1
|
Iwaï H, Beyer HM, Johansson JEM, Li M, Wlodawer A. The three-dimensional structure of the Vint domain from Tetrahymena thermophila suggests a ligand-regulated cleavage mechanism by the HINT fold. FEBS Lett 2024; 598:864-874. [PMID: 38351630 DOI: 10.1002/1873-3468.14817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 04/23/2024]
Abstract
Vint proteins have been identified in unicellular metazoans as a novel hedgehog-related gene family, merging the von Willebrand factor type A domain and the Hedgehog/INTein (HINT) domains. We present the first three-dimensional structure of the Vint domain from Tetrahymena thermophila corresponding to the auto-processing domain of hedgehog proteins, shedding light on the unique features, including an adduct recognition region (ARR). Our results suggest a potential binding between the ARR and sulfated glycosaminoglycans like heparin sulfate. Moreover, we uncover a possible regulatory role of the ARR in the auto-processing by Vint domains, expanding our understanding of the HINT domain evolution and their use in biotechnological applications. Vint domains might have played a crucial role in the transition from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Hideo Iwaï
- Institute of Biotechnology, University of Helsinki, Finland
| | - Hannes M Beyer
- Institute of Biotechnology, University of Helsinki, Finland
| | | | - Mi Li
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
- Basic Science Program, Frederick National Laboratory for Cancer Research, MD, USA
| | - Alexander Wlodawer
- Center for Structural Biology, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
2
|
Ciulla DA, Xu Z, Pezzullo JL, Dranchak P, Wang C, Giner JL, Inglese J, Callahan BP. Paracatalytic induction: Subverting specificity in hedgehog protein autoprocessing with small molecules. Methods Enzymol 2023; 685:1-41. [PMID: 37245899 PMCID: PMC10294009 DOI: 10.1016/bs.mie.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Paracatalytic inducers are antagonists that shift the specificity of biological catalysts, resulting in non-native transformations. In this Chapter we describe methods to discover paracatalytic inducers of Hedgehog (Hh) protein autoprocessing. Native autoprocessing uses cholesterol as a substrate nucleophile to assist in cleaving an internal peptide bond within a precursor form of Hh. This unusual reaction is brought about by HhC, an enzymatic domain that resides within the C-terminal region of Hh precursor proteins. Recently, we reported paracatalytic inducers as a novel class of Hh autoprocessing antagonists. These small molecules bind HhC and tilt the substrate specificity away from cholesterol in favor of solvent water. The resulting cholesterol-independent autoproteolysis of the Hh precursor generates a non-native Hh side product with substantially reduced biological signaling activity. Protocols are provided for in vitro FRET-based and in-cell bioluminescence assays to discover and characterize paracatalytic inducers of Drosophila and human hedgehog protein autoprocessing, respectively.
Collapse
Affiliation(s)
- Daniel A Ciulla
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States.
| | - Zihan Xu
- Chemistry Department, Binghamton University, Binghamton, NY, United States
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Chunyu Wang
- Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, NY, United States
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States; National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, NY, United States
| |
Collapse
|
3
|
Ciulla DA, Dranchak P, Pezzullo JL, Mancusi RA, Psaras AM, Rai G, Giner JL, Inglese J, Callahan BP. A cell-based bioluminescence reporter assay of human Sonic Hedgehog protein autoprocessing to identify inhibitors and activators. J Biol Chem 2022; 298:102705. [PMID: 36400200 PMCID: PMC9772569 DOI: 10.1016/j.jbc.2022.102705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.
Collapse
Affiliation(s)
- Daniel A Ciulla
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Rebecca A Mancusi
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | | | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, New York, USA.
| |
Collapse
|
4
|
Wang X, Liu H, Liu Y, Han G, Wang Y, Chen H, He L, Ma G. Highly Conserved C-Terminal Region of Indian Hedgehog N-Fragment Contributes to Its Auto-Processing and Multimer Formation. Biomolecules 2021; 11:biom11060792. [PMID: 34070546 PMCID: PMC8227148 DOI: 10.3390/biom11060792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
Hedgehog (HH) is a highly conserved secretory signalling protein family mainly involved in embryonic development, homeostasis, and tumorigenesis. HH is generally synthesised as a precursor, which subsequently undergoes autoproteolytic cleavage to generate an amino-terminal fragment (HH-N), mediating signalling, and a carboxyl-terminal fragment (HH-C), catalysing the auto-processing reaction. The N-terminal region of HH-N is required for HH multimer formation to promote signal transduction, whilst the functions of the C-terminal region of HH-N remain ambiguous. This study focused on Indian Hedgehog (IHH), a member of the HH family, to explore the functions of the C-terminal region of the amino-terminal fragment of IHH (IHH-N) via protein truncation, cell-based assays, and 3D structure prediction. The results revealed that three amino acids, including S195, A196, and A197, were crucial for the multimer formation by inserting the mutual binding of IHH-N proteins. K191, S192, E193, and H194 had an extremely remarkable effect on IHH self-cleavage. In addition, A198, K199, and T200 evidently affected the stability of IHH-N. This work suggested that the C-terminus of IHH-N played an important role in the physiological function of IHH at multiple levels, thus deepening the understanding of HH biochemical properties.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Yanfang Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Gefei Han
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Yushu Wang
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Correspondence: (H.C.); (L.H.); (G.M.)
| | - Lin He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
- Correspondence: (H.C.); (L.H.); (G.M.)
| | - Gang Ma
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China;
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (G.H.); (Y.W.)
- Correspondence: (H.C.); (L.H.); (G.M.)
| |
Collapse
|
5
|
Mafi A, Purohit R, Vielmas E, Lauinger AR, Lam B, Cheng YS, Zhang T, Huang Y, Kim SK, Goddard WA, Ondrus AE. Hedgehog proteins create a dynamic cholesterol interface. PLoS One 2021; 16:e0246814. [PMID: 33630857 PMCID: PMC7906309 DOI: 10.1371/journal.pone.0246814] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
During formation of the Hedgehog (Hh) signaling proteins, cooperative activities of the Hedgehog INTein (Hint) fold and Sterol Recognition Region (SRR) couple autoproteolysis to cholesterol ligation. The cholesteroylated Hh morphogens play essential roles in embryogenesis, tissue regeneration, and tumorigenesis. Despite the centrality of cholesterol in Hh function, the full structure of the Hint-SRR ("Hog") domain that attaches cholesterol to the last residue of the active Hh morphogen remains enigmatic. In this work, we combine molecular dynamics simulations, photoaffinity crosslinking, and mutagenesis assays to model cholesterolysis intermediates in the human Sonic Hedgehog (hSHH) protein. Our results provide evidence for a hydrophobic Hint-SRR interface that forms a dynamic, non-covalent cholesterol-Hog complex. Using these models, we suggest a unified mechanism by which Hh proteins can recruit, sequester, and orient cholesterol, and offer a molecular basis for the effects of disease-causing hSHH mutations.
Collapse
Affiliation(s)
- Amirhossein Mafi
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Rahul Purohit
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Erika Vielmas
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Alexa R. Lauinger
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Brandon Lam
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yu-Shiuan Cheng
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Tianyi Zhang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Yiran Huang
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - Soo-Kyung Kim
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | - William A. Goddard
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| | - Alison E. Ondrus
- Department of Chemistry, Division of Chemistry & Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (AEO); (WAG)
| |
Collapse
|
6
|
Hossain MS, Liu X, Maynard TI, Mozhdehi D. Genetically Encoded Inverse Bolaamphiphiles. Biomacromolecules 2019; 21:660-669. [DOI: 10.1021/acs.biomac.9b01380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Md Shahadat Hossain
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Xin Liu
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Timothy I. Maynard
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| | - Davoud Mozhdehi
- Department of Chemistry, 1-014 Center for Science and Technology, 111 College Place, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
7
|
Moore TI, Aaron J, Chew TL, Springer TA. Measuring Integrin Conformational Change on the Cell Surface with Super-Resolution Microscopy. Cell Rep 2019; 22:1903-1912. [PMID: 29444440 PMCID: PMC5851489 DOI: 10.1016/j.celrep.2018.01.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/19/2017] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
We use super-resolution interferometric photoactivation and localization microscopy (iPALM) and a constrained photoactivatable fluorescent protein integrin fusion to measure the displacement of the head of integrin lymphocyte function-associated 1 (LFA-1) resulting from integrin conformational change on the cell surface. We demonstrate that the distance of the LFA-1 head increases substantially between basal and ligand-engaged conformations, which can only be explained at the molecular level by integrin extension. We further demonstrate that one class of integrin antagonist maintains the bent conformation, while another antagonist class induces extension. Our molecular scale measurements on cell-surface LFA-1 are in excellent agreement with distances derived from crystallographic and electron microscopy structures of bent and extended integrins. Our distance measurements are also in excellent agreement with a previous model of LFA-1 bound to ICAM-1 derived from the orientation of LFA-1 on the cell surface measured using fluorescence polarization microscopy.
Collapse
Affiliation(s)
- Travis I Moore
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Teng-Leong Chew
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Mozhdehi D, Luginbuhl KM, Dzuricky M, Costa SA, Xiong S, Huang FC, Lewis MM, Zelenetz SR, Colby CD, Chilkoti A. Genetically Encoded Cholesterol-Modified Polypeptides. J Am Chem Soc 2019; 141:945-951. [PMID: 30608674 DOI: 10.1021/jacs.8b10687] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Biological systems use post-translational modifications (PTMs) to control the structure, location, and function of proteins after expression. Despite the ubiquity of PTMs in biology, their use to create genetically encoded recombinant biomaterials is limited. We have utilized a natural lipidation PTM (hedgehog-mediated cholesterol modification of proteins) to create a class of hybrid biomaterials called cholesterol-modified polypeptides (CHaMPs) that exhibit programmable self-assembly at the nanoscale. To demonstrate the biomedical utility of CHaMPs, we used this approach to append cholesterol to biologically active peptide exendin-4 that is an approved drug for the treatment of type II diabetes. The exendin-cholesterol conjugate self-assembled into micelles, and these micelles activate the glucagon-like peptide-1 receptor with a potency comparable to that of current gold standard treatments.
Collapse
Affiliation(s)
- Davoud Mozhdehi
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Kelli M Luginbuhl
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Michael Dzuricky
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Simone A Costa
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Sinan Xiong
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Fred C Huang
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Mae M Lewis
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Stephanie R Zelenetz
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Christian D Colby
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering , Duke University , 1427 FCIEMAS , Box 90281, Durham , North Carolina 27708-0281 , United States
| |
Collapse
|
9
|
Manikowski D, Kastl P, Grobe K. Taking the Occam's Razor Approach to Hedgehog Lipidation and Its Role in Development. J Dev Biol 2018; 6:jdb6010003. [PMID: 29615552 PMCID: PMC5875562 DOI: 10.3390/jdb6010003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 01/01/2023] Open
Abstract
All Hedgehog (Hh) proteins signal from producing cells to distant receiving cells despite being synthesized as N-and C-terminally lipidated, membrane-tethered molecules. To explain this paradoxical situation, over the past 15 years, several hypotheses have been postulated that tie directly into this property, such as Hh transport on cellular extensions called cytonemes or on secreted vesicles called lipophorins and exosomes. The alternative situation that tight membrane association merely serves to prevent unregulated Hh solubilization has been addressed by biochemical and structural studies suggesting Hh extraction from the membrane or proteolytic Hh release. While some of these models may act in different organisms, tissues or developmental programs, others may act together to specify Hh short- and long-range signaling in the same tissues. To test and rank these possibilities, we here review major models of Hh release and transport and hypothesize that the (bio)chemical and physical properties of firmly established, homologous, and functionally essential biochemical Hh modifications are adapted to specify and determine interdependent steps of Hh release, transport and signaling, while ruling out other steps. This is also described by the term “congruence”, meaning that the logical combination of biochemical Hh modifications can reveal their true functional implications. This combined approach reveals potential links between models of Hh release and transport that were previously regarded as unrelated, thereby expanding our view of how Hhs can steer development in a simple, yet extremely versatile, manner.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence, University of Münster, D-48149 Münster, Germany.
| |
Collapse
|
10
|
Jakobs P, Schulz P, Schürmann S, Niland S, Exner S, Rebollido-Rios R, Manikowski D, Hoffmann D, Seidler DG, Grobe K. Ca 2+ coordination controls sonic hedgehog structure and its Scube2-regulated release. J Cell Sci 2017; 130:3261-3271. [PMID: 28778988 DOI: 10.1242/jcs.205872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Proteolytic processing of cell-surface-bound ligands, called shedding, is a fundamental system to control cell-cell signaling. Yet, our understanding of how shedding is regulated is still incomplete. One way to increase the processing of dual-lipidated membrane-associated Sonic hedgehog (Shh) is to increase the density of substrate and sheddase. This releases and also activates Shh by the removal of lipidated inhibitory N-terminal peptides from Shh receptor binding sites. Shh release and activation is enhanced by Scube2 [signal sequence, cubulin (CUB) domain, epidermal growth factor (EGF)-like protein 2], raising the question of how this is achieved. Here, we show that Scube2 EGF domains are responsible for specific proteolysis of the inhibitory Shh N-terminus, and that CUB domains complete the process by reversing steric masking of this peptide. Steric masking, in turn, depends on Ca2+ occupancy of Shh ectodomains, unveiling a new mode of shedding regulation at the substrate level. Importantly, Scube2 uncouples processing of Shh peptides from their lipid-mediated juxtamembrane positioning, and thereby explains the long-standing conundrum that N-terminally unlipidated Shh shows patterning activity in Scube2-expressing vertebrates, but not in invertebrates that lack Scube orthologs.
Collapse
Affiliation(s)
- Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Philipp Schulz
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Stephan Niland
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Sebastian Exner
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Rocio Rebollido-Rios
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, University of Duisburg-Essen, D-45117 Essen, Germany
| | - Daniela G Seidler
- Centre for Internal Medicine, Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School I3, EB2/R3110, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
11
|
Callahan BP, Wang C. Hedgehog Cholesterolysis: Specialized Gatekeeper to Oncogenic Signaling. Cancers (Basel) 2015; 7:2037-53. [PMID: 26473928 PMCID: PMC4695875 DOI: 10.3390/cancers7040875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/22/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Discussions of therapeutic suppression of hedgehog (Hh) signaling almost exclusively focus on receptor antagonism; however, hedgehog's biosynthesis represents a unique and potentially targetable aspect of this oncogenic signaling pathway. Here, we review a key biosynthetic step called cholesterolysis from the perspectives of structure/function and small molecule inhibition. Cholesterolysis, also called cholesteroylation, generates cholesterol-modified Hh ligand via autoprocessing of a hedgehog precursor protein. Post-translational modification by cholesterol appears to be restricted to proteins in the hedgehog family. The transformation is essential for Hh biological activity and upstream of signaling events. Despite its decisive role in generating ligand, cholesterolysis remains conspicuously unexplored as a therapeutic target.
Collapse
Affiliation(s)
- Brian P Callahan
- Chemistry Department, Binghamton University 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Chunyu Wang
- Biology Department, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
| |
Collapse
|
12
|
Owen TS, Ngoje G, Lageman TJ, Bordeau BM, Belfort M, Callahan BP. Förster resonance energy transfer-based cholesterolysis assay identifies a novel hedgehog inhibitor. Anal Biochem 2015; 488:1-5. [PMID: 26095399 DOI: 10.1016/j.ab.2015.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/12/2015] [Accepted: 06/12/2015] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) proteins function in cell/cell signaling processes linked to human embryo development and the progression of several types of cancer. Here, we describe an optical assay of hedgehog cholesterolysis, a unique autoprocessing event critical for Hh function. The assay uses a recombinant Förster resonance energy transfer (FRET)-active Hh precursor whose cholesterolysis can be monitored continuously in multi-well plates (dynamic range=4, Z'=0.7), offering advantages in throughput over conventional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) assays. Application of the optical assay in a pilot small molecule screen produced a novel cholesterolysis inhibitor (apparent IC50=5×10(-6)M) that appears to inactivate hedgehog covalently by a substitution nucleophilic aromatic (SNAr) mechanism.
Collapse
Affiliation(s)
- Timothy S Owen
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - George Ngoje
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Travis J Lageman
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Brandon M Bordeau
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA
| | - Marlene Belfort
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Brian P Callahan
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA.
| |
Collapse
|
13
|
Kugler MC, Joyner AL, Loomis CA, Munger JS. Sonic hedgehog signaling in the lung. From development to disease. Am J Respir Cell Mol Biol 2015; 52:1-13. [PMID: 25068457 DOI: 10.1165/rcmb.2014-0132tr] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Over the past two decades, the secreted protein sonic hedgehog (SHH) has emerged as a critical morphogen during embryonic lung development, regulating the interaction between epithelial and mesenchymal cell populations in the airway and alveolar compartments. There is increasing evidence that the SHH pathway is active in adult lung diseases such as pulmonary fibrosis, asthma, chronic obstructive pulmonary disease, and lung cancer, which raises two questions: (1) What role does SHH signaling play in these diseases? and (2) Is it a primary driver of the disease or a response (perhaps beneficial) to the primary disturbance? In this review we aim to fill the gap between the well-studied period of embryonic lung development and the adult diseased lung by reviewing the hedgehog (HH) pathway during the postnatal period and in adult uninjured and injured lungs. We elucidate the similarities and differences in the epithelial-mesenchymal interplay during the fibrosis response to injury in lung compared with other organs and present a critical appraisal of tools and agents available to evaluate HH signaling.
Collapse
|
14
|
Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 2013; 497:628-32. [PMID: 23624372 PMCID: PMC4197975 DOI: 10.1038/nature12157] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 04/08/2013] [Indexed: 12/20/2022]
Abstract
The ability of signaling proteins to traverse tissues containing tightly packed cells is of fundamental importance for cell specification and tissue development, however, how this is achieved at a cellular level remains poorly understood1. For over a century, the vertebrate limb bud has served as a paradigm to study cell signaling during embryonic development2. Here we optimize single cell real-time imaging to delineate the cellular mechanisms for how signaling proteins, such as Sonic Hedgehog (Shh), that possess membrane-bound covalent lipid modifications transverse long distances within the limb bud in vivo. By directly imaging Shh ligand production under native regulatory control, our findings show that Shh is unexpectedly produced in the form of a particle that remains associated with the cell via long cytoplasmic extensions that span several cell diameters. We show that these cellular extensions are a specialized class of actin-based filopodia with novel cytoskeletal features that have not been previously described. Strikingly, particles containing Shh traffic along these extensions with a net anterograde movement within the field of Shh cell signaling. We further show that in Shh responding cells specific subsets of Shh co-receptors, including Cdo and Boc, actively distribute and co-localize in specific micro-domains within filopodial extensions, far from the cell body. Stabilized interactions are formed between filopodia containing Shh ligand and those containing co-receptors over a long-range. These results suggest that contact-mediated release propagated by specialized filopodia contributes to the delivery of Shh at a distance. Together, these studies identify an important mode of communication between cells that significantly extends our understanding of ligand movement and reception during vertebrate tissue patterning.
Collapse
|
15
|
ZHU LINING, ZHAO ZHIHUI, WEI YANZHANG, MARCOTTE WILLIAM, WAGNER THOMASE, YU XIANZHONG. An IL-12/Shh-C domain fusion protein-based IL-12 autocrine loop for sustained natural killer cell activation. Int J Oncol 2012; 41:661-9. [DOI: 10.3892/ijo.2012.1466] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/02/2012] [Indexed: 11/05/2022] Open
|
16
|
Semisynthesis of a Protein with Cholesterol at the C-Terminal, Targeted to the Cell Membrane of Live Cells. Protein J 2010; 29:493-500. [DOI: 10.1007/s10930-010-9278-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Abstract
Sonic Hedgehog (Shh) signaling has been extensively studied for its role in developmental biology and cancer biology. The association between Shh and cancer development in general is well established but the functional role of Shh in the development and progression of gastric cancer specifically is largely unknown. Bone marrow-derived stem cells, specifically mesenchymal stem cells (MSCs) infiltrate and engraft into the gastric mucosa in response to the chronic inflammatory environment of Helicobacter infection. In this review, MSC infiltration and changes in the cytokine and cellular profiles of later-stage chronic environments will be tied into their interactions with the Shh pathway. We will discuss how these changes shape tumorigenesis and tumor progression in the gastric mucosa. The current review focuses on the Shh signaling pathway and its role in the development of gastric cancer, specifically in response to Helicobacter pylori infection. We follow with an in-depth discussion of the regulation of the Hedgehog pathway during acute and chronic gastric inflammation with a focus on signaling within the MSC compartment.
Collapse
|
18
|
Mao H, Diehl AM, Li YX. Sonic hedgehog ligand partners with caveolin-1 for intracellular transport. J Transl Med 2009; 89:290-300. [PMID: 19139721 PMCID: PMC2647995 DOI: 10.1038/labinvest.2008.163] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Prenatal alcohol exposure is the most common environmental factor leading to congenital birth defects in the United States. Although significant progress has been made in this field, the detailed molecular pathology of fetal alcohol syndrome (FAS) remains to be determined. Previously, we have shown that alcohol exposure perturbs hedgehog signal transduction in zebrafish embryos by inhibiting the post-translational cholesterol modification of Sonic hedgehog (Shh), leading to decreased levels of mature Shh ligand that is associated with the plasma membrane, and causing transient loss of Hh signaling, resulting in permanent FAS-related morphological abnormalities. In the present study, we further elucidate the mechanisms that regulate the intracellular transportation and secretion of Shh using the hepatic stellate cell line HSC8B. We have found that Shh is associated with caveolin-1 in the Golgi apparatus to form protein complexes and that these complexes are packaged as large punctuate structures (transport vesicles) that are transported to the plasma membrane in lipid raft microdomains. Alcohol exposure does not significantly interrupt translation of shh mRNA in endoplasmic reticulum (ER) or the trafficking of Shh from the ER to the Golgi apparatus. However, alcohol does prevent the entry of Shh into transport vesicles from the Golgi to the plasma membrane and specifically decreases the amount of caveolin-1/Shh complex found in lipid rafts, causing cytoplasmic accumulation of Shh and leading to a deficiency of Shh ligand secretion into the extracellular matrix.
Collapse
Affiliation(s)
- Hua Mao
- Division of Gastroenterology and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Anna Mae Diehl
- Division of Gastroenterology and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Yin-Xiong Li
- Division of Gastroenterology and Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.,Department of Pediatrics, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
19
|
Synthesis and evaluation of a cyclic imine derivative conjugated to a fluorescent molecule for labeling of proteins. Bioorg Med Chem Lett 2008; 19:1210-3. [PMID: 19136260 DOI: 10.1016/j.bmcl.2008.12.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 11/22/2022]
Abstract
A cyclic imine conjugated to a fluorescent dansyl group was synthesized and used for covalent labeling of proteins. The covalent attachment to proteins was confirmed by gel electrophoresis and mass analysis.
Collapse
|
20
|
Zavros Y, Orr MA, Xiao C, Malinowska DH. Sonic hedgehog is associated with H+-K+-ATPase-containing membranes in gastric parietal cells and secreted with histamine stimulation. Am J Physiol Gastrointest Liver Physiol 2008; 295:G99-G111. [PMID: 18483183 PMCID: PMC5243217 DOI: 10.1152/ajpgi.00389.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sonic hedgehog (Shh) is found within gastric parietal cells and processed from a 45-kDa to a 19-kDa bioactive protein by an acid- and protease-dependent mechanism. To investigate whether Shh is associated with the parietal cell membrane compartment that becomes exposed to both acid and proteolytic enzymes during acid secretion, the cellular location of Shh within resting and stimulated gastric parietal cells was examined. Immunofluorescence microscopy of rabbit stomach sections showed that Shh colocalized predominantly with parietal and pit, not chief/zymogen or neck, cell markers. In resting and histamine-stimulated rabbit gastric glands Shh was expressed only in parietal cells close to H+-K+-ATPase-containing tubulovesicular and secretory membranes with some colocalizing with gamma-actin at the basolateral membrane. Gastric gland microsomal membranes were prepared by differential and sucrose gradient centrifugation and immunoisolation with an anti-H+-K+-ATPase-alpha subunit antibody. The 45- and 19-kDa Shh proteins were detected by immunoblot in immunopurified H+-K+-ATPase-containing membranes from resting and stimulated gastric glands, respectively. Incubating glands with a high KCl concentration removed Shh from the membranes. Histamine stimulated 19-kDa Shh secretion from gastric glands into the medium. In human gastric cancer 23132/87 cells cultured on permeable membranes, histamine increased 19-kDa Shh secretion into both apical and basolateral media. These findings show that Shh is a peripheral protein associated with resting and stimulated H+-K+-ATPase-expressing membranes. In addition, Shh appears to be expressed at or close to the basolateral membrane of parietal cells.
Collapse
Affiliation(s)
- Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, PO Box 670576, Cincinnati, OH 45267-0576, USA.
| | - Melissa A. Orr
- Department of Molecular and Cellular Physiology, University of Cincinnati
College of Medicine, Cincinnati, Ohio
| | - Chang Xiao
- Department of Molecular and Cellular Physiology, University of Cincinnati
College of Medicine, Cincinnati, Ohio
| | - Danuta H. Malinowska
- Department of Molecular and Cellular Physiology, University of Cincinnati
College of Medicine, Cincinnati, Ohio
| |
Collapse
|
21
|
Zavros Y. The adventures of sonic hedgehog in development and repair. IV. Sonic hedgehog processing, secretion, and function in the stomach. Am J Physiol Gastrointest Liver Physiol 2008; 294:G1105-8. [PMID: 18308861 DOI: 10.1152/ajpgi.00031.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sonic hedgehog (Shh) is recognized as one of the main morphogens that regulates cell differentiation during early development of the stomach. In the adult stomach, Shh is expressed and secreted from the acid-producing parietal cells, where it is believed to play an essential role in gastric tissue homeostasis and normal differentiation of the epithelium. The present Themes article focuses on reviewing the literature and controversies surrounding the processing and secretion and the role of Shh in the adult stomach.
Collapse
Affiliation(s)
- Yana Zavros
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45255, USA.
| |
Collapse
|