1
|
Marino GB, Evangelista JE, Clarke DJB, Ma'ayan A. L2S2: chemical perturbation and CRISPR KO LINCS L1000 signature search engine. Nucleic Acids Res 2025:gkaf373. [PMID: 40308216 DOI: 10.1093/nar/gkaf373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
As part of the Library of Integrated Network-Based Cellular Signatures (LINCS) NIH initiative, 248 human cell lines were profiled with the L1000 assay to measure the effect of 33 621 small molecules and 7508 single-gene CRISPR knockouts. From this massive dataset, we computed 1.678 million sets of up- and down-regulated genes. These gene sets are served for search by the LINCS L1000 Signature Search (L2S2) web server application. With L2S2, users can identify small molecules and single gene CRISPR KOs that produce gene expression profiles similar or opposite to their submitted single or up/down gene sets. L2S2 also includes a consensus search feature that ranks perturbations across all cellular contexts, time points, and concentrations. To demonstrate the utility of L2S2, we crossed the L2S2 gene sets with gene sets collected for the RummaGEO resource. The analysis identified clusters of differentially expressed genes that match drug classes, tissues, and diseases, pointing to many opportunities for drug repurposing and drug discovery. Overall, the L2S2 web server application can be used to further the development of personalized therapeutics while expanding our understanding of complex human diseases. The L2S2 web server application is available at https://l2s2.maayanlab.cloud.
Collapse
Affiliation(s)
- Giacomo B Marino
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - John E Evangelista
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Daniel J B Clarke
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Avi Ma'ayan
- Department of Pharmacological Sciences, Department of Artificial Intelligence and Human Health, Mount Sinai Center for Bioinformatics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|
2
|
Xia M, Li Z, Jiang H, Li Y, Hu L, He Y, Huang S, Tang L, Luo C, Gu S, Ding H, Wang M. Discovery of novel imidazo[1,2-b]pyridazine derivatives as potent covalent inhibitors of CDK12/13. Eur J Med Chem 2025; 288:117378. [PMID: 39955845 DOI: 10.1016/j.ejmech.2025.117378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/20/2025] [Accepted: 01/27/2025] [Indexed: 02/18/2025]
Abstract
Triple-negative breast cancer (TNBC) is widely recognized as the most aggressive subtype of breast cancer, and treatment options for patients with TNBC remain highly limited. Recently, cyclin-dependent kinases 12/13 (CDK12/13) have been identified as promising therapeutic targets for TNBC. In our study, we report the design and synthesis of novel imidazo[1,2-b]pyrazine-based covalent inhibitors of CDK12/13, which exhibit potent inhibitory activity against TNBC cells. Among these compounds, compound 24 emerged as the most potent inhibitor, with CDK12 IC50 of 15.5 nM and CDK13 IC50 of 12.2 nM. Compound 24 forms a covalent bond with Cys1039 of CDK12 and effectively suppresses the proliferation of TNBC cell lines MDA-MB-231 and MDA-MB-468, with EC50 values of 5.0 nM and 6.0 nM, respectively. Compound 24 demonstrated superior efficacy to the currently known CDK12/13 covalent inhibitor, THZ531. These findings suggest compound 24 may be a promising lead for developing CDK12/13-targeted therapies for treating TNBC.
Collapse
Affiliation(s)
- Meng Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ziteng Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Hanrui Jiang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Linghao Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Yongchang He
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Siqi Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Cheng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China; The School of Pharmacy, Fujian Medical University, Fuzhou, 350122, China
| | - Shuangxi Gu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China.
| | - Mingliang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
3
|
Hu C, Jiang Y, Ma C, Xu F, Cui C, Du X, Chen J, Zhu L, Yu S, He X, Yu W, Wang Y, Xu X. Decreased Cdk2 Activity Hindered Embryonic Development and Parthenogenesis Induction in Silkworm, Bombyx mori L. Int J Mol Sci 2025; 26:3341. [PMID: 40244186 PMCID: PMC11989892 DOI: 10.3390/ijms26073341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cyclin-dependent protein kinase 2 (Cdk2), an important member of the serine/threonine-specific protein kinase family, plays a critical regulatory role in biological processes. Previous studies have demonstrated that Cdk2 is involved in the arrest and resumption of meiosis in mammalian oocytes. In this study, we explored the function of Cdk2 through parthenogenetic lines (PLs) and corresponding amphigonic lines (ALs) in a model lepidopteran insect silkworm, Bombyx mori L. Our findings revealed a positive correlation between Cdk2 activity and the parthenogenesis induction rate. The pharmacological inhibition of Cdk2 using the specific inhibitor AUZ454 not only significantly reduced the parthenogenesis induction rate but also caused developmental delays in embryos. These results demonstrate that Cdk2 is essential for parthenogenesis success and is a potential target gene for biological reproductive regulation.
Collapse
Affiliation(s)
- Chengjie Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yonghou Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Chenkai Ma
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Fang Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunguang Cui
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xin Du
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jine Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linbao Zhu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shaofang Yu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingjian He
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yongqiang Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xia Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
4
|
Bereshneh AH, Andrews JC, Eberl DF, Bademci G, Borja NA, Bivona S, Chung WK, Yamamoto S, Wangler MF, McKee S, Tekin M, Bellen HJ, Kanca O. De novo variants in CDKL1 and CDKL2 are associated with neurodevelopmental symptoms. Am J Hum Genet 2025; 112:846-862. [PMID: 40088891 DOI: 10.1016/j.ajhg.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025] Open
Abstract
The CDKL (cyclin-dependent kinase-like) family consists of five members in humans, CDKL1-5, that encode serine-threonine kinases. The only member that has been associated with a Mendelian disorder is CDKL5, and variants in CDKL5 cause developmental and epileptic encephalopathy type 2 (DEE2). Here, we study four de novo variants in CDKL2 identified in five individuals, including three unrelated probands and monozygotic twins. These individuals present with overlapping symptoms, including global developmental delay, intellectual disability, childhood-onset epilepsy, dyspraxia, and speech deficits. We also identified two individuals with de novo missense variants in CDKL1 in the published Deciphering Developmental Disorders (DDD) and GeneDx cohorts with developmental disorders. Drosophila has a single ortholog of CDKL1-5, CG7236 (Cdkl). Cdkl is expressed in sensory neurons that project to specific regions of the brain that control sensory inputs. Cdkl loss causes semi-lethality, climbing defects, heat-induced seizures, hearing loss, and reduced lifespan. These phenotypes can be rescued by expression of the human reference CDKL1, CDKL2, or CDKL5, showing that the functions of these genes are conserved. In contrast, the CDKL1 and CDKL2 variants do not fully rescue the observed phenotypes, and overexpression of the variant proteins leads to phenotypes that are similar to Cdkl loss. Co-expression of CDKL1 or CDKL2 variants with CDKL1, CDKL2, or CDKL5 references in the mutant background suppresses the rescue ability of the reference genes. Our results suggest that the variants act as dominant negative alleles and are causative of neurological symptoms in these individuals.
Collapse
Affiliation(s)
- Ali H Bereshneh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Guney Bademci
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Nicholas A Borja
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Stephanie Bivona
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast, Northern Ireland, UK
| | - Mustafa Tekin
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building (BRB), Miami, FL, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Sun J, Liang S, Liu X, Zhang S, Li M, Zhang Q, Chen J. Insights into the selectivity of a brain-penetrant CDK4/6 vs CDK1/2 inhibitor for glioblastoma used in multiple replica molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:2223-2242. [PMID: 38112295 DOI: 10.1080/07391102.2023.2294175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
Cyclin dependent kinases (CDKs) play an important role in cell cycle regulation and their dysfunction is associated with many cancers. That is why CDKs have been attractive targets for the treatment of cancer. Glioblastoma is a cancer caused by the aberrant expression of CDK4/6, so exploring the mechanism of the selection of CDK4/6 toward inhibitors relative to the other family members CDK1/2 is essential. In this work, multiple replica molecular dynamics (MRMD) simulations, principal component analysis (PCA), free energy landscapes (FELs), molecular mechanics Poisson-Boltzmann/Generalized Born surface area (MM-PB/GBSA) and other methods were integrated to decipher the selectively binding mechanism of the inhibitor N1J to CDK4/6 and CDK1/2. Molecular electrostatic potential (MESP) analysis provides an explanation for the N1J selectivity. Residue-based free energy decomposition reveals that most of the hot residues are located at the same location of CDKs proteins, but the different types of residues in different proteins cause changes in binding energy, which is considered as a potential developmental direction to improve the selectivity of inhibitors to CDK4/6. These results provide insights into the source of inhibitor and CDK4/6 selectivity for the future development of more selective inhibitors.
Collapse
Affiliation(s)
- Jiahao Sun
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shanshan Liang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Xinguo Liu
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Shaolong Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Meng Li
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Qinggang Zhang
- School of Physics and Electronics, Shandong Normal University, Jinan, China
| | - Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan, China
| |
Collapse
|
6
|
Schirripa A, Schöppe H, Nebenfuehr S, Zojer M, Klampfl T, Kugler V, Maw BS, Ceylan H, Uras IZ, Scheiblecker L, Gamper E, Stelzl U, Stefan E, Kaserer T, Sexl V, Kollmann K. Cdk6's functions are critically regulated by its unique C-terminus. iScience 2025; 28:111697. [PMID: 39898030 PMCID: PMC11787673 DOI: 10.1016/j.isci.2024.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/09/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
The vital cell cycle machinery is tightly regulated and alterations of its central signaling hubs are a hallmark of cancer. The activity of CDK6 is controlled by interaction with several partners including cyclins and INK4 proteins, which have been shown to mainly bind to the amino-terminal lobe. We analyzed the impact of CDK6's C-terminus on its functions in a leukemia model, revealing a central role in promoting proliferation. C-terminally truncated Cdk6 (Cdk6 ΔC) shows reduced nuclear translocation and therefore chromatin interaction and fails to enhance proliferation and disease progression. The combination of proteomic analysis and protein modeling highlights that Cdk6's C-terminus is essential for protein flexibility and for its binding potential to cyclin D, p27Kip1 and INK4 proteins but not cyclin B. We demonstrate that the C-terminus is a unique and essential part of the CDK6 protein, regulating interaction partner binding and therefore CDK6's functionality.
Collapse
Affiliation(s)
- Alessia Schirripa
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Helge Schöppe
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Markus Zojer
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Thorsten Klampfl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Valentina Kugler
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Belinda S. Maw
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Huriye Ceylan
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Iris Z. Uras
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lisa Scheiblecker
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Elisabeth Gamper
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ulrich Stelzl
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Eduard Stefan
- Tyrolean Cancer Research Institute (TKFI), Innrain 66, 6020 Innsbruck, Austria
- Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- University of Innsbruck, Innsbruck, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
7
|
Pellarin I, Dall'Acqua A, Favero A, Segatto I, Rossi V, Crestan N, Karimbayli J, Belletti B, Baldassarre G. Cyclin-dependent protein kinases and cell cycle regulation in biology and disease. Signal Transduct Target Ther 2025; 10:11. [PMID: 39800748 PMCID: PMC11734941 DOI: 10.1038/s41392-024-02080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/16/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025] Open
Abstract
Cyclin Dependent Kinases (CDKs) are closely connected to the regulation of cell cycle progression, having been first identified as the kinases able to drive cell division. In reality, the human genome contains 20 different CDKs, which can be divided in at least three different sub-family with different functions, mechanisms of regulation, expression patterns and subcellular localization. Most of these kinases play fundamental roles the normal physiology of eucaryotic cells; therefore, their deregulation is associated with the onset and/or progression of multiple human disease including but not limited to neoplastic and neurodegenerative conditions. Here, we describe the functions of CDKs, categorized into the three main functional groups in which they are classified, highlighting the most relevant pathways that drive their expression and functions. We then discuss the potential roles and deregulation of CDKs in human pathologies, with a particular focus on cancer, the human disease in which CDKs have been most extensively studied and explored as therapeutic targets. Finally, we discuss how CDKs inhibitors have become standard therapies in selected human cancers and propose novel ways of investigation to export their targeting from cancer to other relevant chronic diseases. We hope that the effort we made in collecting all available information on both the prominent and lesser-known CDK family members will help in identify and develop novel areas of research to improve the lives of patients affected by debilitating chronic diseases.
Collapse
Affiliation(s)
- Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Alessandra Dall'Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Andrea Favero
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Valentina Rossi
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Nicole Crestan
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, Italy.
| |
Collapse
|
8
|
Ziegler DV, Parashar K, Leal-Esteban L, López-Alcalá J, Castro W, Zanou N, Martinez-Carreres L, Huber K, Berney XP, Malagón MM, Roger C, Berger MA, Gouriou Y, Paone G, Gallart-Ayala H, Sflomos G, Ronchi C, Ivanisevic J, Brisken C, Rieusset J, Irving M, Fajas L. CDK4 inactivation inhibits apoptosis via mitochondria-ER contact remodeling in triple-negative breast cancer. Nat Commun 2025; 16:541. [PMID: 39788939 PMCID: PMC11718081 DOI: 10.1038/s41467-024-55605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The energetic demands of proliferating cells during tumorigenesis require close coordination between the cell cycle and metabolism. While CDK4 is known for its role in cell proliferation, its metabolic function in cancer, particularly in triple-negative breast cancer (TNBC), remains unclear. Our study, using genetic and pharmacological approaches, reveals that CDK4 inactivation only modestly impacts TNBC cell proliferation and tumor formation. Notably, CDK4 depletion or long-term CDK4/6 inhibition confers resistance to apoptosis in TNBC cells. Mechanistically, CDK4 enhances mitochondria-endoplasmic reticulum contact (MERCs) formation, promoting mitochondrial fission and ER-mitochondrial calcium signaling, which are crucial for TNBC metabolic flexibility. Phosphoproteomic analysis identified CDK4's role in regulating PKA activity at MERCs. In this work, we highlight CDK4's role in mitochondrial apoptosis inhibition and suggest that targeting MERCs-associated metabolic shifts could enhance TNBC therapy.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lucia Leal-Esteban
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Jaime López-Alcalá
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
| | - Wilson Castro
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Laia Martinez-Carreres
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Xavier Pascal Berney
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - María M Malagón
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Catherine Roger
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Marie-Agnès Berger
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Yves Gouriou
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Giulia Paone
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - George Sflomos
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carlos Ronchi
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.
- Inserm, Occitanie Méditerranée, Montpellier, France.
| |
Collapse
|
9
|
Luo CH, Hu LH, Liu JY, Xia L, Zhou L, Sun RH, Lin CC, Qiu X, Jiang B, Yang MY, Zhang XH, Yang XB, Chen GQ, Lu Y. CDK9 recruits HUWE1 to degrade RARα and offers therapeutic opportunities for cutaneous T-cell lymphoma. Nat Commun 2024; 15:10594. [PMID: 39632829 PMCID: PMC11618697 DOI: 10.1038/s41467-024-54354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous non-Hodgkin lymphoma originating in the skin and invading the systemic hematopoietic system. Current treatments, including chemotherapy and monoclonal antibodies yielded limited responses with high incidence of side effects, highlighting the need for targeted therapy. Screening with small inhibitors library, herein we identify cyclin dependent kinase 9 (CDK9) as a driver of CTCL growth. Single-cell RNA-seq analysis reveals a CDK9high malignant T cell cluster with a unique actively proliferating feature. Inhibition, depletion or proteolysis targeting chimera (PROTAC)-mediated degradation of CDK9 significantly reduces CTCL cell growth in vitro and in murine models. CDK9 also promotes degradation of retinoic acid receptor α (RARα) via recruiting the E3 ligase HUWE1. Co-administration of CDK9-PROTAC (GT-02897) with all-trans retinoic acid (ATRA) leads to synergistic attenuation of tumor growth in vitro and in xenograft models, providing a potential translational treatment for complete eradication of CTCL.
Collapse
MESH Headings
- Humans
- Animals
- Cyclin-Dependent Kinase 9/metabolism
- Cyclin-Dependent Kinase 9/antagonists & inhibitors
- Lymphoma, T-Cell, Cutaneous/metabolism
- Lymphoma, T-Cell, Cutaneous/drug therapy
- Lymphoma, T-Cell, Cutaneous/pathology
- Lymphoma, T-Cell, Cutaneous/genetics
- Mice
- Ubiquitin-Protein Ligases/metabolism
- Ubiquitin-Protein Ligases/genetics
- Cell Line, Tumor
- Tumor Suppressor Proteins/metabolism
- Tumor Suppressor Proteins/genetics
- Retinoic Acid Receptor alpha/metabolism
- Retinoic Acid Receptor alpha/genetics
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Skin Neoplasms/drug therapy
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Skin Neoplasms/genetics
- Proteolysis/drug effects
- Female
- Mice, Inbred NOD
Collapse
Affiliation(s)
- Chen-Hui Luo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li-Hong Hu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie-Yang Liu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Xia
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Zhou
- Department of Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Hong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Chen-Cen Lin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xing Qiu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Meng-Ying Yang
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xue-Hong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Xiao-Bao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Aging & Tissue Regeneration, State Key Laboratory of Systems Medicine for Cancer, Research Units of Stress and Tumor (2019RU043), Chinese Academy of Medical Sciences, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- School of Basic Medicine and Life Science, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.
| | - Ying Lu
- Institute of Dermatology, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Zhou Z, Jin Z, Tian Y, Huangfu C, Fan Z, Liu D. CDK14 is regulated by IGF2BP2 and involved in osteogenic differentiation via Wnt/β-catenin signaling pathway in vitro. Life Sci 2024; 358:123148. [PMID: 39447733 DOI: 10.1016/j.lfs.2024.123148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
AIMS Cyclin-dependent kinase (CDK) family proteins involve in various cellular processes via regulating the cell cycle; however, their expression during osteogenic differentiation and postmenopausal osteoporosis remains poorly understood. MAIN METHODS Using bioinformatics, we screened for CDK14 bound to Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and explored its expression in vitro with time-gradient model and in a mouse model of postmenopausal osteoporosis, building on prior research. Subsequently, we investigated its effect on osteoblast proliferation, cell cycle dynamics, and osteogenic differentiation by administering CDK14 siRNA and the covalent inhibitor FMF-04-159-2. Furthermore, we examined the interaction between IGF2BP2 and CDK14. Finally, we validated the regulatory role of CDK14 on the Wnt/β-catenin pathway. KEY FINDINGS Our findings demonstrate a time-dependent CDK14 expression patterns during osteogenic differentiation of MC3T3-E1 cell line, with an initial increase followed by gradual decline over time. Notably, CDK14 expression exhibited significant reduction in bone tissue of postmenopausal osteoporosis mouse model. CDK14 inhibition altered osteoblast cell cycle dynamics, significantly reduced cellular proliferation capacity, and impaired osteogenic differentiation ability. IGF2BP2 interacted with CDK14 mRNA, and stabilizing mRNA's structure and inhibiting its degradation. Additionally, CDK14 facilitated Low-density lipoprotein receptor-related protein 6 (LRP6) and Glycogen synthase kinase 3β (GSK3β) phosphorylation, thus regulating β-catenin levels. SIGNIFICANCE These findings provide further insight into the molecular mechanisms governing osteoblast proliferation, differentiation and osteoporosis.
Collapse
Affiliation(s)
- Zimo Zhou
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Zhuoru Jin
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Yicheng Tian
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Chenghao Huangfu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Zheng Fan
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Da Liu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
11
|
Ji W, Du G, Jiang J, Lu W, Mills CE, Yuan L, Jiang F, He Z, Bradshaw GA, Chung M, Jiang Z, Byun WS, Hinshaw SM, Zhang T, Gray NS. Discovery of bivalent small molecule degraders of cyclin-dependent kinase 7 (CDK7). Eur J Med Chem 2024; 276:116613. [PMID: 39004018 PMCID: PMC11316633 DOI: 10.1016/j.ejmech.2024.116613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Cyclin-dependent kinase 7, along with cyclin H and MAT1, forms the CDK-activating complex (CAK), which directs cell cycle progression via T-loop phosphorylation of cell cycle CDKs. Pharmacological inhibition of CDK7 leads to selective anti-cancer effects in cellular and in vivo models, motivating several ongoing clinical investigations of this target. Current CDK7 inhibitors are either reversible or covalent inhibitors of its catalytic activity. We hypothesized that small molecule targeted protein degradation (TPD) might result in differentiated pharmacology due to the loss of scaffolding functions. Here, we report the design and characterization of a potent CDK7 degrader that is comprised of an ATP-competitive CDK7 binder linked to a CRL2VHL recruiter. JWZ-5-13 effectively degrades CDK7 in multiple cancer cells and leads to a potent inhibition of cell proliferation. Additionally, compound JWZ-5-13 displayed bioavailability in a pharmacokinetic study conducted in mice. Therefore, JWZ-5-13 is a useful chemical probe to investigate the pharmacological consequences of CDK7 degradation.
Collapse
Affiliation(s)
- Wenzhi Ji
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Guangyan Du
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Wenchao Lu
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Caitlin E Mills
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Linjie Yuan
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Fen Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gary A Bradshaw
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Mirra Chung
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Zixuan Jiang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Tinghu Zhang
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, Chem-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
12
|
Abdel-Mohsen HT, Syam YM, Abd El-Ghany MS, Abd El-Karim SS. Benzimidazole-oxindole hybrids: A novel class of selective dual CDK2 and GSK-3β inhibitors of potent anticancer activity. Arch Pharm (Weinheim) 2024; 357:e2300721. [PMID: 39041665 DOI: 10.1002/ardp.202300721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024]
Abstract
A new series of benzimidazole-oxindole hybrids 8a-x was discovered as dual cyclin-dependent kinase (CDK2) and glycogen synthase kinase-3-beta (GSK-3β) inhibitors with potent anticancer activity. The synthesized hits displayed potent anticancer activity against national cancer institute cancer cell lines in single-dose and five-dose assays. Moreover, the derivatives 8k, 8l, 8n, 8o, and 8p demonstrated potent cytotoxic activity against PANC-1 cells with IC50 = 1.88-2.79 µM. In addition, the hybrids 8l, 8n, 8o, and 8p displayed potent antiproliferative activity on the MG-63 cell line (IC50 = 0.99-1.90 µM). Concurrently, the benzimidazole-oxindole hybrid 8v exhibited potent dual CDK2/GSK-3β inhibitory activity with IC50 values of 0.04 and 0.021 µM, respectively. In addition, 8v displayed more than 10-fold higher selectivity toward CDK2 and GSK-3 β over CDK1, CDK5, GSK-3α, vascular endothelial growth factor receptor-2, and B-rapidly accelerated fibrosarcoma. Screening of the effect of 8n and 8v on the cell cycle and apoptosis of PANC-1 and MG-63 cells displayed their ability to arrest their cell cycle at the G2-M phase and to potentiate the apoptosis of both cell lines. In silico docking of the benzimidazole-oxindole hybrid 8v into the catalytic pocket of both CDK2 and GSK-3β revealed its perfect fitting through the formation of hydrogen bonding and hydrophobic interactions with the key amino acids in the binding sites. In addition, in silico absorption, distribution, metabolism, excretion studies proved that 8a-x exhibit satisfactory drug-likeness properties for drug development.
Collapse
Affiliation(s)
- Heba T Abdel-Mohsen
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | | | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
13
|
Díaz-Tejeiro C, Arenas-Moreira M, Sanvicente A, Paniagua-Herranz L, Clemente-Casares P, Bravo I, Alonso-Moreno C, Nieto-Jiménez C, Ocaña A. Antitumoral activity of a CDK12 inhibitor in colorectal cancer through a liposomal formulation. Biomed Pharmacother 2024; 178:117165. [PMID: 39059354 DOI: 10.1016/j.biopha.2024.117165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/04/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide. Recent experiments suggest that CDK12 can be a good therapeutic target in CRC, and therefore, novel inhibitors targeting this protein are currently in preclinical development. Lipid-based formulations of chemical entities have demonstrated the ability to enhance activity while improving the safety profile. In the present work, we explore the antitumor activity of a new CDK12 inhibitor (CDK12-IN-E9, CDK12i) and its lipid-based formulation (LP-CDK12i) in CRC models, to increase efficacy. SW620, SW480 and HCT116 CRC cell lines were used to evaluate the inhibitor and the liposomal formulation using MTT proliferation assay, 3D invasion cultures, flow cytometry, Western blotting and immunofluorescence experiments. Free-cholesterol liposomal formulations of CDK12i (LP-CDK12i) were obtained by solvent injection method and fully characterized by size, shape, polydispersity, encapsulation efficiency, and release profile and stability assessments. LP-CDK12i induced a higher antiproliferative effect compared with CDK12i as a free agent. The IC50 value was lower across all cell lines tested, leading to a reduction in cell proliferation and the formation of 3D structures. Evaluation of apoptosis revealed an increase in cell death, while biochemical studies demonstrated modifications of apoptosis and DNA damage components. In conclusion, we confirm the role of targeting CDK12 for the treatment of CRC and describe, for the first time, a liposomal formulation of a CDK12i with higher antiproliferative activity compared with the free compound.
Collapse
Affiliation(s)
- Cristina Díaz-Tejeiro
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - María Arenas-Moreira
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Albacete 02008, Spain
| | - Adrián Sanvicente
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain
| | - Lucía Paniagua-Herranz
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pilar Clemente-Casares
- Laboratorio de Virología Molecular, Centro Regional de Investigaciones Biomédicas, Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02008, Spain; Grupo de Medicina Molecular, Laboratorio de Virología Molecular, Instituto de Biomedicina (IB)), Facultad de Farmacia de Albacete, Universidad de Castilla-La Mancha, Albacete 02008, Spain
| | - Ivan Bravo
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Albacete 02008, Spain
| | - Carlos Alonso-Moreno
- Universidad de Castilla-La Mancha, Unidad nanoDrug, Facultad de Farmacia-Centro de Innovación en Química Avanzada (ORFEO-CINQA), Albacete 02008, Spain
| | - Cristina Nieto-Jiménez
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Alberto Ocaña
- Experimental Therapeutics in Cancer Unit, Instituto de Investigación Sanitaria Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Medical Oncology Department, Hospital Clínico Universitario San Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), and CIBERONC, Madrid, Spain; START Madrid-Fundación Jiménez Díaz (FJD) Early Phase Program, Fundación Jiménez Díaz Hospital, Madrid, Spain.
| |
Collapse
|
14
|
Zhang W, Liu Y, Jang H, Nussinov R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 2024; 32:1269-1280.e2. [PMID: 38703777 PMCID: PMC11316634 DOI: 10.1016/j.str.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
15
|
Walker RL, Hornicek FJ, Duan Z. Transcriptional regulation and therapeutic potential of cyclin-dependent kinase 9 (CDK9) in sarcoma. Biochem Pharmacol 2024; 226:116342. [PMID: 38848777 DOI: 10.1016/j.bcp.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Sarcomas include various subtypes comprising two significant groups - soft tissue and bone sarcomas. Although the survival rate for some sarcoma subtypes has improved over time, the current methods of treatment remain efficaciously limited, as recurrent, and metastatic diseases remain a major obstacle. There is a need for better options and therapeutic strategies in treating sarcoma. Cyclin dependent kinase 9 (CDK9) is a transcriptional kinase and has emerged as a promising target for treating various cancers. The aberrant expression and activation of CDK9 have been observed in several sarcoma subtypes, including rhabdomyosarcoma, synovial sarcoma, osteosarcoma, Ewing sarcoma, and chordoma. Enhanced CDK9 expression has also been correlated with poorer prognosis in sarcoma patients. As a master regulator of transcription, CDK9 promotes transcription elongation by phosphorylation and releasing RNA polymerase II (RNAPII) from its promoter proximal pause. Release of RNAPII from this pause induces transcription of critical genes in the tumor cell. Overexpression and activation of CDK9 have been observed to lead to the expression of oncogenes, including MYC and MCL-1, that aid sarcoma development and progression. Inhibition of CDK9 in sarcoma has been proven to reduce these oncogenes' expression and decrease proliferation and growth in different sarcoma cells. Currently, there are several CDK9 inhibitors in preclinical and clinical investigations. This review aims to highlight the recent discovery and results on the transcriptional role and therapeutic potential of CDK9 in sarcoma.
Collapse
Affiliation(s)
- Robert L Walker
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and the University of Miami Miller School of Medicine, Papanicolaou Cancer Research Building, 1550 N.W. 10(th) Avenue, Miami, FL 33136. USA.
| |
Collapse
|
16
|
Chen SH, Chen CH, Lin HC, Yeh SA, Hwang TL, Chen PJ. Drug repurposing of cyclin-dependent kinase inhibitors for neutrophilic acute respiratory distress syndrome and psoriasis. J Adv Res 2024:S2090-1232(24)00310-2. [PMID: 39089617 DOI: 10.1016/j.jare.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Neutrophilic inflammation, characterized by dysregulated neutrophil activation, triggers a variety of inflammatory responses such as chemotactic infiltration, oxidative bursts, degranulation, neutrophil extracellular traps (NETs) formation, and delayed turnover. This type of inflammation is pivotal in the pathogenesis of acute respiratory distress syndrome (ARDS) and psoriasis. Despite current treatments, managing neutrophil-associated inflammatory symptoms remains a significant challenge. AIM OF REVIEW This review emphasizes the role of cyclin-dependent kinases (CDKs) in neutrophil activation and inflammation. It aims to highlight the therapeutic potential of repurposing CDK inhibitors to manage neutrophilic inflammation, particularly in ARDS and psoriasis. Additionally, it discusses the necessary precautions for the clinical application of these inhibitors due to potential off-target effects and the need for dose optimization. KEY SCIENTIFIC CONCEPTS OF REVIEW CDKs regulate key neutrophilic functions, including chemotactic responses, degranulation, NET formation, and apoptosis. Repurposing CDK inhibitors, originally developed for cancer treatment, shows promise in controlling neutrophilic inflammation. Clinical anticancer drugs, palbociclib and ribociclib, have demonstrated efficacy in treating neutrophilic ARDS and psoriasis by targeting off-label pathways, phosphoinositide 3-kinase (PI3K) and phosphodiesterase 4 (PDE4), respectively. While CDK inhibitors offer promising therapeutic benefits, their clinical repurposing requires careful consideration of off-target effects and dose optimization. Further exploration and clinical trials are necessary to ensure their safety and efficacy in treating inflammatory conditions.
Collapse
Affiliation(s)
- Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831301, Taiwan.
| | - Chun-Hong Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824410, Taiwan; School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Shyh-An Yeh
- Medical Physics and Informatics Laboratory of Electronic Engineering and Department of Electronic Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung 824410, Taiwan; Department of Radiation Oncology, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan; Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333324, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan; Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan.
| |
Collapse
|
17
|
Wang Z, Che S, Yu Z. PROTAC: Novel degradable approach for different targets to treat breast cancer. Eur J Pharm Sci 2024; 198:106793. [PMID: 38740076 DOI: 10.1016/j.ejps.2024.106793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The revolutionary Proteolysis Targeting Chimera (PROTACs) have the exciting potential to reshape the pharmaceutical industry landscape by leveraging the ubiquitin-proteasome system for targeted protein degradation. Breast cancer, the most prevalent cancer in women, could be treated using PROTAC therapy. Although substantial work has been conducted, there is not yet a comprehensive overview or progress update on PROTAC therapy for breast cancer. Hence, in this article, we've compiled recent research progress focusing on different breast cancer target proteins, such as estrogen receptor (ER), BET, CDK, HER2, PARP, EZH2, etc. This resource aims to serve as a guide for future PROTAC-based breast cancer treatment design.
Collapse
Affiliation(s)
- Zhenjie Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Office of Drug Clinical Trials, The People's Hospital of Gaozhou, Maoming, 525200, PR China
| | - Siyao Che
- Hepatological Surgery Department, The People's Hospital of Gaozhou, Maoming, 525200, PR China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine, Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523018, PR China.
| |
Collapse
|
18
|
Karimbayli J, Pellarin I, Belletti B, Baldassarre G. Insights into the structural and functional activities of forgotten Kinases: PCTAIREs CDKs. Mol Cancer 2024; 23:135. [PMID: 38951876 PMCID: PMC11218289 DOI: 10.1186/s12943-024-02043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/12/2024] [Indexed: 07/03/2024] Open
Abstract
In cells, signal transduction heavily relies on the intricate regulation of protein kinases, which provide the fundamental framework for modulating most signaling pathways. Dysregulation of kinase activity has been implicated in numerous pathological conditions, particularly in cancer. The druggable nature of most kinases positions them into a focal point during the process of drug development. However, a significant challenge persists, as the role and biological function of nearly one third of human kinases remains largely unknown.Within this diverse landscape, cyclin-dependent kinases (CDKs) emerge as an intriguing molecular subgroup. In human, this kinase family encompasses 21 members, involved in several key biological processes. Remarkably, 13 of these CDKs belong to the category of understudied kinases, and only 5 having undergone broad investigation to date. This knowledge gap underscores the pressing need to delve into the study of these kinases, starting with a comprehensive review of the less-explored ones.Here, we will focus on the PCTAIRE subfamily of CDKs, which includes CDK16, CDK17, and CDK18, arguably among the most understudied CDKs members. To contextualize PCTAIREs within the spectrum of human pathophysiology, we conducted an exhaustive review of the existing literature and examined available databases. This approach resulted in an articulate depiction of these PCTAIREs, encompassing their expression patterns, 3D configurations, mechanisms of activation, and potential functions in normal tissues and in cancer.We propose that this effort offers the possibility of identifying promising areas of future research that extend from basic research to potential clinical and therapeutic applications.
Collapse
Affiliation(s)
- Javad Karimbayli
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy
| | - Ilenia Pellarin
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico (CRO) of Aviano, IRCCS, National Cancer Institute, Via Franco Gallini, Aviano, 33081, Italy.
| |
Collapse
|
19
|
Royet C, Diot S, Onofre M, Lecki L, Pastore M, Reynes C, Lorcy F, Lacheretzszablewski V, Serre I, Morris MC. Multiplexed Profiling of CDK Kinase Activities in Tumor Biopsies with Fluorescent Peptide Biosensors. ACS Sens 2024; 9:2964-2978. [PMID: 38863434 DOI: 10.1021/acssensors.4c00139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Detection of disease biomarkers constitutes a major challenge for the development of personalized and predictive diagnostics as well as companion assays. Protein kinases (PKs) involved in the coordination of cell cycle progression and proliferation that are hyperactivated in human cancers constitute attractive pharmacological targets and relevant biomarkers. Although it is relatively straightforward to assess the relative abundance of PKs in a biological sample, there is not always a direct correlation with enzymatic activity, which is regulated by several posttranslational mechanisms. Studies of relative abundance therefore convey limited information, and the lack of selective, sensitive, and standardized tools together with the inherent complexity of biological samples makes it difficult to quantify PK activities in physio-pathological tissues. To address this challenge, we have developed a toolbox of fluorescent biosensors that report on CDK activities in a sensitive, selective, dose-dependent, and quantitative fashion, which we have implemented to profile CDK activity signatures in cancer cell lines and biopsies from human tumors. In this study, we report on a standardized and calibrated biosensing approach to quantify CDK1,2,4, and 6 activities simultaneously through a combination of four different biosensors in a panel of 40 lung adenocarcinoma and 40 follicular lymphoma samples. CDK activity profiling highlighted two major patterns which were further correlated with age, sex of patients, tumor size, grade, and genetic and immunohistochemical features of the biopsies. Multiplex CDKACT biosensing technology provides new and complementary information relative to current genetic and immunohistochemical characterization of tumor biopsies, which will be useful for diagnostic purposes, potentially guiding therapeutic decision. These fluorescent peptide biosensors offer promise for personalized diagnostics based on kinase activity profiling.
Collapse
Affiliation(s)
- Chloé Royet
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Sébastien Diot
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Mélanie Onofre
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Lennard Lecki
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| | - Manuela Pastore
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Christelle Reynes
- StatABio Facility─Biocampus, UAR 3426 CNRS─US 09 INSERM, Montpellier University, 141 rue de la Cardonille, 34094 Montpellier Cedex 05, France
| | - Frederique Lorcy
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | | | - Isabelle Serre
- University Hospital Centre Montpellier, 80 Av. Augustin Fliche, 34295 Montpellier, France
| | - May C Morris
- Institut des Biomolécules Max Mousseron, CNRS, UMR 5247, Montpellier University, 1919 Route de Mende, 34293 Montpellier, France
| |
Collapse
|
20
|
Wu Q, Lu M, Ouyang H, Zhou T, Lei J, Wang P, Wang W. CDKL3 is a promising biomarker for diagnosis and prognosis prediction in patients with hepatocellular carcinoma. Exp Biol Med (Maywood) 2024; 249:10106. [PMID: 38993199 PMCID: PMC11237920 DOI: 10.3389/ebm.2024.10106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 07/13/2024] Open
Abstract
Cyclin-dependent kinase-like 3 (CDKL3) has been identified as an oncogene in certain types of tumors. Nonetheless, its function in hepatocellular carcinoma (HCC) is poorly understood. In this study, we conducted a comprehensive analysis of CDKL3 based on data from the HCC cohort of The Cancer Genome Atlas (TCGA). Our analysis included gene expression, diagnosis, prognosis, functional enrichment, tumor microenvironment and metabolic characteristics, tumor burden, mRNA expression-based stemness, alternative splicing, and prediction of therapy response. Additionally, we performed a cell counting kit-8 assay, TdT-mediated dUTP nick-end Labeling staining, migration assay, wound healing assay, colony formation assay, and nude mouse experiments to confirm the functional relevance of CDKL3 in HCC. Our findings showed that CDKL3 was significantly upregulated in HCC patients compared to controls. Various bioinformatic analyses suggested that CDKL3 could serve as a potential marker for HCC diagnosis and prognosis. Furthermore, CDKL3 was found to be involved in various mechanisms linked to the development of HCC, including copy number variation, tumor burden, genomic heterogeneity, cancer stemness, and alternative splicing of CDKL3. Notably, CDKL3 was also closely correlated with tumor immune cell infiltration and the expression of immune checkpoint markers. Additionally, CDKL3 was shown to independently function as a risk predictor for overall survival in HCC patients by multivariate Cox regression analysis. Furthermore, the knockdown of CDKL3 significantly inhibited cell proliferation in vitro and in vivo, indicating its role as an oncogene in HCC. Taken together, our findings suggest that CDKL3 shows promise as a biomarker for the detection and treatment outcome prediction of HCC patients.
Collapse
Affiliation(s)
- Qingsi Wu
- Department of Blood Transfusion, Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Microbiology and Parasitology, Hefei, Anhui, China
| | - Mengran Lu
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui, China
| | - Huijuan Ouyang
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui, China
| | - Tingting Zhou
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui, China
| | - Jingyuan Lei
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui, China
| | - Panpan Wang
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui, China
| | - Wei Wang
- Department of Gastroenterology, Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
21
|
Schmitt L, Hoppe J, Cea-Medina P, Bruch PM, Krings KS, Lechtenberg I, Drießen D, Peter C, Bhatia S, Dietrich S, Stork B, Fritz G, Gohlke H, Müller TJJ, Wesselborg S. Novel meriolin derivatives potently inhibit cell cycle progression and transcription in leukemia and lymphoma cells via inhibition of cyclin-dependent kinases (CDKs). Cell Death Discov 2024; 10:279. [PMID: 38862521 PMCID: PMC11167047 DOI: 10.1038/s41420-024-02056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
A key feature of cancer is the disruption of cell cycle regulation, which is characterized by the selective and abnormal activation of cyclin-dependent kinases (CDKs). Consequently, targeting CDKs via meriolins represents an attractive therapeutic approach for cancer therapy. Meriolins represent a semisynthetic compound class derived from meridianins and variolins with a known CDK inhibitory potential. Here, we analyzed the two novel derivatives meriolin 16 and meriolin 36 in comparison to other potent CDK inhibitors and could show that they displayed a high cytotoxic potential in different lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells. In a kinome screen, we showed that meriolin 16 and 36 prevalently inhibited most of the CDKs (such as CDK1, 2, 3, 5, 7, 8, 9, 12, 13, 16, 17, 18, 19, 20). In drug-to-target modeling studies, we predicted a common binding mode of meriolin 16 and 36 to the ATP-pocket of CDK2 and an additional flipped binding for meriolin 36. We could show that cell cycle progression and proliferation were blocked by abolishing phosphorylation of retinoblastoma protein (a major target of CDK2) at Ser612 and Thr82. Moreover, meriolin 16 prevented the CDK9-mediated phosphorylation of RNA polymerase II at Ser2 which is crucial for transcription initiation. This renders both meriolin derivatives as valuable anticancer drugs as they target three different Achilles' heels of the tumor: (1) inhibition of cell cycle progression and proliferation, (2) prevention of transcription, and (3) induction of cell death.
Collapse
Affiliation(s)
- Laura Schmitt
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Julia Hoppe
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Pablo Cea-Medina
- Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Peter-Martin Bruch
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Karina S Krings
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ilka Lechtenberg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Daniel Drießen
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christoph Peter
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sanil Bhatia
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Sascha Dietrich
- Department of Hematology, Oncology and Clinical Immunology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Department of Medicine V, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany
| | - Björn Stork
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Center (JSC) and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Thomas J J Müller
- Institute of Organic Chemistry and Macromolecular Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institute for Molecular Medicine I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIO ABCD), Düsseldorf, Germany.
| |
Collapse
|
22
|
Song X, Fang C, Dai Y, Sun Y, Qiu C, Lin X, Xu R. Cyclin-dependent kinase 7 (CDK7) inhibitors as a novel therapeutic strategy for different molecular types of breast cancer. Br J Cancer 2024; 130:1239-1248. [PMID: 38355840 PMCID: PMC11014910 DOI: 10.1038/s41416-024-02589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.
Collapse
Affiliation(s)
- Xue Song
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chen Fang
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yan Dai
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Yang Sun
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Chang Qiu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Xiaojie Lin
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China
| | - Rui Xu
- Department of Breast Cancer, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
23
|
Cicenas J, Simkus J. CDK Inhibitors and FDA: Approved and Orphan. Cancers (Basel) 2024; 16:1555. [PMID: 38672637 PMCID: PMC11049492 DOI: 10.3390/cancers16081555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The protein kinases are a large family of enzymes which catalyze protein phosphorylation at certain amino acids [...].
Collapse
Affiliation(s)
- Jonas Cicenas
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland;
- Secondary School “Varnų sala”, Baltupio g. 14, LT-08304 Vilnius, Lithuania
| | - Jokubas Simkus
- MAP Kinase Resource, Bioinformatics, Melchiorstrasse 9, CH-3027 Bern, Switzerland;
- Faculty of Medicine, Vilnius University, LT-01513 Vilnius, Lithuania
| |
Collapse
|
24
|
Christofidou ED, Tomazou M, Voutouri C, Michael C, Stylianopoulos T, Spyrou GM, Strati K. Oct4 is a gatekeeper of epithelial identity by regulating cytoskeletal organization in skin keratinocytes. Cell Rep 2024; 43:113859. [PMID: 38421873 DOI: 10.1016/j.celrep.2024.113859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/05/2023] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
Oct4 is a pioneer transcription factor regulating pluripotency. However, it is not well known whether Oct4 has an impact on epidermal cells. We generated OCT4 knockout clonal cell lines using immortalized human skin keratinocytes to identify a functional role for the protein. Here, we report that Oct4-deficient cells transitioned into a mesenchymal-like phenotype with enlarged size and shape, exhibited accelerated migratory behavior, decreased adhesion, and appeared arrested at the G2/M cell cycle checkpoint. Oct4 absence had a profound impact on cortical actin organization, with loss of microfilaments from the cell membrane, increased puncta deposition in the cytoplasm, and stress fiber formation. E-cadherin, β-catenin, and ZO1 were almost absent from cell-cell contacts, while fibronectin deposition was markedly increased in the extracellular matrix (ECM). Mapping of the transcriptional and chromatin profiles of Oct4-deficient cells revealed that Oct4 controls the levels of cytoskeletal, ECM, and differentiation-related genes, whereas epithelial identity is preserved through transcriptional and non-transcriptional mechanisms.
Collapse
Affiliation(s)
| | - Marios Tomazou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Chrysovalantis Voutouri
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Christina Michael
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia 2109, Cyprus
| | - George M Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Katerina Strati
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus.
| |
Collapse
|
25
|
Li Z, Xue H, Li J, Zheng Z, Liu Z, Dong X, Wang H, Chen J, Xu S. CDKL1 potentiates the antitumor efficacy of radioimmunotherapy by binding to transcription factor YBX1 and blocking PD-L1 expression in lung cancer. J Exp Clin Cancer Res 2024; 43:89. [PMID: 38520004 PMCID: PMC10958935 DOI: 10.1186/s13046-024-03007-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The evasion of the immune response by tumor cells through programmed death-ligand 1 (PD-L1) has been identified as a factor contributing to resistance to radioimmunotherapy in lung cancer patients. However, the precise molecular mechanisms underlying the regulation of PD-L1 remain incompletely understood. This study aimed to investigate the role of cyclin-dependent kinase-like 1 (CDKL1) in the modulation of PD-L1 expression and the response to radioimmunotherapy in lung cancer. METHODS The tumorigenic roles of CDKL1 were assessed via cell growth, colony formation, and EdU assays and an in vivo nude mouse xenograft model. The in vitro radiosensitization effect of CDKL1 was evaluated using a neutral comet assay, γH2AX foci formation analysis, and a clonogenic cell survival assay. The protein‒protein interactions were confirmed via coimmunoprecipitation and GST pulldown assays. The regulation of PD-L1 by CDKL1 was evaluated via chromatin immunoprecipitation (ChIP), real-time quantitative PCR, and flow cytometry analysis. An in vitro conditioned culture model and an in vivo C57BL/6J mouse xenograft model were developed to detect the activation markers of CD8+ T cells and evaluate the efficacy of CDKL1 overexpression combined with radiotherapy (RT) and an anti-PD-L1 antibody in treating lung cancer. RESULTS CDKL1 was downregulated and suppressed the growth and proliferation of lung cancer cells and increased radiosensitivity in vitro and in vivo. Mechanistically, CDKL1 interacted with the transcription factor YBX1 and decreased the binding affinity of YBX1 for the PD-L1 gene promoter, which consequently inhibits the expression of PD-L1, ultimately leading to the activation of CD8+ T cells and the inhibition of immune evasion in lung cancer. Moreover, the combination of CDKL1 overexpression, RT, and anti-PD-L1 antibody therapy exhibited the most potent antitumor efficacy against lung cancer. CONCLUSIONS Our findings demonstrate that CDKL1 plays a crucial role in regulating PD-L1 expression, thereby enhancing the antitumor effects of radioimmunotherapy. These results suggest that CDKL1 may be a promising therapeutic target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Zixuan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Huichan Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jinsong Li
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhikun Zheng
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Hongbo Wang
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, China
| | - Jing Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China.
- Clinical Research Center of Cancer Immunotherapy, Wuhan, 430022, China.
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
26
|
Zhao Y, Yang Y, Wu X, Zhang L, Cai X, Ji J, Chen S, Vera A, Boström KI, Yao Y. CDK1 inhibition reduces osteogenesis in endothelial cells in vascular calcification. JCI Insight 2024; 9:e176065. [PMID: 38456502 PMCID: PMC10972591 DOI: 10.1172/jci.insight.176065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/19/2024] [Indexed: 03/09/2024] Open
Abstract
Vascular calcification is a severe complication of cardiovascular diseases. Previous studies demonstrated that endothelial lineage cells transitioned into osteoblast-like cells and contributed to vascular calcification. Here, we found that inhibition of cyclin-dependent kinase (CDK) prevented endothelial lineage cells from transitioning to osteoblast-like cells and reduced vascular calcification. We identified a robust induction of CDK1 in endothelial cells (ECs) in calcified arteries and showed that EC-specific gene deletion of CDK1 decreased the calcification. We found that limiting CDK1 induced E-twenty-six specific sequence variant 2 (ETV2), which was responsible for blocking endothelial lineage cells from undergoing osteoblast differentiation. We also found that inhibition of CDK1 reduced vascular calcification in a diabetic mouse model. Together, the results highlight the importance of CDK1 suppression and suggest CDK1 inhibition as a potential option for treating vascular calcification.
Collapse
Affiliation(s)
- Yan Zhao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Yang Yang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xiuju Wu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Li Zhang
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Xinjiang Cai
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Jaden Ji
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Sydney Chen
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Abigail Vera
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Kristina I. Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- The Molecular Biology Institute at UCLA, Los Angeles, California, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| |
Collapse
|
27
|
Doghish AS, Elshaer SS, Fathi D, Rizk NI, Elrebehy MA, Al-Noshokaty TM, Elballal MS, Abdelmaksoud NM, Abdel-Reheim MA, Abdel Mageed SS, Zaki MB, Mohammed OA, Tabaa MME, Elballal AS, Saber S, El-Husseiny HM, Abulsoud AI. Unraveling the role of miRNAs in the diagnosis, progression, and drug resistance of oral cancer. Pathol Res Pract 2024; 253:155027. [PMID: 38101159 DOI: 10.1016/j.prp.2023.155027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11823, Egypt
| | - Doaa Fathi
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Nehal I Rizk
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | | | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni, Suef 62521, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt
| | - Ahmed S Elballal
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Cairo University, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| |
Collapse
|
28
|
Yang Y, Liu P, Zhou M, Yin L, Wang M, Liu T, Jiang X, Gao H. Small-molecule drugs of colorectal cancer: Current status and future directions. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166880. [PMID: 37696461 DOI: 10.1016/j.bbadis.2023.166880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the world's fourth most deadly cancer. CRC, as a genetic susceptible disease, faces significant challenges in optimizing prognosis through optimal drug treatment modalities. In recent decades, the development of innovative small-molecule drugs is expected to provide targeted interventions that accurately address the different molecular characteristics of CRC. Although the clinical application of single-target drugs is limited by the heterogeneity and high metastasis of CRC, novel small-molecule drug treatment strategies such as dual/multiple-target drugs, drug repurposing, and combination therapies can help overcome these challenges and provide new insights for improving CRC treatment. In this review, we focus on the current status of a range of small molecule drugs that are being considered for CRC therapy, including single-target drugs, dual/multiple-target drugs, drug repurposing and combination strategies, which will pave the way for targeting CRC vulnerabilities with small-molecule drugs in future personalized treatment.
Collapse
Affiliation(s)
- Yiren Yang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Pengyu Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Mingyang Zhou
- University of Pennsylvania, Philadelphia, PA 19104-6323, United States
| | - Linzhou Yin
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Miao Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ting Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xiaowen Jiang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Huiyuan Gao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| |
Collapse
|
29
|
Zhang X, Zhao Y, Yiminniyaze R, Zhu N, Zhang Y, Wumaier G, Xia J, Dong L, Zhou D, Wang J, Li C, Zhang Y, Li S. CDK10 suppresses metastasis of lung adenocarcinoma through inhibition of the ETS2/c-Raf/p-MEK/p-ERK signaling loop. Mol Carcinog 2024; 63:61-74. [PMID: 37737453 DOI: 10.1002/mc.23636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/23/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023]
Abstract
The repertoire of aberrant signaling underlying the pathogenesis of lung adenocarcinoma remains largely uncharacterized, which precludes an efficient therapy for these patients, especially when distant metastasis occurs. Cyclin-dependent kinase 10 (CDK10) has been reported to modulate the progression of malignant tumors; however, contradictory effects have been found among different types of malignant tumors. In the present study, we found that CDK10 was downregulated in lung adenocarcinoma compared with the paired adjacent normal lung tissue, and lower expression level of CDK10 was associated with more frequent N2 staged lymph node and distant metastasis, higher TNM stage, and shorter overall survival. Further study indicated that CDK10 inhibited the migration and invasion abilities with no impact on the proliferation of lung adenocarcinoma cells. Mechanistically, CDK10 could bind to and promote the degradation of ETS2, a transcription factor for C-RAF and MMP2/9, thereby inactivating the downstream c-Raf/p-MEK/p-ERK pathway that drives epithelial-mesenchymal transition and impairing the expression of matrix metalloproteinases involved in cell invasion. In addition, the p-MEK/p-ERK pathway conducts a positive feedback regulation on the expression of ETS2. Knockdown of CDK10 in human lung adenocarcinoma cells significantly promoted the formation of metastatic foci in lungs in a xenograft mouse model. In conclusion, CDK10 suppresses metastasis of lung adenocarcinoma by disrupting the ETS2/c-Raf/p-MEK/p-ERK/ETS2 signaling and MMP2/9, providing a new therapeutic target for the treatment of lung adenocarcinoma with metastasis.
Collapse
Affiliation(s)
- Xiujuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Zhao
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruzetuoheti Yiminniyaze
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ning Zhu
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuanyuan Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gulinuer Wumaier
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingwen Xia
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Liang Dong
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Daibing Zhou
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Wang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Chengwei Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Youzhi Zhang
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Shengqing Li
- Department of Pulmonary and Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Potapova TA, Unruh JR, Conkright-Fincham J, Banks CAS, Florens L, Schneider DA, Gerton JL. Distinct states of nucleolar stress induced by anticancer drugs. eLife 2023; 12:RP88799. [PMID: 38099650 PMCID: PMC10723795 DOI: 10.7554/elife.88799] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Abstract
Ribosome biogenesis is a vital and highly energy-consuming cellular function occurring primarily in the nucleolus. Cancer cells have an elevated demand for ribosomes to sustain continuous proliferation. This study evaluated the impact of existing anticancer drugs on the nucleolus by screening a library of anticancer compounds for drugs that induce nucleolar stress. For a readout, a novel parameter termed 'nucleolar normality score' was developed that measures the ratio of the fibrillar center and granular component proteins in the nucleolus and nucleoplasm. Multiple classes of drugs were found to induce nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Each class of drugs induced morphologically and molecularly distinct states of nucleolar stress accompanied by changes in nucleolar biophysical properties. In-depth characterization focused on the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that regulates RNA Pol II. Multiple CDK substrates were identified in the nucleolus, including RNA Pol I- recruiting protein Treacle, which was phosphorylated by CDK9 in vitro. These results revealed a concerted regulation of RNA Pol I and Pol II by transcriptional CDKs. Our findings exposed many classes of chemotherapy compounds that are capable of inducing nucleolar stress, and we recommend considering this in anticancer drug development.
Collapse
Affiliation(s)
| | - Jay R Unruh
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | | | - David Alan Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Jennifer L Gerton
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Biochemistry and Molecular Biology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
31
|
Dai Y, Hu C, Zhou H, Liu W, Lai W, Xu R, Liao J, Wang J, Li G, Zhang R. Rucaparib inhibits lung adenocarcinoma cell proliferation and migration via the SHCBP1/CDK1 pathway. FEBS J 2023; 290:5720-5743. [PMID: 37581853 DOI: 10.1111/febs.16933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 06/17/2023] [Accepted: 07/14/2023] [Indexed: 08/16/2023]
Abstract
Src homolog and collagen homolog binding protein 1 (SHCBP1) binds to the SH2 domain of SHC-transforming protein 1 (SHC1) and is involved in midbody organization and cytokinesis completion. SHCBP1 has been reported to be a cancer driver gene, promoting cancer progression. However, the functional role and underlying mechanism of SHCBP1 in regulating lung adenocarcinoma (LUAD) cell proliferation and migration are incompletely understood. Here, we discovered that SHCBP1 is overexpressed in LUAD tissues and is associated with a poor prognosis. SHCBP1 knockdown inhibited LUAD cell proliferation and migration by arresting the cell cycle and preventing epithelial-mesenchymal transition (EMT) via decreasing cyclin-dependent kinase 1 (CDK1) expression. Mechanistically, CDK1 overexpression reversed SHCBP1 knockdown-induced inhibition of proliferation and migration, confirming CDK1 as a key downstream target of SHCBP1. In addition, we proposed that rucaparib may be a small-molecule inhibitor of SHCBP1 and validated both in vitro and in vivo that rucaparib inhibits cell proliferation and migration via suppression of the SHCBP1/CDK1 pathway in LUAD. Our study elucidates a newly identified role of SHCBP1 in promoting cell proliferation and migration in LUAD, and suggests rucaparib as a potential inhibitor for LUAD treatment.
Collapse
Affiliation(s)
- Yue Dai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Huyue Zhou
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wuyi Liu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Wenjing Lai
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rufu Xu
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiaxing Liao
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jie Wang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
32
|
Frigault MM, Mithal A, Wong H, Stelte-Ludwig B, Mandava V, Huang X, Birkett J, Johnson AJ, Izumi R, Hamdy A. Enitociclib, a Selective CDK9 Inhibitor, Induces Complete Regression of MYC+ Lymphoma by Downregulation of RNA Polymerase II Mediated Transcription. CANCER RESEARCH COMMUNICATIONS 2023; 3:2268-2279. [PMID: 37882668 PMCID: PMC10634346 DOI: 10.1158/2767-9764.crc-23-0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023]
Abstract
Double-hit diffuse large B-cell lymphoma (DH-DLBCL) is an aggressive, and often refractory, type of B-cell non-Hodgkin lymphoma (NHL) characterized by rearrangements in MYC and BCL2. Cyclin-dependent kinase 9 (CDK9) regulates transcriptional elongation and activation of transcription factors, including MYC, making it a potential targeted approach for the treatment of MYC+ lymphomas. Enitociclib is a well-tolerated and clinically active CDK9 inhibitor leading to complete metabolic remissions in 2 of 7 patients with DH-DLBCL treated with once weekly 30 mg intravenous administration. Herein, we investigate the pharmacodynamic effect of CDK9 inhibition in preclinical models and in blood samples from patients [DH-DLBCL (n = 10) and MYC+ NHL (n = 5)] treated with 30 mg i.v. once weekly enitociclib. Enitociclib shows significant regulation of RNA polymerase II Ser2 phosphorylation in a MYC-amplified SU-DHL-4 cell line and depletion of MYC and antiapoptosis protein MCL1 in SU-DHL-4 and MYC-overexpressing SU-DHL-10 cell lines in vitro. Tumor growth inhibition reaching 0.5% of control treated SU-DHL-10 xenografts is achieved in vivo and MYC and MCL1 depletion as well as evidence of apoptosis activation after enitociclib treatment is demonstrated. An unbiased analysis of the genes affected by CDK9 inhibition in both cell lines demonstrates that RNA polymerase II and transcription pathways are primarily affected and novel enitociclib targets such as PHF23 and TP53RK are discovered. These findings are recapitulated in blood samples from enitociclib-treated patients; while MYC downregulation is most robust with enitociclib treatment, other CDK9-regulated targets may be MYC independent delivering a transcriptional downregulation via RNA polymerase II. SIGNIFICANCE MYC+ lymphomas are refractory to standard of care and novel treatments that downregulate MYC are needed. The utility of enitociclib, a selective CDK9 inhibitor in this patient population, is demonstrated in preclinical models and patients. Enitociclib inhibits RNA polymerase II function conferring a transcriptional shift and depletion of MYC and MCL1. Enitociclib intermittent dosing downregulates transcription factors including MYC, providing a therapeutic window for durable responses in patients with MYC+ lymphoma.
Collapse
Affiliation(s)
| | | | | | | | | | - Xin Huang
- Vincerx Pharma, Inc., Palo Alto, California
| | | | | | | | | |
Collapse
|
33
|
Yang LR, Li L, Meng MY, Li TT, Zhao YY, Yang SL, Gao H, Tang WW, Yang Y, Yang LL, Wang WJ, Liao LW, Hou ZL. IL-7 promotes CD19-directed CAR-T cells proliferation through miRNA-98-5p by targeting CDKN1A. Int Immunopharmacol 2023; 124:110974. [PMID: 37757633 DOI: 10.1016/j.intimp.2023.110974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
CAR-T targeting CD19 have achieved significant effects in the treatment of B-line leukemia and lymphoma. However, the treated patients frequently relapsed and could not achieve complete remission. Therefore, improving the proliferation and cytotoxicity of CAR-T cells, reducing exhaustion and enhancing infiltration capacity are still issues to be solved. The IL-7 has been shown to enhance the memory characteristics of CAR-T cells, but the specific mechanism has yet to be elaborated. miRNAs play an important role in T cell activity. However, whether miRNA is involved in the activation of CAR-T cells by IL-7 has not yet been reported. Our previous study had established the 3rd generation CAR-T cells. The present study further found that IL-7 significantly increased the proliferation of anti-CD19 CAR-T cells, the ratio of CD4 + CAR + cells and the S phase of cell cycle. In vivo study NAMALWA xenograft model showed that IL-7-stimulated CAR-T cells possessed stronger tumoricidal efficiency. Further we validated that IL-7 induced CAR-T cells had low expression of CDKN1A and high expression of miRNA-98-5p. Additionally, CDKN1A was associated with miRNA-98-5p. Our results, for the first time, suggested IL-7 could conspicuously enhance the proliferation of CAR-T cells through miRNA-98-5p targeting CDKN1A expression, which should be applied to CAR-T production.
Collapse
Affiliation(s)
- Li-Rong Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Department of Oncology, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Lin Li
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China
| | - Ming-Yao Meng
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China
| | - Tian-Tian Li
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Kunming Medical University, Kunming, Yunnan Province, China
| | - Yi-Yi Zhao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China
| | - Song-Lin Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Kunming Medical University, Kunming, Yunnan Province, China
| | - Hui Gao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China
| | - Wei-Wei Tang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China
| | - Yang Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Kunming Medical University, Kunming, Yunnan Province, China
| | - Li-Li Yang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Kunming Medical University, Kunming, Yunnan Province, China
| | - Wen-Ju Wang
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China
| | - Li-Wei Liao
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China.
| | - Zong-Liu Hou
- Central Laboratory of Yan'an Hospital Affiliated to Kunming Medical University, China; Key Laboratory of Tumor Immunological Prevention and Treatment, Yunnan Province, China; Yunnan Cell Biology and Clinical Translation Research Center, China.
| |
Collapse
|
34
|
Dai S, Li F, Xu S, Hu J, Gao L. The important role of miR-1-3p in cancers. J Transl Med 2023; 21:769. [PMID: 37907984 PMCID: PMC10617136 DOI: 10.1186/s12967-023-04649-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer is a malignant tumor that seriously threatens human life and health. At present, the main treatment methods include surgical resection, chemotherapy, radiotherapy, and immunotherapy. However, the mechanism of tumor occurrence and development is complex, and it produces resistance to some traditional treatment methods, leading to treatment failure and a high mortality rate for patients. Therefore, exploring the molecular mechanisms of tumor occurrence, development, and drug resistance is a very important task. MiRNAs are a type of non-coding small RNA that regulate a series of biological effects by binding to the 3'-UTR of the target mRNA, degrading the mRNA, or inhibiting its translation. MiR-1-3p is an important member of them, which is abnormally expressed in various tumors and closely related to the occurrence and development of tumors. This article introduces miR-1-3p from multiple aspects, including its production and regulation, role in tumor occurrence and development, clinical significance, role in drug resistance, and approaches for targeting miR-1-3p. Intended to provide readers with a comprehensive understanding of the important role of miR-1-3p in tumors.
Collapse
Affiliation(s)
- Shangming Dai
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Fengjiao Li
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Shuoguo Xu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Jinda Hu
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China
| | - Lichen Gao
- Department of Pharmacy, School of Pharmacy, Phase I Clinical Trial Centre, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang, China.
| |
Collapse
|
35
|
Xu X, Wang Y, Chen Z, Zhu Y, Wang J, Guo J. Favorable Immunotherapy Plus Tyrosine Kinase Inhibition Outcome of Renal Cell Carcinoma Patients with Low CDK5 Expression. Cancer Res Treat 2023; 55:1321-1336. [PMID: 37024096 PMCID: PMC10582544 DOI: 10.4143/crt.2022.1532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
PURPOSE Immunotherapy (IO) plus tyrosine kinase inhibitor (TKI) has become the first-line treatment for advanced renal cell carcinoma, despite the lack of prognostic biomarkers. Cyclin-dependent kinase 5 (CDK5) affects the tumor microenvironment, which may influence the efficacy of TKI+IO. MATERIALS AND METHODS Two cohorts from our center (Zhongshan Metastatic Renal Cell Carcinoma [ZS-MRCC] cohort, Zhongshan High-risk Localized Renal Cell Carcinoma [ZS-HRRCC] cohort) and one cohort from a clinical trial (JAVELIN-101) were enrolled. The expression of CDK5 of each sample was determined by RNA sequencing. Immune infiltration and T cell function were evaluated by flow cytometry and immunohistochemistry. Response and progression-free survival (PFS) were set as primary endpoints. RESULTS Patients of low CDK5 expression showed higher objective response rate (60.0% vs. 23.3%) and longer PFS in both cohorts (ZS-MRCC cohort, p=0.014; JAVELIN-101 cohort, p=0.040). CDK5 expression was enhanced in non-responders (p < 0.05). In the ZS-HRRCC cohort, CDK5 was associated with decreased tumor-infiltrating CD8+ T cells, which was proved by immunohistochemistry (p < 0.05) and flow cytometry (Spearman's ρ=-0.49, p < 0.001). In the high CDK5 subgroup, CD8+ T cells revealed a dysfunction phenotype with decreased granzyme B, and more regulatory T cells were identified. A predictive score was further constructed by random forest, involving CDK5 and T cell exhaustion features. The RFscore was also validated in both cohorts. By utilizing the model, more patients might be distinguished from the overall cohort. Additionally, only in the low RFscore did TKI+IO outperform TKI monotherapy. CONCLUSION High-CDK5 expression was associated with immunosuppression and TKI+IO resistance. RFscore based on CDK5 may be utilized as a biomarker to determine the optimal treatment strategy.
Collapse
Affiliation(s)
- Xianglai Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Ying Wang
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Zhaoyi Chen
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei,
China
| | - Yanjun Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai,
China
| |
Collapse
|
36
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
37
|
Zhang W, Liu Y, Jang H, Nussinov R. Cell cycle progression mechanisms: slower cyclin-D/CDK4 activation and faster cyclin-E/CDK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553605. [PMID: 37790340 PMCID: PMC10542123 DOI: 10.1101/2023.08.16.553605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the short G1/S phase transition. We consider the experimentally established high-level bursting of cyclin-E, and sustained duration of elevated cyclin-D expression in the cell, available experimental cellular and structural data, and comprehensive explicit solvent molecular dynamics simulations to provide the mechanistic foundation of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. Importantly, we determine the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses the compelling cell cycle regulation question and illuminates the distinct activation speeds in the G1 versus G1/S phases, which are crucial for cell function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
38
|
Chowdhury I, Dashi G, Keskitalo S. CMGC Kinases in Health and Cancer. Cancers (Basel) 2023; 15:3838. [PMID: 37568654 PMCID: PMC10417348 DOI: 10.3390/cancers15153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Iftekhar Chowdhury
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
39
|
Wang LH, Cao B, Li YL, Qiao BP. Potential prognostic and therapeutic value of ANXA8 in renal cell carcinoma: based on the comprehensive analysis of annexins family. BMC Cancer 2023; 23:674. [PMID: 37464398 PMCID: PMC10355003 DOI: 10.1186/s12885-023-11165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/08/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Annexins are a family of proteins involved in a wide variety of cellular processes such as inflammation, proliferation, differentiation, apoptosis, migration and membrane repair. However, the role of most Annexins in renal cell carcinoma (RCC) remained unclear. METHODS The differentially expressed Annexins in RCC compared with normal controls were screened applying the TCGA database. The correlation of differentially expressed Annexins with clinical stages, grades and overall survival was analyzed to explore the clinical significance of Annexins in RCC. Then ANXA8 was selected and further stained in the discover and validation RCC cohort. The correlation of ANXA8 expression with clinical parameter was verified at the protein level. To explore the potential function of ANXA8, ANXA8 was knockdown in the RCC cell line and further analyzed using transcriptome and bioinformatic analysis. RESULTS mRNA expression of ANXA1, ANXA2R, ANXA4, ANXA8, ANXA8L1 and ANXA13 were significantly upregulated in RCC compared with normal kidney tissues. In contrast, ANXA3 and ANXA9 mRNA expression was significantly downregulated. Higher expression of ANXA2R, ANXA8 and ANXA8L1 were correlated with worse overall survival, while lower expression of ANXA3, ANXA9 and ANXA13 were associated with worse clinical outcomes in RCC patients. We further demonstrated that ANXA8 expression was significantly increased in RCC compared with normal renal tissues at the protein level. And higher protein expression of ANXA8 was associated with higher clinical grades. Through the bioinformatics analysis and cell cycle analysis, we found knockdown of ANXA8 mainly influenced the cell cycle and DNA replication. The top ten hub genes consist of CDC6, CDK2, CHEK1, CCNB1, ORC1, CHEK2, MCM7, CDK1, PCNA and MCM3. CONCLUSIONS Multiple members of Annexins were abnormally expressed and associated with the prognosis of RCC. The expression of ANXA8 was significantly increased in RCC and associated with poor prognosis. ANXA8 might influence the cell cycle and could be a potential biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Li-Hui Wang
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Bo Cao
- Department of Emergency Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, China
| | - Yun-Long Li
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Bao-Ping Qiao
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| |
Collapse
|
40
|
Bai Y, Xu J, Li D, Zhang X, Chen D, Xie F, Huang L, Yu X, Zhao H, Zhang Y. HepaClear, a blood-based panel combining novel methylated CpG sites and protein markers, for the detection of early-stage hepatocellular carcinoma. Clin Epigenetics 2023; 15:99. [PMID: 37308980 DOI: 10.1186/s13148-023-01508-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/19/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Early screening and detection of hepatocellular carcinoma (HCC) can efficiently improve patient prognosis. We aimed to identify a series of hypermethylated DNA markers and develop a blood-based HCC diagnosis panel containing DNA methylation sites and protein markers with improved sensitivity for early-stage HCC detection. RESULTS Overall, 850K methylation arrays were performed using paired tissue DNA samples from 60 HCC patients. Ten candidate hypermethylated CpG sites were selected for further evaluation by quantitative methylation-specific PCR with 60 pairs of tissue samples. Six methylated CpG sites, along with α-fetoprotein (AFP) and des-gamma-carboxyprothrombin (DCP), were assayed in 150 plasma samples. Finally, an HCC diagnosis panel, named HepaClear, was developed in a cohort consisting of 296 plasma samples and validated in an independent cohort consisting of 198 plasma samples. The HepaClear panel, containing 3 hypermethylated CpG sites (cg14263942, cg12701184, and cg14570307) and 2 protein markers (AFP and DCP), yielded a sensitivity of 82.6% and a specificity of 96.2% in the training set and a sensitivity of 84.7% and a specificity of 92.0% in the validation set. The HepaClear panel had higher sensitivity (72.0%) for early-stage HCC than AFP (≥ 20 ng/mL, 48.0%) and DCP (≥ 40 mAU/mL, 62.0%) and detected 67.5% of AFP-negative HCC patients (AFP ≤ 20 ng/mL). CONCLUSIONS We developed a multimarker HCC detection panel (HepaClear) that shows high sensitivity for early-stage HCC. The HepaClear panel exhibits high potential for HCC screening and diagnosis from an at-risk population.
Collapse
Affiliation(s)
- Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Juan Xu
- Department of Infectious Diseases, Central Hospital of Shengli Oilfield, Dongying, China
| | - Deqiang Li
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Xiaoyu Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Dapeng Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Fucun Xie
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Central Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Longmei Huang
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Xiaotian Yu
- Hangzhou New Horizon Health Technology Co., Ltd, Hangzhou, China
| | - Haitao Zhao
- Department of Liver Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
41
|
Wang X, Liu R, Li S, Xia W, Guo H, Yao W, Liang X, Lu Y, Zhang H. The roles, molecular interactions, and therapeutic value of CDK16 in human cancers. Biomed Pharmacother 2023; 164:114929. [PMID: 37236028 DOI: 10.1016/j.biopha.2023.114929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinase 16 (CDK16) is an orphan "cyclin-dependent kinase" (CDK) involved in the cell cycle, vesicle trafficking, spindle orientation, skeletal myogenesis, neurite outgrowth, secretory cargo transport, spermatogenesis, glucose transportation, cell apoptosis, cell growth and proliferation, metastasis, and autophagy. Human CDK16 is located on chromosome Xp11.3 and is related to X-linked congenital diseases. CDK16 is commonly expressed in mammalian tissues and may act as an oncoprotein. It is a PCTAIRE kinase in which Cyclin Y or its homologue, Cyclin Y-like 1, regulates activity by binding to the N- and C- terminal regions of CDK16. CDK16 plays a vital role in various cancers, including lung cancer, prostate cancer, breast cancer, malignant melanoma, and hepatocellular carcinoma. CDK16 is a promising biomarker for cancer diagnosis and prognosis. In this review, we summarized and discussed the roles and mechanisms of CDK16 in human cancers.
Collapse
Affiliation(s)
- Xiao Wang
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wenjie Xia
- General Surgery, Cancer Center, Department of Breast Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People' s Hospital, Affiliated People's Hospital, Hangzhou Medical College, 310014, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
42
|
Zhai Z, Blanford JK, Cai Y, Sun J, Liu H, Shi H, Schwender J, Shanklin J. CYCLIN-DEPENDENT KINASE 8 positively regulates oil synthesis by activating WRINKLED1 transcription. THE NEW PHYTOLOGIST 2023; 238:724-736. [PMID: 36683527 DOI: 10.1111/nph.18764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
CYCLIN-DEPENDENT KINASE 8 (CDK8), a component of the kinase module of the Mediator complex in Arabidopsis, is involved in many processes, including flowering, plant defense, drought, and energy stress responses. Here, we investigated cdk8 mutants and CDK8-overexpressing lines to evaluate whether CDK8 also plays a role in regulating lipid synthesis, an energy-demanding anabolism. Quantitative lipid analysis demonstrated significant reductions in lipid synthesis rates and lipid accumulation in developing siliques and seedlings of cdk8, and conversely, elevated lipid contents in wild-type seed overexpressing CDK8. Transactivation assays show that CDK8 is necessary for maximal transactivation of the master seed oil activator WRINKLED1 (WRI1) by the seed maturation transcription factor ABSCISIC ACID INSENSITIVE3, supporting a direct regulatory role of CDK8 in oil synthesis. Thermophoretic studies show GEMINIVIRUS REP INTERACTING KINASE1, an activating kinase of KIN10 (a catalytic subunit of SUCROSE NON-FERMENTING1-RELATED KINASE1), physically interacts with CDK8, resulting in its phosphorylation and degradation in the presence of KIN10. This work defines a mechanism whereby, once activated, KIN10 downregulates WRI1 expression and suppresses lipid synthesis via promoting the degradation of CDK8. The KIN10-CDK8-dependent regulation of lipid synthesis described herein is additional to our previously reported KIN10-dependent phosphorylation and degradation of WRI1.
Collapse
Affiliation(s)
- Zhiyang Zhai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jantana K Blanford
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Yingqi Cai
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jing Sun
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hui Liu
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Hai Shi
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - Jorg Schwender
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Building 463, 50 Bell Ave, Upton, NY, 11973, USA
| |
Collapse
|
43
|
Zabihi M, Lotfi R, Yousefi AM, Bashash D. Cyclins and cyclin-dependent kinases: from biology to tumorigenesis and therapeutic opportunities. J Cancer Res Clin Oncol 2023; 149:1585-1606. [PMID: 35781526 DOI: 10.1007/s00432-022-04135-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/13/2022] [Indexed: 12/20/2022]
Abstract
The discussion on cell proliferation cannot be continued without taking a look at the cell cycle regulatory machinery. Cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors (CKIs) are valuable members of this system and their equilibrium guarantees the proper progression of the cell cycle. As expected, any dysregulation in the expression or function of these components can provide a platform for excessive cell proliferation leading to tumorigenesis. The high frequency of CDK abnormalities in human cancers, together with their druggable structure has raised the possibility that perhaps designing a series of inhibitors targeting CDKs might be advantageous for restricting the survival of tumor cells; however, their application has faced a serious concern, since these groups of serine-threonine kinases possess non-canonical functions as well. In the present review, we aimed to take a look at the biology of CDKs and then magnify their contribution to tumorigenesis. Then, by arguing the bright and dark aspects of CDK inhibition in the treatment of human cancers, we intend to reach a consensus on the application of these inhibitors in clinical settings.
Collapse
Affiliation(s)
- Mitra Zabihi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Lotfi
- Clinical Research Development Center, Tohid Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
44
|
Fang L, Chu M, Yan C, Liu Y, Zhao Z. Palbociclib and Michael-acceptor hybrid compounds as CDK4/6 covalent inhibitors: improved potency, broad anticancer spectrum and overcoming drug resistance. Bioorg Med Chem 2023; 84:117263. [PMID: 37011445 DOI: 10.1016/j.bmc.2023.117263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 03/28/2023]
Abstract
To search for potent CDK4/6 covalent inhibitors, total 14 compounds have been designed and synthesized by connecting different Michael-acceptor to the piperazine moiety of palbociclib. All the compounds displayed good antiproliferative activity against human hepatoma cell (HepG2), non-small cell lung cancer (A549), and breast cancer (MDA-MB-231 and MCF-7) cell lines. In particular, compound A4 showed the highest inhibitory activity to MDA-MB-231 and MCF-7 cells with IC50 values of 0.51 μM and 0.48 μM, respectively. More importantly, A4 also showed strong inhibition against MDA-MB-231/palbociclib cells, indicating that A4 could effectively avoid the resistance of palbociclib. In the enzyme test, A4 showed selective inhibitory activity against CDK4/6, with the IC50 value of 18 nM and 13 nM, respectively. It was also found that A4 could efficiently induce apoptosis and arrest the cell cycle at G0/G1 phase. Moreover, A4 could significantly decrease the phosphorylation level of CDK4 and CDK6. HPLC and molecular modeling studies suggested that A4 could form a covalent bond with the target protein.
Collapse
Affiliation(s)
- Lei Fang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Mengqi Chu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Changhang Yan
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yilin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Zimeng Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
45
|
Weidle UH, Birzele F. Triple-negative Breast Cancer: Identification of circRNAs With Efficacy in Preclinical In Vivo Models. Cancer Genomics Proteomics 2023; 20:117-131. [PMID: 36870692 PMCID: PMC9989670 DOI: 10.21873/cgp.20368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 01/20/2023] [Indexed: 03/06/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with insufficient options for therapy. In order to identify new targets and treatment modalities we searched the literature for circular RNAs (circRNAs) which mediate efficacy in TNBC-related in vivo preclinical models. In addition to 5 down-regulated circRNAs which modulate tumor-suppressive pathways, we identified 15 up-regulated circRNAs. Down- and up-regulated refers to expression in corresponding non-transformed cells and tissues. The up-regulated circRNAs comprise five transmembrane receptors and secreted proteins as targets, five transcription factors and transcription-associated targets, four cell-cycle related circRNAs and one involved in paclitaxel resistance. In this review article we discuss drug-discovery related aspects and modalities of therapeutic intervention. Down-regulated circRNAs can be reconstituted by re-expression of corresponding circRNAs in tumor cells or up-regulation of corresponding targets. Up-regulated circRNAs can be inhibited by small-interfering RNA (siRNA) or short hairpin RNA (shRNA)-based approaches or inhibition of the corresponding targets with small molecules or antibody-related moieties.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Development, Roche Innovation Center, Penzberg, Germany;
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
46
|
Kumar A, Bhagat KK, Singh AK, Singh H, Angre T, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Medicinal chemistry perspective of pyrido[2,3- d]pyrimidines as anticancer agents. RSC Adv 2023; 13:6872-6908. [PMID: 36865574 PMCID: PMC9972360 DOI: 10.1039/d3ra00056g] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cancer is a major cause of deaths across the globe due to chemoresistance and lack of selective chemotherapy. Pyrido[2,3-d]pyrimidine is an emerging scaffold in medicinal chemistry having a broad spectrum of activities, including antitumor, antibacterial, CNS depressive, anticonvulsant, and antipyretic activities. In this study, we have covered different cancer targets, including tyrosine kinase, extracellular regulated protein kinases - ABL kinase, phosphatidylinositol-3 kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinases, BCR-ABL, dihydrofolate reductase, cyclin-dependent kinase, phosphodiesterase, KRAS and fibroblast growth factor receptors, their signaling pathways, mechanism of action and structure-activity relationship of pyrido[2,3-d]pyrimidine derivatives as inhibitors of the above-mentioned targets. This review will represent the complete medicinal and pharmacological profile of pyrido[2,3-d]pyrimidines as anticancer agents, and will help scientists to design new selective, effective and safe anticancer agents.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Kuber Kumar Bhagat
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and SciencesPrayagraj211007India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology P.O. Box 4700 Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs Thuwal 23955-6900 Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
47
|
Rahimi Lifshagerd M, Safari F. Therapeutic effects of hAMSCs secretome on proliferation of MDA-MB-231 breast cancer cells by the cell cycle arrest in G1/S phase. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1702-1709. [PMID: 36617361 DOI: 10.1007/s12094-022-03067-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cancer refers to a disease resulting from the uncontrolled division and growth of abnormal cells. Among different cancer types, breast cancer is considered as one of the most commonly diagnosed cancers. Herein, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) secretome on breast cancer cells (MDA-MB-231) through analyzing cell cycle progression. METHODS We employed a co-culture system using 6-well Transwell plates and after 72 h, the cell cycle progression was evaluated in the hAMSCs-treated MDA-MB-231 cells through analyzing the expressions of RB, CDK4/6, cyclin D, CDK2, cyclin E, p16/INK4a, p21/WAF1/CIP1, and p27/KIP1 using quantitative real-time PCR (qRT-PCR) and western blot method. Cell proliferation, apoptosis, and cell cycle progression were checked using an MTT assay, DAPI staining, and flow cytometry. RESULTS Our results indicated that elevation of RB, p21/WAF1/CIP1, and p27/KIP1 and suppression of RB hyperphosphorylation, p16/INK4a, cyclin E, cyclin D1, CDK2, and CDK4/6 may contribute to inhibiting the proliferation of hAMSCs-treated MDA-MB-231 cells through cell cycle arrest in G1/S phase followed by apoptosis. CONCLUSION hAMSCs secretome may be an effective approach on breast cancer therapy through the inhibition of cell cycle progression.
Collapse
Affiliation(s)
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| |
Collapse
|
48
|
Cai R, Zhou YP, Li YH, Zhang JJ, Hu ZW. Baicalin Blocks Colon Cancer Cell Cycle and Inhibits Cell Proliferation through miR-139-3p Upregulation by Targeting CDK16. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:189-203. [PMID: 36599649 DOI: 10.1142/s0192415x23500118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Baicalin was reported to facilitate the apoptosis of colon cells and inhibit tumor growth in vivo. This study aimed to explore the specific mechanism and function of baicalin on colon cells. Relative mRNA levels were tested via qPCR. Cell proliferation, viability, and cell cycle phases were evaluated using MTT, colony formation, and flow cytometry assays, respectively. The interaction between miR-139-3p and cyclin-dependent kinase 16 (CDK16) was measured via a dual-luciferase reporter assay. Immunohistochemistry was used to count the positivity cells in tumor tissues collected from treated xenografted tumor mice. The results showed that baicalin increased miR-139-3p expression while also decreasing CDK16 levels, blocking the cell cycle, and inhibiting cell proliferation in colon cancer cells. miR-139-3p silencing or CDK16 overexpression abolished the inhibitory effects of baicalin on colon cancer proliferation. miR-139-3p directly targeted and interacted with CDK16 at the cellular level. The protective functions of miR-139-3p knockdown on tumor cells were abrogated by silencing CDK16. The combination of baicalin treatment and CDK16 knockdown further inhibited tumor growth of xenografted tumor mice compared with the groups injected with only sh-CDK16 or baicalin in vivo. In conclusion, baicalin inhibited colon cancer growth by modulating the miR-139-3p/CDK16 axis.
Collapse
Affiliation(s)
- Rong Cai
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Yan-Ping Zhou
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Yun-Hai Li
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Jin-Jin Zhang
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China
| | - Zuo-Wei Hu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, Hubei Province, P. R. China.,Department of Oncology, Wuhan Hospital of Traditional Chinese and Western Medicine, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
49
|
A sib-pair with Al Kaissi syndrome caused by homozygosity for a novel CDK10 splice variant. Clin Dysmorphol 2023; 32:32-35. [PMID: 36503922 DOI: 10.1097/mcd.0000000000000439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
50
|
Johnson JL, Yaron TM, Huntsman EM, Kerelsky A, Song J, Regev A, Lin TY, Liberatore K, Cizin DM, Cohen BM, Vasan N, Ma Y, Krismer K, Robles JT, van de Kooij B, van Vlimmeren AE, Andrée-Busch N, Käufer NF, Dorovkov MV, Ryazanov AG, Takagi Y, Kastenhuber ER, Goncalves MD, Hopkins BD, Elemento O, Taatjes DJ, Maucuer A, Yamashita A, Degterev A, Uduman M, Lu J, Landry SD, Zhang B, Cossentino I, Linding R, Blenis J, Hornbeck PV, Turk BE, Yaffe MB, Cantley LC. An atlas of substrate specificities for the human serine/threonine kinome. Nature 2023; 613:759-766. [PMID: 36631611 PMCID: PMC9876800 DOI: 10.1038/s41586-022-05575-3] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Protein phosphorylation is one of the most widespread post-translational modifications in biology1,2. With advances in mass-spectrometry-based phosphoproteomics, 90,000 sites of serine and threonine phosphorylation have so far been identified, and several thousand have been associated with human diseases and biological processes3,4. For the vast majority of phosphorylation events, it is not yet known which of the more than 300 protein serine/threonine (Ser/Thr) kinases encoded in the human genome are responsible3. Here we used synthetic peptide libraries to profile the substrate sequence specificity of 303 Ser/Thr kinases, comprising more than 84% of those predicted to be active in humans. Viewed in its entirety, the substrate specificity of the kinome was substantially more diverse than expected and was driven extensively by negative selectivity. We used our kinome-wide dataset to computationally annotate and identify the kinases capable of phosphorylating every reported phosphorylation site in the human Ser/Thr phosphoproteome. For the small minority of phosphosites for which the putative protein kinases involved have been previously reported, our predictions were in excellent agreement. When this approach was applied to examine the signalling response of tissues and cell lines to hormones, growth factors, targeted inhibitors and environmental or genetic perturbations, it revealed unexpected insights into pathway complexity and compensation. Overall, these studies reveal the intrinsic substrate specificity of the human Ser/Thr kinome, illuminate cellular signalling responses and provide a resource to link phosphorylation events to biological pathways.
Collapse
Affiliation(s)
- Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional PhD Program in Computational Biology & Medicine, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center and The Rockefeller University, New York, NY, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Cell and Developmental Biology Program, New York, NY, USA
| | - Katarina Liberatore
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Yilun Ma
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Konstantin Krismer
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Bert van de Kooij
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anne E van Vlimmeren
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicole Andrée-Busch
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Norbert F Käufer
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maxim V Dorovkov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Yuichiro Takagi
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edward R Kastenhuber
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Marcus D Goncalves
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Endocrinology, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin D Hopkins
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO, USA
| | - Alexandre Maucuer
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Rune Linding
- Rewire Tx, Humboldt-Universität zu Berlin, Berlin, Germany
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Biology, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Divisions of Acute Care Surgery, Trauma, and Surgical Critical Care, and Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|