1
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
2
|
Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:5163-5184. [PMID: 32337628 DOI: 10.1007/s00253-020-10602-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
Abstract
Consolidated bioprocessing (CBP) of lignocellulosic material into bioethanol has progressed in the past decades; however, several challenges still exist which impede the industrial application of this technology. Identifying the challenges that exist in all unit operations is crucial and needs to be optimised, but only the barriers related to the secretion of recombinant cellulolytic enzymes in Saccharomyces cerevisiae will be addressed in this review. Fundamental principles surrounding CBP as a biomass conversion platform have been established through the successful expression of core cellulolytic enzymes, namely β-glucosidases, endoglucanases, and exoglucanases (cellobiohydrolases) in S. cerevisiae. This review will briefly address the challenges involved in the construction of an efficient cellulolytic yeast, with particular focus on the secretion efficiency of cellulases from this host. Additionally, strategies for studying enhanced cellulolytic enzyme secretion, which include both rational and reverse engineering approaches, will be discussed. One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development. Furthermore, with the advancement in next-generation sequencing, studies that utilise this method of exploiting intra-strain diversity for industrially relevant traits will be reviewed. Finally, future prospects are discussed for the creation of ideal CBP strains with high enzyme production levels.Key Points• Several challenges are involved in the construction of efficient cellulolytic yeast, in particular, the secretion efficiency of cellulases from the hosts.• Strategies for enhancing cellulolytic enzyme secretion, a core requirement for CBP host microorganism development, include both rational and reverse engineering approaches.• One such technique includes bio-engineering within genetically diverse strains, combining the strengths of both natural strain diversity and rational strain development.
Collapse
|
3
|
Yun CR, Kong JN, Chung JH, Kim MC, Kong KH. Improved Secretory Production of the Sweet-Tasting Protein, Brazzein, in Kluyveromyces lactis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6312-6316. [PMID: 27465609 DOI: 10.1021/acs.jafc.6b02446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Brazzein is an intensely sweet protein with high stability over a wide range of pH values and temperatures, due to its four disulfide bridges. Recombinant brazzein production through secretory expression in Kluyveromyces lactis is reported, but is inefficient due to incorrect disulfide formation, which is crucial for achieving the final protein structure and stability. Protein disulfide bond formation requires protein disulfide isomerase (PDI) and Ero1p. Here, we overexpressed KlPDI in K. lactis or treated the cells with dithiothreitol to overexpress KlERO1 and improve brazzein secretion. KlPDI and KlERO1 overexpression independently increased brazzein secretion in K. lactis by 1.7-2.2- and 1.3-1.6-fold, respectively. Simultaneous overexpression of KlPDI and KlERO1 accelerated des-pE1M-brazzein secretion by approximately 2.6-fold compared to the previous system. Moreover, intracellular misfolded/unfolded recombinant des-pE1M-brazzein was significantly decreased. In conclusion, increased KlPDI and KlERO1 expression favors brazzein secretion, suggesting that correct protein folding may be crucial to brazzein secretion in K. lactis.
Collapse
Affiliation(s)
- Cho-Rong Yun
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Ji-Na Kong
- Department of Neuroscience and Regenerative Medicine, Medical College of George, Augusta University , Augusta, Georgia 30912, United States
| | - Ju-Hee Chung
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Myung-Chul Kim
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| | - Kwang-Hoon Kong
- Laboratory of Biomolecular Chemistry, Department of Chemistry, College of Natural Sciences, Chung-Ang University , 221 Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
| |
Collapse
|
4
|
Kim H, Yoo SJ, Kang HA. Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 2015; 15:1-16. [PMID: 25130199 DOI: 10.1111/1567-1364.12195] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2014] [Accepted: 08/05/2014] [Indexed: 11/29/2022] Open
Abstract
The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins.
Collapse
Affiliation(s)
- Hyunah Kim
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Su Jin Yoo
- Department of Life Science, Chung-Ang University, Seoul, Korea
| | - Hyun Ah Kang
- Department of Life Science, Chung-Ang University, Seoul, Korea
| |
Collapse
|
5
|
Hou J, Tyo KE, Liu Z, Petranovic D, Nielsen J. Metabolic engineering of recombinant protein secretion by Saccharomyces cerevisiae. FEMS Yeast Res 2012; 12:491-510. [DOI: 10.1111/j.1567-1364.2012.00810.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/19/2012] [Accepted: 04/22/2012] [Indexed: 01/02/2023] Open
Affiliation(s)
| | | | - Zihe Liu
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Dina Petranovic
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering; Chalmers University of Technology; Göteborg; Sweden
| |
Collapse
|
6
|
Vad R, Nafstad E, Dahl LA, Gabrielsen OS. Engineering of a Pichia pastoris expression system for secretion of high amounts of intact human parathyroid hormone. J Biotechnol 2005; 116:251-60. [PMID: 15707686 DOI: 10.1016/j.jbiotec.2004.12.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 11/19/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
Human parathyroid hormone (hPTH) is involved in calcium metabolism, and the unique ability of this hormone to stimulate bone growth makes it a promising agent in the treatment of osteoporosis. We have engineered the methylotrophic yeast Pichia pastoris for the production of over 300 mg intact hPTH per liter growth medium. The presence of 10 mM EDTA in the culture medium was essential to obtain this high hormone yield, indicating that metallopeptidases are mainly responsible for the otherwise instability of hPTH. Furthermore, the secretion process of hPTH was considerably improved by coexpression of Saccharomyces cerevisiae protein disulphide isomerase (ScPDI). Since hPTH does not contain any cystein residues, this effect may be indirect or ascribed to the chaperone activity of PDI. Contrary to the situation in S. cerevisiae, use of a protease-deficient host strain provided no additional advantage. The hormone secreted by P. pastoris was not subjected to proteolytic processing by Kex2p in the two internal tribasic sites, nor were any C-terminal truncated hPTH forms detected. However, the P. pastoris hPTH producing transformants cosecreted ubiquitin to the culture medium, possibly as a result of a stress-related response.
Collapse
Affiliation(s)
- Randi Vad
- Department of Molecular Biosciences, University of Oslo, P.O. Box 1041 Blindern, N-0316 Oslo, Norway.
| | | | | | | |
Collapse
|
7
|
Mattanovich D, Gasser B, Hohenblum H, Sauer M. Stress in recombinant protein producing yeasts. J Biotechnol 2004; 113:121-35. [PMID: 15380652 DOI: 10.1016/j.jbiotec.2004.04.035] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2003] [Revised: 04/07/2004] [Accepted: 04/16/2004] [Indexed: 11/27/2022]
Abstract
It is well established today that heterologous overexpression of proteins is connected with different stress reactions. The expression of a foreign protein at a high level may either directly limit other cellular processes by competing for their substrates, or indirectly interfere with metabolism, if their manufacture is blocked, thus inducing a stress reaction of the cell. Especially the unfolded protein response (UPR) in Saccharomyces cerevisiae (as well as some other yeasts) is well documented, and its role for the limitation of expression levels is discussed. One potential consequence of endoplasmatic reticulum folding limitations is the ER associated protein degradation (ERAD) involving retrotranslocation and decay in the cytosol. High cell density fermentation, the typical process design for recombinant yeasts, exerts growth conditions that deviate far from the natural environment of the cells. Thus, different environmental stresses may be exerted on the host. High osmolarity, low pH and low temperature are typical stress factors. Whereas the molecular pathways of stress responses are well characterized, there is a lack of knowledge concerning the impact of stress responses on industrial production processes. Accordingly, most metabolic engineering approaches conducted so far target at the improvement of protein folding and secretion, whereas only few examples of cell engineering against general stress sensitivity were published. Apart from discussing well-documented stress reactions of yeasts in the context of heterologous protein production, some more speculative topics like quorum sensing and apoptosis are addressed.
Collapse
Affiliation(s)
- Diethard Mattanovich
- Institute of Applied Microbiology, BOKU--University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | | | |
Collapse
|
8
|
Bao WG, Fukuhara H. Secretion of human proteins from yeast: stimulation by duplication of polyubiquitin and protein disulfide isomerase genes in Kluyveromyces lactis. Gene 2001; 272:103-10. [PMID: 11470515 DOI: 10.1016/s0378-1119(01)00564-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The efficiency of secreted production of mammalian proteins from yeasts remains unpredictably variable, depending on each protein. On the hypothesis that the control of protein conformation during protein translocation is the bottleneck in many cases, we examined the effects of an increased dosage of the genes coding for protein disulfide isomerase and of polyubiquitin on the secretion of two human proteins, serumalbumin and interleukin 1 beta. The yeast Kluyveromyces lactis was used as a production host. Duplication of either one of these genes had a strong stimulating effect on the production of the highly disulfide-bonded serumalbumin, but not of interleukin 1 beta.
Collapse
Affiliation(s)
- W G Bao
- Institut Curie, Section de Recherche, UMR 2027, Bâtiment 110, Centre Universitaire Paris XI, Orsay 91405, France
| | | |
Collapse
|
9
|
Bourbonnais Y, Larouche C, Tremblay GM. Production of full-length human pre-elafin, an elastase specific inhibitor, from yeast requires the absence of a functional yapsin 1 (Yps1p) endoprotease. Protein Expr Purif 2000; 20:485-91. [PMID: 11087688 DOI: 10.1006/prep.2000.1338] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pre-elafin, also known as trappin-2, is an elastase-specific inhibitor that belongs to the trappin gene family. A chimeric gene encoding polyhistidine-tagged human pre-elafin fused to the yeast alpha-factor precursor was expressed in Saccharomyces cerevisiae. The chimera was engineered to keep a single copy of the mature alpha-factor peptide. This enabled the use of a simple bioassay (mating assay) to assess the relative efficiency of both the expression and the secretion of the recombinant molecule. We found that pre-elafin is processed both in vivo and in vitro by yapsin 1, the yeast aspartyl endoprotease encoded by YPS1. Cleavage by yapsin 1 occurred C-terminal to a subset of single lysine residues. Expression in a yapsin 1-deficient yeast strain was an indispensable condition to allow the efficient production of full-length human pre-elafin. The recombinant inhibitor was purified from concentrated culture medium by ammonium sulfate precipitation, affinity purification on a Ni(2+) resin, and cation exchange chromatography. Recombinant human pre-elafin was fully active and showed the same inhibitory profile toward different serine proteases to that reported for mature elafin.
Collapse
Affiliation(s)
- Y Bourbonnais
- Département de biochimie et de microbiologie, la Structure et l'Ingénierie des Protéines (CREFSIP), niversité Laval, Quebec City, Canada G1K 7P4
| | | | | |
Collapse
|
10
|
Kim KY, Lim HK, Lee KJ, Park DH, Kang KW, Chung SI, Jung KH. Production and characterization of recombinant guamerin, an elastase-specific inhibitor, in the methylotrophic yeast Pichia pastoris. Protein Expr Purif 2000; 20:1-9. [PMID: 11035944 DOI: 10.1006/prep.2000.1300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The elastase-specific inhibitor, guamerin, was expressed and secreted into a culture medium using the methylotrophic yeast Pichia pastoris, and the resulting recombinant guamerin was purified from the culture media using a two-step procedure composed of a hydrophobic interaction and reverse-phase chromatography. Up to 90 g/L of dry cell weight, the guamerin-producing recombinant P. pastoris was cultivated and guamerin was secreted into the culture medium at a level of 0.69 g/L. The recombinant guamerin was highly purified (>98%) with a recovery yield of 68%. Analyses of the purified guamerin revealed the same N-terminal amino acid sequence, amino acid composition, and molecular mass as found in the native leech protein. The recombinant guamerin exhibited the tight binding to porcine pancreatic elastase. Furthermore, the recombinant guamerin did not produce a humoral immune response in mice.
Collapse
Affiliation(s)
- K Y Kim
- Mogam Biotechnology Research Institute, 341 Pojung-Ri, Koosung-Myun, Yongin, Kyonggi-Do, 449-910, Korea
| | | | | | | | | | | | | |
Collapse
|
11
|
Sreekrishna K, Brankamp RG, Kropp KE, Blankenship DT, Tsay JT, Smith PL, Wierschke JD, Subramaniam A, Birkenberger LA. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene 1997; 190:55-62. [PMID: 9185849 DOI: 10.1016/s0378-1119(96)00672-5] [Citation(s) in RCA: 312] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Numerous heterologous proteins have been produced at greater than gram per liter levels in the methylotrophic yeast, Pichia pastoris, using the methanol oxidase promoter. The factors that drastically influence protein production in this system include: copy number of the expression cassette, site and mode of chromosomal integration of the expression cassette, mRNA 5'- and 3'-untranslated regions (UTR), translational start codon (AUG) context, A+T composition of cDNA, transcriptional and translational blocks, nature of secretion signal, endogenous protease activity, host strain physiology, media and growth conditions, and fermentation parameters. All these factors should be considered in designing an optimal production system. The inherent ability of P. pastoris to convert the zymogen (pro-enzyme) form of matrix metalloproteinases (MMP) into active mature forms (which tend to self-degrade, and in some instances also cause damage to cells), largely limits the use of this system for the production of MMP. However, this problem can be partly alleviated by co-expression of tissue inhibitor of MMP (TIMP-1).
Collapse
Affiliation(s)
- K Sreekrishna
- Hoechst Marion Roussel, Inc., Cincinnati, OH 45215-6300, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The methylotrophic yeasts Hansenula polymorpha and Pichia pastoris are rapidly becoming the systems of choice for the expression of recombinant proteins in yeast. However, the powerful genetic techniques available in Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe are still exploited to establish models to study medically important cell processes and screen for pharmacologically active compounds.
Collapse
Affiliation(s)
- P E Sudbery
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK.
| |
Collapse
|
13
|
Kjeldsen T, Brandt J, Andersen AS, Egel-Mitani M, Hach M, Pettersson AF, Vad K. A removable spacer peptide in an alpha-factor-leader/insulin precursor fusion protein improves processing and concomitant yield of the insulin precursor in Saccharomyces cerevisiae. Gene X 1996; 170:107-12. [PMID: 8621069 DOI: 10.1016/0378-1119(95)00822-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An alpha-factor leader/insulin precursor fusion protein was produced in Saccharomyces cerevisiae and metabolically labeled in order to analyse the efficiency of maturation and secretion. A substantial fraction of the secreted material was found in a hyperglycosylated unprocessed form, indicating incomplete Kex2p endopeptidase maturation. Introduction of a spacer peptide (EAEAEAK) after the dibasic Kex2p site, creating a N-terminal extension of the insulin precursor, greatly increased the Kex2p catalytic efficiency and the fermentation yield of insulin precursor. The N-terminal extension features a Lys to allow subsequent proteolytic removal by trypsin or the Achromobacter lyticus Lys-specific protease. Dipeptidyl aminopeptidase A (DPAPA) activity removing Glu-Ala dipeptides from the extension was inhibited by adding a Glu N-terminally to the extension. Unexpectedly, this modified N-terminal extension (EEAEAEAK) was partially cleaved after the Lys during fermentation. This monobasic proteolytic activity was demonstrated to be associated with Yap3p. Yap3p cleavage could be prevented by insertion of a Pro before the Lys (EEAEAEAPK).
Collapse
Affiliation(s)
- T Kjeldsen
- Molecular Biology and Protein Chemistry, Novo Nordisk A/S, Bagsvaerd, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Mayer RJ, Doherty FJ. Selective proteolysis: 70-kDa heat-shock protein and ubiquitin-dependent mechanisms? Subcell Biochem 1996; 27:137-58. [PMID: 8993160 DOI: 10.1007/978-1-4615-5833-0_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- R J Mayer
- Department of Biochemistry, Queens Medical Center, Nottingham, United Kingdom
| | | |
Collapse
|
15
|
Chen Y, Piper PW. Consequences of the overexpression of ubiquitin in yeast: elevated tolerances of osmostress, ethanol and canavanine, yet reduced tolerances of cadmium, arsenite and paromomycin. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1268:59-64. [PMID: 7626663 DOI: 10.1016/0167-4889(95)00044-s] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ubiquitin is induced by diverse stresses in all eukaroytes probably in reflection of the need for more extensive protein turnover by the ubiquitination system in stressed cells. To determine if ubiquitin overexpression can confer general protection against different stresses, yeast cells were engineered to overexpress ubiquitin and the effects of this overexpression on different stress tolerances determined. Ethanol and osmostress tolerances were slightly increased by ubiquitin overexpression, tolerance to heat was unaffected, while still other tolerances were reduced as compared to cells with normal ubiquitin levels. It is noteworthy that tolerance of the amino acid analogue canavanine was markedly increased by ubiquitin overexpression, yet resistance to at least three other agents that contribute to accumulation of aberrant proteins (arsenite, cadmium, paromomycin) was decreased.
Collapse
Affiliation(s)
- Y Chen
- Department of Biochemistry and Molecular Biology, University College London, UK
| | | |
Collapse
|
16
|
Vasavada A. Improving productivity of heterologous proteins in recombinant Saccharomyces cerevisiae fermentations. ADVANCES IN APPLIED MICROBIOLOGY 1995; 41:25-54. [PMID: 7572335 DOI: 10.1016/s0065-2164(08)70307-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Vasavada
- Department of Fermentation, Cell Culture, and Recovery, Chiron Corporation, Emeryville, California 94608, USA
| |
Collapse
|
17
|
Tuite MF, Freedman RB. Improving secretion of recombinant proteins from yeast and mammalian cells: rational or empirical design? Trends Biotechnol 1994; 12:432-4. [PMID: 7765539 DOI: 10.1016/0167-7799(94)90015-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- M F Tuite
- Research School of Biosciences, University of Kent, Canterbury, UK
| | | |
Collapse
|