1
|
Hu W, Garrison C, Prasad R, Boulton M, Grant M. Indole metabolism and its role in diabetic macrovascular and microvascular complications. AMERICAN HEART JOURNAL PLUS : CARDIOLOGY RESEARCH AND PRACTICE 2025; 53:100532. [PMID: 40230659 PMCID: PMC11995707 DOI: 10.1016/j.ahjo.2025.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/03/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025]
Abstract
Tryptophan (Trp), an essential amino acid obtained through dietary sources, plays a crucial role in various physiological processes. The metabolism of Trp branches into three principal pathways: the serotonin pathway, the kynurenine pathway, and the indole pathway. The kynurenine and serotonin pathways are host pathways while the indole pathway is solely the result of bacterial metabolism. Trp metabolites extend their influence beyond protein biosynthesis to affect a spectrum of pathophysiological mechanisms including, but not limited to, neuronal function, immune modulation, inflammatory responses, oxidative stress regulation, and maintenance of intestinal health. This review focuses on indole derivatives and their impact on vascular health. Trp-containing dipeptides are highlighted as a targeted nutraceutical approach to modulate Trp metabolism, enhance beneficial metabolite production, and mitigate risk factors for vascular diseases. The importance of optimizing Trp intake and dietary strategies to harness the benefits of Trp-derived metabolites for vascular health is underscored, bringing to light the need for further research to refine these therapeutic approaches.
Collapse
Affiliation(s)
- W. Hu
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - C. Garrison
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Prasad
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M.E. Boulton
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M.B. Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
2
|
Shilling PJ, Pontes-Braz L, Mitchell L, Howell L, Veneer P, Jayashree S, Castelli LA, Pham T, Lu L, Wang B, Yeo KYB, Nimma S, Briggs L, Johnston C, Michie M, Sutherland TD. Production of recombinant coiled coil silk proteins for materials synthesis. Protein Expr Purif 2025; 229:106683. [PMID: 39922437 DOI: 10.1016/j.pep.2025.106683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/30/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Rational design of fundamentally new advanced materials would be facilitated by availability of polymers with controlled monomer sequence. Recombinant proteins offer polymers with controlled monomer sequence but are underrepresented in material science, in part because suitable proteins cannot be produced at commercial levels in recombinant systems. The silk proteins of honeybees fulfil the requirements for rational materials design and can be produced at commercially viable levels. In this study we compare recombinant expression of these silks in bacteria, yeast and insect cells to identify the most suitable method of silk protein production. Yeast and insect cell lines are unlikely to be suitable expression platforms for these silks as the recombinant proteins were degraded, expression levels were low or absent, and host cell protein levels were high. We confirm that expression into E. coli inclusion bodies using defined media offers high level expression and to date is the best expression system for these proteins.
Collapse
Affiliation(s)
| | | | | | - Linda Howell
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia.
| | - Prem Veneer
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia.
| | | | | | - Tam Pham
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia.
| | - Louis Lu
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia.
| | - Bei Wang
- CSIRO Manufacturing, Clayton, VIC, 3168, Australia.
| | - K Y Benjamin Yeo
- Protein Expression Facility, University of Queensland, Brisbane, Queensland, Australia.
| | - Surekha Nimma
- Protein Expression Facility, University of Queensland, Brisbane, Queensland, Australia.
| | - Lyndall Briggs
- CSIRO Health & Biosecurity, Canberra, ACT, 2602, Australia.
| | | | | | | |
Collapse
|
3
|
Linnert J, Kusuluri DK, Güler BE, Patnaik SR, May-Simera HL, Wolfrum U. The BBS/CCT chaperonin complex ensures the localization of the adhesion G protein-coupled receptor ADGRV1 to the base of primary cilia. Front Cell Dev Biol 2025; 13:1520723. [PMID: 40103630 PMCID: PMC11913874 DOI: 10.3389/fcell.2025.1520723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/03/2025] [Indexed: 03/20/2025] Open
Abstract
Primary cilia are antenna-like sensory organelles present on almost all eukaryotic cells. Their sensory capacity relies on receptors, in particular G-protein-coupled receptors (GPCRs) which localize to the ciliary membrane. Here we show that ADGRV1, a member of the GPCR subfamily of adhesion GPCRs, is part of a large protein network, interacting with numerous proteins of a comprehensive ciliary proteome. ADGRV1 is localized to the base of prototypic primary cilia in cultured cells and the modified primary cilia of retinal photoreceptors, where it interacts with TRiC/CCT chaperonins and the Bardet Biedl syndrome (BBS) chaperonin-like proteins. Knockdown of ADGRV1, CCT2 and 3, and BBS6 result in common ciliogenesis phenotypes, namely reduced ciliated cells combined with shorter primary cilia. In addition, the localization of ADGRV1 to primary cilia depends on the activity of a co-complex of TRiC/CCT chaperonins and the BBS chaperonin-like proteins. In the absence of components of the TRiC/CCT-BBS chaperonin co-complex, ADGRV1 is depleted from the base of the primary cilium and degraded via the proteasome. Defects in the TRiC/CCT-BBS chaperonin may lead to an overload of proteasomal degradation processes and imbalanced proteostasis. Dysfunction or absence of ADGRV1 from primary cilia may underly the pathophysiology of human Usher syndrome type 2 and epilepsy caused by mutations in ADGRV1.
Collapse
Affiliation(s)
- Joshua Linnert
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Deva Krupakar Kusuluri
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Baran E Güler
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sarita Rani Patnaik
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Helen Louise May-Simera
- Institute of Molecular Physiology, Cilia Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Institute of Molecular Physiology, Molecular Cell Biology, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute for Quantitative and Computational Biosciences (IQCB), Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
4
|
Takarada T, Fujinaka R, Shimada M, Fukuda M, Yamada T, Tanaka M. Effect of N-glycosylation on secretion, degradation and lipoprotein distribution of human serum amyloid A4. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159588. [PMID: 39672228 DOI: 10.1016/j.bbalip.2024.159588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/06/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Serum amyloid A (SAA) is a family of apolipoproteins predominantly synthesized and secreted by the liver. Human SAA4 is constitutively expressed and contains an N-glycosylation site that is not present in other SAA subtypes. SAA4 proteins are not fully glycosylated, resulting in the presence of both glycosylated and non-glycosylated forms in human plasma. The efficiency of N-glycosylation in SAA4 is known to be influenced by some reasons such as genetic polymorphism and metabolic disorders. However, the specific role of N-glycosylation in SAA4 remains largely unexplored. This study aimed to investigate how N-glycosylation affects the secretion, degradation, and lipoprotein distribution of SAA4. Initially, we designed and constructed an SAA4 plasmid vector to compare with the expression pattern of endogenous SAA4. The exogenous SAA4 was partially N-glycosylated, analogous to endogenous SAA4 in human hepatocellular carcinoma cells. Subsequently, we created a non-glycosylated mutant by replacing asparagine 76 with glutamine. Immunoblotting assays showed that the disruption of N-glycans did not affect the secretion and degradation of SAA4. Furthermore, we analyzed the lipoprotein profiles of SAA4 in the conditioned medium derived from transfected cells. The results revealed that non-glycosylated mutant SAA4 exhibited a distinct lipoprotein distribution compared to wild-type SAA4. Our findings suggest that N-glycosylation may be a key regulator of the distribution of SAA4 in lipoproteins, shedding light on the previously unknown physiological activities of human SAA4.
Collapse
Affiliation(s)
- Toru Takarada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Rikako Fujinaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masaki Shimada
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Masakazu Fukuda
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Toshiyuki Yamada
- Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Masafumi Tanaka
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| |
Collapse
|
5
|
Lee EJ, Kim K, Diaz-Aguilar MS, Min H, Chavez E, Steinbergs KJ, Safarta LA, Zhang G, Ryan AF, Lin JH. Mutations in unfolded protein response regulator ATF6 cause hearing and vision loss syndrome. J Clin Invest 2025; 135:e175562. [PMID: 39570676 PMCID: PMC11785932 DOI: 10.1172/jci175562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Abstract
Activating transcription factor 6 (ATF6) is a key regulator of the unfolded protein response (UPR) and is important for ER function and protein homeostasis in metazoan cells. Patients carrying loss-of-function ATF6 disease alleles develop the cone dysfunction disorder achromatopsia. The effect of loss of ATF6 function on other cell types, organs, and diseases in people remains unclear. Here, we report that progressive sensorineural hearing loss was a notable complaint in some patients carrying ATF6 disease alleles and that Atf6-/- mice also showed progressive auditory deficits affecting both sexes. In mice with hearing deficits, we found disorganized stereocilia on hair cells and focal loss of outer hair cells. Transcriptomics analysis of Atf6-/- cochleae revealed a marked induction of the UPR, especially through the protein kinase RNA-like endoplasmic reticulum kinase (PERK) arm. These findings identify ATF6 as an essential regulator of cochlear health and function. Furthermore, they support the idea that ATF6 inactivation in people causes progressive sensorineural hearing loss as part of a blindness-deafness genetic syndrome targeting hair cells and cone photoreceptors. Last, our genetic findings indicate that ER stress is an important pathomechanism underlying cochlear damage and hearing loss, with clinical implications for patient lifestyle modifications that minimize environmental and physiological sources of ER stress to the ear.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Kyle Kim
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Monica Sophia Diaz-Aguilar
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
- Rush University Medical College, Chicago, Illinois, USA
| | - Hyejung Min
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Eduardo Chavez
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Korina J. Steinbergs
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Lance A. Safarta
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
| | - Guirong Zhang
- Departments of Pathology and
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| | - Allen F. Ryan
- Departments of Otolaryngology and Neuroscience, UCSD and Veterans Administration Medical Center, La Jolla, California, USA
| | - Jonathan H. Lin
- Departments of Pathology and
- Ophthalmology, Stanford University School of Medicine, Stanford, California, USA
- VA Palo Alto Healthcare System, Palo Alto, California, USA
| |
Collapse
|
6
|
Ji J, Zhou X, Lu Y, Shen L, Li L, Chen Z, Shi Y, Liao W, Yu L. SCN1A intronic variants impact on Nav1.1 protein expression and sodium channel function, and associated with epilepsy phenotypic severity. Gene 2025; 932:148876. [PMID: 39173978 DOI: 10.1016/j.gene.2024.148876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
High-throughput sequencing has identified numerous intronic variants in the SCN1A gene in epilepsy patients. Abnormal mRNA splicing caused by these variants can lead to significant phenotypic differences, but the mechanisms of epileptogenicity and phenotypic differences remain unknown. Two variants, c.4853-1 G>C and c.4853-25 T>A, were identified in intron 25 of SCN1A, which were associated with severe Dravet syndrome (DS) and mild focal epilepsy with febrile seizures plus (FEFS+), respectively. The impact of these variants on protein expression, electrophysiological properties of sodium channels and their correlation with epilepsy severity was investigated through plasmid construction and transfection based on the aberrant spliced mRNA. We found that the expression of truncated mutant proteins was significantly reduced on the cell membrane, and retained in the cytoplasmic endoplasmic reticulum. The mutants caused a decrease in current density, voltage sensitivity, and an increased vulnerability of channel, leading to a partial impairment of sodium channel function. Notably, the expression of DS-related mutant protein on the cell membrane was higher compared to that of FEFS+-related mutant, whereas the sodium channel function impairment caused by DS-related mutant was comparatively milder than that caused by FEFS+-related mutant. Our study suggests that differences in protein expression levels and altered electrophysiological properties of sodium channels play important roles in the manifestation of diverse epileptic phenotypes. The presence of intronic splice site variants may result in severe phenotypes due to the dominant-negative effects, whereas non-canonical splice site variants leading to haploinsufficiency could potentially cause milder phenotypes.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Xijing Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China; Department of Neurology, The First People's Hospital of Nanning, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yanting Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Lang Shen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Lixia Li
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Zirong Chen
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China
| | - Yiwu Shi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
| | - Weiping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, GD, China
| | - Lu Yu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, GX, China.
| |
Collapse
|
7
|
Wei Y, Zhang S, Shao F, Sun Y. Ankylosing spondylitis: From pathogenesis to therapy. Int Immunopharmacol 2025; 145:113709. [PMID: 39644789 DOI: 10.1016/j.intimp.2024.113709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Ankylosing spondylitis (AS) is an autoimmune rheumatic disease that primarily affects the axial joints, with its etiology complex and still not fully understood. The unknown pathogenesis of AS limits the development of treatment strategies, so keeping up-to-date with the current research on AS can help in searching for potential therapeutic targets. In addition to the classic HLA-B27 genetic susceptibility and Th17-related inflammatory signals, increasing research is focusing on the influence of autoantigen-centered autoimmune responses and bone stromal cells on the onset of AS. Autoantigens derived from gut microbiota and preferential TCR both exacerbate the autoimmune response in patients with AS. Furthermore, dysregulated bone metabolism also promotes pathological new bone formation in AS. Current treatments approved for AS almost focus on the management of inflammation with inconsistent treatment results due to the heterogeneity of patients. In this review, we systematically summarized various pathogenesis and management of AS, meanwhile discussed the underlying risk factors and potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxiao Wei
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Shuqiong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| | - Fenli Shao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, Jiangsu, China.
| |
Collapse
|
8
|
Kakkar C, Sharma V, Mannan A, Gupta G, Singh S, Kumar P, Dua K, Kaur A, Singh S, Dhiman S, Singh TG. Diabetic Cardiomyopathy: An Update on Emerging Pathological Mechanisms. Curr Cardiol Rev 2025; 21:88-107. [PMID: 39501954 PMCID: PMC12060924 DOI: 10.2174/011573403x331870241025094307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 04/25/2025] Open
Abstract
Diabetic Cardiomyopathy (DCM) is a notable consequence of diabetes mellitus, distinguished by cardiac dysfunction that occurs separately from coronary artery disease or hypertension. A recent study has revealed an intricate interaction of pathogenic processes that contribute to DCM. Important aspects involve the dysregulation of glucose metabolism, resulting in heightened oxidative stress and impaired mitochondrial function. In addition, persistent high blood sugar levels stimulate inflammatory pathways, which contribute to the development of heart fibrosis and remodelling. Additionally, changes in the way calcium is managed and the presence of insulin resistance are crucial factors in the formation and advancement of DCM. This may be due to the involvement of many molecular mechanistic pathways such as NLRP3, NF-κB, PKC, and MAPK with their downstream associated signaling pathways. Gaining a comprehensive understanding of these newly identified pathogenic pathways is crucial in order to design precise therapy approaches that can enhance the results for individuals suffering from diabetes. In addition, this review offers an in-depth review of not just pathogenic pathways and molecular mechanistic pathways but also diagnostic methods, treatment options, and clinical trials.
Collapse
Affiliation(s)
- Chirag Kakkar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Gaurav Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, 346, United Arab Emirates
| | - Sachin Singh
- Lovely Institute of Technology (Pharmacy), Lovely Professional University, Phagwara, Punjab, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
| | - Puneet Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Central University of Punjab, Ghudda, Bathinda, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Broadway, P.O. Box 123, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
9
|
Yuan C, Liao Y, Si W, Huang M, Li D, Wang F, Quan Y, Yu X, Liao S. Trim21 modulates endoplasmic reticulum-associated degradation and sensitizes cancer cells to ER stress-induced apoptosis by inhibiting VCP/Npl4/UFD1 assembly. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167533. [PMID: 39368714 DOI: 10.1016/j.bbadis.2024.167533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) serves as a crucial quality and quantity control system that removes misfolded or unassembled proteins from the Endoplasmic Reticulum (ER) through the cytoplasmic ubiquitin-proteasome system (UPS), which is critical for cell fate decision. ER stress arises when misfolded proteins accumulated within the ER lumen, potentially leading to cell death via proapoptotic unfolded protein response (UPR). UFD1 in associated with VCP-Npl4, is recognized as a key regulator of protein homeostasis in ERAD. However, the factors that control VCP complex assembly remain unclear. The study elucidates the function of Trim21, an E3 ubiquitin ligase, through its interaction with UFD1, facilitating K27-linkage ubiquitination of UFD1 and inhibiting its incorporation into the VCP complex. This results in the suppression of ERAD substrates degradation and the activation of a proapoptotic unfolded protein response in cancer cells. Additionally, Trim21 over-expression enhances ER stress response and promotes apoptosis upon expose to the ER inducer Tunicamycin. Notably, elevated Trim21 expression correlates with improved overall survival in various tumor types. Overall, the findings highlight the critical role of Trim21 in regulating ERAD progression and cell fate determination in cancer cells through modulation of VCP/Npl4/UFD1 complex assembly.
Collapse
Affiliation(s)
- Chao Yuan
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yanli Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Public Health, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - WenXia Si
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Mi Huang
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Duanzhuo Li
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Fuqing Wang
- School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Yi Quan
- Department of Oncology, Zhaoqing First People's Hospital Affiliated to Zhaoqing Medical College, Zhaoqing, Guangdong, China
| | - Xin Yu
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China.
| | - Shengjie Liao
- Department of Scientific Research and Experiment Center, Zhaoqing Medical College, Zhaoqing, Guangdong, China; School of Basic Medical Sciences, Zhaoqing Medical College, Zhaoqing, Guangdong, China.
| |
Collapse
|
10
|
Hu C, Shen W, Xia Y, Yang H, Chen X. Lactoferrin: Current situation and future prospects. FOOD BIOSCI 2024; 62:105183. [DOI: 10.1016/j.fbio.2024.105183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Ding M, He M, Li D, Ding S, Dong C, Zhao H, Song H, Hong K, Zhu H. A Marine-Derived Small Molecule Inhibits Prostate Cancer Growth by Promoting Endoplasmic Reticulum Stress Induced Apoptosis and Autophagy. Phytother Res 2024; 38:6004-6022. [PMID: 39474779 DOI: 10.1002/ptr.8354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 12/13/2024]
Abstract
MHO7 (6-epi-ophiobolin G), a novel component extracted from a mangrove fungus, exhibits significant anticancer effects against breast cancer. However, the precise mechanism underlying the anticancer effects of MHO7 in prostate cancer (PCa) is yet to be fully elucidated. Therefore, this study was undertaken to assess the effect of MHO7 on PCa cells and elucidate its underlying mechanism. A series of in vitro experiments were conducted, including Cell Counting Kit-8, and plate clone formation assays, flow cytometry analysis, electron microscopy, immunofluorescence staining, western blotting, and molecular dynamics simulation. Additionally, in vivo tumor xenograft models were employed. Our findings revealed that MHO7 could induce cellular autophagy at low concentration (2 μM) and apoptosis at relatively high concentration (4 and 8 μM), leading to significant PCa cell growth inhibition. Furthermore, MHO7 triggered endoplasmic reticulum (ER) stress, which subsequently stimulated autophagy and apoptosis via IRE1α/XBP-1s signaling pathway activation. Notably, IRE1α knockdown markedly reduced MHO7-induced autophagy and apoptosis. Moreover, MHO7 targeted the IRE1α protein, thereby enhancing its stability. MHO7 also exhibited substantial anticancer activity in tumor xenograft models. Our study revealed that MHO7 holds considerable potential as an anticancer agent against PCa, attributable to its activation of ER stress-induced autophagy and apoptosis at different concentrations, facilitated by the upregulation of IRE1α expression.
Collapse
Affiliation(s)
- Mao Ding
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mu He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shuaishuai Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chenjia Dong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongchao Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huajie Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
12
|
Kovalchik KA, Hamelin DJ, Kubiniok P, Bourdin B, Mostefai F, Poujol R, Paré B, Simpson SM, Sidney J, Bonneil É, Courcelles M, Saini SK, Shahbazy M, Kapoor S, Rajesh V, Weitzen M, Grenier JC, Gharsallaoui B, Maréchal L, Wu Z, Savoie C, Sette A, Thibault P, Sirois I, Smith MA, Decaluwe H, Hussin JG, Lavallée-Adam M, Caron E. Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines. Nat Commun 2024; 15:10316. [PMID: 39609459 PMCID: PMC11604954 DOI: 10.1038/s41467-024-54734-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm-MHCvalidator-to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.
Collapse
Affiliation(s)
- Kevin A Kovalchik
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - David J Hamelin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Benoîte Bourdin
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Fatima Mostefai
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
- Mila-Quebec AI Institute, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Raphaël Poujol
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada
| | - Bastien Paré
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Shawn M Simpson
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Éric Bonneil
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
| | | | - Sunil Kumar Saini
- Department of Health Technology, Section of Experimental and Translational Immunology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Mohammad Shahbazy
- Department of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Saketh Kapoor
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Vigneshwar Rajesh
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Maya Weitzen
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Bayrem Gharsallaoui
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Loïze Maréchal
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Zhaoguan Wu
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Christopher Savoie
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Pierre Thibault
- Institute of Research in Immunology and Cancer, Montreal, QC, Canada
- Department of Chemistry, Université de Montréal, Montreal, QC, Canada
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Hélène Decaluwe
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada
- Microbiology, Infectiology and Immunology Department, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, Université de Montréal, Montreal, QC, Canada
| | - Julie G Hussin
- Montreal Heart Institute, Université de Montréal, Montreal, QC, Canada.
- Mila-Quebec AI Institute, Montreal, QC, Canada.
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada.
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC, Canada.
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
- Yale Center for Immuno-Oncology, Yale Center for Systems and Engineering Immunology, Yale Center for Infection and Immunity, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Wu M, Yan J, Qin S, Fu L, Sun S, Li W, Lv J, Chen L. Connections Between Endoplasmic Reticulum Stress and Prognosis of Hepatocarcinoma. Bioengineering (Basel) 2024; 11:1136. [PMID: 39593796 PMCID: PMC11591847 DOI: 10.3390/bioengineering11111136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 11/09/2024] [Indexed: 11/28/2024] Open
Abstract
Endoplasmic reticulum (ER) stress is a state in which misfolded or unfolded proteins accumulate in the lumen of the ER as a result of some exogenous or endogenous factors. It plays a crucial role in the pathogenesis of malignancies, affecting cell survival, proliferation, and metastasis in cancer. ER stress genes could provide new ideas for potential therapeutic targets in cancer. In our study, we aimed to construct an ER stress-related genes (ERGs) model for hepatocellular carcinoma (HCC). ERGs with differential expression and significant survival were screened to construct a prognostic model. The effectiveness of the model was successfully validated by external datasets. High and low-risk groups were classified based on risk scores. Functional analysis showed risk groups involved in the unfolded protein response, DNA repair, and other differential pathways. When compared to patients with low risk, the prognosis for HCC patients in the high-risk group might be worsened by disruptions in these pathways. Importantly, we considered genomic druggability and predicted drugs. Sorafenib-induced autophagy in HCC cells through an ES stress mechanism. Sorafenib was more sensitive for high-risk patients. In brief, our model predicted the prognosis of HCC and provided novel treatment strategies for the study of other cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Junjie Lv
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (M.W.); (J.Y.); (S.Q.); (L.F.); (S.S.); (W.L.)
| | - Lina Chen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China; (M.W.); (J.Y.); (S.Q.); (L.F.); (S.S.); (W.L.)
| |
Collapse
|
14
|
Sinclair SH, Schwartz S. Diabetic retinopathy: New concepts of screening, monitoring, and interventions. Surv Ophthalmol 2024; 69:882-892. [PMID: 38964559 DOI: 10.1016/j.survophthal.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
The science of diabetes care has progressed to provide a better understanding of the oxidative and inflammatory lesions and pathophysiology of the neurovascular unit within the retina (and brain) that occur early in diabetes, even prediabetes. Screening for retinal structural abnormalities, has traditionally been performed by fundus examination or color fundus photography; however, these imaging techniques detect the disease only when there are sufficient lesions, predominantly hemorrhagic, that are recognized to occur late in the disease process after significant neuronal apoptosis and atrophy, as well as microvascular occlusion with alterations in vision. Thus, interventions have been primarily oriented toward the later-detected stages, and clinical trials, while demonstrating a slowing of the disease progression, demonstrate minimal visual improvement and modest reduction in the continued loss over prolonged periods. Similarly, vision measurement utilizing charts detects only problems of visual function late, as the process begins most often parafoveally with increasing number and progressive expansion, including into the fovea. While visual acuity has long been used to define endpoints of visual function for such trials, current methods reviewed herein are found to be imprecise. We review improved methods of testing visual function and newer imaging techniques with the recommendation that these must be utilized to discover and evaluate the injury earlier in the disease process, even in the prediabetic state. This would allow earlier therapy with ocular as well as systemic pharmacologic treatments that lower the and neuro-inflammatory processes within eye and brain. This also may include newer, micropulsed laser therapy that, if applied during the earlier cascade, should result in improved and often normalized retinal function without the adverse treatment effects of standard photocoagulation therapy.
Collapse
Affiliation(s)
| | - Stan Schwartz
- University of Pennsylvania Affiliate, Main Line Health System, USA
| |
Collapse
|
15
|
Xu S, Gierisch ME, Barchi E, Poser I, Alberti S, Salomons FA, Dantuma NP. Chemical inhibition of the integrated stress response impairs the ubiquitin-proteasome system. Commun Biol 2024; 7:1282. [PMID: 39379572 PMCID: PMC11461528 DOI: 10.1038/s42003-024-06974-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
Inhibitors of the integrated stress response (ISR) have been used to explore the potential beneficial effects of reducing the activation of this pathway in diseases. As the ISR is in essence a protective response, there is, however, a risk that inhibition may compromise the cell's ability to restore protein homeostasis. Here, we show that the experimental compound ISRIB impairs degradation of proteins by the ubiquitin-proteasome system (UPS) during proteotoxic stress in the cytosolic, but not nuclear, compartment. Accumulation of a UPS reporter substrate that is intercepted by ribosome quality control was comparable to the level observed after blocking the UPS with a proteasome inhibitor. Consistent with impairment of the cytosolic UPS, ISRIB treatment caused an accumulation of polyubiquitylated and detergent insoluble defective ribosome products (DRiPs) in the presence of puromycin. Our data suggest that the persistent protein translation during proteotoxic stress in the absence of a functional ISR increases the pool of DRiPs, thereby hindering the efficient clearance of cytosolic substrates by the UPS.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Maria E Gierisch
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Enrica Barchi
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Open Sesame Therapeutics GmbH, Pfotenhauerstr. 108, 01307, Dresden, Germany
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Florian A Salomons
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden
| | - Nico P Dantuma
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Solnavägen 9, S-17165, Stockholm, Sweden.
| |
Collapse
|
16
|
Splichal RC, Chen K, Walton SP, Chan C. The Role of Endoplasmic Reticulum Stress on Reducing Recombinant Protein Production in Mammalian Cells. Biochem Eng J 2024; 210:109434. [PMID: 39220803 PMCID: PMC11360842 DOI: 10.1016/j.bej.2024.109434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Therapeutic recombinant protein production relies on industrial scale culture of mammalian cells to produce active proteins in quantities sufficient for clinical use. The combination of stresses from industrial cell culture environment and recombinant protein production can overwhelm the protein synthesis machinery in the endoplasmic reticulum (ER). This leads to a buildup of improperly folded proteins which induces ER stress. Cells respond to ER stress by activating the Unfolded Protein Response (UPR). To restore proteostasis, ER sensor proteins reduce global protein synthesis and increase chaperone protein synthesis, and if that is insufficient the proteins are degraded. If proteostasis is still not restored, apoptosis is initiated. Increasing evidence suggests crosstalk between ER proteostasis and DNA damage repair (DDR) pathways. External factors (e.g., metabolites) from the cellular environment as well as internal factors (e.g., transgene copy number) can impact genome stability. Failure to maintain genome integrity reduces cell viability and in turn protein production. This review focuses on the association between ER stress and processes that affect protein production and secretion. The processes mediated by ER stress, including inhibition of global protein translation, chaperone protein production, degradation of misfolded proteins, DNA repair, and protein secretion, impact recombinant protein production. Recombinant protein production can be reduced by ER stress through increased autophagy and protein degradation, reduced protein secretion, and reduced DDR response.
Collapse
Affiliation(s)
- R. Chauncey Splichal
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Kevin Chen
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - S. Patrick Walton
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
| | - Christina Chan
- Department of Chemical Engineering and Materials Science, Michigan State University, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, MI, USA
- Department of Computer Science and Engineering, Michigan State University, MI, USA
- Institute for Quantitative Health Science and Engineering, Division of Medical Devices, Michigan State University, MI, USA
| |
Collapse
|
17
|
Nor Rashid N, Amrani L, Alwan A, Mohamed Z, Yusof R, Rothan H. Angiotensin-Converting Enzyme-2 (ACE2) Downregulation During Coronavirus Infection. Mol Biotechnol 2024:10.1007/s12033-024-01277-5. [PMID: 39266903 DOI: 10.1007/s12033-024-01277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
Angiotensin-converting enzyme-2 (ACE2) downregulation represents a detrimental factor in people with a baseline ACE2 deficiency associated with older age, hypertension, diabetes, and cardiovascular diseases. Human coronaviruses, including HCoV-NL63, SARS-CoV-1, and SARS CoV-2 infect target cells via binding of viral spike (S) glycoprotein to the ACE2, resulting in ACE2 downregulation through yet unidentified mechanisms. This downregulation disrupts the enzymatic activity of ACE2, essential in protecting against organ injury by cleaving and disposing of Angiotensin-II (Ang II), leading to the formation of Ang 1-7, thereby exacerbating the accumulation of Ang II. This accumulation activates the Angiotensin II type 1 receptor (AT1R) receptor, leading to leukocyte recruitment and increased proinflammatory cytokines, contributing to organ injury. The biological impacts and underlying mechanisms of ACE2 downregulation during SARS-CoV-2 infection have not been well defined. Therefore, there is an urgent need to establish a solid theoretical and experimental understanding of the mechanisms of ACE2 downregulation during SARS-CoV-2 entry and replication in the host cells. This review aims to discuss the physiological impact of ACE2 downregulation during coronavirus infection, the relationship between ACE2 decline and virus pathogenicity, and the possible mechanisms of ACE2 degradation, along with the therapeutic approaches.
Collapse
Affiliation(s)
- Nurshamimi Nor Rashid
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lina Amrani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | | | - Zulqarnain Mohamed
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| | - Hussin Rothan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Pfizer, Pearl River, NY, USA.
| |
Collapse
|
18
|
Xiang Z, Hou G, Zheng S, Lu M, Li T, Lin Q, Liu H, Wang X, Guan T, Wei Y, Zhang W, Zhang Y, Liu C, Li L, Lei QY, Hu Y. ER-associated degradation ligase HRD1 links ER stress to DNA damage repair by modulating the activity of DNA-PKcs. Proc Natl Acad Sci U S A 2024; 121:e2403038121. [PMID: 39226359 PMCID: PMC11406283 DOI: 10.1073/pnas.2403038121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/02/2024] [Indexed: 09/05/2024] Open
Abstract
Proteostasis and genomic integrity are respectively regulated by the endoplasmic reticulum-associated protein degradation (ERAD) and DNA damage repair signaling pathways, with both pathways essential for carcinogenesis and drug resistance. How these signaling pathways coordinate with each other remains unexplored. We found that ER stress specifically induces the DNA-PKcs-regulated nonhomologous end joining (NHEJ) pathway to amend DNA damage and impede cell death. Intriguingly, sustained ER stress rapidly decreased the activity of DNA-PKcs and DNA damage accumulated, facilitating a switch from adaptation to cell death. This DNA-PKcs inactivation was caused by increased KU70/KU80 protein degradation. Unexpectedly, the ERAD ligase HRD1 was found to efficiently destabilize the classic nuclear protein HDAC1 in the cytoplasm, by catalyzing HDAC1's polyubiquitination at lysine 74, at a late stage of ER stress. By abolishing HDAC1-mediated KU70/KU80 deacetylation, HRD1 transmits ER signals to the nucleus. The resulting enhanced KU70/KU80 acetylation provides binding sites for the nuclear E3 ligase TRIM25, resulting in the promotion of polyubiquitination and the degradation of KU70/KU80 proteins. Both in vitro and in vivo cancer models showed that genetic or pharmacological inhibition of HADC1 or DNA-PKcs sensitizes colon cancer cells to ER stress inducers, including the Food and Drug Administration-approved drug celecoxib. The antitumor effects of the combined approach were also observed in patient-derived xenograft models. These findings identify a mechanistic link between ER stress (ERAD) in the cytoplasm and DNA damage (NHEJ) pathways in the nucleus, indicating that combined anticancer strategies may be developed that induce severe ER stress while simultaneously inhibiting KU70/KU80/DNA-PKcs-mediated NHEJ signaling.
Collapse
Affiliation(s)
- Zhiyuan Xiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Guixue Hou
- Beijing Genomics Institute-Shenzhen, Shenzhen518083, China
| | - Shanliang Zheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Minqiao Lu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Tianyu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Qingyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Hao Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Xingwen Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Tianqi Guan
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Yuhan Wei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
| | - Wenxin Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Yi Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Chaoran Liu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| | - Li Li
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin150040, China
| | - Qun-ying Lei
- Fudan University Shanghai Cancer Center and Cancer Metabolism Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Ying Hu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin150001, China
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Harbin Institute of Technology Zhengzhou Research Institute, Zhengzhou450000, China
| |
Collapse
|
19
|
Guo E, Zhao L, Li Z, Chen L, Li J, Lu F, Wang F, Lu K, Liu Y. Biodegradation of bisphenol A by a Pichia pastoris whole-cell biocatalyst with overexpression of laccase from Bacillus pumilus and investigation of its potential degradation pathways. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134779. [PMID: 38850935 DOI: 10.1016/j.jhazmat.2024.134779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/10/2024]
Abstract
Bisphenol A (BPA), an endocrine disrupter with estrogen activity, can infiltrate animal and human bodies through the food chain. Enzymatic degradation of BPA holds promise as an environmentally friendly approach while it is limited due to lower stability and recycling challenges. In this study, laccase from Bacillus pumilus TCCC 11568 was expressed in Pichia pastoris (fLAC). The optimal catalytic conditions for fLAC were at pH 6.0 and 80 °C, with a half-life T1/2 of 120 min at 70 °C. fLAC achieved a 46 % degradation rate of BPA, and possible degradation pathways were proposed based on identified products and reported intermediates of BPA degradation. To improve its stability and degradation capacity, a whole-cell biocatalyst (WCB) was developed by displaying LAC (dLAC) on the surface of P. pastoris GS115. The functionally displayed LAC demonstrated enhanced thermostability and pH stability along with an improved BPA degradation ability, achieving a 91 % degradation rate. Additionally, dLAC maintained a degradation rate of over 50 % after the fourth successive cycles. This work provides a powerful catalyst for degrading BPA, which might decontaminate endocrine disruptor-contaminated water through nine possible pathways.
Collapse
Affiliation(s)
- Enping Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Lei Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fenghua Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Kui Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
20
|
Qian B, Li TY, Zheng ZX, Zhang HY, Xu WQ, Mo SM, Cui JJ, Chen WJ, Lin YC, Lin ZN. The involvement of SigmaR1 K142 degradation mediated by ERAD in neural senescence linked with CdCl 2 exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134466. [PMID: 38718507 DOI: 10.1016/j.jhazmat.2024.134466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/16/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide. Due to its uncertain pathogenesis, there is currently no treatment available for AD. Increasing evidences have linked cellular senescence to AD, although the mechanism triggering cellular senescence in AD requires further exploration. To investigate the involvement of cellular senescence in AD, we explored the effects of cadmium chloride (CdCl2) exposure, one of the potential environmental risk factors for AD, on neuron senescence in vivo and in vitro. β-amyloid (Aβ) and tubulin-associated protein (tau) pathologies were found to be enhanced by CdCl2 exposure in the in vitro models, while p53/p21/Rb cascade-related neuronal senescence pathways were activated. Conversely, the use of melatonin, a cellular senescence inhibitor, or a cadmium ion chelator suppressed CdCl2-induced neuron senescence, along with the Aβ and tau pathologies. Mechanistically, CdCl2 exposure activated the suppressor enhancer Lin-12/Notch 1-like (SEL1L)/HMG-CoA reductase degradation 1 (HRD1)-regulated endoplasmic reticulum-associated degradation (ERAD), which enhanced the ubiquitin degradation of sigma-1 receptor (SigmaR1) by specifically recognizing its K142 site, resulting in the activation of the p53/p21/Rb pathway via the induction of Ca2+ dyshomeostasis and mitochondrial dysfunction. In the in vivo models, the administration of the SigmaR1 agonist ANAVEX2-73 rescues neurobehavioral inhibition and alleviates cellular senescence and AD-like pathology in the brain tissue of CdCl2-exposed mice. Consequently, the present study revealed a novel senescence-associated regulatory route for the SEL1L/HRD1/SigmaR1 axis that affects the pathological progression of CdCl2 exposure-associated AD. CdCl2 exposure activated SEL1L/HRD1-mediated ERAD and promoted the ubiquitinated degradation of SigmaR1, activating p53/p21/Rb pathway-regulated neuronal senescence. The results of the present study suggest that SigmaR1 may function as a neuroprotective biomarker of neuronal senescence, and pharmacological activation of SigmaR1 could be a promising intervention strategy for AD therapy.
Collapse
Affiliation(s)
- Bo Qian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ting-Yu Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhao-Xuan Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Han-Yu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wen-Qi Xu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Su-Min Mo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Jia Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei-Jie Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
21
|
Çiftçi YC, Yurtsever Y, Akgül B. Long non-coding RNA-mediated modulation of endoplasmic reticulum stress under pathological conditions. J Cell Mol Med 2024; 28:e18561. [PMID: 39072992 DOI: 10.1111/jcmm.18561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.
Collapse
Affiliation(s)
- Yusuf Cem Çiftçi
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Yiğit Yurtsever
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| | - Bünyamin Akgül
- Noncoding RNA Laboratory, Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkey
| |
Collapse
|
22
|
Ghannam A, Hahn V, Fan J, Tasevski S, Moughni S, Li G, Zhang Z. Sex-specific and cell-specific regulation of ER stress and neuroinflammation after traumatic brain injury in juvenile mice. Exp Neurol 2024; 377:114806. [PMID: 38701941 DOI: 10.1016/j.expneurol.2024.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/14/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Endoplasmic reticulum (ER) stress and neuroinflammation play an important role in secondary brain damage after traumatic brain injury (TBI). Due to the complex brain cytoarchitecture, multiple cell types are affected by TBI. However, cell type-specific and sex-specific responses to ER stress and neuroinflammation remain unclear. Here we investigated differential regulation of ER stress and neuroinflammatory pathways in neurons and microglia during the acute phase post-injury in a mouse model of impact acceleration TBI in both males and females. We found that TBI resulted in significant weight loss only in males, and sensorimotor impairment and depressive-like behaviors in both males and females at the acute phase post-injury. By concurrently isolating neurons and microglia from the same brain sample of the same animal, we were able to evaluate the simultaneous responses in neurons and microglia towards ER stress and neuroinflammation in both males and females. We discovered that the ER stress and anti-inflammatory responses were significantly stronger in microglia, especially in female microglia, compared with the male and female neurons. Whereas the degree of phosphorylated-tau (pTau) accumulation was significantly higher in neurons, compared with the microglia. In conclusion, TBI resulted in behavioral deficits and cell type-specific and sex-specific responses to ER stress and neuroinflammation, and abnormal protein accumulation at the acute phase after TBI in immature mice.
Collapse
Affiliation(s)
- Amanda Ghannam
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Victoria Hahn
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Jie Fan
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Stefanie Tasevski
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Sara Moughni
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Gengxin Li
- Statistics, Department of Mathematics and Statistics, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| | - Zhi Zhang
- Department of Natural Sciences, College of Arts, Sciences, and Letters, University of Michigan-Dearborn, 4901 Evergreen Rd, Dearborn, MI 48128, United States of America.
| |
Collapse
|
23
|
Gundu C, Arruri VK, Sherkhane B, Khatri DK, Singh SB. Indole-3-propionic acid attenuates high glucose induced ER stress response and augments mitochondrial function by modulating PERK-IRE1-ATF4-CHOP signalling in experimental diabetic neuropathy. Arch Physiol Biochem 2024; 130:243-256. [PMID: 35015592 DOI: 10.1080/13813455.2021.2024577] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES We aimed to evaluate the neuroprotective effect of Indole-3-propionic acid (IPA) against streptozotocin (STZ) induced diabetic peripheral neuropathy (DPN) in rats and in high glucose (HG) induced neurotoxicity in neuro2a (N2A) cells. METHODS Diabetes was induced in male SD rats STZ (55 mg/kg, i.p.) and IPA (10 and 20 mg/kg, p.o.) was administered for two weeks, starting from sixth week after diabetes induction. Neurobehavioral, functional assessments were made, and various molecular studies were performed to evaluate the effect of IPA on HG induced ER stress and mitochondrial dysfunction in sciatic nerves, DRGs and in N2A cells. RESULTS Diabetic rats and high glucose exposed N2A cells showed marked increase in oxidative damage accompanied by ER stress and mitochondrial dysfunction along with increased apoptotic markers. IPA treatment for two weeks markedly alleviated these changes and attenuated pain behaviour. CONCLUSION IPA exhibited neuroprotective activity against hyperglycaemic insults.
Collapse
Affiliation(s)
- Chayanika Gundu
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Vijay Kumar Arruri
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI, USA
| | - Bhoomika Sherkhane
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Balanagar, India
| |
Collapse
|
24
|
Banik P, Ray K, Kamps J, Chen QY, Luesch H, Winklhofer KF, Tatzelt J. VCP/p97 mediates nuclear targeting of non-ER-imported prion protein to maintain proteostasis. Life Sci Alliance 2024; 7:e202302456. [PMID: 38570188 PMCID: PMC10992997 DOI: 10.26508/lsa.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024] Open
Abstract
Mistargeting of secretory proteins in the cytosol can trigger their aggregation and subsequent proteostasis decline. We have identified a VCP/p97-dependent pathway that directs non-ER-imported prion protein (PrP) into the nucleus to prevent the formation of toxic aggregates in the cytosol. Upon impaired translocation into the ER, PrP interacts with VCP/p97, which facilitates nuclear import mediated by importin-ß. Notably, the cytosolic interaction of PrP with VCP/p97 and its nuclear import are independent of ubiquitination. In vitro experiments revealed that VCP/p97 binds non-ubiquitinated PrP and prevents its aggregation. Inhibiting binding of PrP to VCP/p97, or transient proteotoxic stress, promotes the formation of self-perpetuating and partially proteinase resistant PrP aggregates in the cytosol, which compromised cellular proteostasis and disrupted further nuclear targeting of PrP. In the nucleus, RNAs keep PrP in a soluble and non-toxic conformation. Our study revealed a novel ubiquitin-independent role of VCP/p97 in the nuclear targeting of non-imported secretory proteins and highlights the impact of the chemical milieu in triggering protein misfolding.
Collapse
Affiliation(s)
- Papiya Banik
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Koustav Ray
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Janine Kamps
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Qi-Yin Chen
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry and Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, USA
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| |
Collapse
|
25
|
Prencipe F, Barzan C, Savian C, Spalluto G, Carosati E, De Amici M, Mosconi G, Gianferrara T, Federico S, Da Ros T. Gaucher Disease: A Glance from a Medicinal Chemistry Perspective. ChemMedChem 2024; 19:e202300641. [PMID: 38329692 DOI: 10.1002/cmdc.202300641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Rare diseases are particular pathological conditions affecting a limited number of people and few drugs are known to be effective as therapeutic treatment. Gaucher disease, caused by a deficiency of the lysosomal enzyme glucocerebrosidase, belongs to this class of disorders, and it is considered the most common among the Lysosomal Storage Diseases. The two main therapeutic approaches are the Enzyme Replacement Therapy (ERT) and the Substrate Reduction Therapy (SRT). ERT, consisting in replacing the defective enzyme by administering a recombinant enzyme, is effective in alleviating the visceral symptoms, hallmarks of the most common subtype of the disease whereas it has no effects when symptoms involve CNS, since the recombinant protein is unable to significantly cross the Blood Brain Barrier. The SRT strategy involves inhibiting glucosylceramide synthase (GCS), the enzyme responsible for the production of the associated storage molecule. The rational design of new inhibitors of GCS has been hampered by the lack of either the crystal structure of the enzyme or an in-silico model of the active site which could provide important information regarding the interactions of potential inhibitors with the target, but, despite this, interesting results have been obtained and are herein reviewed.
Collapse
Affiliation(s)
- Filippo Prencipe
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Chiara Barzan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Molecular Genetics Institute, CNR Via Abbiategrasso 207, 27100, Pavia, Italy
| | - Chiara Savian
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giampiero Spalluto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Emanuele Carosati
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, University of Milano Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Giorgio Mosconi
- Fidia Farmaceutici Via Ponte della Fabbrica 3/A, 35021, Abano Terme, Italy
| | - Teresa Gianferrara
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Stephanie Federico
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Tatiana Da Ros
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
26
|
Esposito S, Zollo I, Villella VR, Scialò F, Giordano S, Esposito MV, Salemme N, Di Domenico C, Cernera G, Zarrilli F, Castaldo G, Amato F. Identification of an ultra-rare Alu insertion in the CFTR gene: Pitfalls and challenges in genetic test interpretation. Clin Chim Acta 2024; 558:118317. [PMID: 38580140 DOI: 10.1016/j.cca.2024.118317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Cystic fibrosis (CF) is a life-limiting genetic disorder characterized by defective chloride ion transport due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Early detection through newborn screening programs significantly improves outcomes for individuals with CF by enabling timely intervention. Here, we report the identification of an Alu element insertion within the exon 15 of CFTR gene, initially overlooked in standard next-generation sequencing analyses. However, using traditional molecular techniques, based on polymerase chain reaction and Sanger sequencing, allowed the identification of the Alu element and the reporting of a correct diagnosis. Our analysis, based on bioinformatics tools and molecular techniques, revealed that the Alu element insertion severely affects the gene expression, splicing patterns, and structure of CFTR protein. In conclusion, this study emphasizes the importance of how the integration of human expertise and modern technologies represents a pivotal step forward in genomic medicine, ensuring the delivery of precision healthcare to individuals affected by genetic diseases.
Collapse
Affiliation(s)
- Speranza Esposito
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Immacolata Zollo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Valeria Rachela Villella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Filippo Scialò
- CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy; Department of Translational Medical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sonia Giordano
- AORN Ospedali dei Colli-Monaldi-Cotugno-CTO, Naples, Italy
| | | | - Nunzia Salemme
- San Giuseppe and Melorio Hospital, Santa Maria Capua Vetere, Caserta, Italy
| | | | - Gustavo Cernera
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Federica Zarrilli
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy
| | - Felice Amato
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy; CEINGE- Advanced Biotechnologies Franco Salvatore, Naples, Italy.
| |
Collapse
|
27
|
Vivacqua G, Mancinelli R, Leone S, Vaccaro R, Garro L, Carotti S, Ceci L, Onori P, Pannarale L, Franchitto A, Gaudio E, Casini A. Endoplasmic reticulum stress: A possible connection between intestinal inflammation and neurodegenerative disorders. Neurogastroenterol Motil 2024; 36:e14780. [PMID: 38462652 DOI: 10.1111/nmo.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/27/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Different studies have shown the key role of endoplasmic reticulum (ER) stress in autoimmune and chronic inflammatory disorders, as well as in neurodegenerative diseases. ER stress leads to the formation of misfolded proteins which affect the secretion of different cell types that are crucial for the intestinal homeostasis. PURPOSE In this review, we discuss the role of ER stress and its involvement in the development of inflammatory bowel diseases, chronic conditions that can cause severe damage of the gastrointestinal tract, focusing on the alteration of Paneth cells and goblet cells (the principal secretory phenotypes of the intestinal epithelial cells). ER stress is also discussed in the context of neurodegenerative diseases, in which protein misfolding represents the signature mechanism. ER stress in the bowel and consequent accumulation of misfolded proteins might represent a bridge between bowel inflammation and neurodegeneration along the gut-to-brain axis, affecting intestinal epithelial homeostasis and the equilibrium of the commensal microbiota. Targeting intestinal ER stress could foster future studies for designing new biomarkers and new therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giorgio Vivacqua
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stefano Leone
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Rosa Vaccaro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Ludovica Garro
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Simone Carotti
- Integrated Research Center (PRAAB), Campus Biomedico University of Roma, Rome, Italy
| | - Ludovica Ceci
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Luigi Pannarale
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Arianna Casini
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Poli MC. Proteasome disorders and inborn errors of immunity. Immunol Rev 2024; 322:283-299. [PMID: 38071420 DOI: 10.1111/imr.13299] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Inborn errors of immunity (IEI) or primary immune deficiencies (PIDD) are caused by variants in genes encoding for molecules that are relevant to the innate or adaptive immune response. To date, defects in more than 450 different genes have been identified as causes of IEI, causing a constellation of heterogeneous clinical manifestations ranging from increased susceptibility to infection, to autoimmunity or autoinflammation. IEI that are mainly characterized by autoinflammation are broadly classified according to the inflammatory pathway that they predominantly perturb. Among autoinflammatory IEI are those characterized by the transcriptional upregulation of type I interferon genes and are referred to as interferonopathies. Within the spectrum of interferonopathies, genetic defects that affect the proteasome have been described to cause autoinflammatory disease and represent a growing area of investigation. This review is focused on describing the clinical, genetic, and molecular aspects of IEI associated with mutations that affect the proteasome and how the study of these diseases has contributed to delineate therapeutic interventions.
Collapse
Affiliation(s)
- M Cecilia Poli
- Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
- Unit of Immunology and Rheumatology Hospital Roberto del Río, Santiago, Chile
| |
Collapse
|
29
|
Ruf M, Cunningham S, Wandersee A, Brox R, Achenbach S, Strobel J, Hackstein H, Schneider S. SERPINC1 c.1247dupC: a novel SERPINC1 gene mutation associated with familial thrombosis results in a secretion defect and quantitative antithrombin deficiency. Thromb J 2024; 22:19. [PMID: 38347553 PMCID: PMC10860291 DOI: 10.1186/s12959-024-00589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Antithrombin (AT) is an important anticoagulant in hemostasis. We describe here the characterization of a novel AT mutation associated with clinically relevant thrombosis. A pair of sisters with confirmed type I AT protein deficiency was genetically analyzed on suspicion of an inherited SERPINC1 mutation. A frameshift mutation, c.1247dupC, was identified and the effect of this mutation was examined on the cellular and molecular level. METHODS Plasmids for the expression of wild-type (WT) and mutated SERPINC1 coding sequence (CDS) fused to green fluorescent protein (GFP) or hemagglutinin (HA) tag were transfected into HEK293T cells. Subcellular localization and secretion of the respective fusion proteins were analyzed by confocal laser scanning microscopy and Western blot. RESULTS The c.1247dupC mutation results in a frameshift in the CDS of the SERPINC1 gene and a subsequently altered amino acid sequence (p.Ser417LysfsTer48). This alteration affects the C-terminus of the AT antigen and results in impaired secretion as confirmed by GFP- and HA-tagged mutant AT analyzed in HEK293T cells. CONCLUSION The p.Ser417LysfsTer48 mutation leads to impaired secretion, thus resulting in a quantitative AT deficiency. This is in line with the type I AT deficiency observed in the patients.
Collapse
Affiliation(s)
- Maximilian Ruf
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Sarah Cunningham
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Alexandra Wandersee
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Regine Brox
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Susanne Achenbach
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Holger Hackstein
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Sabine Schneider
- Department of Transfusion Medicine and Hemostaseology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), University Hospital Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany.
| |
Collapse
|
30
|
Mahdizadeh S, Stier M, Carlesso A, Lamy A, Thomas M, Eriksson LA. Multiscale In Silico Study of the Mechanism of Activation of the RtcB Ligase by the PTP1B Phosphatase. J Chem Inf Model 2024; 64:905-917. [PMID: 38282538 PMCID: PMC10865347 DOI: 10.1021/acs.jcim.3c01600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/30/2024]
Abstract
Inositol-requiring enzyme 1 (IRE1) is a transmembrane sensor that is part of a trio of sensors responsible for controlling the unfolded protein response within the endoplasmic reticulum (ER). Upon the accumulation of unfolded or misfolded proteins in the ER, IRE1 becomes activated and initiates the cleavage of a 26-nucleotide intron from human X-box-containing protein 1 (XBP1). The cleavage is mediated by the RtcB ligase enzyme, which splices together two exons, resulting in the formation of the spliced isoform XBP1s. The XBP1s isoform activates the transcription of genes involved in ER-associated degradation to maintain cellular homeostasis. The catalytic activity of RtcB is controlled by the phosphorylation and dephosphorylation of three tyrosine residues (Y306, Y316, and Y475), which are regulated by the ABL1 tyrosine kinase and PTP1B phosphatase, respectively. This study focuses on investigating the mechanism by which the PTP1B phosphatase activates the RtcB ligase using a range of advanced in silico methods. Protein-protein docking identified key interacting residues between RtcB and PTP1B. Notably, the phosphorylated Tyr306 formed hydrogen bonds and salt bridge interactions with the "gatekeeper" residues Arg47 and Lys120 of the inactive PTP1B. Classical molecular dynamics simulation emphasized the crucial role of Asp181 in the activation of PTP1B, driving the conformational change from an open to a closed state of the WPD-loop. Furthermore, QM/MM-MD simulations provided insights into the free energy landscape of the dephosphorylation reaction mechanism of RtcB, which is mediated by the PTP1B phosphatase.
Collapse
Affiliation(s)
- Sayyed
Jalil Mahdizadeh
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| | - Michael Stier
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| | - Antonio Carlesso
- Department
of Pharmacology, Sahlgrenska Academy, University
of Gothenburg, 413 90 Gothenburg, Sweden
- Università
della Svizzera italiana (USI), Faculty of Biomedical Sciences, Euler
Institute, Via G. Buffi
13, CH-6900 Lugano, Switzerland
| | - Aurore Lamy
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
- Department
of Bioinformatics and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology, Quartier Salignan, 84400 Apt, France
| | - Melissa Thomas
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| | - Leif A. Eriksson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
31
|
Jin H, Arase H. Neoself Antigens Presented on MHC Class II Molecules in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1444:51-65. [PMID: 38467972 DOI: 10.1007/978-981-99-9781-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Major histocompatibility complex (MHC) class II molecules play a crucial role in immunity by presenting peptide antigens to helper T cells. Immune cells are generally tolerant to self-antigens. However, when self-tolerance is broken, immune cells attack normal tissues or cells, leading to the development of autoimmune diseases. Genome-wide association studies have shown that MHC class II is the gene most strongly associated with the risk of most autoimmune diseases. When misfolded self-antigens, called neoself antigens, are associated with MHC class II molecules in the endoplasmic reticulum, they are transported by the MHC class II molecules to the cell surface without being processed into peptides. Moreover, neoself antigens that are complexed with MHC class II molecules of autoimmune disease risk alleles exhibit distinct antigenicities compared to normal self-antigens, making them the primary targets of autoantibodies in various autoimmune diseases. Elucidation of the immunological functions of neoself antigens presented on MHC class II molecules is crucial for understanding the mechanism of autoimmune diseases.
Collapse
Affiliation(s)
- Hui Jin
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hisashi Arase
- Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan.
| |
Collapse
|
32
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao JW, Wang Z, Yang B, Guo X. Lipid-anchored proteasomes control membrane protein homeostasis. SCIENCE ADVANCES 2023; 9:eadj4605. [PMID: 38019907 PMCID: PMC10686573 DOI: 10.1126/sciadv.adj4605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here, we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system, and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation and membrane protein trafficking. Rpt2G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by myristoyl-anchored proteasomes in health and disease.
Collapse
Affiliation(s)
- Ruizhu Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Shuxian Pan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Suya Zheng
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Qingqing Liao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhaodi Jiang
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Dixian Wang
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Xuemei Li
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Xinran Li
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China
| | - Yezhang Zhu
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqi Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jing Lei
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Siming Zhong
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining 314400, China
- Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9YL, UK
| | - Xiaomei Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyun Huang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California-Irvine, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California-Irvine, Irvine, CA 92697, USA
| | - Li Shen
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Taikang Medical School, Wuhan University, Wuhan 430072, China
| | - Jing-Wei Zhao
- Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cryo-Electron Microscopy Center, Zhejiang University, Hangzhou 310058, China
| | - Zhiping Wang
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Brain Science and Brain Medicine, Hangzhou 310058, China
| | - Bing Yang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing Guo
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
33
|
Lee EJ, Diaz-Aguilar MS, Min H, Choi J, Valdez Duran DA, Grandjean JM, Wiseman RL, Kroeger H, Lin JH. Mitochondria and Endoplasmic Reticulum Stress in Retinal Organoids from Patients with Vision Loss. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1721-1739. [PMID: 36535406 PMCID: PMC10616714 DOI: 10.1016/j.ajpath.2022.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Activating transcription factor 6 (ATF6), a key regulator of the unfolded protein response, plays a key role in endoplasmic reticulum function and protein homeostasis. Variants of ATF6 that abrogate transcriptional activity cause morphologic and molecular defects in cones, clinically manifesting as the human vision loss disease achromatopsia (ACHM). ATF6 is expressed in all retinal cells. However, the effect of disease-associated ATF6 variants on other retinal cell types remains unclear. Herein, this was investigated by analyzing bulk RNA-sequencing transcriptomes from retinal organoids generated from patients with ACHM, carrying homozygous loss-of-function ATF6 variants. Marked dysregulation in mitochondrial respiratory complex gene expression and disrupted mitochondrial morphology in ACHM retinal organoids were identified. This indicated that loss of ATF6 leads to previously unappreciated mitochondrial defects in the retina. Next, gene expression from control and ACHM retinal organoids were compared with transcriptome profiles of seven major retinal cell types generated from recent single-cell transcriptomic maps of nondiseased human retina. This indicated pronounced down-regulation of cone genes and up-regulation in Müller glia genes, with no significant effects on other retinal cells. Overall, the current analysis of ACHM patient retinal organoids identified new cellular and molecular phenotypes in addition to cone dysfunction: activation of Müller cells, increased endoplasmic reticulum stress, disrupted mitochondrial structure, and elevated respiratory chain activity gene expression.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Department of Ophthalmology, Stanford University, Stanford, California; Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California
| | - Monica S Diaz-Aguilar
- Department of Ophthalmology, Stanford University, Stanford, California; Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California; Department of Medicine, Rush University Medical College, Chicago, Illinois
| | - Hyejung Min
- Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California
| | - Jihee Choi
- Department of Pathology, Stanford University, Stanford, California
| | | | - Julia M Grandjean
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - R Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California
| | - Heike Kroeger
- Department of Cellular Biology, University of Georgia, Athens, Georgia
| | - Jonathan H Lin
- Department of Ophthalmology, Stanford University, Stanford, California; Department of Pathology, VA Palo Alto Healthcare System, Palo Alto, California; Department of Pathology, Stanford University, Stanford, California.
| |
Collapse
|
34
|
(Flintoaca) Alexandru PR, Chiritoiu GN, Lixandru D, Zurac S, Ionescu-Targoviste C, Petrescu SM. EDEM1 regulates the insulin mRNA level by inhibiting the endoplasmic reticulum stress-induced IRE1/JNK/c-Jun pathway. iScience 2023; 26:107956. [PMID: 37822496 PMCID: PMC10562789 DOI: 10.1016/j.isci.2023.107956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Pancreatic beta cells produce and secrete insulin as a response to rises in blood glucose. Despite the advances in understanding glucose-regulated insulin transcription and translation the mechanisms triggering the synthesis of new insulin molecules are still incompletely described. In this report, we identify EDEM1 as a new modulator of insulin synthesis and secretion. In the presence of EDEM1, INS-1E cells secrete significantly more insulin upon glucose stimulation compared to control cells. We found that overexpression of EDEM1 inhibited the IRE1/JNK/c-Jun pathway, leading to an increase in the insulin mRNA level. Similarly, EDEM1 transduced human islets secreted significantly more insulin upon stimulation. Furthermore, EDEM1 improved insulin secretion restoring normoglycemia and glucose tolerance in diabetic rats. We propose EDEM1 as a regulator of the UPR via IRE1/XBP1s and IRE1/JNK/c-Jun signaling cascades and insulin transcription in pancreatic β-cells, supporting EDEM1 as a potential target for the treatment of diabetes.
Collapse
Affiliation(s)
| | - Gabriela N. Chiritoiu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 060031 Bucharest, Romania
| | - Daniela Lixandru
- Department of Biochemistry, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Sabina Zurac
- Department of Physiology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | | | - Stefana M. Petrescu
- Department of Molecular Cell Biology, Institute of Biochemistry, Romanian Academy, 060031 Bucharest, Romania
| |
Collapse
|
35
|
Kim Y, Li H, Choi J, Boo J, Jo H, Hyun JY, Shin I. Glycosidase-targeting small molecules for biological and therapeutic applications. Chem Soc Rev 2023; 52:7036-7070. [PMID: 37671645 DOI: 10.1039/d3cs00032j] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Glycosidases are ubiquitous enzymes that catalyze the hydrolysis of glycosidic linkages in oligosaccharides and glycoconjugates. These enzymes play a vital role in a wide variety of biological events, such as digestion of nutritional carbohydrates, lysosomal catabolism of glycoconjugates, and posttranslational modifications of glycoproteins. Abnormal glycosidase activities are associated with a variety of diseases, particularly cancer and lysosomal storage disorders. Owing to the physiological and pathological significance of glycosidases, the development of small molecules that target these enzymes is an active area in glycoscience and medicinal chemistry. Research efforts carried out thus far have led to the discovery of numerous glycosidase-targeting small molecules that have been utilized to elucidate biological processes as well as to develop effective chemotherapeutic agents. In this review, we describe the results of research studies reported since 2018, giving particular emphasis to the use of fluorescent probes for detection and imaging of glycosidases, activity-based probes for covalent labelling of these enzymes, glycosidase inhibitors, and glycosidase-activatable prodrugs.
Collapse
Affiliation(s)
- Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Joohee Choi
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Jihyeon Boo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| | - Hyemi Jo
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea.
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea.
| |
Collapse
|
36
|
Gao Y, Li W, Wang Z, Zhang C, He Y, Liu X, Tang K, Zhang W, Long Q, Liu Y, Zhang J, Zhang B, Zhang L. SEL1L preserves CD8 + T-cell survival and homeostasis by fine-tuning PERK signaling and the IL-15 receptor-mediated mTORC1 axis. Cell Mol Immunol 2023; 20:1232-1250. [PMID: 37644166 PMCID: PMC10541435 DOI: 10.1038/s41423-023-01078-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/03/2023] [Indexed: 08/31/2023] Open
Abstract
SEL1L-mediated endoplasmic reticulum-associated degradation (ERAD) plays critical roles in controlling protein homeostasis by degrading misfolded or terminal unfolded proteins. However, it remains unclear how SEL1L regulates peripheral T-cell survival and homeostasis. Herein, we found that SEL1L deficiency led to a greatly reduced frequency and number of mature T cells, which was further validated by adoptive transfer experiments or bone marrow chimera experiments, accompanied by the induction of multiple forms of cell death. Furthermore, SEL1L deficiency selectively disrupted naïve CD8+ T-cell homeostasis, as indicated by the severe loss of the naïve T-cell subset but an increase in the memory T-cell subset. We also found that SEL1L deficiency fueled mTORC1/c-MYC activation and induced a metabolic shift, which was largely attributable to enhanced expression of the IL-15 receptor α and β chains. Mechanistically, single-cell transcriptomic profiling and biochemical analyses further revealed that Sel1l-/- CD8+ T cells harbored excessive ER stress, particularly aberrant activation of the PERK-ATF4-CHOP-Bim pathway, which was alleviated by supplementing IL-7 or IL-15. Importantly, PERK inhibition greatly resolved the survival defects of Sel1l-/- CD8+ T cells. In addition, IRE1α deficiency decreased mTORC1 signaling in Sel1l-/- naïve CD8+ T cells by downregulating the IL-15 receptor α chain. Altogether, these observations suggest that the ERAD adaptor molecule SEL1L acts as an important checkpoint for preserving the survival and homeostasis of peripheral T cells by regulating the PERK signaling cascade and IL-15 receptor-mediated mTORC1 axis.
Collapse
Affiliation(s)
- Yafeng Gao
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Wenhui Li
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Zhenghao Wang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China
| | - Yaping He
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowei Liu
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Kexin Tang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weiguo Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China
| | - Qiaoming Long
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cam-Su Mouse Genomic Resources Center, Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, The Institute for Advanced Studies, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jinping Zhang
- Institute of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Xi'an Key Laboratory of Immune Related Diseases, Xi'an, Shaanxi, China.
| | - Lianjun Zhang
- National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
- Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
37
|
Zhong M, Wu Z, Chen Z, Ren Q, Zhou J. Advances in the interaction between endoplasmic reticulum stress and osteoporosis. Biomed Pharmacother 2023; 165:115134. [PMID: 37437374 DOI: 10.1016/j.biopha.2023.115134] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
The endoplasmic reticulum (ER) is the main site for protein synthesis, folding, and secretion, and accumulation of the unfolded/misfolded proteins in the ER may induce ER stress. ER stress is an important participant in various intracellular signaling pathways. Prolonged- or high-intensity ER stress may induce cell apoptosis. Osteoporosis, characterized by imbalanced bone remodeling, is a global disease caused by many factors, such as ER stress. ER stress stimulates osteoblast apoptosis, increases bone loss, and promotes osteoporosis development. Many factors, such as the drug's adverse effects, metabolic disorders, calcium ion imbalance, bad habits, and aging, have been reported to activate ER stress, resulting in the pathological development of osteoporosis. Increasing evidence shows that ER stress regulates osteogenic differentiation, osteoblast activity, and osteoclast formation and function. Various therapeutic agents have been developed to counteract ER stress and thereby suppress osteoporosis development. Thus, inhibition of ER stress has become a potential target for the therapeutic management of osteoporosis. However, the in-depth understanding of ER stress in the pathogenesis of osteoporosis still needs more effort.
Collapse
Affiliation(s)
- Mingliang Zhong
- College of Rehabilitation, Gannan Medical University, Ganzhou 341000, China
| | - Zhenyu Wu
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Zhixi Chen
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Qun Ren
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Jianguo Zhou
- Department of Joint Surgery, Ganzhou People's Hospital, Ganzhou 341000, China.
| |
Collapse
|
38
|
Faulkner MB, Rizk M, Bazzi Z, Dysko RC, Zhang Z. Sex-Specific Effects of Buprenorphine on Endoplasmic Reticulum Stress, Abnormal Protein Accumulation, and Cell Loss After Pediatric Mild Traumatic Brain Injury in Mice. Neurotrauma Rep 2023; 4:573-585. [PMID: 37752926 PMCID: PMC10518695 DOI: 10.1089/neur.2023.0051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
Traumatic brain injury (TBI) in children often leads to poor developmental outcomes attributable to progressive cell loss caused by secondary injuries, including endoplasmic reticulum (ER) stress. Buprenorphine (BPN) is commonly used in children for pain management; however, the effects of BPN on ER stress in the pediatric population are still inconclusive. This study investigated the sex-specific effects of BPN on ER stress, abnormal protein accumulation, and cell loss in a mouse impact acceleration model of pediatric TBI. On post-natal day 20-21 (P20-21), male and female littermates were randomized into sham, TBI + saline and TBI + BPN groups. BPN (0.075 mg/kg) was administered to TBI + BPN mice at 30 min after injury and then every 6-12 h for 2 days. The impact of BPN was evaluated at 1, 3, and 7 days post-injury. We found that TBI induced more prominent ER stress pathway activation at 1 and 3 days post-injury in males, compared to females, whereas abnormal protein accumulation and cell loss were more severe in females at 7 days post-injury, compared with males. Although BPN partially ameliorated abnormal protein accumulation and cell loss in both males and females, BPN only decreased ER stress pathway activation in males, not in females. In conclusion, BPN exhibits sex-specific effects on ER stress, abnormal protein accumulation, and cell loss in a time-dependent manner at the acute phase after pediatric TBI, which provides the rationale to assess the potential effects of BPN on long-term outcomes after pediatric TBI in both males and females.
Collapse
Affiliation(s)
- Megan B. Faulkner
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, Michigan, USA
| | - Mariam Rizk
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, Michigan, USA
| | - Zahraa Bazzi
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, Michigan, USA
| | - Robert C. Dysko
- Unit for Laboratory Animal Medicine, University of Michigan–Ann Arbor, Ann Arbor, Michigan, USA
| | - Zhi Zhang
- Department of Natural Sciences, University of Michigan–Dearborn, Dearborn, Michigan, USA
| |
Collapse
|
39
|
Donlon TA, Morris BJ, Chen R, Lim E, Morgen EK, Fortney K, Shah N, Masaki KH, Willcox BJ. Proteomic basis of mortality resilience mediated by FOXO3 longevity genotype. GeroScience 2023; 45:2303-2324. [PMID: 36881352 PMCID: PMC10651822 DOI: 10.1007/s11357-023-00740-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/23/2023] [Indexed: 03/08/2023] Open
Abstract
FOXO3 is a ubiquitous transcription factor expressed in response to cellular stress caused by nutrient deprivation, inflammatory cytokines, reactive oxygen species, radiation, hypoxia, and other factors. We showed previously that the association of inherited FOXO3 variants with longevity was the result of partial protection against mortality risk posed by aging-related life-long stressors, particularly cardiometabolic disease. We then referred to the longevity-associated genotypes as conferring "mortality resilience." Serum proteins whose levels change with aging and are associated with mortality risk may be considered as "stress proteins." They may serve as indirect measures of life-long stress. Our aims were to (1) identify stress proteins that increase with aging and are associated with an increased risk of mortality, and (2) to determine if FOXO3 longevity/resilience genotype dampens the expected increase in mortality risk they pose. A total of 4500 serum protein aptamers were quantified using the Somalogic SomaScan proteomics platform in the current study of 975 men aged 71-83 years. Stress proteins associated with mortality were identified. We then used age-adjusted multivariable Cox models to investigate the interaction of stress protein with FOXO3 longevity-associated rs12212067 genotypes. For all the analyses, the p values were corrected for multiple comparisons by false discovery rate. This led to the identification of 44 stress proteins influencing the association of FOXO3 genotype with reduced mortality. Biological pathways were identified for these proteins. Our results suggest that the FOXO3 resilience genotype functions by reducing mortality in pathways related to innate immunity, bone morphogenetic protein signaling, leukocyte migration, and growth factor response.
Collapse
Affiliation(s)
- Timothy A Donlon
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Brian J Morris
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA.
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA.
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia.
| | - Randi Chen
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Eric K Morgen
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kristen Fortney
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Naisha Shah
- BioAge Labs Inc., 1445A S 50th St, Richmond, California, USA
| | - Kamal H Masaki
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Department of Research, NIH Center of Biomedical Research Excellence for Clinical and Translational Research on Aging, Kuakini Medical Center, Honolulu, Hawaii, 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| |
Collapse
|
40
|
Nguyen T, Mills JC, Cho CJ. The coordinated management of ribosome and translation during injury and regeneration. Front Cell Dev Biol 2023; 11:1186638. [PMID: 37427381 PMCID: PMC10325863 DOI: 10.3389/fcell.2023.1186638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Diverse acute and chronic injuries induce damage responses in the gastrointestinal (GI) system, and numerous cell types in the gastrointestinal tract demonstrate remarkable resilience, adaptability, and regenerative capacity in response to stress. Metaplasias, such as columnar and secretory cell metaplasia, are well-known adaptations that these cells make, the majority of which are epidemiologically associated with an elevated cancer risk. On a number of fronts, it is now being investigated how cells respond to injury at the tissue level, where diverse cell types that differ in proliferation capacity and differentiation state cooperate and compete with one another to participate in regeneration. In addition, the cascades or series of molecular responses that cells show are just beginning to be understood. Notably, the ribosome, a ribonucleoprotein complex that is essential for translation on the endoplasmic reticulum (ER) and in the cytoplasm, is recognized as the central organelle during this process. The highly regulated management of ribosomes as key translational machinery, and their platform, rough endoplasmic reticulum, are not only essential for maintaining differentiated cell identity, but also for achieving successful cell regeneration after injury. This review will cover in depth how ribosomes, the endoplasmic reticulum, and translation are regulated and managed in response to injury (e.g., paligenosis), as well as why this is essential for the proper adaptation of a cell to stress. For this, we will first discuss how multiple gastrointestinal organs respond to stress through metaplasia. Next, we will cover how ribosomes are generated, maintained, and degraded, in addition to the factors that govern translation. Finally, we will investigate how ribosomes and translation machinery are dynamically regulated in response to injury. Our increased understanding of this overlooked cell fate decision mechanism will facilitate the discovery of novel therapeutic targets for gastrointestinal tract tumors, focusing on ribosomes and translation machinery.
Collapse
Affiliation(s)
- Thanh Nguyen
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Jason C. Mills
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Charles J. Cho
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
41
|
Zhang R, Pan S, Zheng S, Liao Q, Jiang Z, Wang D, Li X, Hu A, Li X, Zhu Y, Shen X, Lei J, Zhong S, Zhang X, Huang L, Wang X, Huang L, Shen L, Song BL, Zhao J, Wang Z, Yang B, Guo X. Lipid-anchored Proteasomes Control Membrane Protein Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.12.540509. [PMID: 37214852 PMCID: PMC10197712 DOI: 10.1101/2023.05.12.540509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Protein degradation in eukaryotic cells is mainly carried out by the 26S proteasome, a macromolecular complex not only present in the cytosol and nucleus but also associated with various membranes. How proteasomes are anchored to the membrane and the biological meaning thereof have been largely unknown in higher organisms. Here we show that N-myristoylation of the Rpt2 subunit is a general mechanism for proteasome-membrane interaction. Loss of this modification in the Rpt2-G2A mutant cells leads to profound changes in the membrane-associated proteome, perturbs the endomembrane system and undermines critical cellular processes such as cell adhesion, endoplasmic reticulum-associated degradation (ERAD) and membrane protein trafficking. Rpt2 G2A/G2A homozygous mutation is embryonic lethal in mice and is sufficient to abolish tumor growth in a nude mice xenograft model. These findings have defined an evolutionarily conserved mechanism for maintaining membrane protein homeostasis and underscored the significance of compartmentalized protein degradation by m yristoyl- a nchored p roteasomes (MAPs) in health and disease.
Collapse
|
42
|
Zhao N, Li N, Wang T. PERK prevents rhodopsin degradation during retinitis pigmentosa by inhibiting IRE1-induced autophagy. J Cell Biol 2023; 222:e202208147. [PMID: 37022709 PMCID: PMC10082367 DOI: 10.1083/jcb.202208147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 04/07/2023] Open
Abstract
Chronic endoplasmic reticulum (ER) stress is the underlying cause of many degenerative diseases, including autosomal dominant retinitis pigmentosa (adRP). In adRP, mutant rhodopsins accumulate and cause ER stress. This destabilizes wild-type rhodopsin and triggers photoreceptor cell degeneration. To reveal the mechanisms by which these mutant rhodopsins exert their dominant-negative effects, we established an in vivo fluorescence reporter system to monitor mutant and wild-type rhodopsin in Drosophila. By performing a genome-wide genetic screen, we found that PERK signaling plays a key role in maintaining rhodopsin homeostasis by attenuating IRE1 activities. Degradation of wild-type rhodopsin is mediated by selective autophagy of ER, which is induced by uncontrolled IRE1/XBP1 signaling and insufficient proteasome activities. Moreover, upregulation of PERK signaling prevents autophagy and suppresses retinal degeneration in the adRP model. These findings establish a pathological role for autophagy in this neurodegenerative condition and indicate that promoting PERK activity could be used to treat ER stress-related neuropathies, including adRP.
Collapse
Affiliation(s)
- Ning Zhao
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Li
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| |
Collapse
|
43
|
Jassar O, Ghanim M. Association of endoplasmic reticulum associated degradation (ERAD) with the transmission of Liberibacter solanacearum by its psyllid vector. INSECT MOLECULAR BIOLOGY 2023. [PMID: 37060303 DOI: 10.1111/imb.12842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Candidatus Liberibacter solanacearum (CLso) is a complex of gram negative plant pathogenic and fastidious bacterial haplotypes restricted to the phloem and transmitted by several psyllid species. In Israel, the carrot psyllid Bactericera trigonica transmits CLso haplotype D in a persistent and propagative manner and causes the carrot yellows disease, inflicting significant economic losses in many countries. Understanding the transmission of CLso is fundamental to devising sustainable management strategies. Persistent transmission of vector-borne pathogens involves the critical steps of adhesion, cell invasion and replication inside the insect gut cells before passage to the hemolymph. Using microscopy and expression analyses, we have previously confirmed a role for the endoplasmic reticulum (ER) in inducing immune responses and subsequent molecular pathways resulting in programmed cell death (apoptosis) upon CLso-infection in the midgut. In the current study, we confirm that the ER-associated degradation (ERAD) machinery and its associated marker genes were upregulated in CLso infected insects, including Derlin-1, Selenoprotein-1 and Ubiquitin Ligase RNF-185. Silencing Derlin-1, which acts on the ER membrane by regulating the degradation of unfolded proteins upon ER stress, revealed its role in CLso persistence and transmission. Molecular pathways initiated in the ER membrane upon bacterial infection are well documented in human, animal and insect systems, and this study confirms the role of the ER in CLso-psyllid interactions.
Collapse
Affiliation(s)
- Ola Jassar
- Department of Entomology, Volcani Institute, Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Murad Ghanim
- Department of Entomology, Volcani Institute, Rishon Lezion, Israel
| |
Collapse
|
44
|
Del Vescovo S, Venerito V, Iannone C, Lopalco G. Uncovering the Underworld of Axial Spondyloarthritis. Int J Mol Sci 2023; 24:6463. [PMID: 37047435 PMCID: PMC10095023 DOI: 10.3390/ijms24076463] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Axial spondyloarthritis (axial-SpA) is a multifactorial disease characterized by inflammation in sacroiliac joints and spine, bone reabsorption, and aberrant bone deposition, which may lead to ankylosis. Disease pathogenesis depends on genetic, immunological, mechanical, and bioenvironmental factors. HLA-B27 represents the most important genetic factor, although the disease may also develop in its absence. This MHC class I molecule has been deeply studied from a molecular point of view. Different theories, including the arthritogenic peptide, the unfolded protein response, and HLA-B27 homodimers formation, have been proposed to explain its role. From an immunological point of view, a complex interplay between the innate and adaptive immune system is involved in disease onset. Unlike other systemic autoimmune diseases, the innate immune system in axial-SpA has a crucial role marked by abnormal activity of innate immune cells, including γδ T cells, type 3 innate lymphoid cells, neutrophils, and mucosal-associated invariant T cells, at tissue-specific sites prone to the disease. On the other hand, a T cell adaptive response would seem involved in axial-SpA pathogenesis as emphasized by several studies focusing on TCR low clonal heterogeneity and clonal expansions as well as an interindividual sharing of CD4/8 T cell receptors. As a result of this immune dysregulation, several proinflammatory molecules are produced following the activation of tangled intracellular pathways involved in pathomechanisms of axial-SpA. This review aims to expand the current understanding of axial-SpA pathogenesis, pointing out novel molecular mechanisms leading to disease development and to further investigate potential therapeutic targets.
Collapse
Affiliation(s)
- Sergio Del Vescovo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Vincenzo Venerito
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| | - Claudia Iannone
- Division of Clinical Rheumatology, ASST Gaetano Pini-CTO Institute, 20122 Milan, Italy
| | - Giuseppe Lopalco
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), Polyclinic Hospital, University of Bari, 70124 Bari, Italy
| |
Collapse
|
45
|
Lee YS, Klomp JE, Stalnecker CA, Goodwin CM, Gao Y, Droby GN, Vaziri C, Bryant KL, Der CJ, Cox AD. VCP/p97, a pleiotropic protein regulator of the DNA damage response and proteostasis, is a potential therapeutic target in KRAS-mutant pancreatic cancer. Genes Cancer 2023; 14:30-49. [PMID: 36923647 PMCID: PMC10010283 DOI: 10.18632/genesandcancer.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/26/2023] [Indexed: 03/12/2023] Open
Abstract
We and others have recently shown that proteins involved in the DNA damage response (DDR) are critical for KRAS-mutant pancreatic ductal adenocarcinoma (PDAC) cell growth in vitro. However, the CRISPR-Cas9 library that enabled us to identify these key proteins had limited representation of DDR-related genes. To further investigate the DDR in this context, we performed a comprehensive, DDR-focused CRISPR-Cas9 loss-of-function screen. This screen identified valosin-containing protein (VCP) as an essential gene in KRAS-mutant PDAC cell lines. We observed that genetic and pharmacologic inhibition of VCP limited cell growth and induced apoptotic death. Addressing the basis for VCP-dependent growth, we first evaluated the contribution of VCP to the DDR and found that loss of VCP resulted in accumulation of DNA double-strand breaks. We next addressed its role in proteostasis and found that loss of VCP caused accumulation of polyubiquitinated proteins. We also found that loss of VCP increased autophagy. Therefore, we reasoned that inhibiting both VCP and autophagy could be an effective combination. Accordingly, we found that VCP inhibition synergized with the autophagy inhibitor chloroquine. We conclude that concurrent targeting of autophagy can enhance the efficacy of VCP inhibitors in KRAS-mutant PDAC.
Collapse
Affiliation(s)
- Ye S. Lee
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jennifer E. Klomp
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Clint A. Stalnecker
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig M. Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yanzhe Gao
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Gaith N. Droby
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Cyrus Vaziri
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kirsten L. Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Channing J. Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrienne D. Cox
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
46
|
Du J, Zhao H, Zhu M, Dong Y, Peng L, Li J, Zhao Q, Yu Q, Li M. Atg8 and Ire1 in combination regulate the autophagy-related endoplasmic reticulum stress response in Candida albicans. Res Microbiol 2023; 174:103996. [PMID: 36328097 DOI: 10.1016/j.resmic.2022.103996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/05/2022]
Abstract
The unfolded protein response (UPR) is an important pathway to prevent endoplasmic reticulum (ER) stress in eukaryotic cells. In Saccharomyces cerevisiae, Ire1 is a key regulatory factor required for HAC1 gene splicing for further production of functional Hac1 and activation of UPR gene expression. Autophagy is another mechanism involved in the attenuation of ER stress by ER-phagy, and Atg8 is a core protein in autophagy. Both autophagy and UPR are critical for ER stress response, but whether they act individually or in combination in Candida albicans is unknown. In this study, we explored the interaction between Ire1 and the autophagy protein Atg8 for the ER stress response by constructing the atg8Δ/Δire1Δ/Δ double mutant in the pathogenic fungus C. albicans. Compared to the single mutants atg8Δ/Δ or ire1Δ/Δ, atg8Δ/Δire1Δ/Δ exhibited much higher sensitivity to various ER stress-inducing agents and more severe attenuation of UPR gene expression under ER stress. Further investigations showed that the double mutant had a defect in ER-phagy, which was associated with attenuated vacuolar fusion under ER stress. This study revealed that Ire1 and Atg8 in combination function in the activation of the UPR and ER-phagy to maintain ER homeostasis under ER stress in C. albicans.
Collapse
Affiliation(s)
- Jiawen Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - He Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mengsen Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yixuan Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jianrong Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qiang Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
47
|
Yu H, He Y, Zhang J, Zhang Z, Zhang X. Hepatic transcriptome analysis reveals the metabolic strategies of largemouth bass (Micropterus salmoides) under different dissolved oxygen condition. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101032. [PMID: 36371883 DOI: 10.1016/j.cbd.2022.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Dissolved oxygen (DO) affects aquatic animals at a fundamental level so that the differences in its metabolic strategies under prolonged hypoxic conditions need an urgent exploration. In this experiment, largemouth bass (Micropterus salmoides) were chronically exposed (6 weeks) to severe hypoxia (S-HYP, DO: 2.0 ± 0.4 mg/L) and mild hypoxia (M-HYP, DO: 5.1 ± 0.4 mg/L). Compared to the control group (CON, DO:8.4 ± 0.4 mg/L), 1196 and 232 differentially expressed genes (DEGs) were obtained in S-HYP and M-HPY groups via transcriptome analysis, respectively. In S-HYP, lipolysis was promoted while anabolism was blocked. Meanwhile, significantly less fat droplet area was observed in the liver histology of S-HYP. Additionally, the cell cycle also responded to hypoxia, being blocked in the G1 phase with the suspension of DNA replication process. In M-HYP, the processing of protein in the endoplasmic reticulum and the synthesis of various aminoacyl t-RNA were inhibited, and a novel balance of the urea cycle might be established in the biosynthesis of arginine. The key DEGs involved in the above metabolic pathways, such as atgl, cpt1, arg1, etc., were validated by Q-PCR yielding results consistent with transcriptome data. This study indicates that the largemouth bass is prone to increase the proportion of lipid as an energy supply to adapt to the reprogramming of energy metabolism, while reducing the rate of cell proliferation to adapt to chronic severe hypoxia. This is also an undescribed observation in fish liver metabolism that largemouth bass may transform the synthesis and processing strategies of protein when exposed to chronic mild hypoxia.
Collapse
Affiliation(s)
- Haodong Yu
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ya He
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jinying Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Ziyi Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xuezhen Zhang
- College of Fisheries, Huazhong Agricultural University; Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
48
|
Grønbæk-Thygesen M, Kampmeyer C, Hofmann K, Hartmann-Petersen R. The moonlighting of RAD23 in DNA repair and protein degradation. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194925. [PMID: 36863450 DOI: 10.1016/j.bbagrm.2023.194925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
A moonlighting protein is one, which carries out multiple, often wholly unrelated, functions. The RAD23 protein is a fascinating example of this, where the same polypeptide and the embedded domains function independently in both nucleotide excision repair (NER) and protein degradation via the ubiquitin-proteasome system (UPS). Hence, through direct binding to the central NER component XPC, RAD23 stabilizes XPC and contributes to DNA damage recognition. Conversely, RAD23 also interacts directly with the 26S proteasome and ubiquitylated substrates to mediate proteasomal substrate recognition. In this function, RAD23 activates the proteolytic activity of the proteasome and engages specifically in well-characterized degradation pathways through direct interactions with E3 ubiquitin-protein ligases and other UPS components. Here, we summarize the past 40 years of research into the roles of RAD23 in NER and the UPS.
Collapse
Affiliation(s)
- Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| | - Caroline Kampmeyer
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Germany
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Denmark.
| |
Collapse
|
49
|
Shaw JL, Pablo JL, Greka A. Mechanisms of Protein Trafficking and Quality Control in the Kidney and Beyond. Annu Rev Physiol 2023; 85:407-423. [PMID: 36763970 DOI: 10.1146/annurev-physiol-031522-100639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Numerous trafficking and quality control pathways evolved to handle the diversity of proteins made by eukaryotic cells. However, at every step along the biosynthetic pathway, there is the potential for quality control system failure. This review focuses on the mechanisms of disrupted proteostasis. Inspired by diseases caused by misfolded proteins in the kidney (mucin 1 and uromodulin), we outline the general principles of protein biosynthesis, delineate the recognition and degradation pathways targeting misfolded proteins, and discuss the role of cargo receptors in protein trafficking and lipid homeostasis. We also discuss technical approaches including live-cell fluorescent microscopy, chemical screens to elucidate trafficking mechanisms, multiplexed single-cell CRISPR screening platforms to systematically delineate mechanisms of proteostasis, and the advancement of novel tools to degrade secretory and membrane-associated proteins. By focusing on components of trafficking that go awry, we highlight ongoing efforts to understand fundamental mechanisms of disrupted proteostasis and implications for the treatment of human proteinopathies.
Collapse
Affiliation(s)
- Jillian L Shaw
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Juan Lorenzo Pablo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Anna Greka
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA; .,Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
50
|
Calnexin, More Than Just a Molecular Chaperone. Cells 2023; 12:cells12030403. [PMID: 36766745 PMCID: PMC9913998 DOI: 10.3390/cells12030403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/17/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Calnexin is a type I integral endoplasmic reticulum (ER) membrane protein with an N-terminal domain that resides in the lumen of the ER and a C-terminal domain that extends into the cytosol. Calnexin is commonly referred to as a molecular chaperone involved in the folding and quality control of membrane-associated and secreted proteins, a function that is attributed to its ER- localized domain with a structure that bears a strong resemblance to another luminal ER chaperone and Ca2+-binding protein known as calreticulin. Studies have discovered that the cytosolic C-terminal domain of calnexin undergoes distinct post-translational modifications and interacts with a variety of proteins. Here, we discuss recent findings and hypothesize that the post-translational modifications of the calnexin C-terminal domain and its interaction with specific cytosolic proteins play a role in coordinating ER functions with events taking place in the cytosol and other cellular compartments.
Collapse
|