minturn
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Melissa Edwards
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Elissa Brookes
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Vanessa Bianchi
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Adrian Levine
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Simone C. Stone
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Sumedha Sudhaman
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Santiago Sanchez Ramirez
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Ayse B. Ercan
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Lucie Stengs
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Jill Chung
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Logine Negm
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Gad Getz
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | - Birgit Ertl-Wagner
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Pamela S. Ohashi
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Trevor Pugh
- Princess Margaret Cancer Centre and University of Toronto, Toronto, Ontario
| | - Cynthia Hawkins
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Eric Bouffet
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| | - Daniel A. Morgenstern
- Hospital for Sick Children and Department of Paediatrics, University of Toronto, Toronto, Ontario
| |
Collapse
|
22
|
Di Donato M, Di Zazzo E, Salvati A, Sorrentino C, Giurato G, Fiore D, Proto MC, Rienzo M, Casamassimi A, Gazzerro P, Bifulco M, Castoria G, Weisz A, Nassa G, Abbondanza C. RIZ2 at the crossroad of the EGF/EGFR signaling in colorectal cancer. J Transl Med 2023; 21:736. [PMID: 37853459 PMCID: PMC10585774 DOI: 10.1186/s12967-023-04621-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most deadly and fourth most diagnosed cancer worldwide. Despite the progress in early diagnosis and advanced therapeutic options, CRC shows a poor prognosis with a 5 year survival rate of ~ 45%. PRDM2/RIZ, a member of PR/SET domain family (PRDM), expresses two main molecular variants, the PR-plus isoform (RIZ1) and the PR-minus (RIZ2). The imbalance in their expression levels in favor of RIZ2 is observed in many cancer types. The full length RIZ1 has been extensively investigated in several cancers where it acts as a tumor suppressor, whereas few studies have explored the RIZ2 oncogenic properties. PRDM2 is often target of frameshift mutations and aberrant DNA methylation in CRC. However, little is known about its role in CRC. METHODS We combined in-silico investigation of The Cancer Genome Atlas (TCGA) CRC datasets, cellular and molecular assays, transcriptome sequencing and functional annotation analysis to assess the role of RIZ2 in human CRC. RESULTS Our in-silico analysis on TCGA datasets confirmed that PRDM2 gene is frequently mutated and transcriptionally deregulated in CRC and revealed that a RIZ2 increase is highly correlated with a significant RIZ1 downregulation. Then, we assayed several CRC cell lines by qRT-PCR analysis for the main PRDM2 transcripts and selected DLD1 cell line, which showed the lowest RIZ2 levels. Therefore, we overexpressed RIZ2 in these cells to mimic TCGA datasets analysis results and consequently to assess the PRDM2/RIZ2 role in CRC. Data from RNA-seq disclosed that RIZ2 overexpression induced profound changes in CRC cell transcriptome via EGF pathway deregulation, suggesting that RIZ2 is involved in the EGF autocrine regulation of DLD1 cell behavior. Noteworthy, the forced RIZ2 expression increased cell viability, growth, colony formation, migration and organoid formation. These effects could be mediated by the release of high EGF levels by RIZ2 overexpressing DLD1 cells. CONCLUSIONS Our findings add novel insights on the putative RIZ2 tumor-promoting functions in CRC, although additional efforts are warranted to define the underlying molecular mechanism.
Collapse
Affiliation(s)
- Marzia Di Donato
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, Italy
| | - Carmela Sorrentino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, Italy
- CRGS-Genome Research Center for Health, University of Salerno Campus of Medicine, 84081, Baronissi, Italy
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | | | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | | | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Gabriella Castoria
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, Italy
- CRGS-Genome Research Center for Health, University of Salerno Campus of Medicine, 84081, Baronissi, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry 'Scuola Medica Salernitana', University of Salerno, 84081, Baronissi, Italy
- CRGS-Genome Research Center for Health, University of Salerno Campus of Medicine, 84081, Baronissi, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
23
|
Walker R, Mahmood K, Como J, Clendenning M, Joo JE, Georgeson P, Joseland S, Preston SG, Pope BJ, Chan JM, Austin R, Bojadzieva J, Campbell A, Edwards E, Gleeson M, Goodwin A, Harris MT, Ip E, Kirk J, Mansour J, Mar Fan H, Nichols C, Pachter N, Ragunathan A, Spigelman A, Susman R, Christie M, Jenkins MA, Pai RK, Rosty C, Macrae FA, Winship IM, Buchanan DD. DNA Mismatch Repair Gene Variant Classification: Evaluating the Utility of Somatic Mutations and Mismatch Repair Deficient Colonic Crypts and Endometrial Glands. Cancers (Basel) 2023; 15:4925. [PMID: 37894291 PMCID: PMC10605939 DOI: 10.3390/cancers15204925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Germline pathogenic variants in the DNA mismatch repair (MMR) genes (Lynch syndrome) predispose to colorectal (CRC) and endometrial (EC) cancer. Lynch syndrome specific tumor features were evaluated for their ability to support the ACMG/InSiGHT framework in classifying variants of uncertain clinical significance (VUS) in the MMR genes. Twenty-eight CRC or EC tumors from 25 VUS carriers (6xMLH1, 9xMSH2, 6xMSH6, 4xPMS2), underwent targeted tumor sequencing for the presence of microsatellite instability/MMR-deficiency (MSI-H/dMMR) status and identification of a somatic MMR mutation (second hit). Immunohistochemical testing for the presence of dMMR crypts/glands in normal tissue was also performed. The ACMG/InSiGHT framework reclassified 7/25 (28%) VUS to likely pathogenic (LP), three (12%) to benign/likely benign, and 15 (60%) VUS remained unchanged. For the seven re-classified LP variants comprising nine tumors, tumor sequencing confirmed MSI-H/dMMR (8/9, 88.9%) and a second hit (7/9, 77.8%). Of these LP reclassified variants where normal tissue was available, the presence of a dMMR crypt/gland was found in 2/4 (50%). Furthermore, a dMMR endometrial gland in a carrier of an MSH2 exon 1-6 duplication provides further support for an upgrade of this VUS to LP. Our study confirmed that identifying these Lynch syndrome features can improve MMR variant classification, enabling optimal clinical care.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Melbourne Bioinformatics, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Jihoon E. Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Susan G. Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Bernard J. Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Melbourne Bioinformatics, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - James M. Chan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Rachel Austin
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia; (R.A.); (H.M.F.)
| | - Jasmina Bojadzieva
- Clinical Genetics Unit, Austin Health, Melbourne, VIC 3084, Australia; (J.B.); (A.C.)
| | - Ainsley Campbell
- Clinical Genetics Unit, Austin Health, Melbourne, VIC 3084, Australia; (J.B.); (A.C.)
| | - Emma Edwards
- Familial Cancer Service, Westmead Hospital, Sydney, NSW 2145, Australia;
| | - Margaret Gleeson
- Hunter Family Cancer Service, Newcastle, NSW 2298, Australia; (M.G.); (J.K.); (A.R.)
| | - Annabel Goodwin
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (A.G.); (A.S.)
- Sydney Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Marion T. Harris
- Monash Health Familial Cancer Centre, Clayton, VIC 3168, Australia;
| | - Emilia Ip
- Cancer Genetics Service, Liverpool Hospital, Liverpool, NSW 2170, Australia;
| | - Judy Kirk
- Hunter Family Cancer Service, Newcastle, NSW 2298, Australia; (M.G.); (J.K.); (A.R.)
| | - Julia Mansour
- Tasmanian Clinical Genetics Service, Royal Hobart Hospital, Hobart, TAS 7000, Australia;
| | - Helen Mar Fan
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia; (R.A.); (H.M.F.)
| | - Cassandra Nichols
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia; (C.N.); (N.P.)
| | - Nicholas Pachter
- Genetic Services of Western Australia, King Edward Memorial Hospital, Perth, WA 6008, Australia; (C.N.); (N.P.)
- Medical School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA 6009, Australia
- School of Medicine, Curtin University, Perth, WA 6102, Australia
| | - Abiramy Ragunathan
- Hunter Family Cancer Service, Newcastle, NSW 2298, Australia; (M.G.); (J.K.); (A.R.)
| | - Allan Spigelman
- Cancer Genetics Department, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia; (A.G.); (A.S.)
- St Vincent’s Cancer Genetics Unit, Sydney, NSW 2010, Australia
- Surgical Professorial Unit, UNSW Clinical School of Clinical Medicine, Sydney, NSW 2052, Australia
| | - Rachel Susman
- Genetic Health Queensland, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4006, Australia; (R.A.); (H.M.F.)
| | - Michael Christie
- Department of Medicine, Royal Melbourne Hospital, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Department of Pathology, The Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
| | - Mark A. Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA;
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Envoi Specialist Pathologists, Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Finlay A. Macrae
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia; (F.A.M.); (I.M.W.)
- Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Melbourne, VIC 3052, Australia
- Department of Medicine, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Ingrid M. Winship
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia; (F.A.M.); (I.M.W.)
- Department of Medicine, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia; (K.M.); (J.C.); (M.C.); (J.E.J.); (P.G.); (S.J.); (S.G.P.); (B.J.P.); (D.D.B.)
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Genomic Medicine and Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, VIC 3052, Australia; (F.A.M.); (I.M.W.)
| |
Collapse
|
24
|
Guan J, Li GM. DNA mismatch repair in cancer immunotherapy. NAR Cancer 2023; 5:zcad031. [PMID: 37325548 PMCID: PMC10262306 DOI: 10.1093/narcan/zcad031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023] Open
Abstract
Tumors defective in DNA mismatch repair (dMMR) exhibit microsatellite instability (MSI). Currently, patients with dMMR tumors are benefitted from anti-PD-1/PDL1-based immune checkpoint inhibitor (ICI) therapy. Over the past several years, great progress has been made in understanding the mechanisms by which dMMR tumors respond to ICI, including the identification of mutator phenotype-generated neoantigens, cytosolic DNA-mediated activation of the cGAS-STING pathway, type-I interferon signaling and high tumor-infiltration of lymphocytes in dMMR tumors. Although ICI therapy shows great clinical benefits, ∼50% of dMMR tumors are eventually not responsive. Here we review the discovery, development and molecular basis of dMMR-mediated immunotherapy, as well as tumor resistant problems and potential therapeutic interventions to overcome the resistance.
Collapse
Affiliation(s)
- Junhong Guan
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Pan J, Lan Q, Li S. Identification of RNF150 as the hub gene associated with microsatellite instability in gastric cancer. Sci Rep 2023; 13:12495. [PMID: 37528105 PMCID: PMC10393951 DOI: 10.1038/s41598-023-39255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/22/2023] [Indexed: 08/03/2023] Open
Abstract
Gastric cancer (GC) is a common digestive tract malignancy with the sixth global incidence and third cancer-related deaths, respectively. Microsatellite instability (MSI), accounting for one of the molecular subtypes of GC, plays an important role in GC and is affected by a sophisticated network of gene interactions. In this study, we aimed to explore the expression pattern and clinical performance of MSI related gene in GC patients. Weighted gene co-expression network analysis (WGCNA) was exploited to single out the vital module and core genes in TCGA database. We applied the protein-protein interaction (PPI) and survival analysis to propose and confirm RNF150 as the hub gene in GC. Finally, we utilized immunohistochemistry (IHC) and reverse transcription-polymerase chain reaction (RT-PCR) to explore the expression pattern of RNF150 in GC patients. With the highest weight correlation and standard correlation, RNF150 was selected as the hub gene for following validation. In validation, data obtained from the test sets showed a lower expression of RNF150 in MSI GC compared to microsatellite stability (MSS) GC. Moreover, survival analysis shows that MSI GC patients with a lower RNF150 expression level displayed the longer OS time. Compared to the expression in normal gastric tissues, the protein level of RNF150 was virtually up-regulated in ten cases of GC tissues. Furthermore, RNF150 protein level was decreased in MSI GC samples compared to MSS GC samples. When validated the mRNA expression with RT-PCR in fresh GC tissues, we also found the similar trend. RNF150 was identified as a novel MSI-related gene in GC. It is expected to be an auspicious prognostic biomarker for GC patients.
Collapse
Affiliation(s)
- Jun Pan
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qingzhi Lan
- Department of Pathology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Shengbao Li
- Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
26
|
Farmanbar A, Kneller R, Firouzi S. Mutational signatures reveal mutual exclusivity of homologous recombination and mismatch repair deficiencies in colorectal and stomach tumors. Sci Data 2023; 10:423. [PMID: 37393385 PMCID: PMC10314920 DOI: 10.1038/s41597-023-02331-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Decomposing somatic mutation spectra into mutational signatures and their corresponding etiologies provides a powerful approach for investigating the mechanism of DNA damage and repair. Assessing microsatellite (in)stability (MSI/MSS) status and interpreting their clinical relevance in different malignancies offers significant diagnostic and prognostic value. However, little is known about microsatellite (in)stability and its interactions with other DNA repair mechanisms such as homologous recombination (HR) in different cancer types. Based on whole-genome/exome mutational signature analysis, we showed HR deficiency (HRd) and mismatch repair deficiency (MMRd) occur in a significantly mutually exclusive manner in stomach and colorectal adenocarcinomas. ID11 signature with currently unknown etiology was prevalent in MSS tumors, co-occurred with HRd and was mutually exclusive with MMRd. Apolipoprotein B mRNA editing enzyme, Catalytic polypeptide-like (APOBEC) signature co-occurred with HRd and was mutually exclusive with MMRd in stomach tumors. The HRd signature in MSS tumors and the MMRd signature in MSI tumors were the first or second dominant signatures wherever detected. HRd may drive a distinct subgroup of MSS tumors and lead to poor clinical outcome. These analyses offer insight into mutational signatures in MSI and MMS tumors and reveal opportunities for improved clinical diagnosis and personalized treatment of MSS tumors.
Collapse
Affiliation(s)
- Amir Farmanbar
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, Minato-ku, Tokyo, 153-8904, Japan
| | - Robert Kneller
- Research Center for Advanced Science and Technology, University of Tokyo, Minato-ku, Tokyo, 153-8904, Japan
| | - Sanaz Firouzi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
27
|
Bae JH, Liu R, Roberts E, Nguyen E, Tabrizi S, Rhoades J, Blewett T, Xiong K, Gydush G, Shea D, An Z, Patel S, Cheng J, Sridhar S, Liu MH, Lassen E, Skytte AB, Grońska-Pęski M, Shoag JE, Evrony GD, Parsons HA, Mayer EL, Makrigiorgos GM, Golub TR, Adalsteinsson VA. Single duplex DNA sequencing with CODEC detects mutations with high sensitivity. Nat Genet 2023; 55:871-879. [PMID: 37106072 PMCID: PMC10181940 DOI: 10.1038/s41588-023-01376-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/21/2023] [Indexed: 04/29/2023]
Abstract
Detecting mutations from single DNA molecules is crucial in many fields but challenging. Next-generation sequencing (NGS) affords tremendous throughput but cannot directly sequence double-stranded DNA molecules ('single duplexes') to discern the true mutations on both strands. Here we present Concatenating Original Duplex for Error Correction (CODEC), which confers single duplex resolution to NGS. CODEC affords 1,000-fold higher accuracy than NGS, using up to 100-fold fewer reads than duplex sequencing. CODEC revealed mutation frequencies of 2.72 × 10-8 in sperm of a 39-year-old individual, and somatic mutations acquired with age in blood cells. CODEC detected genome-wide, clonal hematopoiesis mutations from single DNA molecules, single mutated duplexes from tumor genomes and liquid biopsies, microsatellite instability with 10-fold greater sensitivity and mutational signatures, and specific tumor mutations with up to 100-fold fewer reads. CODEC enables more precise genetic testing and reveals biologically significant mutations, which are commonly obscured by NGS errors.
Collapse
Affiliation(s)
- Jin H Bae
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruolin Liu
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Erica Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shervin Tabrizi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Douglas Shea
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhenyi An
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sahil Patel
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Ju Cheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Mei Hong Liu
- Center for Human Genetics and Genomics, Departments of Pediatrics and Neuroscience & Physiology, New York University Grossman School of Medicine, New York City, NY, USA
| | | | | | - Marta Grońska-Pęski
- Center for Human Genetics and Genomics, Departments of Pediatrics and Neuroscience & Physiology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Jonathan E Shoag
- University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Gilad D Evrony
- Center for Human Genetics and Genomics, Departments of Pediatrics and Neuroscience & Physiology, New York University Grossman School of Medicine, New York City, NY, USA
| | | | | | | | - Todd R Golub
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
28
|
Gallon R, Phelps R, Hayes C, Brugieres L, Guerrini-Rousseau L, Colas C, Muleris M, Ryan NAJ, Evans DG, Grice H, Jessop E, Kunzemann-Martinez A, Marshall L, Schamschula E, Oberhuber K, Azizi AA, Baris Feldman H, Beilken A, Brauer N, Brozou T, Dahan K, Demirsoy U, Florkin B, Foulkes W, Januszkiewicz-Lewandowska D, Jones KJ, Kratz CP, Lobitz S, Meade J, Nathrath M, Pander HJ, Perne C, Ragab I, Ripperger T, Rosenbaum T, Rueda D, Sarosiek T, Sehested A, Spier I, Suerink M, Zimmermann SY, Zschocke J, Borthwick GM, Wimmer K, Burn J, Jackson MS, Santibanez-Koref M. Constitutional Microsatellite Instability, Genotype, and Phenotype Correlations in Constitutional Mismatch Repair Deficiency. Gastroenterology 2023; 164:579-592.e8. [PMID: 36586540 DOI: 10.1053/j.gastro.2022.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Constitutional mismatch repair deficiency (CMMRD) is a rare recessive childhood cancer predisposition syndrome caused by germline mismatch repair variants. Constitutional microsatellite instability (cMSI) is a CMMRD diagnostic hallmark and may associate with cancer risk. We quantified cMSI in a large CMMRD patient cohort to explore genotype-phenotype correlations using novel MSI markers selected for instability in blood. METHODS Three CMMRD, 1 Lynch syndrome, and 2 control blood samples were genome sequenced to >120× depth. A pilot cohort of 8 CMMRD and 38 control blood samples and a blinded cohort of 56 CMMRD, 8 suspected CMMRD, 40 Lynch syndrome, and 43 control blood samples were amplicon sequenced to 5000× depth. Sample cMSI score was calculated using a published method comparing microsatellite reference allele frequencies with 80 controls. RESULTS Thirty-two mononucleotide repeats were selected from blood genome and pilot amplicon sequencing data. cMSI scoring using these MSI markers achieved 100% sensitivity (95% CI, 93.6%-100.0%) and specificity (95% CI 97.9%-100.0%), was reproducible, and was superior to an established tumor MSI marker panel. Lower cMSI scores were found in patients with CMMRD with MSH6 deficiency and patients with at least 1 mismatch repair missense variant, and patients with biallelic truncating/copy number variants had higher scores. cMSI score did not correlate with age at first tumor. CONCLUSIONS We present an inexpensive and scalable cMSI assay that enhances CMMRD detection relative to existing methods. cMSI score is associated with mismatch repair genotype but not phenotype, suggesting it is not a useful predictor of cancer risk.
Collapse
Affiliation(s)
- Richard Gallon
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Rachel Phelps
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Christine Hayes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Laurence Brugieres
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Léa Guerrini-Rousseau
- Department of Children and Adolescents Oncology, Gustave Roussy, Université Paris-Saclay, Villejuif, France; Team "Genomics and Oncogenesis of pediatric Brain Tumors," INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Chrystelle Colas
- Département de Génétique, Institut Curie, Paris, France; INSERM U830, Université de Paris, Paris, France
| | - Martine Muleris
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre de Recherche Saint-Antoine, Paris, France
| | - Neil A J Ryan
- The Academic Women's Health Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Department of Gynaecology Oncology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - D Gareth Evans
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
| | - Hannah Grice
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Jessop
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Annabel Kunzemann-Martinez
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Centre for Inflammation and Tissue Repair, University College London, London, UK
| | - Lilla Marshall
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Esther Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Klaus Oberhuber
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Amedeo A Azizi
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Hagit Baris Feldman
- The Genetics Institute and Genomics Center, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Beilken
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Nina Brauer
- Pediatric Oncology, Helios-Klinikum, Krefeld, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Karin Dahan
- Centre de Génétique Humaine, Institut de Pathologie et Génétique, Gosselies, Belgium
| | - Ugur Demirsoy
- Department of Pediatric Oncology, Kocaeli University, Kocaeli, Turkey
| | - Benoît Florkin
- Department of Pediatrics, Citadelle Hospital, University of Liège, Liège, Belgium
| | - William Foulkes
- Program in Cancer Genetics, Departments of Oncology and Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Department of Medical Genetics, McGill University Health Centre, Montreal, Quebec, Canada; Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | - Kristi J Jones
- Department of Clinical Genetics, Western Sydney Genetics Program, Children's Hospital at Westmead, Sydney, New South Wales, Australia; University of Sydney School of Medicine, Sydney, New South Wales, Australia
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Stephan Lobitz
- Gemeinschaftsklinikum Mittelrhein, Department of Pediatric Hematology and Oncology, Koblenz, Germany
| | - Julia Meade
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michaela Nathrath
- Pediatric Hematology and Oncology, Klinikum Kassel, Kassel, Germany; Department of Pediatrics, Pediatric Oncology Center, Technische Universität München, Munich, Germany
| | | | - Claudia Perne
- Institute of Human Genetics, Medical Faculty, University of Bonn and National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Iman Ragab
- Pediatrics Department, Hematology-Oncology Unit, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Daniel Rueda
- Hereditary Cancer Laboratory, University Hospital Doce de Octubre, i+12 Research Institute, Madrid, Spain
| | | | - Astrid Sehested
- Department of Pediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn and National Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefanie-Yvonne Zimmermann
- Department of Pediatric Hematology and Oncology, Children's Hospital, University Hospital, Frankfurt, Germany
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Gillian M Borthwick
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - John Burn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Michael S Jackson
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mauro Santibanez-Koref
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
29
|
Du M, Gu D, Xin J, Peters U, Song M, Cai G, Li S, Ben S, Meng Y, Chu H, Chen L, Wang Q, Zhu L, Fu Z, Zhang Z, Wang M. Integrated multi-omics approach to distinct molecular characterization and classification of early-onset colorectal cancer. Cell Rep Med 2023; 4:100974. [PMID: 36921601 PMCID: PMC10040411 DOI: 10.1016/j.xcrm.2023.100974] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/23/2022] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Incidence of early-onset colorectal cancer (EOCRC), defined by a diagnosed age under 50 years, is increasing, but its heterogeneous etiologies that differ from general CRC remain undetermined. We initially characterize the genome, epigenome, transcriptome, and proteome of tumors from 79 patients in a Chinese CRC cohort. Data for an additional 126 EOCRC subjects are obtained from the International Cancer Genome Consortium Chinese cohort and The Cancer Genome Atlas European cohort. We observe that early-onset tumors have a high tumor mutation burden; increased DNA repair features by mutational signature 3 and multi-layer pathway enrichments; strong perturbations at effects of DNA methylation and somatic copy-number alteration on gene expression; and upregulated immune infiltration as hot tumors underlying immunophenotypes. Notably, LMTK3 exhibits ancestral mutation disparity, potentially being a functional modulator and biomarker that drives molecular alterations in EOCRC development and immunotherapies. This integrative omics study provides valuable knowledge for precision oncology of CRC.
Collapse
Affiliation(s)
- Mulong Du
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Junyi Xin
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Mingyang Song
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Guoshuai Cai
- Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Shuwei Li
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuai Ben
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yixuan Meng
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Haiyan Chu
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qianghu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Lingjun Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhengdong Zhang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meilin Wang
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China; The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215005, China.
| |
Collapse
|
30
|
Chung J, Negm L, Bianchi V, Stengs L, Das A, Liu ZA, Sudhaman S, Aronson M, Brunga L, Edwards M, Forster V, Komosa M, Davidson S, Lees J, Tomboc P, Samuel D, Farah R, Bendel A, Knipstein J, Schneider KW, Reschke A, Zelcer S, Zorzi A, McWilliams R, Foulkes WD, Bedgood R, Peterson L, Rhode S, Van Damme A, Scheers I, Gardner S, Robbins G, Vanan MI, Meyn MS, Auer R, Leach B, Burke C, Villani A, Malkin D, Bouffet E, Huang A, Taylor MD, Durno C, Shlien A, Hawkins C, Getz G, Maruvka YE, Tabori U. Genomic Microsatellite Signatures Identify Germline Mismatch Repair Deficiency and Risk of Cancer Onset. J Clin Oncol 2023; 41:766-777. [PMID: 36240479 PMCID: PMC10489375 DOI: 10.1200/jco.21.02873] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Diagnosis of Mismatch Repair Deficiency (MMRD) is crucial for tumor management and early detection in patients with the cancer predisposition syndrome constitutional mismatch repair deficiency (CMMRD). Current diagnostic tools are cumbersome and inconsistent both in childhood cancers and in determining germline MMRD. PATIENTS AND METHODS We developed and analyzed a functional Low-pass Genomic Instability Characterization (LOGIC) assay to detect MMRD. The diagnostic performance of LOGIC was compared with that of current established assays including tumor mutational burden, immunohistochemistry, and the microsatellite instability panel. LOGIC was then applied to various normal tissues of patients with CMMRD with comprehensive clinical data including age of cancer presentation. RESULTS Overall, LOGIC was 100% sensitive and specific in detecting MMRD in childhood cancers (N = 376). It was more sensitive than the microsatellite instability panel (14%, P = 4.3 × 10-12), immunohistochemistry (86%, P = 4.6 × 10-3), or tumor mutational burden (80%, P = 9.1 × 10-4). LOGIC was able to distinguish CMMRD from other cancer predisposition syndromes using blood and saliva DNA (P < .0001, n = 277). In normal cells, MMRDness scores differed between tissues (GI > blood > brain), increased over time in the same individual, and revealed genotype-phenotype associations within the mismatch repair genes. Importantly, increased MMRDness score was associated with younger age of first cancer presentation in individuals with CMMRD (P = 2.2 × 10-5). CONCLUSION LOGIC was a robust tool for the diagnosis of MMRD in multiple cancer types and in normal tissues. LOGIC may inform therapeutic cancer decisions, provide rapid diagnosis of germline MMRD, and support tailored surveillance for individuals with CMMRD.
Collapse
Affiliation(s)
- Jiil Chung
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Logine Negm
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vanessa Bianchi
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Lucie Stengs
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Anirban Das
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Department of Pediatric Hematology/Oncology, Tata Medical Centre, Kolkata, India
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ledia Brunga
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Victoria Forster
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Martin Komosa
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Scott Davidson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jodi Lees
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patrick Tomboc
- Department of Pediatrics, West Virginia University, Morgantown, WV
| | | | - Roula Farah
- Lebanese American University Medical Center-Rizk, Beirut, Lebanon
| | - Anne Bendel
- Department of Pediatric Hematology-Oncology, Children's Minnesota, Minneapolis, MN
| | - Jeffrey Knipstein
- Division of Pediatric Hematology/Oncology/BMT, Medical College of Wisconsin, Milwaukee, WI
| | - Kami Wolfe Schneider
- Department of Pediatric Hematology-Oncology, Children's Hospital Colorado, Aurora, CO
| | - Agnes Reschke
- Department of Pediatric Hematology/Oncology, Stanford University, Palo Alto, CA
| | - Shayna Zelcer
- Department of Pediatrics, London Health Sciences Centre, London, ON, Canada
| | - Alexandra Zorzi
- Division of Haematology/Oncology, Western University, London, ON, Canada
| | | | - William D. Foulkes
- Departments of Oncology and Human Genetics, McGill University Health Centre, Cancer Genetics Program, Montreal, QC, Canada
| | | | - Lindsay Peterson
- Division of Medical Oncology, Washington University, St Louis, MO
| | - Sara Rhode
- Department of Hematology and Oncology, Cleveland Clinic, Cleveland, OH
| | - An Van Damme
- Pediatric Gastroenterology and Hepatology Unit, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Isabelle Scheers
- Universite Catholique de Louvain La Faculte de Medecine, Bruxelles, Belgium
| | - Sharon Gardner
- Department of Pediatric Hematology-Oncology, NYU Langone Health, New York, NY
| | - Gabriel Robbins
- Department of Pediatric Hematology-Oncology, NYU Langone Health, New York, NY
| | - Magimairajan Issai Vanan
- Department of Pediatric Hematology-Oncology, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - M. Stephen Meyn
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, ON, Canada
- Center for Human Genomics and Precision Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Rebecca Auer
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Brandie Leach
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Carol Burke
- Department of Gastroenterology, Hepatology, and Nutrition, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH
| | - Anita Villani
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - David Malkin
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Eric Bouffet
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Annie Huang
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Pathology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Gad Getz
- The Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA
- Harvard Medical School, 250 Longwood Avenue, Boston, MA
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Yosef E. Maruvka
- Faculty of Biotechnology and Food Engineering, The Lokey Center for Life Science and Engineering, TECHNION – Israel Institute of Technology, Haifa, Israel
| | - Uri Tabori
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Hematology/Oncology, The Hospital for Sick Children, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
31
|
Walker R, Georgeson P, Mahmood K, Joo JE, Makalic E, Clendenning M, Como J, Preston S, Joseland S, Pope BJ, Hutchinson RA, Kasem K, Walsh MD, Macrae FA, Win AK, Hopper JL, Mouradov D, Gibbs P, Sieber OM, O'Sullivan DE, Brenner DR, Gallinger S, Jenkins MA, Rosty C, Winship IM, Buchanan DD. Evaluating Multiple Next-Generation Sequencing-Derived Tumor Features to Accurately Predict DNA Mismatch Repair Status. J Mol Diagn 2023; 25:94-109. [PMID: 36396080 PMCID: PMC10424255 DOI: 10.1016/j.jmoldx.2022.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/27/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Identifying tumor DNA mismatch repair deficiency (dMMR) is important for precision medicine. Tumor features, individually and in combination, derived from whole-exome sequenced (WES) colorectal cancers (CRCs) and panel-sequenced CRCs, endometrial cancers (ECs), and sebaceous skin tumors (SSTs) were assessed for their accuracy in detecting dMMR. CRCs (n = 300) with WES, where mismatch repair status was determined by immunohistochemistry, were assessed for microsatellite instability (MSMuTect, MANTIS, MSIseq, and MSISensor), Catalogue of Somatic Mutations in Cancer tumor mutational signatures, and somatic mutation counts. A 10-fold cross-validation approach (100 repeats) evaluated the dMMR prediction accuracy for i) individual features, ii) Lasso statistical model, and iii) an additive feature combination approach. Panel-sequenced tumors (29 CRCs, 22 ECs, and 20 SSTs) were assessed for the top performing dMMR predicting features/models using these three approaches. For WES CRCs, 10 features provided >80% dMMR prediction accuracy, with MSMuTect, MSIseq, and MANTIS achieving ≥99% accuracy. The Lasso model achieved 98.3% accuracy. The additive feature approach, with three or more of six of MSMuTect, MANTIS, MSIseq, MSISensor, insertion-deletion count, or tumor mutational signature small insertion/deletion 2 + small insertion/deletion 7 achieved 99.7% accuracy. For the panel-sequenced tumors, the additive feature combination approach of three or more of six achieved accuracies of 100%, 95.5%, and 100% for CRCs, ECs, and SSTs, respectively. The microsatellite instability calling tools performed well in WES CRCs; however, an approach combining tumor features may improve dMMR prediction in both WES and panel-sequenced data across tissue types.
Collapse
Affiliation(s)
- Romy Walker
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Georgeson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Khalid Mahmood
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jihoon E Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Mark Clendenning
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia Como
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Susan Preston
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Sharelle Joseland
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Bernard J Pope
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Melbourne Bioinformatics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ryan A Hutchinson
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia
| | - Kais Kasem
- Department of Clinical Pathology, Medicine Dentistry and Health Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael D Walsh
- Sullivan Nicolaides Pathology, Bowen Hills, Queensland, Australia
| | - Finlay A Macrae
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Colorectal Medicine and Genetics, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Aung K Win
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter Gibbs
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Medical Oncology, Western Health, Melbourne, Victoria, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medial Research, Parkville, Victoria, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia; Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Dylan E O'Sullivan
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Darren R Brenner
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada; Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, Alberta, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Mark A Jenkins
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Carlton, Victoria, Australia
| | - Christophe Rosty
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Envoi Specialist Pathologists, Brisbane, Queensland, Australia; University of Queensland, Brisbane, Queensland, Australia
| | - Ingrid M Winship
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia; Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, The University of Melbourne, Parkville, Victoria, Australia; Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, Victoria, Australia.
| |
Collapse
|
32
|
Styk J, Pös Z, Pös O, Radvanszky J, Turnova EH, Buglyó G, Klimova D, Budis J, Repiska V, Nagy B, Szemes T. Microsatellite instability assessment is instrumental for Predictive, Preventive and Personalised Medicine: status quo and outlook. EPMA J 2023; 14:143-165. [PMID: 36866160 PMCID: PMC9971410 DOI: 10.1007/s13167-023-00312-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
A form of genomic alteration called microsatellite instability (MSI) occurs in a class of tandem repeats (TRs) called microsatellites (MSs) or short tandem repeats (STRs) due to the failure of a post-replicative DNA mismatch repair (MMR) system. Traditionally, the strategies for determining MSI events have been low-throughput procedures that typically require assessment of tumours as well as healthy samples. On the other hand, recent large-scale pan-tumour studies have consistently highlighted the potential of massively parallel sequencing (MPS) on the MSI scale. As a result of recent innovations, minimally invasive methods show a high potential to be integrated into the clinical routine and delivery of adapted medical care to all patients. Along with advances in sequencing technologies and their ever-increasing cost-effectiveness, they may bring about a new era of Predictive, Preventive and Personalised Medicine (3PM). In this paper, we offered a comprehensive analysis of high-throughput strategies and computational tools for the calling and assessment of MSI events, including whole-genome, whole-exome and targeted sequencing approaches. We also discussed in detail the detection of MSI status by current MPS blood-based methods and we hypothesised how they may contribute to the shift from conventional medicine to predictive diagnosis, targeted prevention and personalised medical services. Increasing the efficacy of patient stratification based on MSI status is crucial for tailored decision-making. Contextually, this paper highlights drawbacks both at the technical level and those embedded deeper in cellular/molecular processes and future applications in routine clinical testing.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia ,Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia
| | - Zuzana Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Ondrej Pös
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia
| | - Jan Radvanszky
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Institute of Clinical and Translational Research, Biomedical Research Centre, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia ,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| | - Evelina Hrckova Turnova
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Slovgen Ltd, 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Daniela Klimova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| | - Jaroslav Budis
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Slovak Centre of Scientific and Technical Information, 811 04 Bratislava, Slovakia
| | - Vanda Repiska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia ,Medirex Group Academy, NPO, 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Tomas Szemes
- Comenius University Science Park, 841 04 Bratislava, Slovakia ,Geneton Ltd, 841 04 Bratislava, Slovakia ,Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 841 04 Bratislava, Slovakia
| |
Collapse
|
33
|
Amemiya K, Hirotsu Y, Nagakubo Y, Watanabe S, Amemiya S, Mochizuki H, Oyama T, Kondo T, Omata M. Simple IHC reveals complex MMR alternations than PCR assays: Validation by LCM and next-generation sequencing. Cancer Med 2022; 11:4479-4490. [PMID: 35596629 PMCID: PMC9741978 DOI: 10.1002/cam4.4832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022] Open
Abstract
Evaluation of the status of mismatch repair (MMR) in tumors is crucial for determining the application of immune checkpoint inhibitors (ICIs). Conventional PCR (MSI-PCR) is the gold standard for confirming the MMR status. However, it requires visual confirmation and presents difficulties in determining MMR status. Immunohistochemistry (IHC) is a simple method and can confirming MMR protein expression in the whole tumor. We aim to investigate IHC is more suitable for evaluating MMR status in the tumor. We compared MSI-PCR and IHC by testing 319 samples from 284 patients across 14 cancer types. In discordant cases, we performed laser-capture microdissection and microsatellite instability assay by next-generation sequencing (MSI-NGS). The concordance rate between IHC and MSI-PCR testing was 98.1% (313/319). Two reasons for these discrepancies were ambiguous MSI-PCR results and heterogeneous MSI status within the tumor. Among six cases (1.9%), three were judged as MSI-H by MSI-PCR but with proficient MMR by IHC. The results of MSI-NGS revealed microsatellite stable in these three cases. The remaining three cases, two of three were MSI-H and one was MSS in whole tumor in MSI-PCR. IHC showed a "mosaic" pattern containing both proficient MMR and deficient MMR portions by IHC in all three cases. We performed microdissection and MSI-PCR and found intratumoral heterogeneity of MMR status. These results indicated the advantages of IHC and performed expanded samples (n = 1082) and two additional mosaic cases were identified. Our results clearly indicated that simple IHC is the best choice for determining MMR alterations in critical cases for ICIs treatment.
Collapse
Affiliation(s)
- Kenji Amemiya
- Division of Genetics and Clinical LaboratoryYamanashi Cental HospitalYamanashiJapan
- Genome Analysis CenterYamanashi Cental HospitalYamanashiJapan
- Department of Pathology, School of MedicineUniversity of YamanashiYamanashiJapan
| | - Yosuke Hirotsu
- Division of Genetics and Clinical LaboratoryYamanashi Cental HospitalYamanashiJapan
- Genome Analysis CenterYamanashi Cental HospitalYamanashiJapan
| | - Yuki Nagakubo
- Division of Genetics and Clinical LaboratoryYamanashi Cental HospitalYamanashiJapan
| | | | - Saki Amemiya
- Department of PathologyYamanashi Central HospitalYamanashiJapan
| | | | - Toshio Oyama
- Department of PathologyYamanashi Central HospitalYamanashiJapan
| | - Tetsuo Kondo
- Department of Pathology, School of MedicineUniversity of YamanashiYamanashiJapan
| | - Masao Omata
- Department of GastroenterologyYamanashi Central HospitalYamanashiJapan
- Department of GastroenterologyThe University of TokyoTokyoJapan
| |
Collapse
|
34
|
Hernandez-Sanchez A, Grossman M, Yeung K, Sei SS, Lipkin S, Kloor M. Vaccines for immunoprevention of DNA mismatch repair deficient cancers. J Immunother Cancer 2022; 10:e004416. [PMID: 35732349 PMCID: PMC9226910 DOI: 10.1136/jitc-2021-004416] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
The development of cancer vaccines to induce tumor-antigen specific immune responses was sparked by the identification of antigens specific to or overexpressed in cancer cells. However, weak immunogenicity and the mutational heterogeneity in many cancers have dampened cancer vaccine successes. With increasing information about mutational landscapes of cancers, mutational neoantigens can be predicted computationally to elicit strong immune responses by CD8 +cytotoxic T cells as major mediators of anticancer immune response. Neoantigens are potentially more robust immunogens and have revived interest in cancer vaccines. Cancers with deficiency in DNA mismatch repair have an exceptionally high mutational burden, including predictable neoantigens. Lynch syndrome is the most common inherited cancer syndrome and is caused by DNA mismatch repair gene mutations. Insertion and deletion mutations in coding microsatellites that occur during DNA replication include tumorigenesis drivers. The induced shift of protein reading frame generates neoantigens that are foreign to the immune system. Mismatch repair-deficient cancers and Lynch syndrome represent a paradigm population for the development of a preventive cancer vaccine, as the mutations induced by mismatch repair deficiency are predictable, resulting in a defined set of frameshift peptide neoantigens. Furthermore, Lynch syndrome mutation carriers constitute an identifiable high-risk population. We discuss the pathogenesis of DNA mismatch repair deficient cancers, in both Lynch syndrome and sporadic microsatellite-unstable cancers. We review evidence for pre-existing immune surveillance, the three mechanisms of immune evasion that occur in cancers and assess the implications of a preventive frameshift peptide neoantigen-based vaccine. We consider both preclinical and clinical experience to date. We discuss the feasibility of a cancer preventive vaccine for Lynch syndrome carriers and review current antigen selection and delivery strategies. Finally, we propose RNA vaccines as having robust potential for immunoprevention of Lynch syndrome cancers.
Collapse
Affiliation(s)
- Alejandro Hernandez-Sanchez
- Department of Applied Tumor Biology, University Hospital Heidelberg Institute of Pathology, Heidelberg, Germany
| | - Mark Grossman
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Kevin Yeung
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Shizuko S Sei
- Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USA
| | - Steven Lipkin
- Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Matthias Kloor
- University Hospital Heidelberg, Institute of Pathology, Department of Applied Tumor Biology, Heidelberg, Germany
| |
Collapse
|
35
|
Mas-Ponte D, McCullough M, Supek F. Spectrum of DNA mismatch repair failures viewed through the lens of cancer genomics and implications for therapy. Clin Sci (Lond) 2022; 136:383-404. [PMID: 35274136 PMCID: PMC8919091 DOI: 10.1042/cs20210682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022]
Abstract
Genome sequencing can be used to detect DNA repair failures in tumors and learn about underlying mechanisms. Here, we synthesize findings from genomic studies that examined deficiencies of the DNA mismatch repair (MMR) pathway. The impairment of MMR results in genome-wide hypermutation and in the 'microsatellite instability' (MSI) phenotype-occurrence of indel mutations at short tandem repeat (microsatellite) loci. The MSI status of tumors was traditionally assessed by molecular testing of a selected set of MS loci or by measuring MMR protein expression levels. Today, genomic data can provide a more complete picture of the consequences on genomic instability. Multiple computational studies examined somatic mutation distributions that result from failed DNA repair pathways in tumors. These include analyzing the commonly studied trinucleotide mutational spectra of single-nucleotide variants (SNVs), as well as of other features such as indels, structural variants, mutation clusters and regional mutation rate redistribution. The identified mutation patterns can be used to rigorously measure prevalence of MMR failures across cancer types, and potentially to subcategorize the MMR deficiencies. Diverse data sources, genomic and pre-genomic, from human and from experimental models, suggest there are different ways in which MMR can fail, and/or that the cell-type or genetic background may result in different types of MMR mutational patterns. The spectrum of MMR failures may direct cancer evolution, generating particular sets of driver mutations. Moreover, MMR affects outcomes of therapy by DNA damaging drugs, antimetabolites, nonsense-mediated mRNA decay (NMD) inhibitors, and immunotherapy by promoting either resistance or sensitivity, depending on the type of therapy.
Collapse
Affiliation(s)
- David Mas-Ponte
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Marcel McCullough
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute for Science and Technology, Baldiri Reixac 10, Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg Lluís Companys, 23, Barcelona 08010, Spain
| |
Collapse
|
36
|
Bleijenberg AGC, IJspeert JEG, Mulder JBG, Drillenburg P, Stel HV, Lodder EM, Carvalho B, Jansen J, Meijer G, van Eeden S, Dekker E, van Noesel CJM. The earliest events in BRAF-mutant colorectal cancer: exome sequencing of sessile serrated lesions with a tiny focus dysplasia or cancer reveals recurring mutations in two distinct progression pathways. J Pathol 2022; 257:239-249. [PMID: 35143042 PMCID: PMC9314978 DOI: 10.1002/path.5881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/18/2022] [Accepted: 02/08/2022] [Indexed: 11/13/2022]
Abstract
Around 15–30% of colorectal cancers (CRC) develop from sessile serrated lesions (SSLs). After many years of indolent growth, SSLs can develop dysplasia and rapidly progress to CRC through events that are only partially understood. We studied molecular events at the very early stages of progression of SSLs via the MLH1‐proficient and deficient pathways to CRC. We collected a cohort of rare SSLs with a small focus (<10 mm) of dysplasia or cancer from the pathology archives of three hospitals. Whole‐exome sequencing was performed on DNA from nonprogressed and progressed components of each SSL. Putative somatic driver mutations were identified in known cancer genes that were differentially mutated in the progressed component. All analyses were stratified by MLH1 proficiency. Forty‐five lesions with a focus dysplasia or cancer were included, of which 22 (49%) were MLH1‐deficient. Lesions had a median diameter of 10 mm (interquartile range [IQR] 8–15), while the progressed component had a median diameter of 3.5 mm (IQR 1.75–4.75). Tumor mutational burden (TMB) was high in MLH1‐deficient lesions (23.9 mutations per MB) as compared to MLH1‐proficient lesions (6.3 mutations per MB). We identified 34 recurrently mutated genes in MLH1‐deficient lesions. Most prominently, ACVR2A and RNF43 were affected in 18/22 lesions, with mutations clustered in three hotspots. Most lesions with RNF43 mutations had concurrent mutations in ZNRF3. In MLH1‐proficient lesions APC (10/23 lesions) and TP53 (6/23 lesions) were recurrently mutated. Our results show that the mutational burden is exceptionally high even in the earliest MLH1‐deficient lesions. We demonstrate that hotspot mutations in ACVR2A and in the RNF43/ZNRF3 complex are extremely common in the early progression of SSLs along the MLH1‐deficient serrated pathway, while APC and TP53 mutations are early events in the the MLH1‐proficient pathway. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Arne G C Bleijenberg
- Amsterdam University Medical Centers, location AMC, Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Joep E G IJspeert
- Amsterdam University Medical Centers, location AMC, Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Jos B G Mulder
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| | - Paul Drillenburg
- Onze Lieve Vrouwen Gasthuis (OLVG), Department of Pathology, Amsterdam, the Netherlands
| | - Herbert V Stel
- Tergooi Ziekenhuizen, Department of Pathology, Hilversum, the Netherlands
| | - Elisabeth M Lodder
- Amsterdam University Medical Centers, Core Facility Genomics, Department of Clinical Genetics, University of Amsterdam, Amsterdam, the Netherlands
| | - Beatriz Carvalho
- Netherlands Cancer Institute, Department of Pathology, Amsterdam, the Netherlands
| | - Jade Jansen
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| | - Gerrit Meijer
- Netherlands Cancer Institute, Department of Pathology, Amsterdam, the Netherlands
| | - Susanne van Eeden
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| | - Evelien Dekker
- Amsterdam University Medical Centers, location AMC, Department of Gastroenterology and Hepatology, Cancer Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Amsterdam University Medical Centers, location AMC, Department of Pathology, University of Amsterdam, the Netherlands
| |
Collapse
|
37
|
Farmanbar A, Firouzi S, Kneller R, Khiabanian H. Mutational signatures reveal ternary relationships between homologous recombination repair, APOBEC, and mismatch repair in gynecological cancers. J Transl Med 2022; 20:65. [PMID: 35109853 PMCID: PMC8812249 DOI: 10.1186/s12967-022-03259-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023] Open
Abstract
Background Revealing the impacts of endogenous and exogenous mutagenesis processes is essential for understanding the etiology of somatic genomic alterations and designing precise prognostication and treatment strategies for cancer. DNA repair deficiency is one of the main sources of endogenous mutagenesis and is increasingly recognized as a target for cancer therapeutics. The role and prevalence of mechanisms that underly different forms of DNA repair deficiencies and their interactions remain to be elucidated in gynecological malignancies. Methods We analyzed 1231 exomes and 268 whole-genomes from three major gynecological malignancies including uterine corpus endometrial carcinoma (UCEC) as well as ovarian and cervical cancers. We also analyzed data from 134 related cell lines. We extracted and compared de novo and refitted mutational signature profiles using complementary and confirmatory approaches and performed interaction analysis to detect co-occurring and mutually exclusive signatures. Results We found an inverse relationship between homologous recombination deficiency (HRd) and mismatch repair deficiency (MMRd). Moreover, APOBEC co-occurred with HRd but was mutually exclusive with MMRd. UCEC tumors were dominated by MMRd, yet a subset of them manifested the HRd and APOBEC signatures. Conversely, ovarian tumors were dominated by HRd, while a subset represented MMRd and APOBEC. In contrast to both, cervical tumors were dominated by APOBEC with a small subsets showing the POLE, HRd, and MMRd signatures. Although the type, prevalence, and heterogeneity of mutational signatures varied across the tumor types, the patterns of co-occurrence and exclusivity were consistently observed in all. Notably, mutational signatures in gynecological tumor cell lines reflected those detected in primary tumors. Conclusions Taken together, these analyses indicate that application of mutation signature analysis not only advances our understanding of mutational processes and their interactions, but also it has the potential to stratify patients that could benefit from treatments available for tumors harboring distinct mutational signatures and to improve clinical decision-making for gynecological malignancies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03259-0.
Collapse
Affiliation(s)
- Amir Farmanbar
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA
| | - Sanaz Firouzi
- Institute for Cancer Genetics, Columbia University, New York, NY, 10032, USA.
| | - Robert Kneller
- Research Center for Advanced Science and Technology, University of Tokyo, Minato-ku, Tokyo, 153-8904, Japan
| | - Hossein Khiabanian
- Center for Systems and Computational Biology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08903, USA. .,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
38
|
Legge D, Li L, Moriarty W, Lee D, Szemes M, Zahed A, Panousopoulos L, Chung WY, Aghabi Y, Barratt J, Williams R, Pritchard‐Jones K, Malik KT, Oltean S, Brown KW. The epithelial splicing regulator ESRP2 is epigenetically repressed by DNA hypermethylation in Wilms tumour and acts as a tumour suppressor. Mol Oncol 2022; 16:630-647. [PMID: 34520622 PMCID: PMC8807366 DOI: 10.1002/1878-0261.13101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/04/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Wilms tumour (WT), an embryonal kidney cancer, has been extensively characterised for genetic and epigenetic alterations, but a proportion of WTs still lack identifiable abnormalities. To uncover DNA methylation changes critical for WT pathogenesis, we compared the epigenome of foetal kidney with two WT cell lines, filtering our results to remove common cancer-associated epigenetic changes and to enrich for genes involved in early kidney development. This identified four hypermethylated genes, of which ESRP2 (epithelial splicing regulatory protein 2) was the most promising for further study. ESRP2 was commonly repressed by DNA methylation in WT, and this occurred early in WT development (in nephrogenic rests). ESRP2 expression was reactivated by DNA methyltransferase inhibition in WT cell lines. When ESRP2 was overexpressed in WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it suppressed tumour growth of orthotopic xenografts in nude mice. RNA-seq of the ESRP2-expressing WT cell lines identified several novel splicing targets. We propose a model in which epigenetic inactivation of ESRP2 disrupts the mesenchymal to epithelial transition in early kidney development to generate WT.
Collapse
Affiliation(s)
- Danny Legge
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Ling Li
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Whei Moriarty
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - David Lee
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Marianna Szemes
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Asef Zahed
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | | | - Wan Yun Chung
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Yara Aghabi
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Jasmin Barratt
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Richard Williams
- Cancer SectionUCL Great Ormond Street Institute of Child HealthLondonUK
| | | | - Karim T.A. Malik
- School of Cellular and Molecular MedicineUniversity of BristolUK
| | - Sebastian Oltean
- Institute of Biomedical & Clinical SciencesUniversity of Exeter Medical SchoolUK
| | - Keith W. Brown
- School of Cellular and Molecular MedicineUniversity of BristolUK
| |
Collapse
|
39
|
Hao P, Song KY, Wang SQ, Huang XJ, Yao DW, Yang DJ. ABCC9 Is Downregulated and Prone to Microsatellite Instability on ABCC9tetra in Canine Breast Cancer. Front Vet Sci 2022; 8:819293. [PMID: 35071399 PMCID: PMC8777218 DOI: 10.3389/fvets.2021.819293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Tumorigenesis is associated with metabolic abnormalities and genomic instability. Microsatellite mutations, including microsatellite instability (MSI) and loss of heterozygosity (LOH), are associated with the functional impairment of some tumor-related genes. To investigate the role of MSI and LOH in sporadic breast tumors in canines, 22 tumors DNA samples and their adjacent normal tissues were evaluated using polyacrylamide gel electrophoresis and silver staining for 58 microsatellites. Quantitative real-time polymerase chain reaction, promoter methylation analysis and immunohistochemical staining were used to quantify gene expression. The results revealed that a total of 14 tumors (6 benign tumors and 8 breast cancers) exhibited instability as MSI-Low tumors. Most of the microsatellite loci possessed a single occurrence of mutations. The maximum number of MSI mutations on loci was observed in tumors with a lower degree of differentiation. Among the unstable markers, FH2060 (4/22), ABCC9tetra (4/22) and SCN11A (6/22) were high-frequency mutation sites, whereas FH2060 was a high-frequency LOH site (4/22). The ABCC9tetra locus was mutated only in cancerous tissue, although it was excluded by transcription. The corresponding genes and proteins were significantly downregulated in malignant tissues, particularly in tumors with MSI. Furthermore, the promoter methylation results of the adenosine triphosphate binding cassette subfamily C member 9 (ABCC9) showed that there was a high level of methylation in breast tissues, but only one case showed a significant elevation compared with the control. In conclusion, MSI-Low or MSI-Stable is characteristic of most sporadic mammary tumors. Genes associated with tumorigenesis are more likely to develop MSI. ABCC9 protein and transcription abnormalities may be associated with ABCC9tetra instability.
Collapse
Affiliation(s)
- Pan Hao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kai-Yue Song
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Si-Qi Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Jun Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - De-Ji Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
40
|
Das A, Sudhaman S, Morgenstern D, Coblentz A, Chung J, Stone SC, Alsafwani N, Liu ZA, Karsaneh OAA, Soleimani S, Ladany H, Chen D, Zatzman M, Cabric V, Nobre L, Bianchi V, Edwards M, Sambira Nahum LC, Ercan AB, Nabbi A, Constantini S, Dvir R, Yalon-Oren M, Campino GA, Caspi S, Larouche V, Reddy A, Osborn M, Mason G, Lindhorst S, Bronsema A, Magimairajan V, Opocher E, De Mola RL, Sabel M, Frojd C, Sumerauer D, Samuel D, Cole K, Chiaravalli S, Massimino M, Tomboc P, Ziegler DS, George B, Van Damme A, Hijiya N, Gass D, McGee RB, Mordechai O, Bowers DC, Laetsch TW, Lossos A, Blumenthal DT, Sarosiek T, Yen LY, Knipstein J, Bendel A, Hoffman LM, Luna-Fineman S, Zimmermann S, Scheers I, Nichols KE, Zapotocky M, Hansford JR, Maris JM, Dirks P, Taylor MD, Kulkarni AV, Shroff M, Tsang DS, Villani A, Xu W, Aronson M, Durno C, Shlien A, Malkin D, Getz G, Maruvka YE, Ohashi PS, Hawkins C, Pugh TJ, Bouffet E, Tabori U. Genomic predictors of response to PD-1 inhibition in children with germline DNA replication repair deficiency. Nat Med 2022; 28:125-135. [PMID: 34992263 PMCID: PMC8799468 DOI: 10.1038/s41591-021-01581-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion–deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers (>100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10–100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in ‘immunologically cold’ tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy. Hypermutation and microsatellite burden determine responses and long-term survival following PD-1 blockade in children and young adults with refractory cancers resulting from germline DNA replication repair deficiency.
Collapse
Affiliation(s)
- Anirban Das
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatric Haematology/ Oncology, Tata Medical Centre, Kolkata, India
| | - Sumedha Sudhaman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Daniel Morgenstern
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Ailish Coblentz
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jiil Chung
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Simone C Stone
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Noor Alsafwani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Pathology, College of Medicine, Imam Abdulrahman Bin Faisal University (IAU), Dammam, Saudi Arabia
| | - Zhihui Amy Liu
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Ola Abu Al Karsaneh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Shirin Soleimani
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Hagay Ladany
- Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Tel-Aviv, Israel
| | - David Chen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Matthew Zatzman
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vanja Cabric
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Liana Nobre
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vanessa Bianchi
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Melissa Edwards
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lauren C Sambira Nahum
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ayse B Ercan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children's Hospital, Tel-Aviv, Israel
| | - Rina Dvir
- Department of Pediatric Hematology-Oncology, Tel-Aviv Sourasky Medical Centre, Tel-Aviv, Israel
| | - Michal Yalon-Oren
- Department of Pediatric Hematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | - Gadi Abebe Campino
- Department of Pediatric Hematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | - Shani Caspi
- Department of Pediatric Hematology-Oncology, Sheba Medical Centre, Ramat Gan, Israel
| | - Valerie Larouche
- Department of Paediatric Haematology/Oncology, Centre Hospitalier de Quebec-Universite Laval, Quebec City, Quebec, Canada
| | - Alyssa Reddy
- Departments of Neurology and Pediatrics, University of California, San Francisco, CA, USA
| | - Michael Osborn
- Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Gary Mason
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Scott Lindhorst
- Neuro-Oncology, Department of Neurosurgery, and Department of Medicine, Division of Hematology/Medical Oncology, Medical University of South Carolina, Charleston, SC, USA
| | - Annika Bronsema
- Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Vanan Magimairajan
- Department of Paediatric Haematology-Oncology, Cancer Care Manitoba, Research Institute in Oncology and Haematology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Enrico Opocher
- Paediatric Haematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Rebecca Loret De Mola
- Pediatric Hematology-Oncology, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Magnus Sabel
- Department of Paediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden.,Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Charlotta Frojd
- Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - David Sumerauer
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - David Samuel
- Department of Pediatric Oncology, Valley Children's Hospital, Madera, CA, USA
| | - Kristina Cole
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelpha, PA, USA
| | - Stefano Chiaravalli
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrick Tomboc
- Department of Pediatrics, J.W. Ruby Memorial Hospital - West Virginia University, Morgantown, WV, USA
| | - David S Ziegler
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Ben George
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - An Van Damme
- Department of Paediatric Haematology and Oncology, Saint Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Nobuko Hijiya
- Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Irving Medical Centre, New York, NY, USA
| | - David Gass
- Atrium Health Levine Children's Hospital, Charlotte, NC, USA
| | - Rose B McGee
- Cancer Predisposition Division, Oncology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Oz Mordechai
- Department of Pediatric Hematology Oncology, Rambam Health Care Campus, Haifa, Israel
| | - Daniel C Bowers
- Department of Pediatrics, The University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Theodore W Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelpha, PA, USA
| | - Alexander Lossos
- Department of Oncology, Leslie and Michael Gaffin Center for Neuro-Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Deborah T Blumenthal
- Neuro-Oncology Service, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | | | - Lee Yi Yen
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jeffrey Knipstein
- Division of Pediatric Hematology/ Oncology/ BMT, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anne Bendel
- Department of Pediatric Hematology-Oncology, Children's Hospitals and Clinics of Minnesota, St Paul, MN, USA
| | | | - Sandra Luna-Fineman
- Department of Pediatrics, Anschutz Medical Campus, Children's Hospital of Colorado, Aurora, CO, USA
| | - Stefanie Zimmermann
- Paediatric Haematology and Oncology, University Hospital Frankfurt, Frankfurt, Germany
| | - Isabelle Scheers
- Paediatric Gastroenterology, Hepatology and Nutrition Unit, Cliniques Universitaires St Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Kim E Nichols
- Cancer Predisposition Division, Oncology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Michal Zapotocky
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Motol University Hospital, Charles University, Prague, Czech Republic
| | - Jordan R Hansford
- Children's Cancer Centre, Royal Children's Hospital, Murdoch Children's Research Institute, University of Melbourne, Parkville, Victoria, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelpha, PA, USA
| | - Peter Dirks
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.,Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abhaya V Kulkarni
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, Ontario, Canada.,Child Health Evaluative Sciences, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Manohar Shroff
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Derek S Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Anita Villani
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Melyssa Aronson
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carol Durno
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Adam Shlien
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - David Malkin
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gad Getz
- Massachusetts General Hospital Cancer Center and Department of Pathology, Charlestown, MA, USA.,Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Yosef E Maruvka
- Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Tel-Aviv, Israel
| | - Pamela S Ohashi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Eric Bouffet
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada. .,The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. .,Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
41
|
Chang K, McAllister F, Vilar E. Transcriptomic-Assisted Immune and Neoantigen Profiling in Premalignancy. Methods Mol Biol 2022; 2435:95-105. [PMID: 34993941 PMCID: PMC11073470 DOI: 10.1007/978-1-0716-2014-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Immune-based cancer therapies such as checkpoint inhibitors (CPI) and vaccines have been increasingly studied across different cancer types. Response to such therapies depends on a number of factors such as mutational burden, neoantigen load, presence of tumor infiltrating lymphocytes, among others. Next-generation sequencing (NGS) technologies are particularly attractive to interrogate the immune response compared to traditional assays such as qRT-PCR and immunohistochemistry (IHC) because they enable the discovery of neoantigens and simultaneous profiling of immune infiltration using gene expression on a large scale. Current approaches in immune profiling utilizes whole-exome sequencing (WES) for human leukocyte allele (HLA) typing and neoantigen predictions, and RNA sequencing (RNA-seq) for filtering unexpressed neoantigens and inferring immune infiltration. They have been successfully applied to the tumor setting as there is abundant sample material to perform both experiments. However, premalignant specimens are often much smaller compared to tumors. Therefore, there is a need to explore the viability of adopting a single approach for immune, neoantigen, and mutation profiling. Here, we describe our workflow of using RNA-seq to analyze mutational burden, neoantigen load, and immune expression profile.
Collapse
Affiliation(s)
- Kyle Chang
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Florencia McAllister
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Departments of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Perne C, Peters S, Cartolano M, Horpaopan S, Grimm C, Altmüller J, Sommer AK, Hillmer AM, Thiele H, Odenthal M, Möslein G, Adam R, Sivalingam S, Kirfel J, Schweiger MR, Peifer M, Spier I, Aretz S. Variant profiling of colorectal adenomas from three patients of two families with MSH3-related adenomatous polyposis. PLoS One 2021; 16:e0259185. [PMID: 34843512 PMCID: PMC8629245 DOI: 10.1371/journal.pone.0259185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
The spectrum of somatic genetic variation in colorectal adenomas caused by biallelic pathogenic germline variants in the MSH3 gene, was comprehensively analysed to characterise mutational signatures and identify potential driver genes and pathways of MSH3-related tumourigenesis. Three patients from two families with MSH3-associated polyposis were included. Whole exome sequencing of nine adenomas and matched normal tissue was performed. The amount of somatic variants in the MSH3-deficient adenomas and the pattern of single nucleotide variants (SNVs) was similar to sporadic adenomas, whereas the fraction of small insertions/deletions (indels) (21-42% of all small variants) was significantly higher. Interestingly, pathogenic somatic APC variants were found in all but one adenoma. The vast majority (12/13) of these were di-, tetra-, or penta-base pair (bp) deletions. The fraction of APC indels was significantly higher than that reported in patients with familial adenomatous polyposis (FAP) (p < 0.01) or in sporadic adenomas (p < 0.0001). In MSH3-deficient adenomas, the occurrence of APC indels in a repetitive sequence context was significantly higher than in FAP patients (p < 0.01). In addition, the MSH3-deficient adenomas harboured one to five (recurrent) somatic variants in 13 established or candidate driver genes for early colorectal carcinogenesis, including ACVR2A and ARID genes. Our data suggest that MSH3-related colorectal carcinogenesis seems to follow the classical APC-driven pathway. In line with the specific function of MSH3 in the mismatch repair (MMR) system, we identified a characteristic APC mutational pattern in MSH3-deficient adenomas, and confirmed further driver genes for colorectal tumourigenesis.
Collapse
Affiliation(s)
- Claudia Perne
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Sophia Peters
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Maria Cartolano
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Sukanya Horpaopan
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Christina Grimm
- Institute for Translational Epigenetics, Medical Faculty and University Clinic Cologne, University of Cologne, Cologne, Germany
| | - Janine Altmüller
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
- Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Anna K. Sommer
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
| | - Axel M. Hillmer
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), Faculty of Medicine, University of Cologne, University Hospital Cologne, Cologne, Germany
| | - Margarete Odenthal
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gabriela Möslein
- Zentrum für Hereditäre Tumore, BETHESDA Khs. Duisburg, Duisburg, Germany
| | - Ronja Adam
- Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Sugirthan Sivalingam
- Core Unit for Bioinformatics Data Analysis, Medical Faculty, University of Bonn, Bonn, Germany
- Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Lübeck, Lübeck, Germany
| | - Michal R. Schweiger
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute for Translational Epigenetics, Medical Faculty and University Clinic Cologne, University of Cologne, Cologne, Germany
| | - Martin Peifer
- Department of Translational Genomics, Center of Integrated Oncology Cologne-Bonn, Medical Faculty, University of Cologne, Cologne, Germany
| | - Isabel Spier
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| | - Stefan Aretz
- Institute of Human Genetics, Medical Faculty, University of Bonn, Bonn, Germany
- Center for Hereditary Tumor Syndromes, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
43
|
Roudko V, Cimen Bozkus C, Greenbaum B, Lucas A, Samstein R, Bhardwaj N. Lynch Syndrome and MSI-H Cancers: From Mechanisms to "Off-The-Shelf" Cancer Vaccines. Front Immunol 2021; 12:757804. [PMID: 34630437 PMCID: PMC8498209 DOI: 10.3389/fimmu.2021.757804] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022] Open
Abstract
Defective DNA mismatch repair (dMMR) is associated with many cancer types including colon, gastric, endometrial, ovarian, hepatobiliary tract, urinary tract, brain and skin cancers. Lynch syndrome - a hereditary cause of dMMR - confers increased lifetime risk of malignancy in different organs and tissues. These Lynch syndrome pathogenic alleles are widely present in humans at a 1:320 population frequency of a single allele and associated with an up to 80% risk of developing microsatellite unstable cancer (microsatellite instability - high, or MSI-H). Advanced MSI-H tumors can be effectively treated with checkpoint inhibitors (CPI), however, that has led to response rates of only 30-60% despite their high tumor mutational burden and favorable immune gene signatures in the tumor microenvironment (TME). We and others have characterized a subset of MSI-H associated highly recurrent frameshift mutations that yield shared immunogenic neoantigens. These frameshifts might serve as targets for off-the-shelf cancer vaccine designs. In this review we discuss the current state of research around MSI-H cancer vaccine development, its application to MSI-H and Lynch syndrome cancer patients and the utility of MSI-H as a biomarker for CPI therapy. We also summarize the tumor intrinsic mechanisms underlying the high occurrence rates of certain frameshifts in MSI-H. Finally, we provide an overview of pivotal clinical trials investigating MSI-H as a biomarker for CPI therapy and MSI-H vaccines. Overall, this review aims to inform the development of novel research paradigms and therapeutics.
Collapse
Affiliation(s)
- Vladimir Roudko
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cansu Cimen Bozkus
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Benjamin Greenbaum
- Epidemiology and Biostatistics, Computational Oncology program, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Physiology, Biophysics & Systems Biology, Weill Cornell Medical College, New York, NY, United States
| | - Aimee Lucas
- Henry D. Janowitz Division of Gastroenterology, Samuel D. Bronfman Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Samstein
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Radiation Oncology, Mount Sinai Hospital, New York, NY, United States
| | - Nina Bhardwaj
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
44
|
Wu W, Liu Y, Zeng S, Han Y, Shen H. Intratumor heterogeneity: the hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes. J Hematol Oncol 2021; 14:160. [PMID: 34620200 PMCID: PMC8499512 DOI: 10.1186/s13045-021-01166-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
In this era of precision medicine, with the help of biomarkers, immunotherapy has significantly improved prognosis of many patients with malignant tumor. Deficient mismatch repair (dMMR)/microsatellite instability (MSI) status is used as a biomarker in clinical practice to predict favorable response to immunotherapy and prognosis. MSI is an important characteristic which facilitates mutation and improves the likelihood of a favorable response to immunotherapy. However, many patients with dMMR/MSI still respond poorly to immunotherapies, which partly results from intratumor heterogeneity propelled by dMMR/MSI. In this review, we discuss how dMMR/MSI facilitates mutations in tumor cells and generates intratumor heterogeneity, especially through type II interferon (IFN-γ) signaling and tumor-infiltrating lymphocytes (TILs). We discuss the mechanism of immunotherapy from the perspective of dMMR/MSI, molecular pathways and TILs, and we discuss how intratumor heterogeneity hinders the therapeutic effect of immunotherapy. Finally, we summarize present techniques and strategies to look at the tumor as a whole to design personalized regimes and achieve favorable prognosis.
Collapse
Affiliation(s)
- Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Yihan Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Ying Han
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China, 410008.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| |
Collapse
|
45
|
Reardon B, Moore ND, Moore NS, Kofman E, AlDubayan SH, Cheung ATM, Conway J, Elmarakeby H, Imamovic A, Kamran SC, Keenan T, Keliher D, Konieczkowski DJ, Liu D, Mouw KW, Park J, Vokes NI, Dietlein F, Van Allen EM. Integrating molecular profiles into clinical frameworks through the Molecular Oncology Almanac to prospectively guide precision oncology. NATURE CANCER 2021; 2:1102-1112. [PMID: 35121878 PMCID: PMC9082009 DOI: 10.1038/s43018-021-00243-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Tumor molecular profiling of single gene-variant ('first-order') genomic alterations informs potential therapeutic approaches. Interactions between such first-order events and global molecular features (for example, mutational signatures) are increasingly associated with clinical outcomes, but these 'second-order' alterations are not yet accounted for in clinical interpretation algorithms and knowledge bases. We introduce the Molecular Oncology Almanac (MOAlmanac), a paired clinical interpretation algorithm and knowledge base to enable integrative interpretation of multimodal genomic data for point-of-care decision making and translational-hypothesis generation. We benchmarked MOAlmanac to a first-order interpretation method across multiple retrospective cohorts and observed an increased number of clinical hypotheses from evaluation of molecular features and profile-to-cell line matchmaking. When applied to a prospective precision oncology trial cohort, MOAlmanac nominated a median of two therapies per patient and identified therapeutic strategies administered in 47% of patients. Overall, we present an open-source computational method for integrative clinical interpretation of individualized molecular profiles.
Collapse
Affiliation(s)
- Brendan Reardon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathanael D Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Indiana University School of Medicine, Indianapolis, IN, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Nicholas S Moore
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Eric Kofman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Saud H AlDubayan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Alexander T M Cheung
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Jake Conway
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Haitham Elmarakeby
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of System and Computer Engineering, Al-Azhar University, Cairo, Egypt
| | - Alma Imamovic
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Sophia C Kamran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya Keenan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel Keliher
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mathematics, Tufts University, Medford, MA, USA
| | - David J Konieczkowski
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute & Brigham and Women's Hospital, Boston, MA, USA
- Harvard Radiation Oncology Program, Massachusetts General Hospital, Boston, MA, USA
- Department of Radiation Oncology, the Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, Columbus, OH, USA
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kent W Mouw
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute & Brigham and Women's Hospital, Boston, MA, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Natalie I Vokes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Thoracic/Head and Neck Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Felix Dietlein
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
46
|
Luo Y, Alexander M, Gadina M, O'Shea JJ, Meylan F, Schwartz DM. JAK-STAT signaling in human disease: From genetic syndromes to clinical inhibition. J Allergy Clin Immunol 2021; 148:911-925. [PMID: 34625141 PMCID: PMC8514054 DOI: 10.1016/j.jaci.2021.08.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022]
Abstract
Since its discovery, the Janus kinase-signal transduction and activation of transcription (JAK-STAT) pathway has become recognized as a central mediator of widespread and varied human physiological processes. The field of JAK-STAT biology, particularly its clinical relevance, continues to be shaped by 2 important advances. First, the increased use of genomic sequencing has led to the discovery of novel clinical syndromes caused by mutations in JAK and STAT genes. This has provided insights regarding the consequences of aberrant JAK-STAT signaling for immunity, lymphoproliferation, and malignancy. In addition, since the approval of ruxolitinib and tofacitinib, the therapeutic use of JAK inhibitors (jakinibs) has expanded to include a large spectrum of diseases. Efficacy and safety data from over a decade of clinical studies have provided additional mechanistic insights while improving the care of patients with inflammatory and neoplastic conditions. This review discusses major advances in the field, focusing on updates in genetic diseases and in studies of clinical jakinibs in human disease.
Collapse
Affiliation(s)
- Yiming Luo
- Vasculitis Translational Research Program, Systemic Autoimmunity Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Madison Alexander
- Translational Immunology Section, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Massimo Gadina
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Francoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
47
|
Grant RC, Denroche R, Jang GH, Nowak KM, Zhang A, Borgida A, Holter S, Topham JT, Wilson J, Dodd A, Jang R, Prince R, Karasinska JM, Schaeffer DF, Wang Y, Zogopoulos G, Berry S, Simeone D, Renouf DJ, Notta F, O'Kane G, Knox J, Fischer S, Gallinger S. Clinical and genomic characterisation of mismatch repair deficient pancreatic adenocarcinoma. Gut 2021; 70:1894-1903. [PMID: 32933947 DOI: 10.1136/gutjnl-2020-320730] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 08/05/2020] [Accepted: 08/09/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To describe the clinical, pathological and genomic characteristics of pancreatic cancer with DNA mismatch repair deficiency (MMRD) and proficiency (MMRP). DESIGN We identified patients with MMRD and MMRP pancreatic cancer in a clinical cohort (N=1213, 519 with genetic testing, 53 with immunohistochemistry (IHC)) and a genomic cohort (N=288 with whole-genome sequencing (WGS)). RESULTS 12 out of 1213 (1.0%) in the clinical cohort were MMRD by IHC or WGS. Of the 14 patients with Lynch syndrome, 3 (21.4%) had an MMRP pancreatic cancer by IHC, and 4 (28.6%) were excluded because tissue was unavailable for testing. MMRD cancers had longer overall survival after surgery (weighted HR after coarsened exact matching 0.11, 95% CI 0.02 to 0.78, p=0.001). One patient with an unresectable MMRD cancer has an ongoing partial response 3 years after starting treatment with PD-L1/CTLA-4 inhibition. This tumour showed none of the classical histopathological features of MMRD. 9 out of 288 (3.1%) tumours with WGS were MMRD. Despite markedly higher tumour mutational burden and neoantigen loads, MMRD cancers were significantly less likely to have mutations in usual pancreatic cancer driver genes like KRAS and SMAD4, but more likely to have mutations in genes that drive cancers with microsatellite instability like ACV2RA and JAK1. MMRD tumours were significantly more likely to have a basal-like transcriptional programme and elevated transcriptional markers of immunogenicity. CONCLUSIONS MMRD pancreatic cancers have distinct clinical, pathological and genomic profiles. Patients with MMRD pancreatic cancer should be considered for basket trials targeting enhanced immunogenicity or the unique genomic drivers in these malignancies.
Collapse
Affiliation(s)
- Robert C Grant
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Robert Denroche
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Klaudia M Nowak
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Ayelet Borgida
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Spring Holter
- Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | - Julie Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Anna Dodd
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Raymond Jang
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Rebecca Prince
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | | | | | - Yifan Wang
- Goodman Cancer Research Centre, Montreal, Quebec, Canada
| | | | - Scott Berry
- Department of Oncology, Queen's University, Kingston, Ontario, Canada
| | | | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, Ontario, Canada.,BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne O'Kane
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Jennifer Knox
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada
| | - Sandra Fischer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada .,Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Hospital Cancer Centre, Toronto, Ontario, Canada.,Ontario Pancreas Cancer Study, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
48
|
Cooke DP, Wedge DC, Lunter G. A unified haplotype-based method for accurate and comprehensive variant calling. Nat Biotechnol 2021; 39:885-892. [PMID: 33782612 PMCID: PMC7611855 DOI: 10.1038/s41587-021-00861-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/18/2021] [Indexed: 01/31/2023]
Abstract
Almost all haplotype-based variant callers were designed specifically for detecting common germline variation in diploid populations, and give suboptimal results in other scenarios. Here we present Octopus, a variant caller that uses a polymorphic Bayesian genotyping model capable of modeling sequencing data from a range of experimental designs within a unified haplotype-aware framework. Octopus combines sequencing reads and prior information to phase-called genotypes of arbitrary ploidy, including those with somatic mutations. We show that Octopus accurately calls germline variants in individuals, including single nucleotide variants, indels and small complex replacements such as microinversions. Using a synthetic tumor data set derived from clean sequencing data from a sample with known germline haplotypes and observed mutations in a large cohort of tumor samples, we show that Octopus is more sensitive to low-frequency somatic variation, yet calls considerably fewer false positives than other methods. Octopus also outputs realigned evidence BAM files to aid validation and interpretation.
Collapse
Affiliation(s)
- Daniel P Cooke
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - David C Wedge
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Epidemiology, University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
49
|
Huo X, Xiao X, Zhang S, Du X, Li C, Bai Z, Chen Z. Characterization and clinical evaluation of microsatellite instability and loss of heterozygosity in tumor-related genes in gastric cancer. Oncol Lett 2021; 21:430. [PMID: 33868468 PMCID: PMC8045158 DOI: 10.3892/ol.2021.12691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 02/10/2021] [Indexed: 12/24/2022] Open
Abstract
Microsatellite instability (MSI) detection is widely used in the diagnosis and prognosis evaluation of colorectal cancer. However, for gastric cancer (GC), there is no standard panel of microsatellites (MSs) used in clinical guidance. The present study aimed to identify useful predictors of the clinical features and for the prognosis of GC, based on an investigation of MSI and loss of heterozygosity (LOH) in tumor-related genes. First, from 20 tumor-related genes which were proven to be important to the development of GC, 91 MSs were identified, and PCR amplification, short tandem repeat scanning analysis and TA clone sequencing were used to analyze MSI and LOH in the first set of 90 GC samples. Subsequently, the same method was used to detect the MSI/LOH of the optimized loci in the second set of 136 GC samples. MSI/LOH in the mismatch repair genes was highly consistent with that in oncogenes and tumor suppressor genes, respectively. The length of the core sequence was a main factor for the MSI/LOH rate. The MSI of 12 single loci was significantly associated with lymph node metastasis. The MSI in TP53-1 and the LOH in MGMT-10 were significantly associated with early stages of tumor infiltration depth. The LOH in MGMT-10, PTN-2 and MCC-17 was significantly associated with TNM stage. The LOH in TP53-1 and ERBB2-12 was associated with adenocarcinoma. The MSI/LOH in 6 single loci of 5 tumor-related genes was associated with poor prognosis of GC. The present study demonstrated that the MSI/LOH of loci in tumor-associated genes was associated with 4 clinicopathological characteristics and outcomes of GC. These results may provide potential specific biomarkers for the clinical prediction and treatment of GC.
Collapse
Affiliation(s)
- Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
- Tumor Model Laboratory, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Xiaoqin Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
- Tumor Model Laboratory, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Shuangyue Zhang
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
- Tumor Model Laboratory, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
- Tumor Model Laboratory, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
- Tumor Model Laboratory, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| | - Zhigang Bai
- Tumor Model Laboratory, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
- Department of General Surgery, National Clinical Research Center for Digestive Diseases, Beijing 100050, P.R. China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
- Tumor Model Laboratory, Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Beijing 100069, P.R. China
| |
Collapse
|
50
|
Distinct Mutational Profile of Lynch Syndrome Colorectal Cancers Diagnosed under Regular Colonoscopy Surveillance. J Clin Med 2021; 10:jcm10112458. [PMID: 34206061 PMCID: PMC8198627 DOI: 10.3390/jcm10112458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Regular colonoscopy even with short intervals does not prevent all colorectal cancers (CRC) in Lynch syndrome (LS). In the present study, we asked whether cancers detected under regular colonoscopy surveillance (incident cancers) are phenotypically different from cancers detected at first colonoscopy (prevalent cancers). We analyzed clinical, histological, immunological and mutational characteristics, including panel sequencing and high-throughput coding microsatellite (cMS) analysis, in 28 incident and 67 prevalent LS CRCs (n total = 95). Incident cancers presented with lower UICC and T stage compared to prevalent cancers (p < 0.0005). The majority of incident cancers (21/28) were detected after previous colonoscopy without any pathological findings. On the molecular level, incident cancers presented with a significantly lower KRAS codon 12/13 (1/23, 4.3% vs. 11/21, 52%; p = 0.0005) and pathogenic TP53 mutation frequency (0/17, 0% vs. 7/21, 33.3%; p = 0.0108,) compared to prevalent cancers; 10/17 (58.8%) incident cancers harbored one or more truncating APC mutations, all showing mutational signatures of mismatch repair (MMR) deficiency. The proportion of MMR deficiency-related mutational events was significantly higher in incident compared to prevalent CRC (p = 0.018). In conclusion, our study identifies a set of features indicative of biological differences between incident and prevalent cancers in LS, which should further be monitored in prospective LS screening studies to guide towards optimized prevention protocols.
Collapse
|