1
|
Nühn MM, Bosman K, Huisman T, Staring WH, Gharu L, De Jong D, De Kort TM, Buchholtz NV, Tesselaar K, Pandit A, Arends J, Otto SA, Lucio De Esesarte E, Hoepelman AI, De Boer RJ, Symons J, Borghans JA, Wensing AM, Nijhuis M. Selective decline of intact HIV reservoirs during the first decade of ART followed by stabilization in memory T cell subsets. AIDS 2025; 39:798-811. [PMID: 39964317 PMCID: PMC12077340 DOI: 10.1097/qad.0000000000004160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/21/2025]
Abstract
OBJECTIVES To investigate the short- and long-term dynamics of intact and defective proviral HIV DNA during ART. DESIGN We evaluated viral reservoir dynamics in a cohort of nine individuals with chronic HIV-1 subtype B who initiated first-line ART and were followed for 20 years while continuing ART. METHODS PBMCs were obtained before ART ( n = 5), during the first year, and after 8.5 and 20 years of treatment. T cell subsets (naive, central-memory, transitional-memory and effector-memory) were sorted at 8.5 and 20 years. DNA was isolated and analyzed using the intact proviral DNA assay (IPDA). Deep-sequencing of the viral env region enabled analysis of viral evolution and cellular mechanisms underlying HIV persistence. RESULTS Initially, defective and intact proviral DNA in PBMCs declined with half-lives of 3.6 and 5.4 weeks, respectively. Over the following 8.5 years, the intact reservoir continued to decrease, with a half-life of 18.8 months in PBMCs, while defective proviral DNA levels stabilized. After 8.5 and 20 years of ART, the intact reservoir showed no further decline, with most intact proviral DNA residing in memory T cell subsets. Phylogenetic analysis revealed no signs of viral evolution over time, both within and between T cell subsets. CONCLUSIONS PBMCs containing intact proviral DNA are selectively lost during the first decade of suppressive ART, followed by a decade of stabilization of this reservoir in the memory T cell subsets. In the absence of clear signs of viral evolution and massive clonal expansion, homeostatic proliferation might be an important driver of HIV persistence during long-term ART.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kobus Bosman
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Terry Huisman
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Wouter H.A. Staring
- Department of Rehabilitation, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Dorien De Jong
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Theun M. De Kort
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Ninée V.E.J. Buchholtz
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - Kiki Tesselaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Aridaman Pandit
- Theoretical Biology, Utrecht University
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Joop Arends
- Faculty of Health, Medicine and Life Sciences, Maastricht UMC (MUMC), Maastricht
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | - Sigrid A. Otto
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | | | - Andy I.M. Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Center Utrecht
| | | | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| | - José A.M. Borghans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht
| | - Annemarie M.J. Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
- Translational Virology, Department of Global Public Health & Bioethics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht
| |
Collapse
|
2
|
Grigoryan IV, Antiufrieva LA, Grigoryan AP, Pigareva VA, Generalov EA, Khomutov GB, Sybachin AV. IPECnet: ML model for predicting the area of water solubility of interpolyelectrolyte complexes. Phys Chem Chem Phys 2025; 27:8136-8147. [PMID: 40172530 DOI: 10.1039/d4cp04775c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Interpolyelectrolyte complexes (IPECs) are known for years as classic representatives of smart polymers. The solubility of IPECs in water-salt media is driven by numerous factors connected with polymer component parameters and media composition. This work is devoted to the development of the world's first machine learning-based model for predicting the area of existence of water-soluble IPECs for solving biomedical problems. A new approach is proposed that takes into account both the physico-chemical properties of polyelectrolytes and the chemical structures of their monomeric units. The developed approach is universal and can be used to predict the properties of multicomponent systems of a different chemical nature. The results of the work were applied to select the composition of water-soluble IPECs for treatment of surfaces in order to create bactericidal coatings. The dataset and model structures are publicly available on GitHub.
Collapse
Affiliation(s)
- Ilya V Grigoryan
- Physics Department of Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow, 199991, Russia.
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow, 125009, Russia
| | - Liubov A Antiufrieva
- Skolkovo Institute of Science and Technology, the territory of the Skolkovo Innovation Center, Bolshoy Boulevard, 30, bld. 1, Moscow, 121205, Russia
| | - Anna P Grigoryan
- Physics Department of Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow, 199991, Russia.
- Faculty of Space Research of Lomonosov Moscow State University, Leninskiye Gory, 1-52, Moscow, 119991, Russia
| | - Vladislava A Pigareva
- A. N. Nesmeyanov Institute of Organoelement compounds Russian Academy of Sciences, Vavilova St., 28, bld. 1, Moscow, 119334, Russia
| | - Evgenii A Generalov
- Physics Department of Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow, 199991, Russia.
| | - Gennady B Khomutov
- Physics Department of Lomonosov Moscow State University, Leninskie Gory, 1-2, Moscow, 199991, Russia.
- Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences, Moscow, 125009, Russia
| | - Andrey V Sybachin
- Chemistry Department of Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 199991, Russia.
| |
Collapse
|
3
|
Nühn MM, Gumbs SBH, Schipper PJ, Drosou I, Gharu L, Buchholtz NVEJ, Snijders GJLJ, Gigase FAJ, Wensing AMJ, Symons J, de Witte LD, Nijhuis M. Microglia Exhibit a Unique Intact HIV Reservoir in Human Postmortem Brain Tissue. Viruses 2025; 17:467. [PMID: 40284910 PMCID: PMC12030925 DOI: 10.3390/v17040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/17/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
A proviral reservoir persists within the central nervous system (CNS) of people with HIV, but its characteristics remain poorly understood. Research has primarily focused on cerebrospinal fluid (CSF), as acquiring brain tissue is challenging. We examined size, cellular tropism, and infection-dynamics of the viral reservoir in post-mortem brain tissue from five individuals on and off antiretroviral therapy (ART) across three brain regions. Microglia-enriched fractions (CD11b+) were isolated and levels of intact proviral DNA were quantified (IPDA). Full-length envelope reporter viruses were generated and characterized in CD4+ T cells and monocyte-derived microglia. HIV DNA was observed in microglia-enriched fractions of all individuals, but intact proviruses were identified only in one ART-treated individual, representing 15% of the total proviruses. Phenotypic analyses of clones from this individual showed that 80% replicated efficiently in microglia and CD4+ T cells, while the remaining viruses replicated only in CD4+ T cells. No region-specific effects were observed. These results indicate a distinct HIV brain reservoir in microglia for all individuals, although intact proviruses were detected in only one. Given the unique immune environment of the CNS, the characteristics of microglia, and the challenges associated with targeting these cells, the CNS reservoir should be considered in cure strategies.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Pauline J. Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Irene Drosou
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Gijsje J. L. J. Snijders
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
| | - Frederieke A. J. Gigase
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Global Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - Jori Symons
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| | - Lot D. de Witte
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA (F.A.J.G.); (L.D.d.W.)
- Department of Psychiatry, Radboud UMC, 6525 GA Nijmegen, The Netherlands
- Department of Human Genetics, Radboud UMC, 6525 GA Nijmegen, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.M.N.); (S.B.H.G.); (P.J.S.); (N.V.E.J.B.); (J.S.)
| |
Collapse
|
4
|
Pardons M, Lambrechts L, Noppe Y, Termote L, De Braekeleer S, Vega J, Van Gulck E, Gerlo S, Vandekerckhove L. Blood and tissue HIV-1 reservoirs display plasticity and lack of compartmentalization in virally suppressed people. Nat Commun 2025; 16:2173. [PMID: 40038305 PMCID: PMC11880387 DOI: 10.1038/s41467-025-57332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
Characterizing the HIV-1 reservoir in blood and tissues is crucial for the development of curative strategies. Using an HIV Tat mRNA-containing lipid nanoparticle (Tat-LNP) in combination with panobinostat, we show that p24+ cells from blood and lymph nodes exhibit distinct phenotypes. Blood p24+ cells are found in both central/transitional (TCM/TTM) and effector memory subsets, mostly lack CXCR5 expression and are enriched in GZMA+ cells. In contrast, most lymph node p24+ cells display a TCM/TTM phenotype, with approximately 50% expressing CXCR5 and nearly all lacking GZMA expression. Furthermore, germinal center T follicular helper cells do not appear to harbor the translation-competent reservoir in long-term suppressed individuals. Near full-length HIV-1 sequencing in longitudinal samples from matched blood, lymph nodes, and gut indicates that clones of infected cells, including those carrying an inducible provirus, persist and spread across various anatomical compartments. Finally, uniform genetic diversity across sites suggests the absence of ongoing replication in tissues under treatment.
Collapse
Affiliation(s)
- Marion Pardons
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Laurens Lambrechts
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- BioBix, Department of Data Analysis and Mathematical Modelling, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Liesbet Termote
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Sofie De Braekeleer
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Jerel Vega
- Arcturus Therapeutics, 10628 Science Center Drive, Suite 250, San Diego, California, USA
| | - Ellen Van Gulck
- Johnson & Johnson Innovative Medicine, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Sarah Gerlo
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium.
| |
Collapse
|
5
|
Pavesi A, Romerio F. Covariation of Amino Acid Substitutions in the HIV-1 Envelope Glycoprotein gp120 and the Antisense Protein ASP Associated with Coreceptor Usage. Viruses 2025; 17:323. [PMID: 40143251 PMCID: PMC11946160 DOI: 10.3390/v17030323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
The tropism of the Human Immunodeficiency Virus type 1 (HIV-1) is determined by the use of either or both chemokine coreceptors CCR5 (R5) and CXCR4 (X4) for entry into the target cell. The ability of HIV-1 to bind R5 or X4 is determined primarily by the third variable loop (V3) of the viral envelope glycoprotein gp120. HIV-1 strains of pandemic group M contain an antisense gene termed asp, which overlaps env outside the region encoding the V3 loop. We previously showed that the ASP protein localizes on the envelope of infectious HIV-1 virions, suggesting that it may play a role in viral entry. In this study, we first developed a statistical method to predict coreceptor tropism based on Fisher's linear discriminant analysis. We obtained three linear discriminant functions able to predict coreceptor tropism with high accuracy (94.4%) when applied to a training dataset of V3 sequences of known tropism. Using these functions, we predicted the tropism in a dataset of HIV-1 strains containing a full-length asp gene. In the amino acid sequence of ASP proteins expressed from these asp genes, we identified five positions with substitutions significantly associated with viral tropism. Interestingly, we found that these substitutions correlate significantly with substitutions at six amino acid positions of the V3 loop domain associated with tropism. Altogether, our computational analyses identify ASP amino acid signatures coevolving with V3 and potentially affecting HIV-1 tropism, which can be validated through in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Angelo Pavesi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23A, I-43124 Parma, Italy;
| | - Fabio Romerio
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Tyers L, Moeser M, Ntuli J, Council O, Zhou S, Spielvogel E, Sondgeroth A, Adams C, Thebus R, Yssel A, Karim SA, Garrett N, Pond SK, Williamson C, Swanstrom R, Abrahams MR, Joseph SB. HIV-1 Rebound Virus Consists of a Small Number of Lineages That Entered the Reservoir Close to ART Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635391. [PMID: 39975202 PMCID: PMC11838395 DOI: 10.1101/2025.01.29.635391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
HIV-1 persists as a latent reservoir during suppressive antiretroviral therapy (ART). Viral rebound occurs upon ART interruption, posing a challenge to cure efforts. Characterizing viral populations fuelling rebound is imperative to curing HIV-1. We used longitudinal samples collected pretherapy from women in the CAPRISA 002 cohort to create an evolutionary timeline to determine the pretherapy timepoint when the rebound virus originally entered the long-lived reservoir. Participants (N=10) were untreated for an average of 5 years then on ART for an average of 2 years before viral rebound (defined as >1000 RNA copies/ml). env sequences were used to characterize the longitudinal pre-ART evolving viral RNA population, the proviral DNA reservoir during ART, and viral RNA in the plasma during rebound. For each participant, between 1 and 3 major viral lineages were identified in the plasma during rebound. A total of 20 rebound virus lineages were examined for the 10 participants, and 19 were found to have entered the reservoir around the time of therapy initiation. The one lineage estimated to enter the reservoir more than a year before therapy was observed in a participant who was untreated for more than 8 years, yet retained moderate CD4 T cell counts. Analysis of the viral DNA reservoir, from which the rebound viruses emanated, revealed that while 95% of rebounding lineages dated to the year before ART initiation, only 61% of unique proviruses dated to that time period. Strikingly, for three participants with DNA reservoirs dominated by viruses from earlier in untreated infection, only 33% of unique proviruses dated to the year before ART initiation, yet 83% of rebounding lineages dated to that time. Our results show that rebound virus almost exclusively comes from the portion of the latent reservoir that formed around the time of therapy initiation, even when the reservoir is composed of diverse sequences from across the pre-ART time period.
Collapse
Affiliation(s)
- Lynn Tyers
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jean Ntuli
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Olivia Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig Adams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Ruwayhida Thebus
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Anna Yssel
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu- Natal, Durban 4041, South Africa
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Centre for the AIDS Programme of Research in South Africa, University of KwaZulu- Natal, Durban 4013, South Africa
- National Health Laboratory Services of South Africa, Johannesburg 2000, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Sarah B Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
7
|
Pavesi A, Romerio F. Covariation of amino acid substitutions in the HIV-1 envelope glycoprotein gp120 and the antisense protein ASP associated with coreceptor usage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.19.633671. [PMID: 39868319 PMCID: PMC11761378 DOI: 10.1101/2025.01.19.633671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The tropism of the Human Immunodeficiency Virus type 1 (HIV-1) is determined by the use of either or both of the chemokine coreceptors CCR5 (R5) or CXCR4 (X4) for entry into the target cell. The ability of HIV-1 to bind R5 or X4 is determined primarily by the third variable loop (V3) of the viral envelope glycoprotein gp120. HIV-1 strains of pandemic group M contain an antisense gene termed asp , which overlaps env outside the region encoding the V3 loop. We previously showed that the ASP protein localizes on the envelope of infectious HIV-1 virions, suggesting that it may play a role in viral entry. In this study, we first developed a statistical method to predict coreceptor tropism based on the Fisher's linear discriminant analysis. We obtained three linear discriminant functions able to predict coreceptor tropism with high accuracy (94.4%) when applied to a training dataset of V3 sequences of known tropism. Using these functions, we predicted the tropism in a dataset of HIV-1 strains containing a full-length asp gene. In the amino acid sequence of ASP proteins expressed from these asp genes we identified five positions with substitutions significantly associated with viral tropism. Interestingly, we found that these substitutions correlate significantly with substitutions at six amino acid positions of the V3 loop domain associated with tropism. Altogether, our computational analyses identify ASP amino acid signatures coevolving with V3 and potentially affecting HIV-1 tropism, which can be validated through in vitro and in vivo experiments.
Collapse
|
8
|
Marichannegowda MH, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis VR, Tovanabutra S, Heredia A, Tagaya Y, Michael NL, Robb ML, Song H. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. EBioMedicine 2024; 109:105410. [PMID: 39427414 PMCID: PMC11533037 DOI: 10.1016/j.ebiom.2024.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/08/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, virus detection and characterization were not at the earliest stages of acute infection. METHODS We identified an X4-tropic T/F HIV-1 in a participant (40700) in the RV217 acute infection cohort. Coreceptor usage was determined in TZM-bl cell line, NP-2 cell lines, and primary CD4+ T cells using pseudovirus and infectious molecular clones. CD4 subset dynamics were analyzed using flow cytometry. Viral load in each CD4 subset was quantified using cell-associated HIV RNA assay and total and integrated HIV DNA assay. FINDINGS Participant 40700 was infected by an X4 tropic HIV-1 without CCR5 using ability. This participant experienced significantly faster CD4 depletion compared to R5 virus infected individuals in the same cohort. Naïve and central memory (CM) CD4 subsets declined faster than effector memory (EM) and transitional memory (TM) subsets. All CD4 subsets, including the naïve, were productively infected. Increased CD4+ T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions, while most of the R5 T/F viruses in the same cohort are sensitive to the same panel of bNAbs. INTERPRETATION X4-tropic HIV-1 is transmissible through mucosal route in people with wild-type CCR5 genotype. The CD4 subset tropism of HIV-1 may be an important determinant for HIV-1 transmissibility and virulence. FUNDING Institute of Human Virology, National Institutes of Health, Henry M. Jackson Foundation for the Advancement of Military Medicine.
Collapse
Affiliation(s)
| | - Saini Setua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - David King
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Felisa Diaz-Mendez
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Rasmi Thomas
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Leilani Francisco
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hongshuo Song
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Wieczorek L, Chang D, Sanders-Buell E, Zemil M, Martinez E, Schoen J, Chenine AL, Molnar S, Barrows B, Poltavee K, Charurat ME, Abimiku A, Blattner W, Iroezindu M, Kokogho A, Michael NL, Crowell TA, Ake JA, Tovanabutra S, Polonis VR. Differences in neutralizing antibody sensitivities and envelope characteristics indicate distinct antigenic properties of Nigerian HIV-1 subtype G and CRF02_AG. Virol J 2024; 21:148. [PMID: 38951814 PMCID: PMC11218331 DOI: 10.1186/s12985-024-02394-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/19/2024] [Indexed: 07/03/2024] Open
Abstract
The magnitude of the HIV-1 epidemic in Nigeria is second only to the subtype C epidemic in South Africa, yet the subtypes prevalent in Nigeria require further characterization. A panel of 50 subtype G and 18 CRF02_AG Nigerian HIV-1 pseudoviruses (PSV) was developed and envelope coreceptor usage, neutralization sensitivity and cross-clade reactivity were characterized. These PSV were neutralized by some antibodies targeting major neutralizing determinants, but potentially important differences were observed in specific sensitivities (eg. to sCD4, MPER and V2/V3 monoclonal antibodies), as well as in properties such as variable loop lengths, number of potential N-linked glycans and charge, demonstrating distinct antigenic characteristics of CRF02_AG and subtype G. There was preferential neutralization of the matched CRF/subtype when PSV from subtype G or CRF02_AG were tested using pooled plasma. These novel Nigerian PSV will be useful to study HIV-1 CRF- or subtype-specific humoral immune responses for subtype G and CRF02_AG.
Collapse
Affiliation(s)
- Lindsay Wieczorek
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - David Chang
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Office of AIDS Research, National Institutes of Health, Rockville, MD, 20852, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Elizabeth Martinez
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesse Schoen
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Agnes-Laurence Chenine
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Integrated Biotherapeutics, Rockville, MD, 20850, USA
| | - Sebastian Molnar
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Brittani Barrows
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
- Present address: Lentigen Technology, Gaithersburg, MD, 20878, USA
| | - Kultida Poltavee
- SEARCH, Insititute of HIV Research and Innovation (IHRI), Bangkok, Thailand
| | - Man E Charurat
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alash'le Abimiku
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - William Blattner
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael Iroezindu
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- HJF Medical Research International, Abuja, Nigeria
| | - Afoke Kokogho
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- HJF Medical Research International, Abuja, Nigeria
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
| | - Trevor A Crowell
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Julie A Ake
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA
- Henry M. Jackson Foundation for Advancement of Military Medicine, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, CIDR, Walter Reed Army Institute of Resarch, Silver Spring, MD, USA.
| |
Collapse
|
10
|
Dombrowski AK, Gerken JE, Muller KR, Kessel P. Diffeomorphic Counterfactuals With Generative Models. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024; 46:3257-3274. [PMID: 38055368 DOI: 10.1109/tpami.2023.3339980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Counterfactuals can explain classification decisions of neural networks in a human interpretable way. We propose a simple but effective method to generate such counterfactuals. More specifically, we perform a suitable diffeomorphic coordinate transformation and then perform gradient ascent in these coordinates to find counterfactuals which are classified with great confidence as a specified target class. We propose two methods to leverage generative models to construct such suitable coordinate systems that are either exactly or approximately diffeomorphic. We analyze the generation process theoretically using Riemannian differential geometry and validate the quality of the generated counterfactuals using various qualitative and quantitative measures.
Collapse
|
11
|
Ko D, McLaughlin S, Deng W, Mullins JI, Dragavon J, Harb S, Coombs RW, Frenkel LM. Development and Validation of a Genotypic Assay to Quantify CXCR4- and CCR5-Tropic Human Immunodeficiency Virus Type-1 (HIV-1) Populations and a Comparison to Trofile ®. Viruses 2024; 16:510. [PMID: 38675853 PMCID: PMC11053691 DOI: 10.3390/v16040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
HIV-1 typically infects cells via the CD4 receptor and CCR5 or CXCR4 co-receptors. Maraviroc is a CCR5-specific viral entry inhibitor; knowledge of viral co-receptor specificity is important prior to usage. We developed and validated an economical V3-env Illumina-based assay to detect and quantify the frequency of viruses utilizing each co-receptor. Plasma from 54 HIV+ participants (subtype B) was tested. The viral template cDNA was generated from plasma RNA with unique molecular identifiers (UMIs). The sequences were aligned and collapsed by the UMIs with a custom bioinformatics pipeline. Co-receptor usage, determined by codon analysis and online phenotype predictors PSSM and Geno2pheno, were compared to existing Trofile® data. The cost of V3-UMI was tallied. The sequences interpreted by Geno2pheno using the most conservative cut-off, a 2% false-positive-rate (FPR), predicted CXCR4 usage with the greatest sensitivity (76%) and specificity (100%); PSSM and codon analysis had similar sensitivity and lower specificity. Discordant Trofile® and genotypic results were more common when participants had specimens from different dates analyzed by either assay. V3-UMI reagents cost USD$62/specimen. A batch of ≤20 specimens required 5 h of technical time across 1.5 days. V3-UMI predicts HIV tropism at a sensitivity and specificity similar to those of Trofile®, is relatively inexpensive, and could be performed by most central laboratories. The adoption of V3-UMI could expand HIV drug therapeutic options in lower-resource settings that currently do not have access to phenotypic HIV tropism testing.
Collapse
Affiliation(s)
- Daisy Ko
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (D.K.)
| | - Sherry McLaughlin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (D.K.)
| | - Wenjie Deng
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; (W.D.); (J.I.M.)
| | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA; (W.D.); (J.I.M.)
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
| | - Joan Dragavon
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (J.D.); (S.H.); (R.W.C.)
| | - Socorro Harb
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (J.D.); (S.H.); (R.W.C.)
| | - Robert W. Coombs
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (J.D.); (S.H.); (R.W.C.)
| | - Lisa M. Frenkel
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA; (D.K.)
- Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Department of Global Health, University of Washington, Seattle, WA 98105, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; (J.D.); (S.H.); (R.W.C.)
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr M, Mock A, Buchstab O, Alber M, Ruff L, Montavon G, Müller KR. [Explainable artificial intelligence in pathology]. PATHOLOGIE (HEIDELBERG, GERMANY) 2024; 45:133-139. [PMID: 38315198 DOI: 10.1007/s00292-024-01308-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
With the advancements in precision medicine, the demands on pathological diagnostics have increased, requiring standardized, quantitative, and integrated assessments of histomorphological and molecular pathological data. Great hopes are placed in artificial intelligence (AI) methods, which have demonstrated the ability to analyze complex clinical, histological, and molecular data for disease classification, biomarker quantification, and prognosis estimation. This paper provides an overview of the latest developments in pathology AI, discusses the limitations, particularly concerning the black box character of AI, and describes solutions to make decision processes more transparent using methods of so-called explainable AI (XAI).
Collapse
Affiliation(s)
- Frederick Klauschen
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland.
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland.
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland.
| | - Jonas Dippel
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland
| | - Philipp Keyl
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Philipp Jurmeister
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland
| | - Michael Bockmayr
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Pädiatrische Hämatologie und Onkologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Forschungsinstitut Kinderkrebs-Zentrum Hamburg, Hamburg, Deutschland
| | - Andreas Mock
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
- Deutsches Krebsforschungszentrum (DKTK/DKFZ), Partnerstandort München, München, Deutschland
| | - Oliver Buchstab
- Pathologisches Institut, Ludwig-Maximilians-Universität München, Thalkirchner Str. 36, 80337, München, Deutschland
| | - Maximilian Alber
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
- Aignostics GmbH, Berlin, Deutschland
| | | | - Grégoire Montavon
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland
- Fachbereich Mathematik und Informatik, Freie Universität Berlin, Berlin, Deutschland
| | - Klaus-Robert Müller
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Deutschland.
- Machine Learning Group, Fachbereich Elektrotechnik und Informatik, Technische Universität Berlin, Berlin, Deutschland.
- Department of Artificial Intelligence, Korea University, Seoul, Südkorea.
- Max-Planck-Institut für Informatik, Saarbrücken, Deutschland.
- Machine Learning/Intelligent Data Analysis (IDA), Technische Universität Berlin, Marchstr. 23, 10587, Berlin, Deutschland.
| |
Collapse
|
13
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobarrubias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL, the MACS/WIHS combined cohort study (MWCSS) OfotokunIghovwerha1ShethAnandi1WingoodGina1BrownTodd2MargolickJoseph2AnastosKathryn3HannaDavid3SharmaAnjali3GustafsonDeborah4WilsonTracey4D’SouzaGypsyamber5GangeStephen5TopperElizabeth5CohenMardge6FrenchAudrey6WolinskySteven7PalellaFrank7StosorValentina7AouizeratBradley8PriceJennifer8TienPhyllis8DetelsRoger9MimiagaMatthew9KassayeSeble10MerensteinDaniel10AlcaideMaria11FischlMargaret11JonesDeborah11MartinsonJeremy12RinaldoCharles12KempfMirjam-Colette13Dionne-OdomJodie13Konkle-ParkerDeborah13BrockJames B.13AdimoraAdaora14Floris-MooreMichelle14Emory University, Atlanta, Georgia, USAJohns Hopkins University, Baltimore, Maryland, USAAlbert Einstein College of Medicine, Bronx, New York, USASuny Downstate Medical Center, Brooklyn, New York, USAJohns Hopkins University, Baltimore, Maryland, USAHektoen Institute for Medical Research, Chicago, Illinois, USANorthwestern University at Chicago, Chicago, Illinois, USAUniversity of California San Francisco, San Francisco, California, USAUniversity of California Los Angeles, Los Angeles, California, USAGeorgetown University, Washington, DC, USAUniversity of Miami School of Medicine, Coral Gables, Florida, USAUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USAUniversity of Alabama Birmingham, Birmingham, Alabama, USAUniversity of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. J Virol 2024; 98:e0165523. [PMID: 38214547 PMCID: PMC10878278 DOI: 10.1128/jvi.01655-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Within-host HIV populations continually diversify during untreated infection, and this diversity persists within infected cell reservoirs during antiretroviral therapy (ART). Achieving a better understanding of on-ART proviral evolutionary dynamics, and a better appreciation of how the overall persisting pool of (largely genetically defective) proviruses differs from the much smaller replication-competent HIV reservoir, is critical to HIV cure efforts. We reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study who experienced HIV seroconversion, and used these data to characterize the diversity, lineage origins, and ages of proviral env-gp120 sequences sampled longitudinally up to 12 years on ART. We also studied HIV sequences emerging from the reservoir in two participants. We observed that proviral clonality generally increased over time on ART, with clones frequently persisting long term. While on-ART proviral integration dates generally spanned the duration of untreated infection, HIV emerging in plasma was exclusively younger (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained stable during ART in all but one participant, in whom there was evidence that younger proviruses had been preferentially eliminated after 12 years on ART. Analysis of the gag region in three participants corroborated our env-gp120-based observations, indicating that our observations are not influenced by the HIV region studied. Our results underscore the remarkable genetic stability of the distinct proviral sequences that persist in blood during ART. Our results also suggest that the replication-competent HIV reservoir is a genetically restricted, younger subset of this overall proviral pool.IMPORTANCECharacterizing the genetically diverse HIV sequences that persist in the reservoir despite antiretroviral therapy (ART) is critical to cure efforts. Our observations confirm that proviruses persisting in blood on ART, which are largely genetically defective, broadly reflect the extent of within-host HIV evolution pre-ART. Moreover, on-ART clonal expansion is not appreciably accompanied by the loss of distinct proviral lineages. In fact, on-ART proviral genetic composition remained stable in all but one participant, in whom, after 12 years on ART, proviruses dating to around near ART initiation had been preferentially eliminated. We also identified recombinant proviruses between parental sequence fragments of different ages. Though rare, such sequences suggest that reservoir cells can be superinfected with HIV from another infection era. Overall, our finding that the replication-competent reservoir in blood is a genetically restricted, younger subset of all persisting proviruses suggests that HIV cure strategies will need to eliminate a reservoir that differs in key respects from the overall proviral pool.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bradley R. Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Kyle Cobarrubias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Maggie C. Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Natalie N. Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Michael J. Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Nancie M. Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Margaret A. Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Adaora Adimora
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Mark H. Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I. Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
| | - Jeffrey B. Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - the MACS/WIHS combined cohort study (MWCSS)OfotokunIghovwerha1ShethAnandi1WingoodGina1BrownTodd2MargolickJoseph2AnastosKathryn3HannaDavid3SharmaAnjali3GustafsonDeborah4WilsonTracey4D’SouzaGypsyamber5GangeStephen5TopperElizabeth5CohenMardge6FrenchAudrey6WolinskySteven7PalellaFrank7StosorValentina7AouizeratBradley8PriceJennifer8TienPhyllis8DetelsRoger9MimiagaMatthew9KassayeSeble10MerensteinDaniel10AlcaideMaria11FischlMargaret11JonesDeborah11MartinsonJeremy12RinaldoCharles12KempfMirjam-Colette13Dionne-OdomJodie13Konkle-ParkerDeborah13BrockJames B.13AdimoraAdaora14Floris-MooreMichelle14Emory University, Atlanta, Georgia, USAJohns Hopkins University, Baltimore, Maryland, USAAlbert Einstein College of Medicine, Bronx, New York, USASuny Downstate Medical Center, Brooklyn, New York, USAJohns Hopkins University, Baltimore, Maryland, USAHektoen Institute for Medical Research, Chicago, Illinois, USANorthwestern University at Chicago, Chicago, Illinois, USAUniversity of California San Francisco, San Francisco, California, USAUniversity of California Los Angeles, Los Angeles, California, USAGeorgetown University, Washington, DC, USAUniversity of Miami School of Medicine, Coral Gables, Florida, USAUniversity of Pittsburgh, Pittsburgh, Pennsylvania, USAUniversity of Alabama Birmingham, Birmingham, Alabama, USAUniversity of North Carolina Chapel Hill, Chapel Hill, North Carolina, USA
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Bioinformatics Program, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology, University of Washington, School of Medicine, Seattle, Washington, USA
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of Miami School of Medicine, Miami, Florida, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- College of Dentistry, New York University, New York, New York, USA
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, New York, USA
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
- Department of Global Health, University of Washington, School of Medicine, Seattle, Washington, USA
- Department of Medicine, University of Washington, School of Medicine, Seattle, Washington, USA
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, Albert Einstein College of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Bose D, Deb Adhikary N, Xiao P, Rogers KA, Ferrell DE, Cheng-Mayer C, Chang TL, Villinger F. SHIV-C109p5 NHP induces rapid disease progression in elderly macaques with extensive GI viral replication. J Virol 2024; 98:e0165223. [PMID: 38299866 PMCID: PMC10878093 DOI: 10.1128/jvi.01652-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1β+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.
Collapse
Affiliation(s)
- Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Nihar Deb Adhikary
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Peng Xiao
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Kenneth A. Rogers
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | - Douglas E. Ferrell
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| | | | - Theresa L. Chang
- The Public Health Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, Louisiana, USA
| |
Collapse
|
15
|
Joseph SB, Abrahams MR, Moeser M, Tyers L, Archin NM, Council OD, Sondgeroth A, Spielvogel E, Emery A, Zhou S, Doolabh D, Ismail SD, Karim SA, Margolis DM, Pond SK, Garrett N, Swanstrom R, Williamson C. The timing of HIV-1 infection of cells that persist on therapy is not strongly influenced by replication competency or cellular tropism of the provirus. PLoS Pathog 2024; 20:e1011974. [PMID: 38422171 PMCID: PMC10931466 DOI: 10.1371/journal.ppat.1011974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/12/2024] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
People with HIV-1 (PWH) on antiretroviral therapy (ART) can maintain undetectable virus levels, but a small pool of infected cells persists. This pool is largely comprised of defective proviruses that may produce HIV-1 proteins but are incapable of making infectious virus, with only a fraction (~10%) of these cells harboring intact viral genomes, some of which produce infectious virus following ex vivo stimulation (i.e. inducible intact proviruses). A majority of the inducible proviruses that persist on ART are formed near the time of therapy initiation. Here we compared proviral DNA (assessed here as 3' half genomes amplified from total cellular DNA) and inducible replication competent viruses in the pool of infected cells that persists during ART to determine if the original infection of these cells occurred at comparable times prior to therapy initiation. Overall, the average percent of proviruses that formed late (i.e. around the time of ART initiation, 60%) did not differ from the average percent of replication competent inducible viruses that formed late (69%), and this was also true for proviral DNA that was hypermutated (57%). Further, there was no evidence that entry into the long-lived infected cell pool was impeded by the ability to use the CXCR4 coreceptor, nor was the formation of long-lived infected cells enhanced during primary infection, when viral loads are exceptionally high. We observed that infection of cells that transitioned to be long-lived was enhanced among people with a lower nadir CD4+ T cell count. Together these data suggest that the timing of infection of cells that become long-lived is impacted more by biological processes associated with immunodeficiency before ART than the replication competency and/or cellular tropism of the infecting virus or the intactness of the provirus. Further research is needed to determine the mechanistic link between immunodeficiency and the timing of infected cells transitioning to the long-lived pool, particularly whether this is due to differences in infected cell clearance, turnover rates and/or homeostatic proliferation before and after ART.
Collapse
Affiliation(s)
- Sarah B. Joseph
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Melissa-Rose Abrahams
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Matthew Moeser
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lynn Tyers
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Nancie M. Archin
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Olivia D. Council
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Amy Sondgeroth
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ean Spielvogel
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Ann Emery
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Deelan Doolabh
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sherazaan D. Ismail
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Salim Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - David M. Margolis
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sergei Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Nigel Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- Discipline of Public Health Medicine, School of Nursing and Public Health, University of KwaZulu-Natal, Durban, South Africa
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Carolyn Williamson
- Division of Medical Virology, Institute of Infectious Diseases and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu- Natal, Durban, South Africa
- National Health Laboratory Services of South Africa, Johannesburg, South Africa
| |
Collapse
|
16
|
Vellas C, Nayrac M, Collercandy N, Requena M, Jeanne N, Latour J, Dimeglio C, Cazabat M, Barange K, Alric L, Carrere N, Martin-Blondel G, Izopet J, Delobel P. Intact proviruses are enriched in the colon and associated with PD-1 +TIGIT - mucosal CD4 + T cells of people with HIV-1 on antiretroviral therapy. EBioMedicine 2024; 100:104954. [PMID: 38160480 PMCID: PMC10792747 DOI: 10.1016/j.ebiom.2023.104954] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The persistence of intact replication-competent HIV-1 proviruses is responsible for the virological rebound off treatment. The gut could be a major reservoir of HIV-1 due to the high number of infected target cells. METHODS We collected blood samples and intestinal biopsies (duodenum, ileum, colon) from 42 people with HIV-1 receiving effective antiretroviral therapy. We used the Intact Proviral DNA Assay to estimate the frequency of intact HIV-1 proviruses in the blood and in the intestinal mucosa of these individuals. We analyzed the genetic complexity of the HIV-1 reservoir by performing single-molecule next-generation sequencing of HIV-1 env DNA. The activation/exhaustion profile of mucosal T lymphocytes was assessed by flow cytometry. FINDINGS Intact proviruses are particularly enriched in the colon. Residual HIV-1 transcription in the gut is associated with persistent mucosal and systemic immune activation. The HIV-1 intestinal reservoir appears to be shaped by the proliferation of provirus-hosting cells. The genetic complexity of the viral reservoir in the colon is positively associated with TIGIT expression but negatively with PD-1, and inversely related to its intact content. The size of the intact reservoir in the colon is associated with PD-1+TIGIT- mucosal CD4+ T cells, particularly in CD27+ memory cells, whose proliferation and survival could contribute to the enrichment of the viral reservoir by intact proviruses. INTERPRETATION Enrichment in intact proviruses makes the gut a key compartment for HIV-1 persistence on antiretroviral therapy. FUNDING This project was supported by grants from the ANRS-MIE (ANRS EP61 GALT), Sidaction, and the Institut Universitaire de France.
Collapse
Affiliation(s)
- Camille Vellas
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Manon Nayrac
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Nived Collercandy
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France
| | - Mary Requena
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Nicolas Jeanne
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Justine Latour
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Chloé Dimeglio
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France
| | - Michelle Cazabat
- CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France
| | - Karl Barange
- CHU de Toulouse, Service d'Hépato-Gastro-Entérologie, Toulouse F-31400, France
| | - Laurent Alric
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Médecine Interne et Immunologie clinique, Toulouse F-31400, France
| | - Nicolas Carrere
- Université Toulouse III Paul Sabatier, Toulouse F-31400, France; CHU de Toulouse, Service de Chirurgie Générale et Digestive, Toulouse F-31400, France
| | - Guillaume Martin-Blondel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Jacques Izopet
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Laboratoire de Virologie, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France
| | - Pierre Delobel
- INSERM UMR1291-CNRS UMR5051-Université Toulouse III, Toulouse Institute for Infectious and Inflammatory Diseases, Toulouse F-31300, France; CHU de Toulouse, Service des Maladies Infectieuses et Tropicales, Toulouse F-31300, France; Université Toulouse III Paul Sabatier, Toulouse F-31400, France.
| |
Collapse
|
17
|
Klauschen F, Dippel J, Keyl P, Jurmeister P, Bockmayr M, Mock A, Buchstab O, Alber M, Ruff L, Montavon G, Müller KR. Toward Explainable Artificial Intelligence for Precision Pathology. ANNUAL REVIEW OF PATHOLOGY 2024; 19:541-570. [PMID: 37871132 DOI: 10.1146/annurev-pathmechdis-051222-113147] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The rapid development of precision medicine in recent years has started to challenge diagnostic pathology with respect to its ability to analyze histological images and increasingly large molecular profiling data in a quantitative, integrative, and standardized way. Artificial intelligence (AI) and, more precisely, deep learning technologies have recently demonstrated the potential to facilitate complex data analysis tasks, including clinical, histological, and molecular data for disease classification; tissue biomarker quantification; and clinical outcome prediction. This review provides a general introduction to AI and describes recent developments with a focus on applications in diagnostic pathology and beyond. We explain limitations including the black-box character of conventional AI and describe solutions to make machine learning decisions more transparent with so-called explainable AI. The purpose of the review is to foster a mutual understanding of both the biomedical and the AI side. To that end, in addition to providing an overview of the relevant foundations in pathology and machine learning, we present worked-through examples for a better practical understanding of what AI can achieve and how it should be done.
Collapse
Affiliation(s)
- Frederick Klauschen
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich Partner Site, Munich, Germany
| | - Jonas Dippel
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- Machine Learning Group, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany;
| | - Philipp Keyl
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
| | - Philipp Jurmeister
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
- German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich Partner Site, Munich, Germany
| | - Michael Bockmayr
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children's Cancer Center Hamburg, Hamburg, Germany
| | - Andreas Mock
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
- German Cancer Consortium, German Cancer Research Center (DKTK/DKFZ), Munich Partner Site, Munich, Germany
| | - Oliver Buchstab
- Institute of Pathology, Ludwig-Maximilians-Universität München, Munich, Germany;
| | - Maximilian Alber
- Institute of Pathology, Charité Universitätsmedizin Berlin, Berlin, Germany
- Aignostics, Berlin, Germany
| | | | - Grégoire Montavon
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- Machine Learning Group, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany;
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Klaus-Robert Müller
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
- Machine Learning Group, Department of Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany;
- Department of Artificial Intelligence, Korea University, Seoul, Korea
- Max Planck Institute for Informatics, Saarbrücken, Germany
| |
Collapse
|
18
|
Marichannegowda MH, Zemil M, Wieczorek L, Sanders-Buell E, Bose M, O'Sullivan AM, King D, Francisco L, Diaz-Mendez F, Setua S, Chomont N, Phanuphak N, Ananworanich J, Hsu D, Vasan S, Michael NL, Eller LA, Tovanabutra S, Tagaya Y, Robb ML, Polonis VR, Song H. Tracking coreceptor switch of the transmitted/founder HIV-1 identifies co-evolution of HIV-1 antigenicity, coreceptor usage and CD4 subset targeting: the RV217 acute infection cohort study. EBioMedicine 2023; 98:104867. [PMID: 37939456 PMCID: PMC10665704 DOI: 10.1016/j.ebiom.2023.104867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND The CCR5 (R5) to CXCR4 (X4) coreceptor switch in natural HIV-1 infection is associated with faster progression to AIDS, but the mechanisms remain unclear. The difficulty in elucidating the evolutionary origin of the earliest X4 viruses limits our understanding of this phenomenon. METHODS We tracked the evolution of the transmitted/founder (T/F) HIV-1 in RV217 participants identified in acute infection. The origin of the X4 viruses was elucidated by single genome amplification, deep sequencing and coreceptor assay. Mutations responsible for coreceptor switch were confirmed by mutagenesis. Viral susceptibility to neutralization was determined by neutralization assay. Virus CD4 subset preference was demonstrated by sequencing HIV-1 RNA in sorted CD4 subsets. FINDINGS We demonstrated that the earliest X4 viruses evolved de novo from the T/F strains. Strong X4 usage can be conferred by a single mutation. The mutations responsible for coreceptor switch can confer escape to neutralization and drive the X4 variants to replicate mainly in the central memory (CM) and naïve CD4 subsets. Likely due to the smaller viral burst size of the CM and naïve subsets, the X4 variants existed at low frequency in plasma. The origin of the X4 viruses preceded accelerated CD4 decline. All except one X4 virus identified in the current study lost the conserved V3 N301 glycan site. INTERPRETATIONS The findings demonstrate co-evolution of HIV-1 antigenicity, coreceptor usage and CD4 subset targeting which have implications for HIV-1 therapeutics and functional cure. The observations provide evidence that coreceptor switch can function as an evolutionary mechanism of immune evasion. FUNDING Institute of Human Virology, National Institutes of Health, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Thai Red Cross AIDS Research Centre, Gilead Sciences, Merck, and ViiV Healthcare.
Collapse
Affiliation(s)
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Anne Marie O'Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - David King
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leilani Francisco
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Felisa Diaz-Mendez
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saini Setua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | | | | | - Denise Hsu
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Sandhya Vasan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Hongshuo Song
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
19
|
Hake A, Germann A, de Beer C, Thielen A, Däumer M, Preiser W, von Briesen H, Pfeifer N. Insights to HIV-1 coreceptor usage by estimating HLA adaptation with Bayesian generalized linear mixed models. PLoS Comput Biol 2023; 19:e1010355. [PMID: 38127856 PMCID: PMC10769057 DOI: 10.1371/journal.pcbi.1010355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/05/2024] [Accepted: 11/06/2023] [Indexed: 12/23/2023] Open
Abstract
The mechanisms triggering the human immunodeficiency virus type I (HIV-1) to switch the coreceptor usage from CCR5 to CXCR4 during the course of infection are not entirely understood. While low CD4+ T cell counts are associated with CXCR4 usage, a predominance of CXCR4 usage with still high CD4+ T cell counts remains puzzling. Here, we explore the hypothesis that viral adaptation to the human leukocyte antigen (HLA) complex, especially to the HLA class II alleles, contributes to the coreceptor switch. To this end, we sequence the viral gag and env protein with corresponding HLA class I and II alleles of a new cohort of 312 treatment-naive, subtype C, chronically-infected HIV-1 patients from South Africa. To estimate HLA adaptation, we develop a novel computational approach using Bayesian generalized linear mixed models (GLMMs). Our model allows to consider the entire HLA repertoire without restricting the model to pre-learned HLA-polymorphisms. In addition, we correct for phylogenetic relatedness of the viruses within the model itself to account for founder effects. Using our model, we observe that CXCR4-using variants are more adapted than CCR5-using variants (p-value = 1.34e-2). Additionally, adapted CCR5-using variants have a significantly lower predicted false positive rate (FPR) by the geno2pheno[coreceptor] tool compared to the non-adapted CCR5-using variants (p-value = 2.21e-2), where a low FPR is associated with CXCR4 usage. Consequently, estimating HLA adaptation can be an asset in predicting not only coreceptor usage, but also an approaching coreceptor switch in CCR5-using variants. We propose the usage of Bayesian GLMMs for modeling virus-host adaptation in general.
Collapse
Affiliation(s)
- Anna Hake
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- Saarbrücken Graduate School of Computer Science, Saarland University, Saarbrücken, Germany
| | - Anja Germann
- Main Department Medical Biotechnology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Corena de Beer
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | | | - Martin Däumer
- Institute of Immunology and Genetics, Kaiserslautern, Germany
| | - Wolfgang Preiser
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- National Health Laboratory Service, Tygerberg Business Unit, Cape Town, South Africa
| | - Hagen von Briesen
- Main Department Medical Biotechnology, Fraunhofer Institute for Biomedical Engineering, Sulzbach, Germany
| | - Nico Pfeifer
- Research Group Computational Biology, Max Planck Institute for Informatics, Saarbrücken, Germany
- German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
- Methods in Medical Informatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| |
Collapse
|
20
|
Bacqué J, Delgado E, Gil H, Ibarra S, Benito S, García-Arata I, Moreno-Lorenzo M, de Adana ES, Gómez-González C, Sánchez M, Montero V, Thomson MM. Identification of a HIV-1 circulating BF1 recombinant form (CRF75_BF1) of Brazilian origin that also circulates in Southwestern Europe. Front Microbiol 2023; 14:1301374. [PMID: 38125564 PMCID: PMC10731470 DOI: 10.3389/fmicb.2023.1301374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction The high recombinogenic potential of HIV-1 has resulted in the generation of countless unique recombinant forms (URFs) and around 120 reported circulating recombinant forms (CRFs). Here we identify through analyses of near full-length genomes (NFLG) a new HIV-1 CRF derived from subtypes B and F1. Methods HIV-1 protease-reverse transcriptase (Pr-RT) sequences were obtained by RT-PCR amplification from plasma RNA. Near full-length genome sequences were obtained after amplification by RT-PCR in 5 overlapping fragments. Phylogenetic sequence analyses were performed via maximum likelihood. Mosaic structures were analyzed by bootscanning and phylogenetic analyses of genome segments. Temporal and geographical estimations of clade emergence were performed with a Bayesian coalescent method. Results Through phylogenetic analyses of HIV-1 Pr-RT sequences obtained by us from samples collected in Spain and downloaded from databases, we identified a BF1 recombinant cluster segregating from previously reported CRFs comprising 52 viruses, most from Brazil (n = 26), Spain (n = 11), and Italy (n = 9). The analyses of NFLG genomes of 4 viruses of the cluster, 2 from Spain and 2 from Italy, allowed to identify a new CRF, designated CRF75_BF1, which exhibits a complex mosaic structure with 20 breakpoints. All 4 patients harboring CRF75_BF1 viruses studied by us had CD4+ T-cell lymphocyte counts below 220/mm3 less than one year after diagnosis, a proportion significantly higher (p = 0.0074) than the 29% found in other patients studied in Spain by us during the same period. The origin of the clade comprising CRF75_BF1 and related viruses was estimated around 1984 in Brazil, with subsequent introduction of CRF75_BF1 in Italy around 1992, and migration from Italy to Spain around 1999. Conclusion A new HIV-1 CRF, designated CRF75_BF1, has been identified. CRF75_BF1 is the 6th CRF of South American origin initially identified in Western Europe, reflecting the increasing relationship of South American and European HIV-1 epidemics. The finding of low CD4+ T-cell lymphocyte counts early after diagnosis in patients harboring CRF75_BF1 viruses warrants further investigation on the virulence of this variant.
Collapse
Affiliation(s)
- Joan Bacqué
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Elena Delgado
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Horacio Gil
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía Ibarra
- Department of Infectious Diseases, Hospital Universitario Basurto, Bilbao, Spain
| | - Sonia Benito
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Isabel García-Arata
- Department of Microbiology, Hospital Universitario de Fuenlabrada, Madrid, Spain
| | - María Moreno-Lorenzo
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Sáez de Adana
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobials and Gene Therapy Research Group, Vitoria-Gasteiz, Spain
- Osakidetza-Basque Health Service, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Carmen Gómez-González
- Bioaraba, Microbiology, Infectious Diseases, Antimicrobials and Gene Therapy Research Group, Vitoria-Gasteiz, Spain
- Osakidetza-Basque Health Service, Hospital Universitario Araba, Vitoria-Gasteiz, Spain
| | - Mónica Sánchez
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Vanessa Montero
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Michael M. Thomson
- HIV Biology and Variability Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Zhou S, Long N, Swanstrom R. Evolution Driven By A Varying Host Environment Selects For Distinct HIV-1 Entry Phenotypes and Other Informative Variants. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1291996. [PMID: 38239974 PMCID: PMC10795538 DOI: 10.3389/fviro.2023.1291996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
HIV-1 generates remarkable intra- and inter-host viral diversity during infection. In response to dynamic selective pressures of the host environment, HIV-1 will evolve distinct phenotypes - biological features that provide fitness advantages. The transmitted form of HIV-1 has been shown to require a high density of CD4 on the target cell surface (as found on CD4+ T cells) and typically uses CCR5 as a co-receptor during entry. This phenotype is referred to as R5 T cell-tropic (or R5 T-tropic); however, HIV-1 can switch to a secondary co-receptor, CXCR4, resulting in a X4 T cell-tropic phenotype. Macrophage-tropic (or M-tropic) HIV-1 can evolve to efficiently enter cells expressing low densities of CD4 on their surface (such as macrophages/microglia). So far only CCR5-using M-tropic viruses have been found. M-tropic HIV-1 is most frequently found within the central nervous system, and infection of the CNS has been associated with neurological impairment. It has been shown that interferon resistance phenotypes have a selective advantage during transmission, but the underlying mechanism of this is still unclear. During untreated infection, HIV-1 evolves under selective pressure from both the humoral/antibody response and CD8+ T cell killing. Sufficiently potent antiviral therapy will suppress viral replication, but if the antiviral drugs are not sufficiently potent to stop replication then the replicating virus will evolve drug resistance. HIV-1 phenotypes are highly relevant to treatment efforts, clinical outcomes, vaccine studies, and cure strategies. Therefore, it is critical to understand the dynamics of the host environment that drive these phenotypes and how they affect HIV-1 pathogenesis. This review will provide a comprehensive discussion of HIV-1 entry, transmission, and drug resistance phenotypes. Finally, we will assess the methods used in previous and current research to characterize these phenotypes.
Collapse
Affiliation(s)
- Shuntai Zhou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nathan Long
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald Swanstrom
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Paremskaia AI, Rudik AV, Filimonov DA, Lagunin AA, Poroikov VV, Tarasova OA. Web Service for HIV Drug Resistance Prediction Based on Analysis of Amino Acid Substitutions in Main Drug Targets. Viruses 2023; 15:2245. [PMID: 38005921 PMCID: PMC10674809 DOI: 10.3390/v15112245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples.
Collapse
Affiliation(s)
- Anastasiia Iu. Paremskaia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia;
- Live Sciences Research Center, Moscow Institute of Physics and Technology, National Research University, Institutsky Lane 9, Dolgoprudny 141700, Russia
| | - Anastassia V. Rudik
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow 119121, Russia; (A.V.R.); (D.A.F.); (V.V.P.)
| | - Dmitry A. Filimonov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow 119121, Russia; (A.V.R.); (D.A.F.); (V.V.P.)
| | - Alexey A. Lagunin
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovitianov Str. 1, Moscow 117997, Russia;
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow 119121, Russia; (A.V.R.); (D.A.F.); (V.V.P.)
| | - Vladimir V. Poroikov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow 119121, Russia; (A.V.R.); (D.A.F.); (V.V.P.)
| | - Olga A. Tarasova
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, 10 bldg. 8, Pogodinskaya Str., Moscow 119121, Russia; (A.V.R.); (D.A.F.); (V.V.P.)
| |
Collapse
|
23
|
Song H, Marichannegowda M, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis V, Tovanabutra S, Tagaya Y, Michael N, Robb M. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. RESEARCH SQUARE 2023:rs.3.rs-3359209. [PMID: 37841838 PMCID: PMC10571614 DOI: 10.21203/rs.3.rs-3359209/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, detection was not at the earliest stages of acute infection. Here, we identified an X4-tropic T/F HIV-1 in a participant in acute infection cohort. Coreceptor assays demonstrated that this T/F virus is strictly CXCR4 tropic. The participant experienced significantly faster CD4 depletion compared with R5 virus infected participants in the same cohort. Naïve and central memory CD4 subsets declined faster than effector and transitional memory subsets. All CD4 subsets, including naïve, were productively infected. Increased CD4+ T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions. These findings demonstrate that X4-tropic HIV-1 is transmissible through the mucosal route in people with the wild-type CCR5 genotype and have implications for understanding the transmissibility and immunopathogenesis of X4-tropic HIV-1.
Collapse
Affiliation(s)
- Hongshuo Song
- University of Maryland School of Medicine, Baltimore
| | | | - Saini Setua
- University of Maryland School of Medicine, Baltimore
| | | | | | - David King
- The Henry M. Jackson Foundation for the Advancement of Military Medicine
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | | | - Nicolas Chomont
- Université de Montréal, Department of Microbiology, Infectiology and Immunology
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Leilani Francisco
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Victoria Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | | | - Yutaka Tagaya
- University of Maryland School of Medicine, Baltimore
| | - Nelson Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research
| | - Merlin Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc
| |
Collapse
|
24
|
Marichannegowda MH, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis VR, Tovanabutra S, Tagaya Y, Michael NL, Robb ML, Song H. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557832. [PMID: 37745406 PMCID: PMC10515894 DOI: 10.1101/2023.09.15.557832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, detection was not at the earliest stages of acute infection. Here, we identified an X4-tropic T/F HIV-1 in a participant in acute infection cohort. Coreceptor assays demonstrated that this T/F virus is strictly CXCR4 tropic. The participant experienced significantly faster CD4 depletion compared with R5 virus infected participants in the same cohort. Naïve and central memory CD4 subsets declined faster than effector and transitional memory subsets. All CD4 subsets, including naïve, were productively infected. Increased CD4 + T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions. These findings demonstrate that X4-tropic HIV-1 is transmissible through the mucosal route in people with the wild-type CCR5 genotype and have implications for understanding the transmissibility and immunopathogenesis of X4-tropic HIV-1.
Collapse
|
25
|
Shahid A, MacLennan S, Jones BR, Sudderuddin H, Dang Z, Cobamibias K, Duncan MC, Kinloch NN, Dapp MJ, Archin NM, Fischl MA, Ofotokun I, Adimora A, Gange S, Aouizerat B, Kuniholm MH, Kassaye S, Mullins JI, Goldstein H, Joy JB, Anastos K, Brumme ZL. The replication-competent HIV reservoir is a genetically restricted, younger subset of the overall pool of HIV proviruses persisting during therapy, which is highly genetically stable over time. RESEARCH SQUARE 2023:rs.3.rs-3259040. [PMID: 37645749 PMCID: PMC10462229 DOI: 10.21203/rs.3.rs-3259040/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Within-host HIV populations continually diversify during untreated infection, and members of these diverse forms persist within infected cell reservoirs, even during antiretroviral therapy (ART). Characterizing the diverse viral sequences that persist during ART is critical to HIV cure efforts, but our knowledge of on-ART proviral evolutionary dynamics remains incomplete, as does our understanding of the differences between the overall pool of persisting proviral DNA (which is largely genetically defective) and the subset of intact HIV sequences capable of reactivating. Here, we reconstructed within-host HIV evolutionary histories in blood from seven participants of the Women's Interagency HIV Study (WIHS) who experienced HIV seroconversion. We measured diversity, lineage origins and ages of proviral sequences (env-gp120) sampled up to four times, up to 12 years on ART. We used the same techniques to study HIV sequences emerging from the reservoir in two participants. Proviral clonality generally increased over time on ART, with clones frequently persisting across multiple time points. The integration dates of proviruses persisting on ART generally spanned the duration of untreated infection (though were often skewed towards years immediately pre-ART), while in contrast, reservoir-origin viremia emerging in plasma was exclusively "younger" (i.e., dated to the years immediately pre-ART). The genetic and age distributions of distinct proviral sequences remained highly stable during ART in all but one participant in whom, after 12 years, there was evidence that "younger" proviruses had been preferentially eliminated. Analysis of within-host recombinant proviral sequences also suggested that HIV reservoirs can be superinfected with virus reactivated from an older era, yielding infectious viral progeny with mosaic genomes of sequences with different ages. Overall, results underscore the remarkable genetic stability of distinct proviral sequences that persist on ART, yet suggest that replication-competent HIV reservoir represents a genetically-restricted and overall "younger" subset of the overall persisting proviral pool in blood.
Collapse
Affiliation(s)
- Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Signe MacLennan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Bradley R Jones
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Hanwei Sudderuddin
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Zhong Dang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kyle Cobamibias
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Maggie C Duncan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Michael J Dapp
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Nande M Archin
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, NC, USA
| | - Margaret A Fischl
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Adaora Adimora
- Departments of Medicine and Epidemiology, University of North Carolina School of Medicine, UNC Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Stephen Gange
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Mark H Kuniholm
- Department of Epidemiology and Biostatistics, University at Albany, State University of New York, Rensselaer, New York, NY, USA
| | - Seble Kassaye
- Division of Infectious Diseases and Tropical Medicine, Georgetown University, Washington, DC, USA
| | - James I Mullins
- Department of Microbiology, University of Washington, School of Medicine, Seattle, WA, USA
| | - Harris Goldstein
- Departments of Microbiology and Immunology and Pediatrics, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| | - Jeffrey B Joy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Kathryn Anastos
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
26
|
Dai M, Li J, Li J, Lu H, Huang C, Lv S, Huang H, Xin R. Genetic characteristics of a novel HIV-1 recombinant lineage (CRF103_01B) and its prevalence in northern China. Virus Genes 2023:10.1007/s11262-023-01994-0. [PMID: 37079189 DOI: 10.1007/s11262-023-01994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/07/2023] [Indexed: 04/21/2023]
Abstract
During the routine surveillance of HIV-1 pretreatment drug resistance in Beijing, five men who have sex with men (MSM) and a woman were observed to get infected by newly identified CRF103_01B strain. To elucidate the genetic characteristics, the near full-length genome (NFLG) was obtained. Phylogenetic inference indicated that CRF103_01B NFLG was composed of six mosaic segments. Segments IV and V of CRF103_01B were located among the clusters subtype B and CRF01_AE (group 5), respectively. The CRF103_01B strain was deduced to originate from Beijing MSM population around 2002.3-2006.4 and continued to spread among MSM population at a low level, then to the general population via heterosexual contact in northern China. Molecular epidemiology surveillance of CRF103_01B should be reinforced.
Collapse
Affiliation(s)
- Man Dai
- China Medical University, Shenyang, 110122, China
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jia Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Jie Li
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Hongyan Lu
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Chun Huang
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China
| | - Shiyun Lv
- Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Huihuang Huang
- The Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Ruolei Xin
- Beijing Center for Disease Prevention and Control, Beijing, 100013, China.
| |
Collapse
|
27
|
Jensen BEO, Knops E, Cords L, Lübke N, Salgado M, Busman-Sahay K, Estes JD, Huyveneers LEP, Perdomo-Celis F, Wittner M, Gálvez C, Mummert C, Passaes C, Eberhard JM, Münk C, Hauber I, Hauber J, Heger E, De Clercq J, Vandekerckhove L, Bergmann S, Dunay GA, Klein F, Häussinger D, Fischer JC, Nachtkamp K, Timm J, Kaiser R, Harrer T, Luedde T, Nijhuis M, Sáez-Cirión A, Schulze Zur Wiesch J, Wensing AMJ, Martinez-Picado J, Kobbe G. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat Med 2023; 29:583-587. [PMID: 36807684 PMCID: PMC10033413 DOI: 10.1038/s41591-023-02213-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/09/2023] [Indexed: 02/22/2023]
Abstract
Despite scientific evidence originating from two patients published to date that CCR5Δ32/Δ32 hematopoietic stem cell transplantation (HSCT) can cure human immunodeficiency virus type 1 (HIV-1), the knowledge of immunological and virological correlates of cure is limited. Here we characterize a case of long-term HIV-1 remission of a 53-year-old male who was carefully monitored for more than 9 years after allogeneic CCR5Δ32/Δ32 HSCT performed for acute myeloid leukemia. Despite sporadic traces of HIV-1 DNA detected by droplet digital PCR and in situ hybridization assays in peripheral T cell subsets and tissue-derived samples, repeated ex vivo quantitative and in vivo outgrowth assays in humanized mice did not reveal replication-competent virus. Low levels of immune activation and waning HIV-1-specific humoral and cellular immune responses indicated a lack of ongoing antigen production. Four years after analytical treatment interruption, the absence of a viral rebound and the lack of immunological correlates of HIV-1 antigen persistence are strong evidence for HIV-1 cure after CCR5Δ32/Δ32 HSCT.
Collapse
Affiliation(s)
- Björn-Erik Ole Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Düsseldorf University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Elena Knops
- Institute of Virology, University and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Leon Cords
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nadine Lübke
- Institute of Virology, Düsseldorf University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Maria Salgado
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- Germans Trias i Pujol Research Institute, Barcelona, Spain
| | - Kathleen Busman-Sahay
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Jacob D Estes
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Laura E P Huyveneers
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Federico Perdomo-Celis
- Institut Pasteur, Paris Cité University, HIV Inflammation and Persistence, Paris, France
| | - Melanie Wittner
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Christiane Mummert
- Infectious Diseases and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
- Bavarian Nordic, Martinsried, Germany
| | - Caroline Passaes
- Institut Pasteur, Paris Cité University, HIV Inflammation and Persistence, Paris, France
| | - Johanna M Eberhard
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Helmholtz Center for Infection Research, Helmholtz Institute for One Health, Greifswald, Germany
| | - Carsten Münk
- Department of Gastroenterology, Hepatology and Infectious Diseases, Düsseldorf University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Joachim Hauber
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
| | - Eva Heger
- Institute of Virology, University and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Jozefien De Clercq
- HIV Cure Research Center and Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center and Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Silke Bergmann
- Infectious Diseases and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gábor A Dunay
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Leibniz Institute of Virology, Hamburg, Germany
- University Children's Research, UCR@Kinder-UKE, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Florian Klein
- Institute of Virology, University and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Düsseldorf University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Johannes C Fischer
- Institute for Transplant Diagnostics and Cell Therapeutics, Düsseldorf University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Kathrin Nachtkamp
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Düsseldorf University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Joerg Timm
- Institute of Virology, Düsseldorf University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Rolf Kaiser
- Institute of Virology, University and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research, Partner Site Bonn-Cologne, Cologne, Germany
| | - Thomas Harrer
- Infectious Diseases and Immunodeficiency Section, Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, Düsseldorf University Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Asier Sáez-Cirión
- Institut Pasteur, Paris Cité University, HIV Inflammation and Persistence, Paris, France
| | - Julian Schulze Zur Wiesch
- Infectious Diseases Unit, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany.
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
- Ezintsha, University of the Witwatersrand, Johannesburg, South Africa
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases (CIBERINFEC), Carlos III Health Institute, Madrid, Spain
- University of Vic-Central University of Catalonia, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Guido Kobbe
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty, Düsseldorf University Hospital, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
28
|
Koofhethile CK, Rinaldi S, Rassadkina Y, Dinh VB, Gao C, Pallikkuth S, Garcia-Broncano P, de Armas LR, Pahwa R, Cotugno N, Vaz P, Lain MG, Palma P, Yu XG, Shapiro R, Pahwa S, Lichterfeld M. HIV-1 reservoir evolution in infants infected with clade C from Mozambique. Int J Infect Dis 2023; 127:129-136. [PMID: 36476348 PMCID: PMC9892347 DOI: 10.1016/j.ijid.2022.11.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The persistence of HIV-1-infected cells during antiretroviral therapy is well documented but may be modulated by early initiation of antiretroviral therapy in infants. METHODS Here, we longitudinally analyzed the proviral landscape in nine infants with vertical HIV-1 infection from Mozambique over a median period of 24 months, using single-genome, near full-length, next-generation proviral sequencing. RESULTS We observed a rapid decline in the frequency of intact proviruses, leading to a disproportional under-representation of intact HIV-1 sequences within the total number of HIV-1 DNA sequences after 12-24 months of therapy. In addition, proviral integration site profiling in one infant demonstrated clonal expansion of infected cells harboring intact proviruses and indicated that viral rebound was associated with an integration site profile dominated by intact proviruses integrated into genic and accessible chromatin locations. CONCLUSION Together, these results permit rare insight into the evolution of the HIV-1 reservoir in infants infected with HIV-1 and suggest that the rapid decline of intact proviruses, relative to defective proviruses, may be attributed to a higher vulnerability of genome-intact proviruses to antiviral immunity. Technologies to analyze combinations of intact proviral sequences and corresponding integration sites permit a high-resolution analysis of HIV-1 reservoir cells after early antiretroviral treatment initiation in infants.
Collapse
Affiliation(s)
- Catherine K Koofhethile
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA; Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | | | | | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | | | | | | | | | - Nicola Cotugno
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Paula Vaz
- Fundação Ariel Glaser contra o SIDA Pediátrico, Maputo, Mozambique
| | | | - Paolo Palma
- Academic Department of Pediatrics, Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy; Chair of Pediatrics, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Roger Shapiro
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | | | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA; Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
29
|
Kotokwe K, Moyo S, Zahralban-Steele M, Holme MP, Melamu P, Koofhethile CK, Choga WT, Mohammed T, Nkhisang T, Mokaleng B, Maruapula D, Ditlhako T, Bareng O, Mokgethi P, Boleo C, Makhema J, Lockman S, Essex M, Ragonnet-Cronin M, Novitsky V, Gaseitsiwe S, PANGEA Consortium. Prediction of Coreceptor Tropism in HIV-1 Subtype C in Botswana. Viruses 2023; 15:403. [PMID: 36851617 PMCID: PMC9963705 DOI: 10.3390/v15020403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
It remains unknown whether the C-C motif chemokine receptor type 5 (CCR5) coreceptor is still the predominant coreceptor used by Human Immunodeficiency Virus-1 (HIV-1) in Botswana, where the HIV-1 subtype C predominates. We sought to determine HIV-1C tropism in Botswana using genotypic tools, taking into account the effect of antiretroviral treatment (ART) and virologic suppression. HIV-1 gp120 V3 loop sequences from 5602 participants were analyzed for viral tropism using three coreceptor use predicting algorithms/tools: Geno2pheno, HIV-1C Web Position-Specific Score Matrices (WebPSSM) and the 11/25 charge rule. We then compared the demographic and clinical characteristics of people living with HIV (PLWH) harboring R5- versus X4-tropic viruses using χ2 and Wilcoxon rank sum tests for categorical and continuous data analysis, respectively. The three tools congruently predicted 64% of viruses as either R5-tropic or X4-tropic. Geno2pheno and the 11/25 charge rule had the highest concordance at 89%. We observed a significant difference in ART status between participants harboring X4- versus R5-tropic viruses. X4-tropic viruses were more frequent among PLWH receiving ART (χ2 test, p = 0.03). CCR5 is the predominant coreceptor used by HIV-1C strains circulating in Botswana, underlining the strong potential for CCR5 inhibitor use, even in PLWH with drug resistance. We suggest that the tools for coreceptor prediction should be used in combination.
Collapse
Affiliation(s)
- Kenanao Kotokwe
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Melissa Zahralban-Steele
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Molly Pretorius Holme
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Pinkie Melamu
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Catherine Kegakilwe Koofhethile
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | | | - Terence Mohammed
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Tapiwa Nkhisang
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Baitshepi Mokaleng
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Dorcas Maruapula
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Tsotlhe Ditlhako
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Ontlametse Bareng
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Patrick Mokgethi
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Corretah Boleo
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
| | - Joseph Makhema
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Shahin Lockman
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Max Essex
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Manon Ragonnet-Cronin
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL 60637, USA
| | - Vlad Novitsky
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Simani Gaseitsiwe
- Botswana Harvard AIDS Institute Partnership, Princess Marina Hospital, Gaborone, Botswana
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | | |
Collapse
|
30
|
Zhang C, Lan Y, Li L, He R, Meng Y, Li J, Chen W. HIV-1 tropism in low-level viral load HIV-1 infections during HAART in Guangdong, China. Front Microbiol 2023; 14:1159763. [PMID: 37152735 PMCID: PMC10158941 DOI: 10.3389/fmicb.2023.1159763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 05/09/2023] Open
Abstract
Background Since only a few studies have been conducted on the factors associated with different HIV-1 tropisms in low-level viral load HIV-1 infections in China, we investigated the sequences of HIV-1 V3 loop in prevalent HIV-1 subtypes and factors related to HIV-1 tropism and immune recovery in HIV-1 infections after 6 months of highly active antiretroviral therapy (HAART) in Guangdong, China. Methods Plasma samples with HIV-1 RNA of 400-999 copies/mL were collected. We analyzed the amino acid sequence of the V3 loop by in silico prediction algorithms. Mann-Whitney and Chi-square tests were used for statistical comparison. Furthermore, logistic regression and multiple linear regression were used, respectively, for factors associated with 351 HIV-1 tropism and immune recovery of 67 cases with continued CD4+ T cell count during HAART. Results There was a lower percentage of HIV-1 R5-tropic virus in CRF01_AE (66.3%) (p < 0.0001) and CRF55_01B (52.6%) (p < 0.0001) compared with both CRF07_BC (96.1%) and CRF08_BC (97.4%), respectively. Compared with the R5-tropic virus, higher proportions of IIe8/Val8, Arg11/Lys11, and Arg18/His18/Lys18 were observed in the X4-tropic virus of CRF01_AE and CRF07_BC (p < 0.0001). The baseline CD4+ T cell count (p < 0.0001) and baseline CD4+ T/CD8+ T ratio (p = 0.0006) of all R5-tropic infections were higher than those in the X4-tropic infection. The baseline CD4+ T cell count (odds ratio [OR] 0.9963, p = 0.0097), CRF07_BC (OR 0.1283, p = 0.0002), and CRF08_BC (OR 0.1124, p = 0.0381) were associated with less HIV-1 X4-tropism. The baseline CD4+ T cell count was a positive factor (p < 0.0001) in the recovery of CD4+ T cell count during HAART. Conclusion R5-tropism represented the majority in low-level viral load HIV-1 infections receiving HAART for more than 6 months in Guangdong, China. The baseline immune level in the HIV-1 R5-tropic infections was higher than that in the X4-tropic infections. The amino acids of the 8th, 11th, and 18th of the HIV-1 V3 loop were more variable in the X4-tropic HIV-1. CRF01_AE, CRF55_01B, and lower baseline CD4+ T cell count were associated with more HIV-1 X4-tropism. The immune recovery during HAART was positively related to baseline CD4+ T cell count.
Collapse
Affiliation(s)
- Chuyu Zhang
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun Lan
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linghua Li
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruiying He
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yu Meng
- Infectious Disease Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jian Li
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weilie Chen
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Weilie Chen,
| |
Collapse
|
31
|
Appah A, Beelen CJ, Kirkby D, Dong W, Shahid A, Foley B, Mensah M, Ganu V, Puplampu P, Amoah LE, Nii-Trebi NI, Brumme CJ, Brumme ZL. Molecular Epidemiology of HIV-1 in Ghana: Subtype Distribution, Drug Resistance and Coreceptor Usage. Viruses 2022; 15:128. [PMID: 36680168 PMCID: PMC9865111 DOI: 10.3390/v15010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
The greatest HIV-1 genetic diversity is found in West/Central Africa due to the pandemic’s origins in this region, but this diversity remains understudied. We characterized HIV-1 subtype diversity (from both sub-genomic and full-genome viral sequences), drug resistance and coreceptor usage in 103 predominantly (90%) antiretroviral-naive individuals living with HIV-1 in Ghana. Full-genome HIV-1 subtyping confirmed the circulating recombinant form CRF02_AG as the dominant (53.9%) subtype in the region, with the complex recombinant 06_cpx (4%) present as well. Unique recombinants, most of which were mosaics containing CRF02_AG and/or 06_cpx, made up 37% of sequences, while “pure” subtypes were rare (<6%). Pretreatment resistance to at least one drug class was observed in 17% of the cohort, with NNRTI resistance being the most common (12%) and INSTI resistance being relatively rare (2%). CXCR4-using HIV-1 sequences were identified in 23% of participants. Overall, our findings advance our understanding of HIV-1 molecular epidemiology in Ghana. Extensive HIV-1 genetic diversity in the region appears to be fueling the ongoing creation of novel recombinants, the majority CRF02_AG-containing, in the region. The relatively high prevalence of pretreatment NNRTI resistance but low prevalence of INSTI resistance supports the use of INSTI-based first-line regimens in Ghana.
Collapse
Affiliation(s)
- Anna Appah
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Charlotte J. Beelen
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Don Kirkby
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Winnie Dong
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Brian Foley
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA
| | - Miriam Mensah
- Fevers Unit, Department of Medicine, Korle Bu Teaching Hospital, Accra P.O. Box KB 77, Ghana
| | - Vincent Ganu
- Department of Internal Medicine, Korle Bu Teaching Hospital, Accra P.O. Box KB 77, Ghana
| | - Peter Puplampu
- Department of Internal Medicine, Korle Bu Teaching Hospital, Accra P.O. Box KB 77, Ghana
| | - Linda E. Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra P.O. Box LG 25, Ghana
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
32
|
Grant HE, Roy S, Williams R, Tutill H, Ferns B, Cane PA, Carswell JW, Ssemwanga D, Kaleebu P, Breuer J, Leigh Brown AJ. A large population sample of African HIV genomes from the 1980s reveals a reduction in subtype D over time associated with propensity for CXCR4 tropism. Retrovirology 2022; 19:28. [PMID: 36514107 PMCID: PMC9746199 DOI: 10.1186/s12977-022-00612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/12/2022] [Indexed: 12/15/2022] Open
Abstract
We present 109 near full-length HIV genomes amplified from blood serum samples obtained during early 1986 from across Uganda, which to our knowledge is the earliest and largest population sample from the initial phase of the HIV epidemic in Africa. Consensus sequences were made from paired-end Illumina reads with a target-capture approach to amplify HIV material following poor success with standard approaches. In comparisons with a smaller 'intermediate' genome dataset from 1998 to 1999 and a 'modern' genome dataset from 2007 to 2016, the proportion of subtype D was significantly higher initially, dropping from 67% (73/109), to 57% (26/46) to 17% (82/465) respectively (p < 0.0001). Subtype D has previously been shown to have a faster rate of disease progression than other subtypes in East African population studies, and to have a higher propensity to use the CXCR4 co-receptor ("X4 tropism"); associated with a decrease in time to AIDS. Here we find significant differences in predicted tropism between A1 and D subtypes in all three sample periods considered, which is particularly striking the 1986 sample: 66% (53/80) of subtype D env sequences were predicted to be X4 tropic compared with none of the 24 subtype A1. We also analysed the frequency of subtype in the envelope region of inter-subtype recombinants, and found that subtype A1 is over-represented in env, suggesting recombination and selection have acted to remove subtype D env from circulation. The reduction of subtype D frequency over three decades therefore appears to be a result of selective pressure against X4 tropism and its higher virulence. Lastly, we find a subtype D specific codon deletion at position 24 of the V3 loop, which may explain the higher propensity for subtype D to utilise X4 tropism.
Collapse
Affiliation(s)
- Heather E Grant
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK.
| | - Sunando Roy
- Division of Infection and Immunity, University College London, London, UK
| | - Rachel Williams
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Helena Tutill
- Division of Infection and Immunity, University College London, London, UK
| | - Bridget Ferns
- Department of Virology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | | | - Deogratius Ssemwanga
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Pontiano Kaleebu
- Medical Research Council (MRC)/Uganda Virus Research Institute (UVRI) and London School of Hygiene and Tropical Medicine (LSHTM) Uganda Research Unit, Entebbe, Uganda
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | | |
Collapse
|
33
|
Li K, Chen H, Li J, Feng Y, Lan G, Liang S, Liu M, Rashid A, Xing H, Shen Z, Shao Y. Immune reconstruction effectiveness of combination antiretroviral therapy for HIV-1 CRF01_AE cluster 1 and 2 infected individuals. Emerg Microbes Infect 2022; 11:158-167. [PMID: 34895083 PMCID: PMC8725829 DOI: 10.1080/22221751.2021.2017755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/08/2021] [Indexed: 02/03/2023]
Abstract
There are great disparities of the results in immune reconstruction (IR) of the HIV-1 infected patients during combined antiretroviral therapy (cART), due to both host polymorphisms and viral genetic subtypes. Identifying these factors and elucidating their impact on the IR could help to improve the efficacy. To study the factors influencing the IR, we conducted a 15-year retrospective cohort study of HIV-1 infected individuals under cART. The trend of CD4+ count changes was evaluated by the generalized estimating equations. Cox proportional model and propensity score matching were used to identify variables that affect the possibility of achieving IR. The tropism characteristics of virus were compared using the coreceptor binding model. In addition to baseline CD4+ counts and age implications, CRF01_AE cluster 1 was associated with a poorer probability of achieving IR than infection with cluster 2 (aHR, 1.39; 95%CI, 1.02-1.90) and other subtypes (aHR, 1.83; 95%CI, 1.31-2.56). The mean time from cART initiation to achieve IR was much longer in patients infected by CRF01_AE cluster 1 than other subtypes/sub-clusters (P < 0.001). In-depth analysis indicated that a higher proportion of CXCR4 viruses were found in CRF01_AE clusters 1 and 2 (P < 0.05), and showed tendency to favour CXCR4 binding to V3 signatures. This study indicated the immune restoration impairment found in patients were associated with HIV-1 CRF01_AE cluster 1, which was attributed to the high proportion of CXCR4-tropic viruses. To improve the effectiveness of cART, more efforts should be made in the early identification of HIV-1 subtype/sub-cluster and monitoring of virus phenotypes.
Collapse
Affiliation(s)
- Kang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Huanhuan Chen
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, People’s Republic of China
| | - Jianjun Li
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, People’s Republic of China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Guanghua Lan
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, People’s Republic of China
| | - Shujia Liang
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, People’s Republic of China
| | - Meiliang Liu
- School of Public Health, Guangxi Medical University, Nanning, People’s Republic of China
| | - Abdur Rashid
- School of Medicine, Nankai University, Tianjin, People’s Republic of China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhiyong Shen
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, People’s Republic of China
| | - Yiming Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, People’s Republic of China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Guangxi Key Laboratory of Major Infectious Disease Prevention and Control and Biosafety Emergency Response, Guangxi Center for Disease Control and Prevention, Nanning, People’s Republic of China
| |
Collapse
|
34
|
A New HIV-1 K 28E 32-Reverse Transcriptase Variant Associated with the Rapid Expansion of CRF07_BC among Men Who Have Sex with Men. Microbiol Spectr 2022; 10:e0254522. [PMID: 36214682 PMCID: PMC9604004 DOI: 10.1128/spectrum.02545-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
HIV-1 CRF07_BC originated among injection drug users (IDUs) in China. After diffusing into men who have sex with men (MSM), CRF07_BC has shown a rapid expansion in this group; however, the mechanism remains unclear. Here, we identified a new K28E32 variant of CRF07_BC that was characterized by five specific mutations (E28K, K32E, E248V, K249Q, and T338S) in reverse transcriptase. This variant was mainly prevalent among MSM, and was overrepresented in transmission clusters, suggesting that it could have driven the rapid expansion of CRF07_BC in MSM, though founder effects cannot be ruled out. It was descended from an evolutionary intermediate accumulating four specific mutations and formed an independent phylogenetic node with an estimated origin time in 2003. The K28E32 variant was demonstrated to have significantly higher in vitro HIV-1 replication ability than the wild type. Mutations E28K and K32E play a critical role in the improvement of in vitro HIV-1 replication ability, reflected by improved reverse transcription activity. The results could allow public health officials to use this marker (especially E28K and K32E mutations in the reverse transcriptase (RT) coding region) to target prevention measures prioritizing MSM population and persons infected with this variant for test and treat initiatives. IMPORTANCE HIV-1 has very high mutation rate that is correlated with the survival and adaption of the virus. The variants with higher transmissibility may be more selective advantage than the strains with higher virulence. Several HIV-1 variants were previously demonstrated to be correlated with higher viral load and lower CD4 T cell count. Here, we first identified a new variant (the K28E32 variant) of HIV-1 CRF07_BC, described its origin and evolutionary dynamics, and demonstrated its higher in vitro HIV-1 replication ability than the wild type. We demonstrated that five RT mutations (especially E28K and K32E) significantly improve in vitro HIV-1 replication ability. The appearance of the new K28E32 variant was associated with the rapidly increasing prevalence of CRF07_BC among MSM.
Collapse
|
35
|
Renelt S, Schult-Dietrich P, Baldauf HM, Stein S, Kann G, Bickel M, Kielland-Kaisen U, Bonig H, Marschalek R, Rieger MA, Dietrich U, Duerr R. HIV-1 Infection of Long-Lived Hematopoietic Precursors In Vitro and In Vivo. Cells 2022; 11:cells11192968. [PMID: 36230931 PMCID: PMC9562211 DOI: 10.3390/cells11192968] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Latent reservoirs in human-immunodeficiency-virus-1 (HIV-1)-infected individuals represent a major obstacle in finding a cure for HIV-1. Hematopoietic stem and progenitor cells (HSPCs) have been described as potential HIV-1 targets, but their roles as HIV-1 reservoirs remain controversial. Here we provide additional evidence for the susceptibility of several distinct HSPC subpopulations to HIV-1 infection in vitro and in vivo. In vitro infection experiments of HSPCs were performed with different HIV-1 Env-pseudotyped lentiviral particles and with replication-competent HIV-1. Low-level infection/transduction of HSPCs, including hematopoietic stem cells (HSCs) and multipotent progenitors (MPP), was observed, preferentially via CXCR4, but also via CCR5-mediated entry. Multi-lineage colony formation in methylcellulose assays and repetitive replating of transduced cells provided functional proof of susceptibility of primitive HSPCs to HIV-1 infection. Further, the access to bone marrow samples from HIV-positive individuals facilitated the detection of HIV-1 gag cDNA copies in CD34+ cells from eight (out of eleven) individuals, with at least six of them infected with CCR5-tropic HIV-1 strains. In summary, our data confirm that primitive HSPC subpopulations are susceptible to CXCR4- and CCR5-mediated HIV-1 infection in vitro and in vivo, which qualifies these cells to contribute to the HIV-1 reservoir in patients.
Collapse
Affiliation(s)
- Sebastian Renelt
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Patrizia Schult-Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Hanna-Mari Baldauf
- Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, 81377 Munich, Germany
- Institute of Medical Virology, Goethe University, 60596 Frankfurt, Germany
| | - Stefan Stein
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Gerrit Kann
- Department of Medicine II/Infectious Diseases, Goethe University Hospital, 60596 Frankfurt, Germany
- Infektiologikum, Center for Infectious Diseases, 60596 Frankfurt, Germany
| | - Markus Bickel
- Infektiologikum, Center for Infectious Diseases, 60596 Frankfurt, Germany
| | | | - Halvard Bonig
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Donor Service Baden-Württemberg-Hessen, Goethe University, 60528 Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, 60438 Frankfurt, Germany
| | - Michael A. Rieger
- Department of Medicine, Hematology/Oncology, Goethe University Hospital, 60590 Frankfurt, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, 69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Cardio-Pulmonary Institute, 60596 Frankfurt, Germany
| | - Ursula Dietrich
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Ralf Duerr
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
36
|
Hu X, Feng Y, Li K, Yu Y, Rashid A, Xing H, Ruan Y, Lu L, Wei M, Shao Y. Unique profile of predominant CCR5-tropic in CRF07_BC HIV-1 infections and discovery of an unusual CXCR4-tropic strain. Front Immunol 2022; 13:911806. [PMID: 36211390 PMCID: PMC9540210 DOI: 10.3389/fimmu.2022.911806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
CRF07_BC is one of the most prevalent HIV-1 strains in China, which contributes over one-third of the virus transmissions in the country. In general, CRF07_BC is associated with slower disease progression, while the underlying mechanisms remain unclear. Our study focused on envelope proteins (Env) and its V3 loop which determine viral binding to co-receptors during infection of cells. We studied a large dataset of 3,937 env sequences in China and found that CRF07_BC had a unique profile of predominantly single CCR5 tropism compared with CCR5 and CXCR4 dual tropisms in other HIV-1 subtypes. The percentages of the CXCR4-tropic virus in B (3.7%) and CRF01_AE (10.4%) infection are much higher than that of CRF07_BC (0.1%), which is supported by median false-positive rates (FPRs) of 69.8%, 25.5%, and 13.4% for CRF07_BC, B, and CRF01_AE respectively, with a cutoff FPR for CXCR4-tropic at 2%. In this study, we identified the first pure CXCR4-tropic virus from one CRF07_BC-infected patient with an extremely low CD4+T cell count (7 cells/mm3). Structural analysis found that the V3 region of this virus has the characteristic 7T and 25R and a substitution of conserved “GPGQ” crown motif for “GPGH”. This study provided compelling evidence that CRF07_BC has the ability to evolve into CXCR4 strains. Our study also lay down the groundwork for studies on tropism switch, which were commonly done for other HIV-1 subtypes, for the long-delayed CRF07_BC.
Collapse
Affiliation(s)
- Xiaoyan Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Yueyang Yu
- School of Medicine, Nankai University, Tianjin, China
| | - Abdur Rashid
- School of Medicine, Nankai University, Tianjin, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuhua Ruan
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingling Lu
- School of Medicine, Nankai University, Tianjin, China
| | - Min Wei
- School of Medicine, Nankai University, Tianjin, China
- Nankai University Second People’s Hospital, Nankai University, Tianjin, China
- *Correspondence: Min Wei, ; Yiming Shao,
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for Acquired Immune Deficiency Syndrome/Sexually Transmitted Diseases (AIDS/STD) Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- *Correspondence: Min Wei, ; Yiming Shao,
| |
Collapse
|
37
|
Autopsy Study Defines Composition and Dynamics of the HIV-1 Reservoir after Allogeneic Hematopoietic Stem Cell Transplantation with CCR5Δ32/Δ32 Donor Cells. Viruses 2022; 14:v14092069. [PMID: 36146874 PMCID: PMC9503691 DOI: 10.3390/v14092069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Allo-HSCT with CCR5Δ32/Δ32 donor cells is the only curative HIV-1 intervention. We investigated the impact of allo-HSCT on the viral reservoir in PBMCs and post-mortem tissue in two patients. IciS-05 and IciS-11 both received a CCR5Δ32/Δ32 allo-HSCT. Before allo-HSCT, ultrasensitive HIV-1 RNA quantification; HIV-1-DNA quantification; co-receptor tropism analysis; deep-sequencing and viral characterization in PBMCs and bone marrow; and post-allo-HSCT, ultrasensitive RNA and HIV-1-DNA quantification were performed. Proviral quantification, deep sequencing, and viral characterization were done in post-mortem tissue samples. Both patients harbored subtype B CCR5-tropic HIV-1 as determined genotypically and functionally by virus culture. Pre-allo-HSCT, HIV-1-DNA could be detected in both patients in bone marrow, PBMCs, and T-cell subsets. Chimerism correlated with detectable HIV-1-DNA LTR copies in cells and tissues. Post-mortem analysis of IciS-05 revealed proviral DNA in all tissue biopsies, but not in PBMCs. In patient IciS-11, who was transplanted twice, no HIV-1-DNA could be detected in PBMCs at the time of death, whereas HIV-1-DNA was detectable in the lymph node. In conclusion, shortly after CCR5Δ32/Δ32, allo-HSCT HIV-1-DNA became undetectable in PBMCs. However, HIV-1-DNA variants identical to those present before transplantation persisted in post-mortem-obtained tissues, indicating that these tissues play an important role as viral reservoirs.
Collapse
|
38
|
Sajjan M, Li J, Selvarajan R, Sureshbabu SH, Kale SS, Gupta R, Singh V, Kais S. Quantum machine learning for chemistry and physics. Chem Soc Rev 2022; 51:6475-6573. [PMID: 35849066 DOI: 10.1039/d2cs00203e] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Machine learning (ML) has emerged as a formidable force for identifying hidden but pertinent patterns within a given data set with the objective of subsequent generation of automated predictive behavior. In recent years, it is safe to conclude that ML and its close cousin, deep learning (DL), have ushered in unprecedented developments in all areas of physical sciences, especially chemistry. Not only classical variants of ML, even those trainable on near-term quantum hardwares have been developed with promising outcomes. Such algorithms have revolutionized materials design and performance of photovoltaics, electronic structure calculations of ground and excited states of correlated matter, computation of force-fields and potential energy surfaces informing chemical reaction dynamics, reactivity inspired rational strategies of drug designing and even classification of phases of matter with accurate identification of emergent criticality. In this review we shall explicate a subset of such topics and delineate the contributions made by both classical and quantum computing enhanced machine learning algorithms over the past few years. We shall not only present a brief overview of the well-known techniques but also highlight their learning strategies using statistical physical insight. The objective of the review is not only to foster exposition of the aforesaid techniques but also to empower and promote cross-pollination among future research in all areas of chemistry which can benefit from ML and in turn can potentially accelerate the growth of such algorithms.
Collapse
Affiliation(s)
- Manas Sajjan
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Junxu Li
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA
| | - Raja Selvarajan
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA
| | - Shree Hari Sureshbabu
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN-47907, USA
| | - Sumit Suresh Kale
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Rishabh Gupta
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Vinit Singh
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA
| | - Sabre Kais
- Department of Chemistry, Purdue University, West Lafayette, IN-47907, USA. .,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, USA.,Department of Physics and Astronomy, Purdue University, West Lafayette, IN-47907, USA.,Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN-47907, USA
| |
Collapse
|
39
|
Hartana CA, Garcia-Broncano P, Rassadkina Y, Lian X, Jiang C, Einkauf KB, Maswabi K, Ajibola G, Moyo S, Mohammed T, Maphorisa C, Makhema J, Yuki Y, Martin M, Bennett K, Jean-Philippe P, Viard M, Hughes MD, Powis KM, Carrington M, Lockman S, Gao C, Yu XG, Kuritzkes DR, Shapiro R, Lichterfeld M. Immune correlates of HIV-1 reservoir cell decline in early-treated infants. Cell Rep 2022; 40:111126. [PMID: 35858580 PMCID: PMC9314543 DOI: 10.1016/j.celrep.2022.111126] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/13/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022] Open
Abstract
Initiation of antiretroviral therapy (ART) in infected neonates within hours after birth limits viral reservoir seeding but does not prevent long-term HIV-1 persistence. Here, we report parallel assessments of HIV-1 reservoir cells and innate antiviral immune responses in a unique cohort of 37 infected neonates from Botswana who started ART extremely early, frequently within hours after birth. Decline of genome-intact HIV-1 proviruses occurs rapidly after initiation of ART and is associated with an increase in natural killer (NK) cell populations expressing the cytotoxicity marker CD57 and with a decrease in NK cell subsets expressing the inhibitory marker NKG2A. Immune perturbations in innate lymphoid cells, myeloid dendritic cells, and monocytes detected at birth normalize after rapid institution of antiretroviral therapy but do not notably influence HIV-1 reservoir cell dynamics. These results suggest that HIV-1 reservoir cell seeding and evolution in early-treated neonates is markedly influenced by antiviral NK cell immune responses.
Collapse
Affiliation(s)
- Ciputra Adijaya Hartana
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Pilar Garcia-Broncano
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Chenyang Jiang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin B Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Kenneth Maswabi
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Gbolahan Ajibola
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sikhulile Moyo
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Terence Mohammed
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | | | - Joseph Makhema
- Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Kara Bennett
- Bennett Statistical Consulting, Inc., Ballston Lake, NY 12019, USA
| | | | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael D Hughes
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kathleen M Powis
- Harvard Medical School, Boston, MA 02115, USA; Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Medicine and Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 20892, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Shahin Lockman
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Daniel R Kuritzkes
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Roger Shapiro
- Harvard Medical School, Boston, MA 02115, USA; Botswana - Harvard AIDS Institute Partnership, Gaborone, Botswana; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Abstract
OBJECTIVE Treatment of multi-drug resistant HIV-2 is an emerging issue, due to the rapid selection of mutations at time of virological failure and the low number of antiretrovirals active on HIV-2. The aim of this study was to determine the susceptibility of HIV-2 primary isolates to ibalizumab, a long-acting monoclonal antibody that binds to CD4, that is approved for the treatment of MDR HIV-1. METHODS In vitro phenotypic susceptibility of 16 HIV-2 primary isolates was measured using a modified version of the ANRS peripheral blood mononuclear cells (PBMC) assay. Susceptibility to ibalizumab was assessed through 50% inhibitory concentrations and maximum percent inhibitions (MPI), and gp105 was sequenced to look for determinants of reduced susceptibility. RESULTS Ibalizumab inhibited viral replication of all 16 isolates, with a median IC50 value of 0.027 μg/mL (range = 0.001-0.506 μg/mL), and a median MPI of 93%. Although two isolates presented higher IC50 (above 0.1 μg/mL), they did not exhibit a loss of potential N-linked glycosylation sites in V5 loop, as reported in HIV-1 strains with reduced susceptibility. However, both presented shorter V1 and V2 loops than the HIV-2 reference strain. CONCLUSIONS Ibalizumab inhibits HIV-2 replication, with IC50 and MPI in the range of those reported for HIV-1. These in vitro data support the use of ibalizumab in patients with MDR HIV-2, in combination with an optimized background regimen.
Collapse
|
41
|
Peng X, Zhu B. Different features identified by machine learning associated with the HIV compartmentalization in semen. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105224. [PMID: 35081465 DOI: 10.1016/j.meegid.2022.105224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Genetic compartmentalization in semen has been observed in previous studies. However, genetic signatures associated with compartmentalization in semen are only beginning to be explored. A total of 2071 partial HIV env sequences for paired blood and semen specimens were collected from 42 persons with HIV (24 for subtype B, 18 for subtype C). The HIV sequences datasets of subtype B and C were then divided to compartmentalization group and no-compartmentalization group by using the genetic compartmentalization tests. These datasets were used to construct a machine learning (ML) metadataset. AAIndex metrics were adopted as quantitative measures of the biophysicochemical properties of each amino acid. Five algorithm tests were applied, all of which are implemented in the caret package. For Subtype B, the accuracy for the compartmentalization group is 0.87 (range: 0.80-0.92), 0.69 (range: 0.58-0.79) for the no-compartmentlization group. The similar results were also showed in subtype C. The accuracy for the compartmentalization group is 0.74 (range: 0.64-0.83), 0.50 (range: 0.39-0.61) for the no-compartmentlization. The model identified six env features most significant in distinguishing between proviruses in blood and semen in subtype B and C. These features are related to CD4 binding, glycosylation sites and coreceptor selection, which further associated with the viral compartmentalization in semen. In summary, we describe a machine learning model that distinguishes semen-tropic virus based on env sequences and identify six different important features. These ML approach and models can help us better understand the semen-tropic virus phenotype, and therefore its reservoir component, guiding a new study direction toward eradication of the HIV reservoir.
Collapse
Affiliation(s)
- Xiaorong Peng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China
| | - Biao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003 Hangzhou, China.
| |
Collapse
|
42
|
Lian X, Gao C, Sun X, Jiang C, Einkauf KB, Seiger KW, Chevalier JM, Yuki Y, Martin M, Hoh R, Peluso MJ, Carrington M, Ruiz-Mateos E, Deeks SG, Rosenberg ES, Walker BD, Lichterfeld M, Yu XG. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers. Sci Transl Med 2021; 13:eabl4097. [PMID: 34910552 PMCID: PMC9202005 DOI: 10.1126/scitranslmed.abl4097] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that durable drug-free control of HIV-1 replication is enabled by effective cellular immune responses that may induce an attenuated viral reservoir configuration with a weaker ability to drive viral rebound. Here, we comprehensively tracked effects of antiviral immune responses on intact and defective proviral sequences from elite controllers (ECs), analyzing both classical escape mutations and HIV-1 chromosomal integration sites as biomarkers of antiviral immune selection pressure. We observed that, within ECs, defective proviruses were commonly located in permissive genic euchromatin positions, which represented an apparent contrast to autologous intact proviruses that were frequently located in heterochromatin regions; this suggests differential immune selection pressure on intact versus defective proviruses in ECs. In comparison to individuals receiving antiretroviral therapy, intact and defective proviruses from ECs showed reduced frequencies of escape mutations in cytotoxic T cell epitopes and antibody contact regions, possibly due to the small and poorly inducible reservoir that may be insufficient to drive effective viral escape in ECs. About 15% of ECs harbored nef deletions in intact proviruses, consistent with increased viral vulnerability to host immunity in the setting of nef dysfunction. Together, these results suggest a distinct signature of immune footprints in proviral sequences from ECs.
Collapse
Affiliation(s)
- Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Xiaoming Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Chenyang Jiang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kevin B. Einkauf
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Kyra W. Seiger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Joshua M. Chevalier
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rebecca Hoh
- University of California at San Francisco, San Francisco, CA 94143, USA
| | - Michael J. Peluso
- University of California at San Francisco, San Francisco, CA 94143, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ezequiel Ruiz-Mateos
- Clinical Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, CSIC, University of Seville, Seville 41013, Spain
| | - Steven G. Deeks
- University of California at San Francisco, San Francisco, CA 94143, USA
| | - Eric S. Rosenberg
- Infectious Disease Division, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
43
|
Viral and Cellular factors leading to the Loss of CD4 Homeostasis in HIV-1 Viremic Nonprogressors. J Virol 2021; 96:e0149921. [PMID: 34668779 PMCID: PMC8754213 DOI: 10.1128/jvi.01499-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) viremic nonprogressors (VNPs) represent a very rare HIV-1 extreme phenotype. VNPs are characterized by persistent high plasma viremia and maintenance of CD4+ T-cell counts in the absence of treatment. However, the causes of nonpathogenic HIV-1 infection in VNPs remain elusive. Here, we identified for the first time two VNPs who experienced the loss of CD4+ homeostasis (LoH) after more than 13 years. We characterized in deep detail viral and host factors associated with the LoH and compared with standard VNPs and healthy controls. The viral factors determined included HIV-1 coreceptor usage and replicative capacity. Changes in CD4+ and CD8+ T-cell activation, maturational phenotype, and expression of CCR5 and CXCR6 in CD4+ T-cells were also evaluated as host-related factors. Consistently, we determined a switch in HIV-1 coreceptor use to CXCR4 concomitant with an increase in replicative capacity at the LoH for the two VNPs. Moreover, we delineated an increase in the frequency of HLA-DR+CD38+ CD4+ and CD8+ T cells and traced the augment of naive T-cells upon polyclonal activation with LoH. Remarkably, very low and stable levels of CCR5 and CXCR6 expression in CD4+ T-cells were measured over time. Overall, our results demonstrated HIV-1 evolution toward highly pathogenic CXCR4 strains in the context of very limited and stable expression of CCR5 and CXCR6 in CD4+ T cells as potential drivers of LoH in VNPs. These data bring novel insights into the correlates of nonpathogenic HIV-1 infection. IMPORTANCE The mechanism behind nonpathogenic human immunodeficiency virus type 1 (HIV-1) infection remains poorly understood, mainly because of the very low frequency of viremic nonprogressors (VNPs). Here, we report two cases of VNPs who experienced the loss of CD4+ T-cell homeostasis (LoH) after more than 13 years of HIV-1 infection. The deep characterization of viral and host factors supports the contribution of viral and host factors to the LoH in VNPs. Thus, HIV-1 evolution toward highly replicative CXCR4 strains together with changes in T-cell activation and maturational phenotypes were found. Moreover, we measured very low and stable levels of CCR5 and CXCR6 in CD4+ T-cells over time. These findings support viral evolution toward X4 strains limited by coreceptor expression to control HIV-1 pathogenesis and demonstrate the potential of host-dependent factors, yet to be fully elucidated in VNPs, to control HIV-1 pathogenesis.
Collapse
|
44
|
Keith JA, Vassilev-Galindo V, Cheng B, Chmiela S, Gastegger M, Müller KR, Tkatchenko A. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chem Rev 2021; 121:9816-9872. [PMID: 34232033 PMCID: PMC8391798 DOI: 10.1021/acs.chemrev.1c00107] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/23/2022]
Abstract
Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.
Collapse
Affiliation(s)
- John A. Keith
- Department
of Chemical and Petroleum Engineering Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Valentin Vassilev-Galindo
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Bingqing Cheng
- Accelerate
Programme for Scientific Discovery, Department
of Computer Science and Technology, 15 J. J. Thomson Avenue, Cambridge CB3 0FD, United Kingdom
| | - Stefan Chmiela
- Department
of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587, Berlin, Germany
| | - Michael Gastegger
- Department
of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587, Berlin, Germany
| | - Klaus-Robert Müller
- Machine
Learning Group, Technische Universität
Berlin, 10587, Berlin, Germany
- Department
of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Korea
- Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
- Google Research, Brain Team, 10117 Berlin, Germany
| | - Alexandre Tkatchenko
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
45
|
Pinzone MR, Weissman S, Pasternak AO, Zurakowski R, Migueles S, O'Doherty U. Naive infection predicts reservoir diversity and is a formidable hurdle to HIV eradication. JCI Insight 2021; 6:e150794. [PMID: 34228640 PMCID: PMC8409977 DOI: 10.1172/jci.insight.150794] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/30/2021] [Indexed: 12/16/2022] Open
Abstract
Historically, naive cells have been considered inconsequential to HIV persistence. Here, we compared the contributions of naive and memory cells to the reservoirs of individuals with a spectrum of reservoir sizes and variable immunological control. We performed proviral sequencing of approximately 6000 proviruses from cellular subsets of 5 elite controllers (ECs) off antiretroviral therapy (ART) and 5 chronic progressors (CPs) on ART. The levels of naive infection were barely detectable in ECs and approximately 300-fold lower compared with those in CPs. Moreover, the ratio of infected naive to memory cells was significantly lower in ECs. Overall, the naive infection level increased as reservoir size increased, such that naive cells were a major contributor to the intact reservoir of CPs, whose reservoirs were generally very diverse. In contrast, the reservoirs of ECs were dominated by proviral clones. Critically, the fraction of proviral clones increased with cell differentiation, with naive infection predicting reservoir diversity. Longitudinal sequencing revealed that the reservoir of ECs was less dynamic compared with that of CPs. Naive cells play a critical role in HIV persistence. Their infection level predicts reservoir size and diversity. Moreover, the diminishing diversity of the reservoir as cellular subsets mature suggests that naive T cells repopulate the memory compartment and that direct infection of naive T cells occurs in vivo.
Collapse
Affiliation(s)
- Marilia R Pinzone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sam Weissman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alexander O Pasternak
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Laboratory of Experimental Virology, Amsterdam, Netherlands
| | - Ryan Zurakowski
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| | - Stephen Migueles
- HIV-Specific Immunity Section of the Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Una O'Doherty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
46
|
Judicate GP, Barabona G, Kamori D, Mahiti M, Tan TS, Ozono S, Mgunya AS, Kuwata T, Matsushita S, Sunguya B, Lyamuya E, Tokunaga K, Ueno T. Phenotypic and Genotypic Co-receptor Tropism Testing in HIV-1 Epidemic Region of Tanzania Where Multiple Non-B Subtypes Co-circulate. Front Microbiol 2021; 12:703041. [PMID: 34305873 PMCID: PMC8292895 DOI: 10.3389/fmicb.2021.703041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
HIV human immunodeficiency virus type I (HIV-1) entry inhibitor potency is dependent on viral co-receptor tropisms and thereby tropism determination is clinically important. However, phenotypic tropisms of HIV-1 non-B subtypes have been poorly investigated and the genotypic prediction algorithms remain insufficiently validated. To clarify this issue, we recruited 52 treatment-naïve, HIV-1-infected patients in Tanzania, where multiple HIV-1 non-B subtypes co-circulate. Sequence analysis of 93 infectious envelope clones isolated from their plasma viral RNA revealed the co-circulation of subtypes A1, C, D, and inter-subtype recombinant forms (isRFs). Phenotypic tropism assays revealed that lentivirus reporters pseudotyped with 75 (80.6%) and 5 (5.4%) envelope clones could establish infection toward U87.CD4 cells expressing CCR5 (R5) and CXCR4 (X4), respectively; whereas the remaining 13 (14%) clones could infect both cells. Genotypic analyses by widely used algorithms including V3 net charge, Geno2pheno, WebPSSM, and PhenoSeq showed that almost all phenotypic X4-tropic clones and only 15 of 75 phenotypic R5-tropic clones were concordantly predicted. However, the remaining 60 phenotypic R5-tropic clones were discordantly predicted by at least one algorithm. In particular, 2 phenotypic R5-tropic clones were discordantly predicted by all algorithms tested. Taken together, the results demonstrate the limitation of currently available genotypic algorithms for predicting co-receptor inference among co-circulating multiple non-B subtypes and emerging isRFs. Also, the phenotypic tropism dataset presented here could be valuable for retraining of the widely used genotypic prediction algorithms to enhance their performance.
Collapse
Affiliation(s)
- George P Judicate
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Godfrey Barabona
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Doreen Kamori
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Macdonald Mahiti
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Toong Seng Tan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Seiya Ozono
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Shuzo Matsushita
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Bruno Sunguya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Eligius Lyamuya
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Kenzo Tokunaga
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.,Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
47
|
Ge Z, Feng Y, Li K, Lv B, Zaongo SD, Sun J, Liang Y, Liu D, Xing H, Wei M, Ma P, Shao Y. CRF01_AE and CRF01_AE Cluster 4 Are Associated With Poor Immune Recovery in Chinese Patients Under Combination Antiretroviral Therapy. Clin Infect Dis 2021; 72:1799-1809. [PMID: 32296820 DOI: 10.1093/cid/ciaa380] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/14/2020] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus type 1 (HIV-1) clades and clusters have different epidemic patterns and phenotypic profiles. It is unclear if they also affect patients' immune recovery (IR) in combination antiretroviral therapy (cART). METHODS We conducted a cohort study on 853 patients under cART for evaluating the impacts of viral factor on host IR. We used generalized estimating equations for factors affecting CD4 recovery, Kaplan-Meier curves for probability of achieving IR, and Cox hazards model for factors influencing IR capability. RESULTS Besides low baseline CD4 and old age, CRF01_AE and its cluster 4 were independently associated with lower CD4 cell level (P ≤ .003), slower IR (P ≤ .022), fewer patients (P < .001), and longer time achieving IR (P < .001), compared with CRF07_BC and CRF01_AE cluster 5. Higher percentage of CXCR4 (X4) viruses in the CRF01_AE and cluster 4-infected patients, compared with their respective counterparts (P < .001), accounted for the poor IR in infected patients (P < .001). Finally, we revealed that greater X4 receptor binding propensity of amino acids was exhibited in CRF01_AE clade (P < .001) and its cluster 4 (P ≤ .004). CONCLUSIONS Our study demonstrates that the CRF01_AE clade and cluster are associated with poor IR in patients under cART, which is ascribed to a high proportion of viruses with X4 tropism. HIV-1 genotyping and phenotyping should be used as a surveillance tool for patients initiating cART. CCR5 inhibitors should be used with caution in regions with high prevalence of X4 viruses.
Collapse
Affiliation(s)
- Zhangwen Ge
- School of Medicine, Nankai University, Tianjin, China
| | - Yi Feng
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bowen Lv
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | | | - Jia Sun
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanling Liang
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Dan Liu
- Nankai University Second People's Hospital, Tianjin, China
| | - Hui Xing
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Min Wei
- School of Medicine, Nankai University, Tianjin, China.,Nankai University Second People's Hospital, Tianjin, China
| | - Ping Ma
- Nankai University Second People's Hospital, Tianjin, China
| | - Yiming Shao
- School of Medicine, Nankai University, Tianjin, China.,State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
48
|
Basso M, Zago D, Scaggiante R, Cavinato S, Pozzetto I, Stagni C, Parisatto B, Cattelan AM, Battagin G, Sarmati L, Parisi SG. HIV tropism switch in archived DNA of HIV-HCV subjects successfully treated with direct-acting antivirals for HCV infection. Sci Rep 2021; 11:9274. [PMID: 33927306 PMCID: PMC8085114 DOI: 10.1038/s41598-021-88811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/16/2021] [Indexed: 02/02/2023] Open
Abstract
We described short-term HIV tropism changes occurring in peripheral blood mononuclear cells and the correlations with HIV DNA value in HIV-HCV co-infected patients cured for HCV disease and with undetectable HIV viremia or residual viremia (RV). Plasma HIV RNA, cellular HIV DNA and tropism were evaluated pre-HCV treatment (baseline, BL) and at 12(T1) and 24(T2) weeks after HCV treatment start. V3 sequences were interpreted using Geno2pheno and classified as R5 only if all three sequences had an FPR ≥ 10% and as X4 when at least one replicate sequence had an FPR < 10%. Forty-nine patients (21 with X4 and 28 with R5 virus) were enrolled. Five X4 patients and 9 R5 subjects experienced at least one tropism change,11 with RV:1/5 patients with X4 infection at BL switched at T1 versus 8/9 in the R5 group (p = 0.022977) and the difference was confirmed in subjects with RV (p = 0.02);6/9 R5 patients switching at T1 confirmed the tropism change at T2. No significant differences in HIV DNA values between patients with RV starting with a R5 or X4 tropism and experienced tropism switch or not were found. Short-term tropism switch involved almost a third of patients, in all but three cases with HIV RV. Being R5 at BL is associated to a higher instability, expressed as number of tropism changes and confirmed switch at T2.
Collapse
Affiliation(s)
- Monica Basso
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padua, Italy
| | - Daniela Zago
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padua, Italy
| | | | - Silvia Cavinato
- grid.411474.30000 0004 1760 2630Infectious Diseases Unit, Azienda Ospedaliera-Universitaria di Padova, Padua, Italy
| | - Irene Pozzetto
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padua, Italy
| | - Camilla Stagni
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padua, Italy
| | - Beatrice Parisatto
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padua, Italy
| | - Anna Maria Cattelan
- grid.411474.30000 0004 1760 2630Infectious Diseases Unit, Azienda Ospedaliera-Universitaria di Padova, Padua, Italy
| | | | - Loredana Sarmati
- grid.6530.00000 0001 2300 0941Infectious Diseases Clinic, Università Tor Vergata, Rome, Italy
| | - Saverio Giuseppe Parisi
- grid.5608.b0000 0004 1757 3470Department of Molecular Medicine, University of Padova, Via Gabelli 63, 35100 Padua, Italy
| |
Collapse
|
49
|
Virus Evolution and Neutralization Sensitivity in an HIV-1 Subtype B' Infected Plasma Donor with Broadly Neutralizing Activity. Vaccines (Basel) 2021; 9:vaccines9040311. [PMID: 33805985 PMCID: PMC8064334 DOI: 10.3390/vaccines9040311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
We sought to analyze the evolutionary characteristics and neutralization sensitivity of viruses in a human immunodeficiency virus type 1 (HIV-1) subtype B′ infected plasma donor with broadly neutralizing activity, which may provide information for new broadly neutralizing antibodies (bNAbs) isolation and immunogen design. A total of 83 full-length envelope genes were obtained by single-genome amplification (SGA) from the patient’s plasma at three consecutive time points (2005, 2006, and 2008) spanning four years. In addition, 28 Env-pseudotyped viruses were constructed and their neutralization sensitivity to autologous plasma and several representative bNAbs were measured. Phylogenetic analysis showed that these env sequences formed two evolutionary clusters (Cluster I and II). Cluster I viruses vanished in 2006 and then appeared as recombinants two years later. In Cluster II viruses, the V1 length and N-glycosylation sites increased over the four years of the study period. Most viruses were sensitive to concurrent and subsequent autologous plasma, and to bNAbs, including 10E8, PGT121, VRC01, and 12A21, but all viruses were resistant to PGT135. Overall, 90% of Cluster I viruses were resistant to 2G12, while 94% of Cluster II viruses were sensitive to 2G12. We confirmed that HIV-1 continued to evolve even in the presence of bNAbs, and two virus clusters in this donor adopted different escape mechanisms under the same humoral immune pressure.
Collapse
|
50
|
Marty N, Saeng-Aroon S, Heger E, Thielen A, Obermeier M, Pfeifer N, Kaiser R, Klimkait T. Adapting the geno2pheno[coreceptor] tool to HIV-1 subtype CRF01_AE by phenotypic validation using clinical isolates from South-East Asia. J Clin Virol 2021; 136:104755. [PMID: 33639408 DOI: 10.1016/j.jcv.2021.104755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/24/2020] [Accepted: 02/01/2021] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Geno2pheno[coreceptor] is a widely used tool for the prediction of coreceptor usage (viral tropism) of HIV-1 samples. For HIV-1 CRF01_AE, a significant overcalling of X4-tropism is observed when using the standard settings of Geno2pheno[coreceptor]. The aim of this study was to provide the experimental backing for adaptations to the geno2pheno[coreceptor] algorithm in order to improve coreceptor usage predictions of clinical HIV-1 CRF01_AE isolates STUDY DESIGN: V3-sequences of 20 clinical HIV-1 subtype CRF01_AE samples were sequenced and analyzed by geno2pheno[coreceptor]. In parallel, coreceptor usage was determined for these samples by replicative phenotyping in human cells in the presence of specific X4- or R5-inhibitors. RESULTS The sole introduction of the CRF01_AE V3 region into a full-length otherwise subtype B provirus failed to produce replication-competent viral progeny. A successive genome-replacement strategy revealed that also CRF01_AE derived gag and pol sequences are necessary to generate HIV genomes with sufficient replication competence. Subsequent phenotypic analysis confirmed overcalling of X4-tropism for CRF01_AE viruses using the current version and the standard cut-off at 10% false positive rate (FPR) of geno2pheno[coreceptor]. Lowering the FPR cut-off to 2.5% reduced the X4-overcalling in our sample collection, while still allowing a safe administration of Maraviroc (MCV). CONCLUSION This study demonstrates the successful adjustment of geno2pheno[coreceptor] rules for subtype CRF01_AE. It also supports the unique strength of combining complementing methods, namely phenotyping and genotyping, for validating new bioinformatics tools prior to application in diagnostics.
Collapse
Affiliation(s)
- Nina Marty
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland.
| | - Siriphan Saeng-Aroon
- Hazardous Pathogen Laboratory, National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Eva Heger
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | | | | | - Nico Pfeifer
- Max Planck Institute for Informatics, Saarland Informatics Campus E1 4, Saarbruecken, Germany
| | - Rolf Kaiser
- Institute of Virology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Thomas Klimkait
- Molecular Virology, Department Biomedicine-Petersplatz, University of Basel, Petersplatz 10, 4055 Basel, Switzerland
| |
Collapse
|