1
|
Iqbal Z, Sadaf S. A patent-based consideration of latest platforms in the art of directed evolution: a decade long untold story. Biotechnol Genet Eng Rev 2022; 38:133-246. [PMID: 35200115 DOI: 10.1080/02648725.2021.2017638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Directed (or in vitro) evolution of proteins and metabolic pathways requires tools for creating genetic diversity and identifying protein variants with new or improved functional properties. Besides simplicity, reliability, speed, versatility, universal applicability and economy of the technique, the new science of synthetic biology requires improved means for construction of smart and high-quality mutant libraries to better navigate the sequence diversity. In vitro CRISPR/Cas9-mediated mutagenic (ICM) system and machine-learning (ML)-assisted approaches to directed evolution are now in the field to achieve the goal. This review describes the gene diversification strategies, screening and selection methods, in silico (computer-aided), Cas9-mediated and ML-based approaches to mutagenesis, developed especially in the last decade, and their patent position. The objective behind is to emphasize researchers the need for noting which mutagenesis, screening or selection method is patented and then selecting a suitable restriction-free approach to sequence diversity. Techniques and evolved products subject to patent rights need commercial license if their use is for purposes other than private or experimental research.
Collapse
Affiliation(s)
- Zarina Iqbal
- IP Litigation Department, PakPat World Intellectual Property Protection Services, Lahore, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
Iqbal Z, Sadaf S. Forty Years of Directed Evolution and its Continuously Evolving Technology Toolbox - A Review of the Patent Landscape. Biotechnol Bioeng 2021; 119:693-724. [PMID: 34923625 DOI: 10.1002/bit.28009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
Generating functional protein variants with novel or improved characteristics has been a goal of the biotechnology industry and life sciences, for decades. Rational design and directed evolution are two major pathways to achieve the desired ends. Whilst rational protein design approach has made substantial progress, the idea of using a method based on cycles of mutagenesis and natural selection to develop novel binding proteins, enzymes and structures has attracted great attention. Laboratory evolution of proteins/enzymes requires new tools and analytical approaches to create genetic diversity and identifying variants with desired traits. In this pursuit, construction of sufficiently large libraries of target molecules to search for improved variants and the need for new protocols to alter the properties of target molecules has been a continuing challenge in the directed evolution experiments. This review will discuss the in vivo and in vitro gene diversification tools, library screening or selection approaches, and artificial intelligence/machine-learning-based strategies to mutagenesis developed in the last forty years to accelerate the natural process of evolution in creating new functional protein variants, optimization of microbial strains and transformation of enzymes into industrial machines. Analyzing patent position over these techniques and mechanisms also constitutes an integral and distinctive part of this review. The aim is to provide an up-to-date resource/technology toolbox for research-based and pharmaceutical companies to discover the boundaries of competitor's intellectual property (IP) portfolio, their freedom-to-operate in the relevant IP landscape, and the need for patent due diligence analysis to rule out whether use of a particular patented mutagenesis method, library screening/selection technique falls outside the safe harbor of experimental use exemption. While so doing, we have referred to some recent cases that emphasize the significance of selecting a suitable gene diversification strategy in directed evolution experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zarina Iqbal
- PakPat World Intellectual Property Protection Services, Lahore, 54000, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
3
|
Herrmann KR, Hofmann I, Jungherz D, Wittwer M, Infanzón B, Hamer SN, Davari MD, Ruff AJ, Schwaneberg U. Generation of phytase chimeras with low sequence identities and improved thermal stability. J Biotechnol 2021; 339:14-21. [PMID: 34271055 DOI: 10.1016/j.jbiotec.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022]
Abstract
Being able to recombine more than two genes with four or more crossover points in a sequence independent manner is still a challenge in protein engineering and limits our capabilities in tailoring enzymes for industrial applications. By computational analysis employing multiple sequence alignments and homology modeling, five fragments of six phytase genes (sequence identities 31-64 %) were identified and efficiently recombined through phosphorothioate-based cloning using the PTRec method. By combinatorial recombination, functional phytase chimeras containing fragments of up to four phytases were obtained. Two variants (PTRec 74 and PTRec 77) with up to 32 % improved residual activity (90 °C, 60 min) and retained specific activities of > 1100 U/mg were identified. Both variants are composed of fragments from the phytases of Citrobacter braakii, Hafnia alvei and Yersinia mollaretii. They exhibit sequence identities of ≤ 80 % to their parental enzymes, highlighting the great potential of DNA recombination strategies to generate new enzymes with low sequences identities that offer opportunities for property right claims.
Collapse
Affiliation(s)
- Kevin R Herrmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Isabell Hofmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Dennis Jungherz
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Malte Wittwer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belén Infanzón
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Stefanie Nicole Hamer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany; DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056, Aachen, Germany.
| |
Collapse
|
4
|
Schmidt MJ, Gupta A, Bednarski C, Gehrig-Giannini S, Richter F, Pitzler C, Gamalinda M, Galonska C, Takeuchi R, Wang K, Reiss C, Dehne K, Lukason MJ, Noma A, Park-Windhol C, Allocca M, Kantardzhieva A, Sane S, Kosakowska K, Cafferty B, Tebbe J, Spencer SJ, Munzer S, Cheng CJ, Scaria A, Scharenberg AM, Cohnen A, Coco WM. Improved CRISPR genome editing using small highly active and specific engineered RNA-guided nucleases. Nat Commun 2021; 12:4219. [PMID: 34244505 PMCID: PMC8271026 DOI: 10.1038/s41467-021-24454-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pyogenes (Spy) Cas9 has potential as a component of gene therapeutics for incurable diseases. One of its limitations is its large size, which impedes its formulation and delivery in therapeutic applications. Smaller Cas9s are an alternative, but lack robust activity or specificity and frequently recognize longer PAMs. Here, we investigated four uncharacterized, smaller Cas9s and found three employing a "GG" dinucleotide PAM similar to SpyCas9. Protein engineering generated synthetic RNA-guided nucleases (sRGNs) with editing efficiencies and specificities exceeding even SpyCas9 in vitro and in human cell lines on disease-relevant targets. sRGN mRNA lipid nanoparticles displayed manufacturing advantages and high in vivo editing efficiency in the mouse liver. Finally, sRGNs, but not SpyCas9, could be packaged into all-in-one AAV particles with a gRNA and effected robust in vivo editing of non-human primate (NHP) retina photoreceptors. Human gene therapy efforts are expected to benefit from these improved alternatives to existing CRISPR nucleases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kui Wang
- Casebia Therapeutics LLC, Cambridge, MA, USA
| | | | | | | | - Akiko Noma
- Casebia Therapeutics LLC, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sun Y, Yang N, Li F, Ou J, Liu X, Zhang Q. Optimizing Human Epidermal Growth Factor for its Endurance and Specificity Via Directed Evolution: Functional Importance of Leucine at Position 8. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10050-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Meruvu H, Wu H, Jiao Z, Wang L, Fei Q. From nature to nurture: Essence and methods to isolate robust methanotrophic bacteria. Synth Syst Biotechnol 2020; 5:173-178. [PMID: 32637670 PMCID: PMC7327766 DOI: 10.1016/j.synbio.2020.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/03/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023] Open
Abstract
Methanotrophic bacteria are entities with innate biocatalytic potential to biofilter and oxidize methane into simpler compounds concomitantly conserving energy, which can contribute to copious industrial applications. The future and efficacy of such industrial applications relies upon acquiring and/or securing robust methanotrophs with taxonomic and phenotypic diversity. Despite several dramatic advances, isolation of robust methanotrophs is still a long-way challenging task with several lacunae to be filled in sequentially. Methanotrophs with high tolerance to methane can be isolated and cultivated by mimicking natural environs, and adopting strategies like adaptive metabolic evolution. This review summarizes existent and innovative methods for methanotrophic isolation and purification, and their respective applications. A comprehensive description of new insights shedding light upon how to isolate and concomitantly augment robust methanotrophic metabolism in an orchestrated fashion follows.
Collapse
Affiliation(s)
- Haritha Meruvu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ziyue Jiao
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Liyan Wang
- Luoyang TMAXTREE Biotechnology Co., Ltd., Luoyang, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering growth factors for regenerative medicine applications. Acta Biomater 2016; 30:1-12. [PMID: 26555377 PMCID: PMC6067679 DOI: 10.1016/j.actbio.2015.11.007] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 01/10/2023]
Abstract
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications. STATEMENT OF SIGNIFICANCE Growth factors are promising therapeutic proteins that have the ability to modulate morphogenetic behaviors, including cell survival, proliferation, migration and differentiation. However, the translation of growth factors into clinical therapies has been hindered by properties such as poor protein stability, low recombinant expression yield, and non-physiological delivery, which lead to suboptimal efficacy and adverse side effects. To address these needs, researchers are employing clever molecular and material engineering and design strategies to both improve the intrinsic properties of growth factors and effectively control their delivery into tissue. This review highlights examples of interdisciplinary tools and technologies used to augment the therapeutic potential of growth factors for clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Aaron C Mitchell
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Priscilla S Briquez
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Materials Science Division, Argonne National Laboratory, Argonne, IL, USA.
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Acevedo-Rocha CG, Reetz MT. Assembly of Designed Oligonucleotides: a useful tool in synthetic biology for creating high-quality combinatorial DNA libraries. Methods Mol Biol 2015; 1179:189-206. [PMID: 25055779 DOI: 10.1007/978-1-4939-1053-3_13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The method dubbed Assembly of Designed Oligonucleotides (ADO) is a powerful tool in synthetic biology to create combinatorial DNA libraries for gene, protein, metabolic, and genome engineering. In directed evolution of proteins, ADO benefits from using reduced amino acid alphabets for saturation mutagenesis and/or DNA shuffling, but all 20 canonical amino acids can be also used as building blocks. ADO is performed in a two-step reaction. The first involves a primer-free, polymerase cycling assembly or overlap extension PCR step using carefully designed overlapping oligonucleotides. The second step is a PCR amplification using the outer primers, resulting in a high-quality and bias-free double-stranded DNA library that can be assembled with other gene fragments and/or cloned into a suitable plasmid subsequently. The protocol can be performed in a few hours. In theory, neither the length of the DNA library nor the number of DNA changes has any limits. Furthermore, with the costs of synthetic DNA dropping every year, after an initial investment is made in the oligonucleotides, these can be exchanged for alternative ones with different sequences at any point in the process, fully exploiting the potential of creating highly diverse combinatorial libraries. In the example chosen here, we show the construction of a high-quality combinatorial ADO library targeting sixteen different codons simultaneously with nonredundant degenerate codons encoding various reduced alphabets of four amino acids along the heme region of the monooxygenase P450-BM3.
Collapse
Affiliation(s)
- Carlos G Acevedo-Rocha
- Organische Synthese, Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim, Germany
| | | |
Collapse
|
9
|
Currin A, Swainston N, Day PJ, Kell DB. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently. Chem Soc Rev 2015; 44:1172-239. [PMID: 25503938 PMCID: PMC4349129 DOI: 10.1039/c4cs00351a] [Citation(s) in RCA: 258] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Indexed: 12/21/2022]
Abstract
The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the 'search space' of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (Kd) and catalytic (kcat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving kcat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the 'best' amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole, simultaneously, this offers opportunities for protein improvement not readily available to natural evolution on rapid timescales. Intelligent landscape navigation, informed by sequence-activity relationships and coupled to the emerging methods of synthetic biology, offers scope for the development of novel biocatalysts that are both highly active and robust.
Collapse
Affiliation(s)
- Andrew Currin
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| | - Neil Swainston
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- School of Computer Science , The University of Manchester , Manchester M13 9PL , UK
| | - Philip J. Day
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
- Faculty of Medical and Human Sciences , The University of Manchester , Manchester M13 9PT , UK
| | - Douglas B. Kell
- Manchester Institute of Biotechnology , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK . ; http://dbkgroup.org/; @dbkell ; Tel: +44 (0)161 306 4492
- School of Chemistry , The University of Manchester , Manchester M13 9PL , UK
- Centre for Synthetic Biology of Fine and Speciality Chemicals (SYNBIOCHEM) , The University of Manchester , 131, Princess St , Manchester M1 7DN , UK
| |
Collapse
|
10
|
Fellouse F, Pal G. Methods for the Construction of Phage-Displayed Libraries. ACTA ACUST UNITED AC 2015. [DOI: 10.1201/b18196-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
11
|
Marsic D, Govindasamy L, Currlin S, Markusic DM, Tseng YS, Herzog RW, Agbandje-McKenna M, Zolotukhin S. Vector design Tour de Force: integrating combinatorial and rational approaches to derive novel adeno-associated virus variants. Mol Ther 2014; 22:1900-9. [PMID: 25048217 PMCID: PMC4429732 DOI: 10.1038/mt.2014.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/09/2014] [Indexed: 12/26/2022] Open
Abstract
Methodologies to improve existing adeno-associated virus (AAV) vectors for gene therapy include either rational approaches or directed evolution to derive capsid variants characterized by superior transduction efficiencies in targeted tissues. Here, we integrated both approaches in one unified design strategy of "virtual family shuffling" to derive a combinatorial capsid library whereby only variable regions on the surface of the capsid are modified. Individual sublibraries were first assembled in order to preselect compatible amino acid residues within restricted surface-exposed regions to minimize the generation of dead-end variants. Subsequently, the successful families were interbred to derive a combined library of ~8 × 10(5) complexity. Next-generation sequencing of the packaged viral DNA revealed capsid surface areas susceptible to directed evolution, thus providing guidance for future designs. We demonstrated the utility of the library by deriving an AAV2-based vector characterized by a 20-fold higher transduction efficiency in murine liver, now equivalent to that of AAV8.
Collapse
Affiliation(s)
- Damien Marsic
- Department of Pediatrics, Division of Cell & Molecular Therapy, University of Florida, Gainesville, Florida, USA
| | - Lakshmanan Govindasamy
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
- Current address: 3500 Windmeadows Blvd, Apt 68, Gainesville, Florida, USA
| | - Seth Currlin
- Department of Pediatrics, Division of Cell & Molecular Therapy, University of Florida, Gainesville, Florida, USA
| | - David M Markusic
- Department of Pediatrics, Division of Cell & Molecular Therapy, University of Florida, Gainesville, Florida, USA
| | - Yu-Shan Tseng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Roland W Herzog
- Department of Pediatrics, Division of Cell & Molecular Therapy, University of Florida, Gainesville, Florida, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida, USA
| | - Sergei Zolotukhin
- Department of Pediatrics, Division of Cell & Molecular Therapy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
12
|
Zaugg J, Gumulya Y, Gillam EMJ, Bodén M. Computational tools for directed evolution: a comparison of prospective and retrospective strategies. Methods Mol Biol 2014; 1179:315-333. [PMID: 25055787 DOI: 10.1007/978-1-4939-1053-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Directed evolution methods have proved to be highly effective in the design of novel proteins and in the generation of large libraries of diverse sequences. However, searching through the vast number of mutants produced during such experiments in order to find the best represents a daunting and difficult task. In recent years, a number of computational tools have been developed to provide guidance during this exploratory process. It can, however, be unclear as to which tool or tools best complement the chosen library design strategy. In this review, we describe and critically evaluate some of the more notable tools in this area, discussing the rationale behind each, the requirements for their implementation, and potential issues faced when using them. Some examples of their application in an experimental setting are also provided. The tools have been classified based on contrasting strategies as to how they function: prospective tools SCHEMA and OPTCOMB use extant sequence and structural data to predict optimal locations for crossover sites, whereas retrospective tools ProSAR and ASRA use property data from the mutant library to predict beneficial mutations and features. From our evaluation, we suggest that each tool can play a role in the design process; however this is largely dictated by the data available and the desired experimental strategy for the project.
Collapse
Affiliation(s)
- Julian Zaugg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
13
|
Kumar A, Singh S. Directed evolution: tailoring biocatalysts for industrial applications. Crit Rev Biotechnol 2012; 33:365-78. [DOI: 10.3109/07388551.2012.716810] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
14
|
Discovery of improved EGF agonists using a novel in vitro screening platform. J Mol Biol 2011; 413:406-15. [PMID: 21888916 DOI: 10.1016/j.jmb.2011.08.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 08/11/2011] [Indexed: 12/21/2022]
Abstract
Directed evolution is a powerful strategy for protein engineering; however, evolution of pharmaceutical proteins has been limited by the reliance of current screens on binding interactions. Here, we present a method that identifies protein mutants with improved overall cellular efficacy, an objective not feasible with previous approaches. Mutated protein libraries were produced in soluble, active form by means of cell-free protein synthesis. The efficacy of each individual protein was determined at a uniform dosage with a high-throughput protein product assay followed by a cell-based functional assay without requiring protein purification. We validated our platform by first screening mock libraries of epidermal growth factor (EGF) for stimulation of cell proliferation. We then demonstrated its effectiveness by identifying EGF mutants with significantly enhanced mitogenic activity at low concentrations compared to that of wild-type EGF. This is the first report of EGF mutants with improved biological efficacy despite much previous effort. Our platform can be extended to engineer a broad range of proteins, offering a general method to evolve proteins for improved biological efficacy.
Collapse
|
15
|
Lahti JL, Lui BH, Beck SE, Lee SS, Ly DP, Longaker MT, Yang GP, Cochran JR. Engineered epidermal growth factor mutants with faster binding on-rates correlate with enhanced receptor activation. FEBS Lett 2011; 585:1135-9. [PMID: 21439278 PMCID: PMC3118396 DOI: 10.1016/j.febslet.2011.03.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 03/11/2011] [Accepted: 03/15/2011] [Indexed: 12/29/2022]
Abstract
Receptor tyrosine kinases (RTKs) regulate critical cell signaling pathways, yet the properties of their cognate ligands that influence receptor activation are not fully understood. There is great interest in parsing these complex ligand-receptor relationships using engineered proteins with altered binding properties. Here we focus on the interaction between two engineered epidermal growth factor (EGF) mutants and the EGF receptor (EGFR), a model member of the RTK superfamily. We found that EGF mutants with faster kinetic on-rates stimulate increased EGFR activation compared to wild-type EGF. These findings support previous predictions that faster association rates correlate with enhanced receptor activity.
Collapse
Affiliation(s)
- Jennifer L. Lahti
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bertrand H. Lui
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stayce E. Beck
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Stephen S. Lee
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daphne P. Ly
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michael T. Longaker
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - George P. Yang
- Department of Surgery, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jennifer R. Cochran
- Department of Bioengineering, School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
16
|
Park CG, Kwon MA, Song JK, Kim DM. Cell-free synthesis and multifold screening of Candida antarctica lipase B (CalB) variants after combinatorial mutagenesis of hot spots. Biotechnol Prog 2010; 27:47-53. [PMID: 21312354 DOI: 10.1002/btpr.532] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/09/2010] [Indexed: 01/27/2023]
Abstract
We have developed a strategy for rapid and combinatorial optimization of the hot spot residues of enzymes. After combinatorial randomization of target locations in the Candida antarctica lipase B (CalB) gene, the individual variant genes isolated in the E.coli cells were expressed in the cell-free protein synthesis system to analyze different parameters of the resulting CalB variants. The enzymatic assays for the hydrolysis of para-nitrophenyl-ester (pNP-ester) and triglyceride, synthesis of wax ester, and thermal stability of the variant enzymes were carried out simultaneously in 96-well microtiter plates. From the 1,000 variant genes tested in each assay, we were able to identify a series of the variant enzymes having markedly improved hydrolytic, synthetic activity, or thermal stability. The improved traits of the cell-free selected CalB variants were well reproduced when the corresponding genes were expressed in Pichia pastoris. Therefore, we expect that the proposed strategy of cell-free expression screening can serve as a viable option for rapid and precise tuning of enzyme molecules, not only for analytical purposes but also for industrial applications through large scale production using microbial cells transformed with variant genes selected from the cell-free expression screening.
Collapse
Affiliation(s)
- Chang-Gil Park
- Dept. of Fine Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | |
Collapse
|
17
|
Klein-Marcuschamer D, Yadav VG, Ghaderi A, Stephanopoulos GN. De Novo metabolic engineering and the promise of synthetic DNA. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 120:101-131. [PMID: 20186529 DOI: 10.1007/10_2009_52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The uncertain price and tight supply of crude oil and the ever-increasing demand for clean energy have prompted heightened attention to the development of sustainable fuel technologies that ensure continued economic development while maintaining stewardship of the environment. In the face of these enormous challenges, biomass has emerged as a viable alternative to petroleum for the production of energy, chemicals, and materials owing to its abundance, inexpensiveness, and carbon-neutrality. Moreover, the immense ease and efficiency of biological systems at converting biomass-derived feedstocks into fuels, chemicals, and materials has generated renewed interest in biotechnology as a replacement for traditional chemical processes. Aided by the ever-expanding repertoire of microbial genetics and plant biotechnology, improved understanding of gene regulation and cellular metabolism, and incessantly accumulating gene and protein data, scientists are now contemplating engineering microbial cell factories to produce fuels, chemical feedstocks, polymers and pharmaceuticals in an economically and environmentally sustainable way. This goal resonates with that of metabolic engineering - the improvement of cellular properties through the intelligent design, rational modification, or directed evolution of biochemical pathways, and arguably, metabolic engineering seems best positioned to achieve the concomittant goals of environmental stewardship and economic prolificity.Improving a host organism's cellular traits and the potential design of new phenotypes is strongly dependent on the ability to effectively control the organism's genetic machinery. In fact, finely-tuned gene expression is imperative for achieving an optimal balance between pathway expression and cell viability, while avoiding cytotoxicity due to accumulation of certain gene products or metabolites. Early attempts to engineer a cell's metabolism almost exclusively relied on merely deleting or over-expressing single or multiple genes using recombinant DNA, and intervention targets were predominantly selected based on knowledge of the stoichiometry, kinetics, and regulation of the pathway of interest. However, the distributive nature of metabolic control, as opposed to the existence of a single rate-limiting step, predicates the controlled expression of multiple enzymes in several coordinated pathways to achieve the desired flux, and, as such, simple strategies involving either deleting or over-expressing genes are greatly limited in this context. On the other hand, the use of synthetic or modified promoters, riboswitches, tunable intergenic regions, and translation modulators such as internal ribosome entry sequences, upstream open reading frames, optimized mRNA secondary structures, and RNA silencing have been shown to be enormously conducive to achieving the fine-tuning of gene expression. These modifications to the genetic machinery of the host organism can be best achieved via the use of synthetic DNA technology, and the constant improvement in the affordability and quality of oligonucleotide synthesis suggests that these might well become the mainstay of the metabolic engineering toolbox in the years to come. The possibilities that arise with the use of synthetic oligonucleotides will be delineated herein.
Collapse
Affiliation(s)
- Daniel Klein-Marcuschamer
- Bioinformatics and Metabolic Engineering Laboratory, Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
18
|
Engler C, Gruetzner R, Kandzia R, Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 2009; 4:e5553. [PMID: 19436741 PMCID: PMC2677662 DOI: 10.1371/journal.pone.0005553] [Citation(s) in RCA: 736] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 04/19/2009] [Indexed: 11/18/2022] Open
Abstract
We have developed a protocol to assemble in one step and one tube at least nine separate DNA fragments together into an acceptor vector, with 90% of recombinant clones obtained containing the desired construct. This protocol is based on the use of type IIs restriction enzymes and is performed by simply subjecting a mix of 10 undigested input plasmids (nine insert plasmids and the acceptor vector) to a restriction-ligation and transforming the resulting mix in competent cells. The efficiency of this protocol allows generating libraries of recombinant genes by combining in one reaction several fragment sets prepared from different parental templates. As an example, we have applied this strategy for shuffling of trypsinogen from three parental templates (bovine cationic trypsinogen, bovine anionic trypsinogen and human cationic trypsinogen) each divided in 9 separate modules. We show that one round of shuffling using the 27 trypsinogen entry plasmids can easily produce the 19,683 different possible combinations in one single restriction-ligation and that expression screening of a subset of the library allows identification of variants that can lead to higher expression levels of trypsin activity. This protocol, that we call ‘Golden Gate shuffling’, is robust, simple and efficient, can be performed with templates that have no homology, and can be combined with other shuffling protocols in order to introduce any variation in any part of a given gene.
Collapse
Affiliation(s)
- Carola Engler
- Icon Genetics GmbH, Biozentrum Halle, Halle, Germany
| | | | - Romy Kandzia
- Icon Genetics GmbH, Biozentrum Halle, Halle, Germany
| | | |
Collapse
|
19
|
Chen KC, Wu CH, Chang CY, Lu WC, Tseng Q, Prijovich ZM, Schechinger W, Liaw YC, Leu YL, Roffler SR. Directed evolution of a lysosomal enzyme with enhanced activity at neutral pH by mammalian cell-surface display. ACTA ACUST UNITED AC 2009; 15:1277-86. [PMID: 19101472 DOI: 10.1016/j.chembiol.2008.10.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/08/2008] [Accepted: 10/20/2008] [Indexed: 01/02/2023]
Abstract
Human beta-glucuronidase, due to low intrinsic immunogenicity in humans, is an attractive enzyme for tumor-specific prodrug activation, but its utility is hindered by low activity at physiological pH. Here we describe the development of a high-throughput screening procedure for enzymatic activity based on the stable retention of fluorescent reaction product in mammalian cells expressing properly folded glycoproteins on their surface. We utilized this procedure on error-prone PCR and saturation mutagenesis libraries to isolate beta-glucuronidase tetramers that were up to 60-fold more active (k(cat)/K(m)) at pH 7.0 and were up to an order of magnitude more effective at catalyzing the conversion of two structurally disparate glucuronide prodrugs to anticancer agents. The screening procedure described here can facilitate investigation of eukaryotic enzymes requiring posttranslational modifications for biological activity.
Collapse
Affiliation(s)
- Kai-Chuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Jones DS, Silverman AP, Cochran JR. Developing therapeutic proteins by engineering ligand–receptor interactions. Trends Biotechnol 2008; 26:498-505. [DOI: 10.1016/j.tibtech.2008.05.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 05/24/2008] [Accepted: 05/27/2008] [Indexed: 12/27/2022]
|
21
|
Reetz MT, Kahakeaw D, Lohmer R. Addressing the Numbers Problem in Directed Evolution. Chembiochem 2008; 9:1797-804. [DOI: 10.1002/cbic.200800298] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Firth AE, Patrick WM. GLUE-IT and PEDEL-AA: new programmes for analyzing protein diversity in randomized libraries. Nucleic Acids Res 2008; 36:W281-5. [PMID: 18442989 PMCID: PMC2447733 DOI: 10.1093/nar/gkn226] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There are many methods for introducing random mutations into nucleic acid sequences. Previously, we described a suite of programmes for estimating the completeness and diversity of randomized DNA libraries generated by a number of these protocols. Our programmes suggested some empirical guidelines for library design; however, no information was provided regarding library diversity at the protein (rather than DNA) level. We have now updated our web server, enabling analysis of translated libraries constructed by site-saturation mutagenesis and error-prone PCR (epPCR). We introduce GLUE-Including Translation (GLUE-IT), which finds the expected amino acid completeness of libraries in which up to six codons have been independently varied (according to any user-specified randomization scheme). We provide two tools for assisting with experimental design: CodonCalculator, for assessing amino acids corresponding to given randomized codons; and AA-Calculator, for finding degenerate codons that encode user-specified sets of amino acids. We also present PEDEL-AA, which calculates amino acid statistics for libraries generated by epPCR. Input includes the parent sequence, overall mutation rate, library size, indel rates and a nucleotide mutation matrix. Output includes amino acid completeness and diversity statistics, and the number and length distribution of sequences truncated by premature termination codons. The web interfaces are available at http://guinevere.otago.ac.nz/stats.html.
Collapse
Affiliation(s)
- Andrew E Firth
- BioSciences Institute, University College Cork, Cork, Ireland
| | | |
Collapse
|
23
|
Random mutagenesis and recombination of sam1 gene by integrating error-prone PCR with staggered extension process. Biotechnol Lett 2008; 30:1227-32. [PMID: 18317700 DOI: 10.1007/s10529-008-9674-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 02/07/2008] [Accepted: 02/07/2008] [Indexed: 10/22/2022]
Abstract
An efficient method for creating a DNA library is presented in which gene mutagenesis and recombination can be introduced by integrating error-prone PCR with a staggered extension process in one test tube. In this process, less than 15 cycles of error-prone PCR are used to introduce random mutations. After precipitated and washed with ethanol solution, the error-prone PCR product is directly used both as template and primers in the following staggered extension process to introduce DNA recombination. The method was validated by using adenosyl-methionine (AdoMet) synthetase gene, sam1, as a model. The full-length target DNA fragment was available after a single round. After being selected with a competitive inhibitor, ethionine, a mutated gene was obtained that increased AdoMet accumulation in vivo by 56%.
Collapse
|
24
|
Chaparro-Riggers JF, Loo BL, Polizzi KM, Gibbs PR, Tang XS, Nelson MJ, Bommarius AS. Revealing biases inherent in recombination protocols. BMC Biotechnol 2007; 7:77. [PMID: 18001472 PMCID: PMC2203992 DOI: 10.1186/1472-6750-7-77] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 11/14/2007] [Indexed: 11/23/2022] Open
Abstract
Background The recombination of homologous genes is an effective protein engineering tool to evolve proteins. DNA shuffling by gene fragmentation and reassembly has dominated the literature since its first publication, but this fragmentation-based method is labor intensive. Recently, a fragmentation-free PCR based protocol has been published, termed recombination-dependent PCR, which is easy to perform. However, a detailed comparison of both methods is still missing. Results We developed different test systems to compare and reveal biases from DNA shuffling and recombination-dependent PCR (RD-PCR), a StEP-like recombination protocol. An assay based on the reactivation of β-lactamase was developed to simulate the recombination of point mutations. Both protocols performed similarly here, with slight advantages for RD-PCR. However, clear differences in the performance of the recombination protocols were observed when applied to homologous genes of varying DNA identities. Most importantly, the recombination-dependent PCR showed a less pronounced bias of the crossovers in regions with high sequence identity. We discovered that template variations, including engineered terminal truncations, have significant influence on the position of the crossovers in the recombination-dependent PCR. In comparison, DNA shuffling can produce higher crossover numbers, while the recombination-dependent PCR frequently results in one crossover. Lastly, DNA shuffling and recombination-dependent PCR both produce counter-productive variants such as parental sequences and have chimeras that are over-represented in a library, respectively. Lastly, only RD-PCR yielded chimeras in the low homology situation of GFP/mRFP (45% DNA identity level). Conclusion By comparing different recombination scenarios, this study expands on existing recombination knowledge and sheds new light on known biases, which should improve library-creation efforts. It could be shown that the recombination-dependent PCR is an easy to perform alternative to DNA shuffling.
Collapse
Affiliation(s)
- Javier F Chaparro-Riggers
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, 315 Ferst Drive, Atlanta, GA 30332-0363, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Chaparro-Riggers JF, Polizzi KM, Bommarius AS. Better library design: data-driven protein engineering. Biotechnol J 2007; 2:180-91. [PMID: 17183506 DOI: 10.1002/biot.200600170] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Data-driven protein engineering is increasingly used as an alternative to rational design and combinatorial engineering because it uses available knowledge to limit library size, while still allowing for the identification of unpredictable substitutions that lead to large effects. Recent advances in computational modeling and bioinformatics, as well as an increasing databank of experiments on functional variants, have led to new strategies to choose particular amino acid residues to vary in order to increase the chances of obtaining a variant protein with the desired property. Strategies for limiting diversity at each position, design of small sub-libraries, and the performance of scouting experiments, have also been developed or even automated, further reducing the library size.
Collapse
Affiliation(s)
- Javier F Chaparro-Riggers
- School of Chemical and Biomolecular Engineering, Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA
| | | | | |
Collapse
|
26
|
Tominaga T, Hatakeyama Y. Development of innovative pediocin PA-1 by DNA shuffling among class IIa bacteriocins. Appl Environ Microbiol 2007; 73:5292-9. [PMID: 17601819 PMCID: PMC1950993 DOI: 10.1128/aem.00558-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pediocin PA-1 is a member of the class IIa bacteriocins, which show antimicrobial effects against lactic acid bacteria. To develop an improved version of pediocin PA-1, reciprocal chimeras between pediocin PA-1 and enterocin A, another class IIa bacteriocin, were constructed. Chimera EP, which consisted of the C-terminal half of pediocin PA-1 fused to the N-terminal half of enterocin A, showed increased activity against a strain of Leuconostoc lactis isolated from a sour-spoiled dairy product. To develop an even more effective version of this chimera, a DNA-shuffling library was constructed, wherein four specific regions within the N-terminal half of pediocin PA-1 were shuffled with the corresponding sequences from 10 other class IIa bacteriocins. Activity screening indicated that 63 out of 280 shuffled mutants had antimicrobial activity. A colony overlay activity assay showed that one of the mutants (designated B1) produced a >7.8-mm growth inhibition circle on L. lactis, whereas the parent pediocin PA-1 did not produce any circle. Furthermore, the active shuffled mutants showed increased activity against various species of Lactobacillus, Pediococcus, and Carnobacterium. Sequence analysis revealed that the active mutants had novel N-terminal sequences; in active mutant B1, for example, the parental pediocin PA-1 sequence (KYYGNGVTCGKHSC) was changed to TKYYGNGVSCTKSGC. These new and improved DNA-shuffled bacteriocins could prove useful as food additives for inhibiting sour spoilage of dairy products.
Collapse
Affiliation(s)
- Tatsuya Tominaga
- Saitama Industrial Technology Center North Institute, 2-133 Suehiro, Kumagaya, Saitama 360-0031, Japan.
| | | |
Collapse
|
27
|
Treynor TP, Vizcarra CL, Nedelcu D, Mayo SL. Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function. Proc Natl Acad Sci U S A 2006; 104:48-53. [PMID: 17179210 PMCID: PMC1765474 DOI: 10.1073/pnas.0609647103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine which of seven library design algorithms best introduces new protein function without destroying it altogether, seven combinatorial libraries of green fluorescent protein variants were designed and synthesized. Each was evaluated by distributions of emission intensity and color compiled from measurements made in vivo. Additional comparisons were made with a library constructed by error-prone PCR. Among the designed libraries, fluorescent function was preserved for the greatest fraction of samples in a library designed by using a structure-based computational method developed and described here. A trend was observed toward greater diversity of color in designed libraries that better preserved fluorescence. Contrary to trends observed among libraries constructed by error-prone PCR, preservation of function was observed to increase with a library's average mutation level among the four libraries designed with structure-based computational methods.
Collapse
Affiliation(s)
- Thomas P. Treynor
- Divisions of *Biology and Chemistry and
- Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
| | | | | | - Stephen L. Mayo
- Divisions of *Biology and Chemistry and
- Howard Hughes Medical Institute, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Zhao H, Zha W. In vitro 'sexual' evolution through the PCR-based staggered extension process (StEP). Nat Protoc 2006; 1:1865-71. [PMID: 17487170 DOI: 10.1038/nprot.2006.309] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This protocol describes a directed evolution method for in vitro mutagenesis and recombination of polynucleotide sequences. The staggered extension process (StEP) is essentially a modified PCR that uses highly abbreviated annealing and extension steps to generate staggered DNA fragments and promote crossover events along the full length of the template sequence(s). The resulting library of chimeric polynucleotide sequence(s) is subjected to subsequent high-throughput functional analysis. The recombination efficiency of the StEP method is comparable to that of the most widely used in vitro DNA recombination method, DNA shuffling. However, the StEP method does not require DNA fragmentation and can be carried out in a single tube. This protocol can be completed in 4-6 h.
Collapse
Affiliation(s)
- Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
29
|
An Y, Ji J, Wu W, Lv A, Huang R, Xiu Z. Molecular evolution of adomet synthetase by DNA recombination with a novel Separate-Mixing method. Mol Biol 2006. [DOI: 10.1134/s0026893306030162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Cochran JR, Kim YS, Lippow SM, Rao B, Wittrup KD. Improved mutants from directed evolution are biased to orthologous substitutions. Protein Eng Des Sel 2006; 19:245-53. [PMID: 16740523 DOI: 10.1093/protein/gzl006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have engineered human epidermal growth factor (EGF) by directed evolution through yeast surface display for significantly enhanced affinity for the EGF receptor (EGFR). Statistical analysis of improved EGF mutants isolated from randomly mutated yeast-displayed libraries indicates that mutations are biased towards substitutions at positions exhibiting significant phylogenetic variation. In particular, mutations in high-affinity EGF mutants are statistically biased towards residues found in orthologous EGF species. This same trend was also observed with other proteins engineered through directed evolution in our laboratory (EGFR, interleukin-2) and in a meta-analysis of reported results for engineered subtilisin. By contrast, reported loss-of-function mutations in EGF were biased towards highly conserved positions. Based on these findings, orthologous mutations were introduced into a yeast-displayed EGF library by a process we term shotgun ortholog scanning mutagenesis (SOSM). EGF mutants with a high frequency of the introduced ortholog mutations were isolated through screening the library for enhanced binding affinity to soluble EGFR ectodomain. These mutants possess a 30-fold increase in binding affinity over wild-type EGF to EGFR-transfected fibroblasts and are among the highest affinity EGF proteins to be engineered to date. Collectively, our findings highlight a general approach for harnessing information present in phylogenetic variability to create useful genetic diversity for directed evolution. Our SOSM method exploits the benefits of library diversity obtained through complementary methods of error-prone PCR and DNA shuffling, while circumventing the need for acquisition of multiple genes for family or synthetic shuffling.
Collapse
Affiliation(s)
- Jennifer R Cochran
- Division of Biological Engineering, Massachusetts Institute of Technology Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
31
|
Directed Evolution of Enantioselective Enzymes as Catalysts for Organic Synthesis. ADVANCES IN CATALYSIS 2006. [DOI: 10.1016/s0360-0564(05)49001-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Patrick WM, Firth AE. Strategies and computational tools for improving randomized protein libraries. ACTA ACUST UNITED AC 2005; 22:105-12. [PMID: 16095966 DOI: 10.1016/j.bioeng.2005.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/15/2022]
Abstract
In the last decade, directed evolution has become a routine approach for engineering proteins with novel or altered properties. Concurrently, a trend away from purely 'blind' randomization strategies and towards more 'semi-rational' approaches has also become apparent. In this review, we discuss ways in which structural information and predictive computational tools are playing an increasingly important role in guiding the design of randomized libraries: web servers such as ConSurf-HSSP and SCHEMA allow the prediction of sites to target for producing functional variants, while algorithms such as GLUE, PEDEL and DRIVeR are useful for estimating library completeness and diversity. In addition, we review recent methodological developments that facilitate the construction of unbiased libraries, which are inherently more diverse than biased libraries and therefore more likely to yield improved variants.
Collapse
Affiliation(s)
- Wayne M Patrick
- Center for Fundamental and Applied Molecular Evolution, Emory University, 1510 Clifton Road, Atlanta GA 30322, USA.
| | | |
Collapse
|
33
|
Saab-Rincón G, Mancera E, Montero-Morán G, Sánchez F, Soberón X. Generation of variability by in vivo recombination of halves of a (beta/alpha)8 barrel protein. ACTA ACUST UNITED AC 2005; 22:113-20. [PMID: 16125117 DOI: 10.1016/j.bioeng.2005.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Revised: 12/25/2004] [Accepted: 01/18/2005] [Indexed: 11/26/2022]
Abstract
Similar to what has been achieved with nucleic acids, directed evolution of proteins would be greatly facilitated by the availability of large libraries and efficient selection methods. So far, host cell transformation efficiency has been a bottleneck, practically limiting libraries to sizes less than 10(9). One way to circumvent this problem has been implemented with antibody systems, where contribution to the binding site is provided by two different polypeptides (light and heavy chains). The central concept is the construction of binary systems in which the gene from the two chains are separated by a cre-lox recombinase recognition site, packaged in a phage, and subsequently introduced, by multiple infection, into a recombinase expressing cell [Sblattero D, Bradbury A. Nat Biotechnol 2000;18(1):75-80]. Here, we describe the development of a system which applies the same concept to a single-domain enzyme, the cytoplasmic (beta/alpha)8 barrel protein phosphoribosyl anthranilate isomerase (PRAI) from E. coli. For that purpose, we identified the site at which a loop containing the recognition sequence for cre-lox recombinase could be inserted yielding a functional enzyme. We evaluated the effect of this insertion on the capability of the engineered gene to complement a trp F-E. coli strain and the efficiency of the system to recover the original sequence from an abundance of non-functional mutant genes.
Collapse
Affiliation(s)
- Gloria Saab-Rincón
- Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62271, México
| | | | | | | | | |
Collapse
|
34
|
Otten LG, Quax WJ. Directed evolution: selecting today's biocatalysts. ACTA ACUST UNITED AC 2005; 22:1-9. [PMID: 15857778 DOI: 10.1016/j.bioeng.2005.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 11/21/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022]
Abstract
Directed evolution has become a full-grown tool in molecular biology nowadays. The methods that are involved in creating a mutant library are extensive and can be divided into several categories according to their basic ideas. Furthermore, both screening and selection can be used to target the enzyme towards the desired direction. Nowadays, this technique is broadly used in two major applications: (industrial) biocatalysis and research. In the first field enzymes are engineered in order to produce suitable biocatalysts with high catalytic activity and stability in an industrial environment. In the latter area methods are established to quickly engineer new enzymes for every possible catalytic step, thereby creating a universal biotechnological toolbox. Furthermore, directed evolution can be used to try to understand the natural evolutionary processes. This review deals with new mutagenesis and recombination strategies published recently. A full overview of new methods for creating more specialised mutant libraries is given. The importance of selection in directed evolution strategies is being exemplified by some current successes including the beta-lactam acylases.
Collapse
Affiliation(s)
- Linda G Otten
- University of Groningen, University Centre for Pharmacy, Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
35
|
Eijsink VGH, Gåseidnes S, Borchert TV, van den Burg B. Directed evolution of enzyme stability. ACTA ACUST UNITED AC 2005; 22:21-30. [PMID: 15857780 DOI: 10.1016/j.bioeng.2004.12.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/29/2004] [Accepted: 12/02/2004] [Indexed: 11/16/2022]
Abstract
Modern enzyme development relies to an increasing extent on strategies based on diversity generation followed by screening for variants with optimised properties. In principle, these directed evolution strategies might be used for optimising any enzyme property, which can be screened for in an economically feasible way, even if the molecular basis of that property is not known. Stability is an interesting property of enzymes because (1) it is of great industrial importance, (2) it is relatively easy to screen for, and (3) the molecular basis of stability relates closely to contemporary issues in protein science such as the protein folding problem and protein folding diseases. Thus, engineering enzyme stability is of both commercial and scientific interest. Here, we review how directed evolution has contributed to the development of stable enzymes and to new insight into the principles of protein stability. Several recent examples are described. These examples show that directed evolution is an effective strategy to obtain stable enzymes, especially when used in combination with rational or semi-rational engineering strategies. With respect to the principles of protein stability, some important lessons to learn from recent efforts in directed evolution are (1) that there are many structural ways to stabilize a protein, which are not always easy to rationalize, (2) that proteins may very well be stabilized by optimizing their surfaces, and (3) that high thermal stability may be obtained without forfeiture of catalytic performance at low temperatures.
Collapse
Affiliation(s)
- Vincent G H Eijsink
- Department of Chemistry, Biotechnology and Food Science, Agricultural University of Norway, P.O. Box 5003, N-1432 As, Norway
| | | | | | | |
Collapse
|
36
|
Abstract
Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to "evolve" in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences.
Collapse
Affiliation(s)
- Ling Yuan
- Department of Plant and Soil Sciences, and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | | | | | | |
Collapse
|
37
|
Flores H, Ellington AD. A modified consensus approach to mutagenesis inverts the cofactor specificity of Bacillus stearothermophilus lactate dehydrogenase. Protein Eng Des Sel 2005; 18:369-77. [PMID: 16012175 DOI: 10.1093/protein/gzi043] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lactate dehydrogenase from Bacillus stearothermophilus is specific for NAD+. There have been several attempts to alter the cofactor specificity of this enzyme, but these have yielded enzymes with relatively low activities that still largely prefer NAD+. A modified consensus approach was used to create a library of phylogenetically preferred amino acids situated near the cofactor binding site, and variants were screened for their ability to utilize NMN+. A triple mutant (Mut31) was discovered that proved to be more catalytically efficient than wild-type. Mut31 was also better at utilizing NAD+ than the wild-type enzyme and was weakly active with NADP+ and NMN+. An analysis of single amino acid substitutions suggested that all three mutations worked in a concerted fashion to yield robust cofactor utilization. When two previously identified amino acid substitutions were introduced into the Mut31 background, the resultant quintuply substituted enzyme not only utilized NADP+ far better than the wild-type enzyme, it actually inverted its preference for NAD+ and NADP+.
Collapse
Affiliation(s)
- Humberto Flores
- Instituto de Biotecnología/UNAM, Apartado Postal 510-3, Cuernavaca, Morelos, 62271, México
| | | |
Collapse
|
38
|
Abstract
In this article we introduce a computational procedure, OPTCOMB (Optimal Pattern of Tiling for COMBinatorial library design), for designing protein hybrid libraries that optimally balance library size with quality. The proposed procedure is directly applicable to oligonucleotide ligation-based protocols such as GeneReassembly, DHR, SISDC, and many more. Given a set of parental sequences and the size ranges of the parental sequence fragments, OPTCOMB determines the optimal junction points (i.e., crossover positions) and the fragment contributing parental sequences at each one of the junction points. By rationally selecting the junction points and the contributing parental sequences, the number of clashes (i.e., unfavorable interactions) in the library is systematically minimized with the aim of improving the overall library quality. Using OPTCOMB, hybrid libraries containing fragments from three different dihydrofolate reductase sequences (Escherichia coli, Bacillus subtilis, and Lactobacillus casei) are computationally designed. Notably, we find that there exists an optimal library size when both the number of clashes between the fragments composing the library and the average number of clashes per hybrid in the library are minimized. Results reveal that the best library designs typically involve complex tiling patterns of parental segments of unequal size hard to infer without relying on computational means.
Collapse
Affiliation(s)
- Manish C Saraf
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16082, USA
| | | | | |
Collapse
|
39
|
Minshull J, Govindarajan S, Cox T, Ness JE, Gustafsson C. Engineered protein function by selective amino acid diversification. Methods 2005; 32:416-27. [PMID: 15003604 DOI: 10.1016/j.ymeth.2003.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2003] [Indexed: 11/16/2022] Open
Abstract
Almost all protein engineering methods rely upon making changes to naturally occurring proteins that already possess some of the desired properties. This will probably remain the case as long as we lack a complete understanding of the way that an amino acid sequence gives rise to a protein with a precisely defined biological function. Common to all methods for altering an existing protein is the selection of a subset of amino acids in the protein for variation and a choice of which substitutions to make at each position. Variants are then tested empirically and further variants are created based upon their performance. Differences between protein engineering methods are the ways in which amino acids are chosen for variation, the protocols followed for creating the variants, and how information regarding variant properties is used in creating subsequent variants. In this article, we describe these differences and provide examples of how the experimental parameters of specific projects determine which method is most suitable.
Collapse
|
40
|
Affiliation(s)
- Huimin Zhao
- Department of Chemical and Biological Engineering, University of Illinois at Urbana, 61801, USA
| |
Collapse
|
41
|
Geddie ML, Matsumura I. Rapid evolution of beta-glucuronidase specificity by saturation mutagenesis of an active site loop. J Biol Chem 2004; 279:26462-8. [PMID: 15069062 DOI: 10.1074/jbc.m401447200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein engineers have widely adopted directed evolution as a design algorithm, but practitioners have not come to a consensus about the best method to evolve protein molecular recognition. We previously used DNA shuffling to direct the evolution of Escherichia coli beta-glucuronidase (GUS) variants with increased beta-galactosidase activity. Epistatic (synergistic) mutations in amino acids 557, 566, and 568, which are part of an active site loop, were identified in that experiment (Matsumura, I., and Ellington, A. D. (2001) J. Mol. Biol. 305, 331-339). Here we show that site saturation mutagenesis of these residues, overexpression of the resulting library in E. coli, and high throughput screening led to the rapid evolution of clones exhibiting increased activity in reactions with p-nitrophenyl-beta-d-xylopyranoside (pNP-xyl). The xylosidase activities of the 14 fittest clones were 30-fold higher on average than that of the wild-type GUS. The 14 corresponding plasmids were pooled, amplified by long PCR, self-ligated with T4 DNA ligase, and transformed into E. coli. Thirteen clones exhibiting an average of 80-fold improvement in xylosidase activity were isolated in a second round of screening. One of the evolved proteins exhibited a approximately 200-fold improvement over the wild type in reactivity (k(cat)/K(m)) with pNP-xyl, with a 290,000-fold inversion of specificity. Sequence analysis of the 13 round 2 isolates suggested that all were products of intermolecular recombination events that occurred during whole plasmid PCR. Further rounds of evolution using DNA shuffling and staggered extension process (StEP) resulted in modest improvement. These results underscore the importance of epistatic interactions and demonstrate that they can be optimized through variations of the facile whole plasmid PCR technique.
Collapse
Affiliation(s)
- Melissa L Geddie
- Department of Biochemistry, Center for Fundamental and Molecular Evolution, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
42
|
Affiliation(s)
- Stefan Grimm
- Max-Planck-Institute for Biochemistry, Am Klopferspitz 18a, 82152 Martinsried, Germany.
| |
Collapse
|
43
|
Moore GL, Maranas CD. Computational challenges in combinatorial library design for protein engineering. AIChE J 2004. [DOI: 10.1002/aic.10025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Abstract
Directed evolution has proven to be an effective method for evolving proteins with desired properties. A key step is the creation of suitably diverse gene libraries. Two new methods for creating such libraries make sole use of synthesized oligonucleotides and allow researchers to tailor the diversity of a library with greater precision and create libraries with greater diversity than was previously possible. Such increased diversity appears to accelerate directed evolution.
Collapse
Affiliation(s)
- Marc Ostermeier
- Dept of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218, USA.
| |
Collapse
|
45
|
Govindarajan S, Ness JE, Kim S, Mundorff EC, Minshull J, Gustafsson C. Systematic variation of amino acid substitutions for stringent assessment of pairwise covariation. J Mol Biol 2003; 328:1061-9. [PMID: 12729741 DOI: 10.1016/s0022-2836(03)00357-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During protein evolution, amino acids change due to a combination of functional constraints and genetic drift. Proteins frequently contain pairs of amino acids that appear to change together (covariation). Analysis of covariation from naturally occurring sets of orthologs cannot distinguish between residue pairs retained by functional requirements of the protein and those pairs existing due to changes along a common evolutionary path. Here, we have separated the two types of covariation by independently recombining every naturally occurring amino acid variant within a set of 15 subtilisin orthologs. Our analysis shows that in this family of subtilisin orthologs, almost all possible pairwise combinations of amino acids can coexist. This suggests that amino acid covariation found in the subtilisin orthologs is almost entirely due to common ancestral origin of the changes rather than functional constraints. We conclude that naturally occurring sequence diversity can be used to identify positions that can vary independently without destroying protein function.
Collapse
|