1
|
Rybkowska P, Kawalec M, Dymkowska D, Radoszkiewicz K, Zabłocka B, Zabłocki K, Sarnowska A. Activity and function of auxiliary fluxes of glucose metabolism in response to physiological normoxia (5 % O 2) during long-term Adipose-Derived Stem/Stromal cell culture. Eur J Cell Biol 2025; 104:151486. [PMID: 40187000 DOI: 10.1016/j.ejcb.2025.151486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
Energy metabolism homeostasis emerges as a dominant element influencing mesenchymal stem/stromal cells' trajectory of development. The predominant glycolysis activity is a primary driver of cell proliferation and maintenance of the high-energetic state. Here, we examined the functions of two crucial auxiliary pathways: the phosphate-pentose pathway (PPP) and fructose-2,6-biphosphate pathway (FBP) to evaluate their impact on the therapeutic potential of Adipose-Derived Stem/Stromal cells (ASCs) during prolonged culture in various oxygen conditions: 5 % O2 - physiological normoxia or 21 % O2 - atmospheric oxygen. Our findings demonstrate that ASCs cultured in 5 % O2 increased the rate of proliferation, migration, and expression of stemness factors, which is prominent during the initial and middle passages. Additionally, ASCs cultured in a 5 % O2 exhibited heightened protection mechanisms against free radicals, increased LDH gene expression, and elevated extracellular acidification rate (ECAR). By estimating the HIF-1α level, we concluded that 5 % oxygen conditions were insufficient to induce a profound hypoxic state in ASCs. However, at the protein level, both the PPP and FBP pathways appeared to be more active in young (2-passage) cells, regardless of oxygen conditions, and their activity diminished over time. Additionally, the chemical suppression of G6PDH by Polydatin and inhibition of PFKFB3 by PFK-158 in ASCs (passage-2) revealed dose- and time-dependent effect on decreasing migratory capabilities of cells. Nevertheless, our work underscores the adaptable nature of ASC metabolism to prevailing external conditions, with the aging of the culture contributing to the decline in glycolysis-associated auxiliary pathways.
Collapse
Affiliation(s)
- Paulina Rybkowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland.
| | - Maria Kawalec
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland
| | - Dorota Dymkowska
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, Warsaw 02-093, Poland
| | - Klaudia Radoszkiewicz
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland
| | - Barbara Zabłocka
- Molecular Biology Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland
| | - Krzysztof Zabłocki
- Laboratory of Cellular Metabolism, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteur 3 Street, Warsaw 02-093, Poland
| | - Anna Sarnowska
- Translational Platform for Regenerative Medicine, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Street, Warsaw 02-106, Poland.
| |
Collapse
|
2
|
Cao J, Dong Y, Li Z, Wang S, Wu Z, Zheng E, Li Z. Treatment of Donor Cells with Oxidative Phosphorylation Inhibitor CPI Enhances Porcine Cloned Embryo Development. Animals (Basel) 2024; 14:1362. [PMID: 38731366 PMCID: PMC11083069 DOI: 10.3390/ani14091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Somatic cell nuclear transfer (SCNT) technology holds great promise for livestock industry, life science and human biomedicine. However, the development and application of this technology is limited by the low developmental potential of SCNT embryos. The developmental competence of cloned embryos is influenced by the energy metabolic status of donor cells. The purpose of this study was to investigate the effects of CPI, an oxidative phosphorylation inhibitor, on the energy metabolism pathways of pig fibroblasts and the development of subsequent SCNT embryos. The results showed that treatment of porcine fibroblasts with CPI changed the cellular energy metabolic pathways from oxidative phosphorylation to glycolysis and enhanced the developmental ability of subsequent SCNT embryos. The present study establishes a simple, new way to improve pig cloning efficiency, helping to promote the development and application of pig SCNT technology.
Collapse
Affiliation(s)
- Jinping Cao
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Yazheng Dong
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zheng Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Shunbo Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (J.C.); (Y.D.); (Z.L.); (S.W.); (Z.W.)
- State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and Local Joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- Gene Bank of Guangdong Local Livestock and Poultry, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Ma Y, Deng X, Zhou L, Dong H, Xu P. HSV-1 selectively packs the transcription factor Oct-1 into EVs to facilitate its infection. Front Microbiol 2023; 14:1205906. [PMID: 37396389 PMCID: PMC10309031 DOI: 10.3389/fmicb.2023.1205906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
HSV-1 hijacks the cellular vesicular secretion system and promotes the secretion of extracellular vesicles (EVs) from infected cells. This is believed to facilitate the maturation, secretion, intracellular transportation and immune evasion of the virus. Intriguingly, previous studies have shown that noninfectious EVs from HSV-1-infected cells exert antiviral effects on HSV-1 and have identified host restrictive factors, such as STING, CD63, and Sp100 packed in these lipid bilayer-enclosed vesicles. Octamer-binding transcription factor-1 (Oct-1) is shown here to be a pro-viral cargo in non-virion-containing EVs during HSV-1 infection and serves to facilitate virus dissemination. Specifically, during HSV-1 infection, the nuclear localized transcription factor Oct-1 displayed punctate cytosolic staining that frequently colocalized with VP16 and was increasingly secreted into the extracellular space. HSV-1 grown in cells bereft of Oct-1 (Oct-1 KO) was significantly less efficient at transcribing viral genes during the next round of infection. In fact, HSV-1 promoted increased exportation of Oct-1 in non-virion-containing EVs, but not the other VP16-induced complex (VIC) component HCF-1, and EV-associated Oct-1 was promptly imported into the nucleus of recipient cells to facilitate the next round of HSV-1 infection. Interestingly, we also found that EVs from HSV-1-infected cells primed cells for infection by another RNA virus, vesicular stomatitis virus. In summary, this investigation reports one of the first pro-viral host proteins packed into EVs during HSV-1 infection and underlines the heterogenetic nature and complexity of these noninfectious double-lipid particles.
Collapse
|
4
|
Perovanovic J, Wu Y, Abewe H, Shen Z, Hughes EP, Gertz J, Chandrasekharan MB, Tantin D. Oct1 cooperates with the Smad family of transcription factors to promote mesodermal lineage specification. Sci Signal 2023; 16:eadd5750. [PMID: 37071732 PMCID: PMC10360295 DOI: 10.1126/scisignal.add5750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/14/2023] [Indexed: 04/20/2023]
Abstract
The transition between pluripotent and tissue-specific states is a key aspect of development. Understanding the pathways driving these transitions will facilitate the engineering of properly differentiated cells for experimental and therapeutic uses. Here, we showed that during mesoderm differentiation, the transcription factor Oct1 activated developmental lineage-appropriate genes that were silent in pluripotent cells. Using mouse embryonic stem cells (ESCs) with an inducible knockout of Oct1, we showed that Oct1 deficiency resulted in poor induction of mesoderm-specific genes, leading to impaired mesodermal and terminal muscle differentiation. Oct1-deficient cells exhibited poor temporal coordination of the induction of lineage-specific genes and showed inappropriate developmental lineage branching, resulting in poorly differentiated cell states retaining epithelial characteristics. In ESCs, Oct1 localized with the pluripotency factor Oct4 at mesoderm-associated genes and remained bound to those loci during differentiation after the dissociation of Oct4. Binding events for Oct1 overlapped with those for the histone lysine demethylase Utx, and an interaction between Oct1 and Utx suggested that these two proteins cooperate to activate gene expression. The specificity of the ubiquitous Oct1 for the induction of mesodermal genes could be partially explained by the frequent coexistence of Smad and Oct binding sites at mesoderm-specific genes and the cooperative stimulation of mesodermal gene transcription by Oct1 and Smad3. Together, these results identify Oct1 as a key mediator of mesoderm lineage-specific gene induction.
Collapse
Affiliation(s)
- Jelena Perovanovic
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Yifan Wu
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hosiana Abewe
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Erik P. Hughes
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Mahesh B. Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| |
Collapse
|
5
|
Abstract
Background: Cell cycle is critical for a wide range of cellular processes such as proliferation, differentiation and apoptosis in dividing cells. Neurons are postmitotic cells which have withdrawn from the cell division cycle. Recent data show us that inappropriate activation of cell cycle regulators including cyclins, cyclin dependent kinases (CDKs) and endogenous cyclin dependent kinase inhibitors (CDKIs) may take part in the aetiology of neurodegenerative diseases. However, the mechanisms for cell cycle reentry in neurodegenerative disease remain unclear.Methods: Electronic databases such as Pubmed, Science Direct, Directory of Open Access Journals, PLOS were searched for relevant articles.Conclusion: The present work reviews basic aspects of cell cycle mechanism, as well as the evidence showing the expression of cell cycle proteins in neurodegenerative disease. We provide a brief summary of these findings and hope to highlight the interaction between the cell cycle reentry and neurodegenerative diseases. Moreover, we outline the possible signaling pathways. However more understanding of the mechanism of cell cycle is of great importance. Because these represents an alternative target for therapeutic interventions, leading to novel treatments of neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuxin Song
- School of Integrated Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenpeng Peng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Stepchenko AG, Bulavkina EV, Portseva TN, Georgieva SG, Pankratova EV. Suppression of OCT-1 in Metastatic Breast Cancer Cells Reduces Tumor Metastatic Potential, Hypoxia Resistance, and Drug Resistance. Life (Basel) 2022; 12:life12091435. [PMID: 36143471 PMCID: PMC9502003 DOI: 10.3390/life12091435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
OCT-1/POU2F1 is a ubiquitously expressed transcription factor. Its expression starts at the earliest stage of embryonic development. OCT-1 controls genes involved in the regulation of differentiation, proliferation, cell metabolism, and aging. High levels of OCT-1 transcription factor in tumor cells correlate with tumor malignancy and resistance to antitumor therapy. Here, we report that suppression of OCT-1 in breast cancer cells reduces their metastatic potential and drug resistance. OCT-1 knockdown in the MDA-MB231 breast cancer cells leads to a fivefold decrease (p < 0.01) in cell migration rates in the Boyden chamber. A decrease in the transcription levels of human invasion signature (HIS) genes (ARHGDIB, CAPZA2, PHACTR2, CDC42, XRCC5, and CAV1) has been also demonstrated by real-time PCR, with high expression of these genes being a hallmark of actively metastasizing breast cancer cells. Transcriptional activity of ATF6 response elements is significantly reduced in the cell lines with decreased OCT-1 expression, which results in lower levels of adaptive EPR stress response. OCT-1 knockdown more than two times increases the MDA-MB231 cell death rate in hypoxia and significantly increases the doxorubicin or docetaxel-treated MDA-MB231 cell death rate. Our findings indicate that OCT-1 may be an important therapeutic target and its selective inhibition may have significant therapeutic effects and may improve prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Alexander G. Stepchenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Elizaveta V. Bulavkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Tatiana N. Portseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
| | - Sofia G. Georgieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
- Correspondence: (S.G.G.); (E.V.P.)
| | - Elizaveta V. Pankratova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str., 32, 119991 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence: (S.G.G.); (E.V.P.)
| |
Collapse
|
7
|
Kotnova AP, Stepchenko AG, Ilyin YV, Georgieva SG, Pankratova EV. 5-Azacytidine Suppresses the Expression of Tissue-Specific Oct-1 Isoform in Namalwa Burkitt's Lymphoma Cell Culture. DOKL BIOCHEM BIOPHYS 2022; 503:76-79. [PMID: 35538282 PMCID: PMC9090699 DOI: 10.1134/s1607672922020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022]
Abstract
Overexpression of the transcription factor POU2F1 (Oct-1) increases the malignant potential of the tumor and determines the unfavorable prognosis for both solid and hematological cases of the disease in human carcinogenesis. The Oct-1 level determines the rate of development of the disease in acute myelodysplastic leukemia (AML), and a decrease in its expression significantly delays the development of leukemia in mice; however, a complete knockout of Oct-1 leads to the death of the animals. POU2F1 (Oct-1) is expressed as several isoforms transcribed from alternative promoters. They include both ubiquitous and tissue-specific isoforms. It was shown that in Burkitt’s lymphoma Namalwa cells 5-azacytidine specifically suppresses the expression of the tissue-specific isoform Oct-1L mRNA (level of Oct-1L is abnormally increased in these cells), while not causing changes in the amount of the ubiquitous isoform Oct-1A mRNA. These results show that it is possible to selectively reduce the transcription level of the Oct-1L isoform aberrantly expressed in human tumor cells.
Collapse
Affiliation(s)
- A P Kotnova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia.
| | - A G Stepchenko
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Yu V Ilyin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - S G Georgieva
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - E V Pankratova
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Babaei-Abraki S, Karamali F, Nasr-Esfahani MH. The Role of Endoplasmic Reticulum and Mitochondria in Maintaining Redox Status and Glycolytic Metabolism in Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1789-1808. [PMID: 35141862 DOI: 10.1007/s12015-022-10338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
Pluripotent stem cells (PSCs), including embryonic stem cells and induced pluripotent stem cells (iPSCs), can be applicable for regenerative medicine. They strangely rely on glycolysis metabolism akin to aerobic glycolysis in cancer cells. Upon differentiation, PSCs undergo a metabolic shift from glycolysis to oxidative phosphorylation (OXPHOS). The metabolic shift depends on organelles maturation, transcriptome modification, and metabolic switching. Besides, metabolism-driven chromatin regulation is necessary for cell survival, self-renewal, proliferation, senescence, and differentiation. In this respect, mitochondria may serve as key organelle to adapt environmental changes with metabolic intermediates which are necessary for maintaining PSCs identity. The endoplasmic reticulum (ER) is another organelle whose role in cellular identity remains under-explored. The purpose of our article is to highlight the recent progress on these two organelles' role in maintaining PSCs redox status focusing on metabolism. Topics include redox status, metabolism regulation, mitochondrial dynamics, and ER stress in PSCs. They relate to the maintenance of stem cell properties and subsequent differentiation of stem cells into specific cell types.
Collapse
Affiliation(s)
- Shahnaz Babaei-Abraki
- Department of Plant and Animal Biology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.,Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
9
|
Lin J, Xia L, Oyang L, Liang J, Tan S, Wu N, Yi P, Pan Q, Rao S, Han Y, Tang Y, Su M, Luo X, Yang Y, Chen X, Yang L, Zhou Y, Liao Q. The POU2F1-ALDOA axis promotes the proliferation and chemoresistance of colon cancer cells by enhancing glycolysis and the pentose phosphate pathway activity. Oncogene 2022; 41:1024-1039. [PMID: 34997215 PMCID: PMC8837540 DOI: 10.1038/s41388-021-02148-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 01/20/2023]
Abstract
Cancer metabolic reprogramming enhances its malignant behaviors and drug resistance, which is regulated by POU domain transcription factors. This study explored the effect of POU domain class 2 transcription factor 1 (POU2F1) on metabolic reprogramming in colon cancer. The POU2F1 expression was analyzed in GEO dataset, TCGA cohorts and human colon cancer tissues by bioinformatics and immunohistochemistry. The effects of altered POU2F1 expression on proliferation, glucose metabolism and oxaliplatin sensitivity of colon cancer cells were tested. The impacts of POU2F1 on aldolase A (ALDOA) expression and malignant behaviors of colon cancer cells were examined. We found that up-regulated POU2F1 expression was associated with worse prognosis and oxaliplatin resistance in colon cancer. POU2F1 enhanced the proliferation, aerobic glycolysis and the pentose phosphate pathway (PPP) activity, but reduced oxidative stress and apoptosis in colon cancer cells, dependent on up-regulating ALDOA expression. Mechanistically, POU2F1 directly bound to the ALDOA promoter to enhance the ALDOA promoter activity in colon cancer cells. Moreover, activation of the POU2F1-ALDOA axis decreased the sensitivity to oxaliplatin in colon cancer cells. These data indicate that the POU2F1-ALDOA axis promotes the progression and oxaliplatin resistance by enhancing metabolic reprogramming in colon cancer. Our findings suggest that the POU2F1-ALDOA axis may be new therapeutic targets to overcome oxaliplatin resistance in colon cancer.
Collapse
Affiliation(s)
- Jinguan Lin
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Jiaxin Liang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Pin Yi
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Qing Pan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- University of South China, Hengyang, 421001, Hunan, China
| | - Shan Rao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yaqian Han
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yiqing Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaohui Chen
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Lixia Yang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.
- Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
10
|
High-Throughput Sequencing Reveals the Differential MicroRNA Expression Profiles of Human Gastric Cancer SGC7901 Cell Xenograft Nude Mouse Models Treated with Traditional Chinese Medicine Si Jun Zi Tang Decoction. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6119212. [PMID: 34457026 PMCID: PMC8387168 DOI: 10.1155/2021/6119212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Objective. The present study aimed to investigate the potential mechanism underlying the antitumor effect of Si Jun Zi Tang (SJZT) decoction on gastric cancer. Methods. Twelve human gastric cancer SGC7901 cell xenograft nude mouse models were established. The mice were randomly divided into the Model group and SJZT group. SJZT exerted significant antitumor effects after 21 days of decoction administration. High-throughput sequencing was used to analyze the microRNA (miRNA) expression profiles of tumor tissues. Bioinformatics analysis was performed to provide further information regarding the differentially expressed miRNAs. Five representative differentially expressed miRNAs and four predicted target genes were further validated using quantitative real-time reverse transcription PCR (qRT-PCR). Results. We identified 33 miRNAs that were differentially expressed in the SJZT group compared with the Model group. Among them, 32 miRNAs were upregulated and 1 miRNA was downregulated. Bioinformatic analysis showed that most of miRNAs acted as tumor suppressors and their target genes participated in multiple signaling pathways, including the PI3K/Akt signaling pathway, microRNAs in cancer, and Wnt signaling pathway. The qRT-PCR result confirmed that miR-223-3p, miR-205-5p, miR-147b-3p, and miR-223-5p were overexpressed and their respective paired target genes FUT9, POU2F1, MUC4, and RAB14 mRNA were obviously downregulated in the SJZT group compared with those in the Model group. Network analysis revealed that miR-223-3p and miR-205-5p shared two targets POU2F1 (encoding POU class 2 homeobox 1) and FUT9 (encoding fucosyltransferase 9), suggesting they have a common role in certain pathways. Conclusion. This study provided novel insights into the anticancer mechanism of SJZT against gastric cancer, which might be partly related to the modulation of miRNA expression and their target pathways in tumors.
Collapse
|
11
|
Pterostilbene Changes Epigenetic Marks at Enhancer Regions of Oncogenes in Breast Cancer Cells. Antioxidants (Basel) 2021; 10:antiox10081232. [PMID: 34439480 PMCID: PMC8388921 DOI: 10.3390/antiox10081232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Epigenetic aberrations are linked to sporadic breast cancer. Interestingly, certain dietary polyphenols with anti-cancer effects, such as pterostilbene (PTS), have been shown to regulate gene expression by altering epigenetic patterns. Our group has proposed the involvement of DNA methylation and DNA methyltransferase 3B (DNMT3B) as vital players in PTS-mediated suppression of candidate oncogenes and suggested a role of enhancers as target regions. In the present study, we assess a genome-wide impact of PTS on epigenetic marks at enhancers in highly invasive MCF10CA1a breast cancer cells. Following chromatin immunoprecipitation (ChIP)-sequencing in MCF10CA1a cells treated with 7 μM PTS for 9 days, we discovered that PTS leads to increased binding of DNMT3B at enhancers of 77 genes, and 17 of those genes display an overlapping decrease in the occupancy of trimethylation at lysine 36 of histone 3 (H3K36me3), a mark of active enhancers. We selected two genes, PITPNC1 and LINC00910, and found that their enhancers are hypermethylated in response to PTS. These changes coincided with the downregulation of gene expression. Of importance, we showed that 6 out of 17 target enhancers, including PITPNC1 and LINC00910, are bound by an oncogenic transcription factor OCT1 in MCF10CA1a cells. Indeed, the six enhancers corresponded to genes with established or putative cancer-driving functions. PTS led to a decrease in OCT1 binding at those enhancers, and OCT1 depletion resulted in PITPNC1 and LINC00910 downregulation, further demonstrating a role for OCT1 in transcriptional regulation. Our findings provide novel evidence for the epigenetic regulation of enhancer regions by dietary polyphenols in breast cancer cells.
Collapse
|
12
|
Octamer transcription factor-1 induces the Warburg effect via up-regulation of hexokinase 2 in non-small cell lung cancer. Mol Cell Biochem 2021; 476:3423-3431. [PMID: 33970409 DOI: 10.1007/s11010-021-04171-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/27/2021] [Indexed: 01/05/2023]
Abstract
Reprogramming of energy metabolism is a hallmark of cancer which is prevalent worldwide. Octamer transcription factor-1 (OCT1) is a well-known transcription factor. However, the role of OCT1 in metabolism remodeling has not been well defined. In the present study, we found that OCT1 was up-regulated in non-small cell lung cancer (NSCLC) and correlated with poor patient survival. Further data identified that OCT1 increased glycolysis flux, promoting proliferation in lung cancer cells. Mechanistically, OCT1 facilitated the aerobic glycolysis and cell proliferation via up-regulation of hexokinase 2 (HK2), a crucial enzyme of the Warburg effect. Hence, our findings indicate that, in NSCLC, high levels of OCT1 contribute to the Warburg effect through up-regulation of HK2, linking up the OCT1/HK2 axis and cancer progression, which provide a potential biomarker and therapeutic target for NSCLC treatment.
Collapse
|
13
|
Gupta A, Storey KB. Coordinated expression of Jumonji and AHCY under OCT transcription factor control to regulate gene methylation in wood frogs during anoxia. Gene 2021; 788:145671. [PMID: 33887369 DOI: 10.1016/j.gene.2021.145671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022]
Abstract
Wood frogs (Rana sylvatica) can survive extended periods of whole body freezing. Freezing imparts multiple stresses on cells that include anoxia and dehydration, but these can also be experienced as independent stresses. Under anoxia stress, energy metabolism is suppressed, and pro-survival pathways are prioritized to differentially regulate some transcription factors including OCT1 and OCT4. Jumonji C domain proteins (JMJD1A and JMJD2C) are hypoxia responsive demethylases whose expression is accelerated by OCT1 and OCT4 which act to demethylate genes related to the methionine cycle. The responses by these factors to 24 h anoxia exposure and 4 h aerobic recovery was analyzed in liver and skeletal muscle of wood frogs to assess their involvement in metabolic adaptation to oxygen limitation. Immunoblot results showed a decrease in JMJD1A levels under anoxia in liver and muscle, but an increase was observed in JMJD2C demethylase protein in anoxic skeletal muscle. Protein levels of adenosylhomocysteinase (AHCY) and methionine adenosyl transferase (MAT), enzymes of the methionine cycle, also showed an increase in the reoxygenated liver, whereas the levels decreased in muscle. A transcription factor ELISA showed a decrease in DNA binding by OCT1 in the reoxygenated liver and anoxic skeletal muscle, and transcript levels also showed tissue specific gene expression. The present study provides the first analysis of the role of the OCT1 transcription factor, associated proteins, and lysine demethylases in mediating responses to anoxia by wood frog tissues.
Collapse
Affiliation(s)
- Aakriti Gupta
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada
| | - Kenneth B Storey
- Department of Biology, Carleton University, Ottawa K1S 5B6, Canada.
| |
Collapse
|
14
|
Ponte LGS, Pavan ICB, Mancini MCS, da Silva LGS, Morelli AP, Severino MB, Bezerra RMN, Simabuco FM. The Hallmarks of Flavonoids in Cancer. Molecules 2021; 26:2029. [PMID: 33918290 PMCID: PMC8038160 DOI: 10.3390/molecules26072029] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Flavonoids represent an important group of bioactive compounds derived from plant-based foods and beverages with known biological activity in cells. From the modulation of inflammation to the inhibition of cell proliferation, flavonoids have been described as important therapeutic adjuvants against several diseases, including diabetes, arteriosclerosis, neurological disorders, and cancer. Cancer is a complex and multifactor disease that has been studied for years however, its prevention is still one of the best known and efficient factors impacting the epidemiology of the disease. In the molecular and cellular context, some of the mechanisms underlying the oncogenesis and the progression of the disease are understood, known as the hallmarks of cancer. In this text, we review important molecular signaling pathways, including inflammation, immunity, redox metabolism, cell growth, autophagy, apoptosis, and cell cycle, and analyze the known mechanisms of action of flavonoids in cancer. The current literature provides enough evidence supporting that flavonoids may be important adjuvants in cancer therapy, highlighting the importance of healthy and balanced diets to prevent the onset and progression of the disease.
Collapse
Affiliation(s)
- Luis Gustavo Saboia Ponte
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Isadora Carolina Betim Pavan
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
- Laboratory of Signal Mechanisms (LMS), School of Pharmaceutical Sciences (FCF), University of Campinas (UNICAMP), Campinas, São Paulo 13083-871, Brazil
| | - Mariana Camargo Silva Mancini
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Luiz Guilherme Salvino da Silva
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Ana Paula Morelli
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Matheus Brandemarte Severino
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Rosangela Maria Neves Bezerra
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| | - Fernando Moreira Simabuco
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Limeira, São Paulo 13484-350, Brazil; (L.G.S.P.); (I.C.B.P.); (M.C.S.M.); (L.G.S.d.S.); (A.P.M.); (M.B.S.); (R.M.N.B.)
| |
Collapse
|
15
|
Wang X, Ju Z, Jiang Q, Zhong J, Liu C, Wang J, Hoff JL, Schnabel RD, Zhao H, Gao Y, Liu W, Wang L, Gao Y, Yang C, Hou M, Huang N, Regitano LCA, Porto-Neto LR, Decker JE, Taylor JF, Huang J. Introgression, admixture, and selection facilitate genetic adaptation to high-altitude environments in cattle. Genomics 2021; 113:1491-1503. [PMID: 33771637 DOI: 10.1016/j.ygeno.2021.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
Domestication and subsequent selection of cattle to form breeds and biological types that can adapt to different environments partitioned ancestral genetic diversity into distinct modern lineages. Genome-wide selection particularly for adaptation to extreme environments left detectable signatures genome-wide. We used high-density genotype data for 42 cattle breeds and identified the influence of Bos grunniens and Bos javanicus on the formation of Chinese indicine breeds that led to their divergence from India-origin zebu. We also found evidence for introgression, admixture, and migration in most of the Chinese breeds. Selection signature analyses between high-altitude (≥1800 m) and low-altitude adapted breeds (<1500 m) revealed candidate genes (ACSS2, ALDOC, EPAS1, EGLN1, NUCB2) and pathways that are putatively involved in hypoxia adaptation. Immunohistochemical, real-time PCR and CRISPR/cas9 ACSS2-knockout analyses suggest that the up-regulation of ACSS2 expression in the liver promotes the metabolic adaptation of cells to hypoxia via the hypoxia-inducible factor pathway. High altitude adaptation involved the introgression of alleles from high-altitude adapted yaks into Chinese Bos taurus taurus prior to their formation into recognized breeds and followed by selection. In addition to selection, adaptation to high altitude environments has been facilitated by admixture and introgression with locally adapted cattle populations.
Collapse
Affiliation(s)
- Xiuge Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Zhihua Ju
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Qiang Jiang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Jifeng Zhong
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Chengkun Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Jinpeng Wang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Jesse L Hoff
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Robert D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA; Informatics Institute, University of Missouri, Columbia, MO 65211, USA
| | - Han Zhao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yaping Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Wenhao Liu
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Lingling Wang
- Shandong OX Livestock Breeding Co., Ltd., Jinan, Shandong 250131, China
| | - Yundong Gao
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; Shandong OX Livestock Breeding Co., Ltd., Jinan, Shandong 250131, China
| | - Chunhong Yang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Minghai Hou
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China
| | - Ning Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | | | | | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy F Taylor
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.
| | - Jinming Huang
- Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250131, China; College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
16
|
Zhang X, Sjöblom T. Targeting Loss of Heterozygosity: A Novel Paradigm for Cancer Therapy. Pharmaceuticals (Basel) 2021; 14:ph14010057. [PMID: 33450833 PMCID: PMC7828287 DOI: 10.3390/ph14010057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
Loss of heterozygosity (LOH) is a common genetic event in the development of cancer. In certain tumor types, LOH can affect more than 20% of the genome, entailing loss of allelic variation in thousands of genes. This reduction of heterozygosity creates genetic differences between tumor and normal cells, providing opportunities for development of novel cancer therapies. Here, we review and summarize (1) mutations associated with LOH on chromosomes which have been shown to be promising biomarkers of cancer risk or the prediction of clinical outcomes in certain types of tumors; (2) loci undergoing LOH that can be targeted for development of novel anticancer drugs as well as (3) LOH in tumors provides up-and-coming possibilities to understand the underlying mechanisms of cancer evolution and to discover novel cancer vulnerabilities which are worth a further investigation in the near future.
Collapse
|
17
|
Li J, Chen X, Li X, Hu R, Yao W, Mei W, Wan L, Gui L, Zhang C. Upregulation of Cdh1 in the trigeminal spinal subnucleus caudalis attenuates trigeminal neuropathic pain via inhibiting GABAergic neuronal apoptosis. Neurochem Int 2020; 133:104613. [PMID: 31785347 DOI: 10.1016/j.neuint.2019.104613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 02/03/2023]
Abstract
Trigeminal neuropathic pain (TNP) remains a tremendous clinical challenge due to its elusive mechanisms. Previous studies showed that peripheral nerve injury facilitated a selective GABAergic neuronal apoptosis in the superficial dorsal horn and contributed to the development and maintenance of neuropathic pain. It has also demonstrated that downregulation of the anaphase-promoting complex/cyclosome(APC/C) and its coactivator Cdh1 contribute to neuronal apoptosis in diverse neurodegenerative diseases. However, whether APC/C-Cdh1 downregulation could induce GABAergic neuronal apoptosis in trigeminal caudalis nucleus (Vc), and then contribute to the development and maintenance of TNP remains unknown. In this study, we aimed to investigate the role of APC/C-Cdh1 in a TNP rat model and its underlying mechanisms. Our results showed that Cdh1 was primarily distributed in superficial laminae of Vc and significantly downregulated in Vc at day 14 post trigeminal nerve injury. Furthermore, trigerminal nerve injury leads to neuronal apoptosis, especially GABAergic interneurons in the superficial of Vc. Upregulating Cdh1 in Vc ameliorated mechanical allodynia and inhibited GABAergic neuronal apoptosis induced by chronic constriction injury of trigeminal infraorbital nerve (CCI-ION).
Collapse
Affiliation(s)
- Jiayan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuhui Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei Province, China
| | - Xuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rong Hu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Mei
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Li Wan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingli Gui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
18
|
Alarcón-Millán J, Martínez-Carrillo DN, Peralta-Zaragoza O, Fernández-Tilapa G. Regulation of GKN1 expression in gastric carcinogenesis: A problem to resolve (Review). Int J Oncol 2019; 55:555-569. [PMID: 31322194 DOI: 10.3892/ijo.2019.4843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/04/2019] [Indexed: 11/05/2022] Open
Abstract
Gastrokine 1 (GKN1) is a protein expressed on the surface mucosa cells of the gastric antrum and fundus, which contributes to maintaining gastric homeostasis, inhibits inflammation and is a tumor suppressor. The expression of GKN1 decreases in mucosa that are either inflamed or infected by Helicobacter pylori, and is absent in gastric cancer. The measurement of circulating GKN1 concentration, the protein itself, or the mRNA in gastric tissue may be of use for the early diagnosis of cancer. The mechanisms that modulate the deregulation or silencing of GKN1 expression have not been completely described. The modification of histones, methylation of the GKN1 promoter, or proteasomal degradation of the protein have been detected in some patients; however, these mechanisms do not completely explain the absence of GKN1 or the reduction in GKN1 levels. Only NKX6.3 transcription factor has been shown to be a positive modulator of GKN1 transcription, although others also have an affinity with sequences in the promoter of this gene. While microRNAs (miRNAs) are able to directly or indirectly regulate the expression of genes at the post‑transcriptional level, the involvement of miRNAs in the regulation of GKN1 has not been reported. The present review analyzes the information reported on the determination of GKN1 expression and the regulation of its expression at the transcriptional, post‑transcriptional and post‑translational levels; it proposes an integrated model that incorporates the regulation of GKN1 expression via transcription factors and miRNAs in H. pylori infection.
Collapse
Affiliation(s)
- Judit Alarcón-Millán
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Dinorah Nashely Martínez-Carrillo
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| | - Oscar Peralta-Zaragoza
- Direction of Chronic Infections and Cancer, Research Center in Infection Diseases, National Institute of Public Health, Cuernavaca, Morelos 62100, México
| | - Gloria Fernández-Tilapa
- Clinical Research Laboratory, Faculty of Biological Chemical Sciences, Guerrero Autonomous University, Chilpancingo, Guerrero 39070, México
| |
Collapse
|
19
|
Transcription factor Oct1 protects against hematopoietic stress and promotes acute myeloid leukemia. Exp Hematol 2019; 76:38-48.e2. [PMID: 31295506 PMCID: PMC7670548 DOI: 10.1016/j.exphem.2019.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
Abstract
A better understanding of the development and progression of acute myelogenous leukemia (AML) is necessary to improve patient outcome. Here we define roles for the transcription factor Oct1/Pou2f1 in AML and normal hematopoiesis. Inappropriate reactivation of the CDX2 gene is widely observed in leukemia patients and in leukemia mouse models. We show that Oct1 associates with the CDX2 promoter in both normal and AML primary patient samples, but recruits the histone demethylase Jmjd1a/Kdm3a to remove the repressive H3K9me2 mark only in malignant specimens. The CpG DNA immediately adjacent to the Oct1 binding site within the CDX2 promoter exhibits variable DNA methylation in healthy control blood and bone marrow samples, but complete demethylation in AML samples. In MLL-AF9-driven mouse models, partial loss of Oct1 protects from myeloid leukemia. Complete Oct1 loss completely suppresses leukemia but results in lethality from bone marrow failure. Loss of Oct1 in normal hematopoietic transplants results in superficially normal long-term reconstitution; however, animals become acutely sensitive to 5-fluorouracil, indicating that Oct1 is dispensable for normal hematopoiesis but protects blood progenitor cells against external chemotoxic stress. These findings elucidate a novel and important role for Oct1 in AML.
Collapse
|
20
|
Vázquez-Arreguín K, Bensard C, Schell JC, Swanson E, Chen X, Rutter J, Tantin D. Oct1/Pou2f1 is selectively required for colon regeneration and regulates colon malignancy. PLoS Genet 2019; 15:e1007687. [PMID: 31059499 PMCID: PMC6522070 DOI: 10.1371/journal.pgen.1007687] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 05/16/2019] [Accepted: 04/16/2019] [Indexed: 12/22/2022] Open
Abstract
The transcription factor Oct1/Pou2f1 promotes poised gene expression states, mitotic stability, glycolytic metabolism and other characteristics of stem cell potency. To determine the effect of Oct1 loss on stem cell maintenance and malignancy, we deleted Oct1 in two different mouse gut stem cell compartments. Oct1 deletion preserved homeostasis in vivo and the ability to establish organoids in vitro, but blocked the ability to recover from treatment with dextran sodium sulfate, and the ability to maintain organoids after passage. In a chemical model of colon cancer, loss of Oct1 in the colon severely restricted tumorigenicity. In contrast, loss of one or both Oct1 alleles progressively increased tumor burden in a colon cancer model driven by loss-of-heterozygosity of the tumor suppressor gene Apc. The different outcomes are consistent with prior findings that Oct1 promotes mitotic stability, and consistent with differentially expressed genes between the two models. Oct1 ChIPseq using HCT116 colon carcinoma cells identifies target genes associated with mitotic stability, metabolism, stress response and malignancy. This set of gene targets overlaps significantly with genes differentially expressed in the two tumor models. These results reveal that Oct1 is selectively required for recovery after colon damage, and that Oct1 has potent effects in colon malignancy, with outcome (pro-oncogenic or tumor suppressive) dictated by tumor etiology.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Claire Bensard
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - John C. Schell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Eric Swanson
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Xinjian Chen
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, United States of America
- Howard Hughes Medical Institute, Salt Lake City, Utah, United States of America
| | - Dean Tantin
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, United States of America
| |
Collapse
|
21
|
MicroRNA-451 Inhibits Migration of Glioblastoma while Making It More Susceptible to Conventional Therapy. Noncoding RNA 2019; 5:ncrna5010025. [PMID: 30875963 PMCID: PMC6468936 DOI: 10.3390/ncrna5010025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 12/18/2022] Open
Abstract
Malignant glioblastoma (GBM, glioma) is the most common and aggressive primary adult brain tumor. The prognosis of GBM patients remains poor, despite surgery, radiation and chemotherapy. The major obstacles for successful remedy are invasiveness and therapy resistance of GBM cells. Invasive glioma cells leave primary tumor core and infiltrate surrounding normal brain leading to inevitable recurrence, even after surgical resection, radiation and chemotherapy. Therapy resistance allowing for selection of more aggressive and resistant sub-populations including GBM stem-like cells (GSCs) upon treatment is another serious impediment to successful treatment. Through their regulation of multiple genes, microRNAs can orchestrate complex programs of gene expression and act as master regulators of cellular processes. MicroRNA-based therapeutics could thus impact broad cellular programs, leading to inhibition of invasion and sensitization to radio/chemotherapy. Our data show that miR-451 attenuates glioma cell migration in vitro and invasion in vivo. In addition, we have found that miR-451 sensitizes glioma cells to conventional chemo- and radio-therapy. Our data also show that miR-451 is regulated in vivo by AMPK pathway and that AMPK/miR-451 loop has the ability to switch between proliferative and migratory pattern of glioma cells behavior. We therefore postulate that AMPK/miR-451 negative reciprocal feedback loop allows GBM cells/GSCs to adapt to tumor “ecosystem” by metabolic and behavioral flexibility, and that disruption of such a loop reduces invasiveness and diminishes therapy resistance.
Collapse
|
22
|
Metabolic Regulations in Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1143:59-74. [PMID: 31338815 DOI: 10.1007/978-981-13-7342-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
One of the bottlenecks of the treatments for malignant hematopoietic disorders is the unavailability of sufficient amount of hematopoietic stem cells (HSCs). HSCs are considered to be originated from the aorta-gonad-mesonephros and gradually migrates into fetal liver and resides in a unique microenvironment/niche of bone marrow. Although many intrinsic and extrinsic factors (niche components) are reported to be involved in the origination, maturation, migration, and localization of HSCs at different developmental stages, the detailed molecular mechanisms still remain largely unknown. Previous studies have shown that intrinsic metabolic networks may be critical for the cell fate determinations of HSCs. For example, HSCs mainly utilize glycolysis as the main energy sources; oxidative phosphorylation is required for the homeostasis of HSCs; lipid or amino acid metabolisms may also sustain HSC stemness. Mechanistically, lots of regulatory pathways, such as MEIS1/HIF1A and PI3K/AKT/mTOR signaling, are found to fine-tune the different nutrient metabolisms and cell fate commitments of HSCs. However, more efforts are required for the optimization and establishment of precise metabolic techniques specific for the HSCs with relatively rare cell frequency and understanding of the basic metabolic properties and their underlying regulatory mechanisms of different nutrients (such as glucose) during the different developmental stages of HSCs.
Collapse
|
23
|
Liao R, Ren G, Liu H, Chen X, Cao Q, Wu X, Li J, Dong C. ME1 promotes basal-like breast cancer progression and associates with poor prognosis. Sci Rep 2018; 8:16743. [PMID: 30425310 PMCID: PMC6233160 DOI: 10.1038/s41598-018-35106-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022] Open
Abstract
Basal-like breast cancer (BLBC) is associated with a poor clinical outcome due to the few treatment options and absence of effective targeted agents. Here, we show that malic enzyme 1 (ME1) is dramatically upregulated in BLBC due to ME1 copy number amplification. ME1 expression increases glucose uptake and lactate production, and reduces oxygen consumption, leading to aerobic glycolysis. ME1 expression promotes, whereas knockdown of ME1 expression suppresses tumorigenicity. In breast cancer patients, ME1 expression is positively correlated with large tumor size, high grade, poor survival, and chemotherapy resistance. Our study not only contributes to a new understanding of how metabolic reprogramming contributes to BLBC progression, but also provides a potential prognostic marker and therapeutic target for this challenging disease.
Collapse
Affiliation(s)
- Ruocen Liao
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Huixin Liu
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Qianhua Cao
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xuebiao Wu
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Li
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China. .,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Vázquez-Arreguín K, Maddox J, Kang J, Park D, Cano RR, Factor RE, Ludwig T, Tantin D. BRCA1 through Its E3 Ligase Activity Regulates the Transcription Factor Oct1 and Carbohydrate Metabolism. Mol Cancer Res 2018; 16:439-452. [PMID: 29330289 DOI: 10.1158/1541-7786.mcr-17-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
Abstract
The tumor suppressor BRCA1 regulates the DNA damage response (DDR) and other processes that remain incompletely defined. Among these, BRCA1 heterodimerizes with BARD1 to ubiquitylate targets via its N-terminal E3 ligase activity. Here, it is demonstrated that BRCA1 promotes oxidative metabolism by degrading Oct1 (POU2F1), a transcription factor with proglycolytic and tumorigenic effects. BRCA1 E3 ubiquitin ligase mutation skews cells toward a glycolytic metabolic profile while elevating Oct1 protein. CRISPR-mediated Oct1 deletion reverts the glycolytic phenotype. RNA sequencing (RNAseq) confirms deregulation of metabolic genes downstream of Oct1. BRCA1 mediates Oct1 ubiquitylation and degradation, and mutation of two ubiquitylated Oct1 lysines insulates the protein against BRCA1-mediated destabilization. Oct1 deletion in MCF-7 breast cancer cells does not perturb growth in standard culture, but inhibits growth in soft agar and xenograft assays. In primary breast cancer clinical specimens, Oct1 protein levels correlate positively with tumor aggressiveness and inversely with BRCA1. These results identify BRCA1 as an Oct1 ubiquitin ligase that catalyzes Oct1 degradation to promote oxidative metabolism and restrict tumorigenicity. Mol Cancer Res; 16(3); 439-52. ©2018 AACR.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jessica Maddox
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jinsuk Kang
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Dongju Park
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Reuben R Cano
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Rachel E Factor
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, Comprehensive Cancer Center, Ohio State University, Columbus, Ohio
| | - Dean Tantin
- Department of Pathology and Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah.
| |
Collapse
|
25
|
"Nutrient-sensing" and self-renewal: O-GlcNAc in a new role. J Bioenerg Biomembr 2017; 50:205-211. [PMID: 29204729 DOI: 10.1007/s10863-017-9735-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/21/2017] [Indexed: 12/14/2022]
Abstract
Whether embryonic, hematopoietic or cancer stem cells, this metabolic reprogramming is dependent on the nutrient-status and bioenergetic pathways that is influenced by the micro-environmental niches like hypoxia. Thus, the microenvironment plays a vital role in determining the stem cell fate by inducing metabolic reprogramming. Under the influence of the microenvironment, like hypoxia, the stem cells have increased glucose and glutamine uptake which result in activation of hexosamine biosynthesis pathway (HBP) and increased O-GlcNAc Transferase (OGT). The current review is focused on understanding how HBP, a nutrient-sensing pathway (that leads to increased OGT activity) is instrumental in regulating self-renewal not only in embryonic and hematopoietic stem cells (ESC/HSC) but also in cancer stem cells.
Collapse
|
26
|
Loughner CL, Tiwari A, Kenchegowda D, Swamynathan S, Swamynathan SK. Spatiotemporally Controlled Ablation of Klf5 Results in Dysregulated Epithelial Homeostasis in Adult Mouse Corneas. Invest Ophthalmol Vis Sci 2017; 58:4683-4693. [PMID: 28910443 PMCID: PMC5598321 DOI: 10.1167/iovs.17-22498] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Purpose Corneal epithelial (CE) homeostasis requires coordination between proliferation and differentiation. Here we examine the role of cell proliferation regulator Krüppel-like factor 5 (Klf5) in adult mouse CE homeostasis. Methods Klf5 was ablated in a spatiotemporally restricted manner by inducing Cre expression in 8-week-old ternary transgenic Klf5LoxP/LoxP/Krt12rtTA/rtTA/Tet-O-Cre (Klf5Δ/ΔCE) mouse CE by administering doxycycline via chow. Normal chow-fed ternary transgenic siblings served as controls. The control and Klf5Δ/ΔCE corneal (1) histology, (2) cell proliferation, and (3) Klf5-target gene expression were examined using (1) periodic acid Schiff reagent-stained sections, (2) Ki67 expression, and (3) quantitative PCR and immunostaining, respectively. The effect of KLF4, KLF5, and OCT1 on gastrokine-1 (GKN1) promoter activity was determined by transient transfection in human skin keratinocyte NCTC-2544 cells. Results Klf5 expression was decreased to 23% of the controls in Klf5Δ/ΔCE corneas, which displayed increased fluorescein uptake, downregulation of tight junction proteins Tjp1 and Gkn1, desmosomal Dsg1a, and basement membrane Lama3 and Lamb1, suggesting defective permeability barrier. In transient transfection assays, KLF5 and OCT1 synergistically stimulated GKN1 promoter activity. Klf5Δ/ΔCE CE displayed significantly fewer cell layers and Ki67+ proliferative cells coupled with significantly decreased cyclin-D1, and elevated phospho(Ser-10) p27/Kip1 expression. Expression of Krt12, E-cadherin, and β-catenin remained unaltered in Klf5Δ/ΔCE corneas. Conclusions Klf5 contributes to adult mouse CE homeostasis by promoting (1) permeability barrier function through upregulation of Tjp1, Gkn1, Dsg1a, Lama3, and Lamb1, and (2) basal cell proliferation through upregulation of cyclin-D1 and suppression of phospho(Ser-10) p27/Kip1, without significantly affecting the expression of epithelial markers Krt12, E-cadherin, and β-catenin.
Collapse
Affiliation(s)
- Chelsea L Loughner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Doreswamy Kenchegowda
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,McGowan Institute of Regenerative Medicine, University of Pittsburgh, United States.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States.,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
27
|
Linher-Melville K, Singh G. The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol 2017; 451:40-52. [PMID: 28202313 DOI: 10.1016/j.mce.2017.02.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
STAT3 and STAT5 mediate diverse cellular processes, transcriptionally regulating gene expression and interacting with cytoplasmic proteins. Their canonical activity is stimulated by cytokines/growth factors through JAK-STAT signaling. As targets of oncogenes with intrinsic tyrosine kinase activity, STAT3 and STAT5 become constitutively active in hematologic neoplasms and solid tumors, promoting cell proliferation and survival and modulating redox homeostasis. This review summarizes reactive oxygen species (ROS)-regulated STAT activation and how STATs influence ROS production. ROS-induced effects on post-translational modifications are presented, and STAT3/5-mediated regulation of xCT, a redox-sensitive target up-regulated in numerous cancers, is discussed with regard to transcriptional cross-talk.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
28
|
Tamrin SH, Majedi FS, Tondar M, Sanati-Nezhad A, Hasani-Sadrabadi MM. Electromagnetic Fields and Stem Cell Fate: When Physics Meets Biology. Rev Physiol Biochem Pharmacol 2017; 171:63-97. [PMID: 27515674 DOI: 10.1007/112_2016_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Controlling stem cell (SC) fate is an extremely important topic in the realm of SC research. A variety of different external cues mainly mechanical, chemical, or electrical stimulations individually or in combination have been incorporated to control SC fate. Here, we will deconstruct the probable relationship between the functioning of electromagnetic (EMF) and SC fate of a variety of different SCs. The electromagnetic (EM) nature of the cells is discussed with the emphasis on the effects of EMF on the determinant factors that directly and/or indirectly influence cell fate. Based on the EM effects on a variety of cellular processes, it is believed that EMFs can be engineered to provide a controlled signal with the highest impact on the SC fate decision. Considering the novelty and broad applications of applying EMFs to change SC fate, it is necessary to shed light on many unclear mechanisms underlying this phenomenon.
Collapse
Affiliation(s)
- Sara Hassanpour Tamrin
- Center of Excellence in Biomaterials, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | - Mahdi Tondar
- Department of Biochemistry and Molecular & Cellular Biology, School of Medicine, Georgetown University, Washington, DC, USA
| | - Amir Sanati-Nezhad
- BioMEMS and BioInspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, Center for Bioengineering Research and Education, University of Calgary, Calgary, AB, Canada, T2N1N4.
| | - Mohammad Mahdi Hasani-Sadrabadi
- Department of Chemistry & Biochemistry, and California NanoSystems Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience and G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
29
|
Shen Z, Kang J, Shakya A, Tabaka M, Jarboe EA, Regev A, Tantin D. Enforcement of developmental lineage specificity by transcription factor Oct1. eLife 2017; 6:20937. [PMID: 28537559 PMCID: PMC5466424 DOI: 10.7554/elife.20937] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 05/23/2017] [Indexed: 12/26/2022] Open
Abstract
Embryonic stem cells co-express Oct4 and Oct1, a related protein with similar DNA-binding specificity. To study the role of Oct1 in ESC pluripotency and transcriptional control, we constructed germline and inducible-conditional Oct1-deficient ESC lines. ESCs lacking Oct1 show normal appearance, self-renewal and growth but manifest defects upon differentiation. They fail to form beating cardiomyocytes, generate neurons poorly, form small, poorly differentiated teratomas, and cannot generate chimeric mice. Upon RA-mediated differentiation, Oct1-deficient cells induce lineage-appropriate developmentally poised genes poorly while lineage-inappropriate genes, including extra-embryonic genes, are aberrantly expressed. In ESCs, Oct1 co-occupies a specific set of targets with Oct4, but does not occupy differentially expressed developmental targets. Instead, Oct1 occupies these targets as cells differentiate and Oct4 declines. These results identify a dynamic interplay between Oct1 and Oct4, in particular during the critical window immediately after loss of pluripotency when cells make the earliest developmental fate decisions. DOI:http://dx.doi.org/10.7554/eLife.20937.001 Humans and most other animals are composed of hundreds of different types of cell, including nerve cells, muscle cells and blood cells. Despite performing many different roles, these cells all develop from a single fertilized egg, which divides to make a particular group of cells that when studied in the laboratory are called embryonic stem cells (or ESCs for short). The ability of a cell to become a different cell type is defined as “potency”. ESCs are unique because they can specialize into any type of cell present in the adult organism, and they are therefore called “pluripotent”. However, as the embryo develops, its ESCs gradually lose their potency, and become more and more specialized. The activity of a great number of genes must be regulated during the transition from pluripotent to specialized cells, and some of the mechanisms involved in this transition are still unclear. ESCs are known to need a gene-regulating protein called Oct4 to remain pluripotent and Shen, Kang, Shakya et al. now show that a similar protein named Oct1 is essential for their transition to becoming more specialized. When the gene for Oct1 was deleted from mouse ECSs, they behaved largely like “normal” ESCs, but could not properly mature into certain cell types such as heart and nerve cells. Molecular analyses revealed that Oct4 and Oct1 compete to regulate the activity of many common genes with opposing outcomes: Oct4 keeps ESCs pluripotent while Oct1 leads them to specialize. The Oct4 protein is abundant in ESCs and prevails over Oct1, but as the cells mature, the levels of Oct4 drop, and Oct1 takes over in the regulation of their common target genes. Going forward, a better understanding of how ESCs become specialized will help basic research in the laboratory and allow scientists to tackle new questions about how the human body develops and how our organs work. In the longer-term, these findings might also have applications in the field of regenerative medicine, which aims to repair or replace a person’s cells, tissues or organs to improve their health. DOI:http://dx.doi.org/10.7554/eLife.20937.002
Collapse
Affiliation(s)
- Zuolian Shen
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Arvind Shakya
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Marcin Tabaka
- The Broad Institute of MIT and Harvard, Cambridge, United States
| | - Elke A Jarboe
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| | - Aviv Regev
- The Broad Institute of MIT and Harvard, Cambridge, United States.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
30
|
Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis 2017; 8:e2716. [PMID: 28358377 PMCID: PMC5386536 DOI: 10.1038/cddis.2017.133] [Citation(s) in RCA: 417] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022]
Abstract
Inhibition of complex I (CI) of the mitochondrial respiratory chain by BAY 87-2243 (‘BAY') triggers death of BRAFV600E melanoma cell lines and inhibits in vivo tumor growth. Here we studied the mechanism by which this inhibition induces melanoma cell death. BAY treatment depolarized the mitochondrial membrane potential (Δψ), increased cellular ROS levels, stimulated lipid peroxidation and reduced glutathione levels. These effects were paralleled by increased opening of the mitochondrial permeability transition pore (mPTP) and stimulation of autophagosome formation and mitophagy. BAY-induced cell death was not due to glucose shortage and inhibited by the antioxidant α-tocopherol and the mPTP inhibitor cyclosporin A. Tumor necrosis factor receptor-associated protein 1 (TRAP1) overexpression in BAY-treated cells lowered ROS levels and inhibited mPTP opening and cell death, whereas the latter was potentiated by TRAP1 knockdown. Knockdown of autophagy-related 5 (ATG5) inhibited the BAY-stimulated autophagosome formation, cellular ROS increase and cell death. Knockdown of phosphatase and tensin homolog-induced putative kinase 1 (PINK1) inhibited the BAY-induced Δψ depolarization, mitophagy stimulation, ROS increase and cell death. Dynamin-related protein 1 (Drp1) knockdown induced mitochondrial filamentation and inhibited BAY-induced cell death. The latter was insensitive to the pancaspase inhibitor z-VAD-FMK, but reduced by necroptosis inhibitors (necrostatin-1, necrostatin-1s)) and knockdown of key necroptosis proteins (receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and mixed lineage kinase domain-like (MLKL)). BAY-induced cell death was also reduced by the ferroptosis inhibitor ferrostatin-1 and overexpression of the ferroptosis-inhibiting protein glutathione peroxidase 4 (GPX4). This overexpression also inhibited the BAY-induced ROS increase and lipid peroxidation. Conversely, GPX4 knockdown potentiated BAY-induced cell death. We propose a chain of events in which: (i) CI inhibition induces mPTP opening and Δψ depolarization, that (ii) stimulate autophagosome formation, mitophagy and an associated ROS increase, leading to (iii) activation of combined necroptotic/ferroptotic cell death.
Collapse
|
31
|
Pankratova EV, Stepchenko AG, Portseva T, Mogila VA, Georgieva SG. Different N-terminal isoforms of Oct-1 control expression of distinct sets of genes and their high levels in Namalwa Burkitt's lymphoma cells affect a wide range of cellular processes. Nucleic Acids Res 2016; 44:9218-9230. [PMID: 27407111 PMCID: PMC5100579 DOI: 10.1093/nar/gkw623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 01/03/2023] Open
Abstract
Oct-1 transcription factor has various functions in gene regulation. Its expression level is increased in several types of cancer and is associated with poor survival prognosis. Here we identified distinct Oct-1 protein isoforms in human cells and compared gene expression patterns and functions for Oct-1A, Oct-1L, and Oct-1X isoforms that differ by their N-terminal sequences. The longest isoform, Oct-1A, is abundantly expressed and is the main Oct-1 isoform in most of human tissues. The Oct-1L and the weakly expressed Oct-1X regulate the majority of Oct-1A targets as well as additional sets of genes. Oct-1X controls genes involved in DNA replication, DNA repair, RNA processing, and cellular response to stress. The high level of Oct-1 isoforms upregulates genes related to cell cycle progression and activates proliferation both in Namalwa Burkitt's lymphoma cells and primary human fibroblasts. It downregulates expression of genes related to antigen processing and presentation, cytokine-cytokine receptor interaction, oxidative metabolism, and cell adhesion, thus facilitating pro-oncogenic processes.
Collapse
Affiliation(s)
- Elizaveta V Pankratova
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Alexander G Stepchenko
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Tatiana Portseva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Vladic A Mogila
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| | - Sofia G Georgieva
- Department of Transcription Factors, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, Moscow 119991 Russia
| |
Collapse
|
32
|
Vázquez-Arreguín K, Tantin D. The Oct1 transcription factor and epithelial malignancies: Old protein learns new tricks. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:792-804. [PMID: 26877236 PMCID: PMC4880489 DOI: 10.1016/j.bbagrm.2016.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 01/29/2023]
Abstract
The metazoan-specific POU domain transcription factor family comprises activities underpinning developmental processes such as embryonic pluripotency and neuronal specification. Some POU family proteins efficiently bind an 8-bp DNA element known as the octamer motif. These proteins are known as Oct transcription factors. Oct1/POU2F1 is the only widely expressed POU factor. Unlike other POU factors it controls no specific developmental or organ system. Oct1 was originally described to operate at target genes associated with proliferation and immune modulation, but more recent results additionally identify targets associated with oxidative and cytotoxic stress resistance, metabolic regulation, stem cell function and other unexpected processes. Oct1 is pro-oncogenic in multiple contexts, and several recent reports provide broad evidence that Oct1 has prognostic and therapeutic value in multiple epithelial tumor settings. This review focuses on established and emerging roles of Oct1 in epithelial tumors, with an emphasis on mechanisms of transcription regulation by Oct1 that may underpin these findings. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- Karina Vázquez-Arreguín
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
33
|
Hwang SS, Kim LK, Lee GR, Flavell RA. Role of OCT-1 and partner proteins in T cell differentiation. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:825-31. [PMID: 27126747 DOI: 10.1016/j.bbagrm.2016.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/24/2022]
Abstract
The understanding of CD4 T cell differentiation gives important insights into the control of immune responses against various pathogens and in autoimmune diseases. Naïve CD4 T cells become effector T cells in response to antigen stimulation in combination with various environmental cytokine stimuli. Several transcription factors and cis-regulatory regions have been identified to regulate epigenetic processes on chromatin, to allow the production of proper effector cytokines during CD4 T cell differentiation. OCT-1 (Pou2f1) is well known as a widely expressed transcription factor in most tissues and cells. Although the importance of OCT-1 has been emphasized during development and differentiation, its detailed molecular underpinning and precise role are poorly understood. Recently, a series of studies have reported that OCT-1 plays a critical role in CD4 T cells through regulating gene expression during differentiation and mediating long-range chromosomal interactions. In this review, we will describe the role of OCT-1 in CD4 T cell differentiation and discuss how this factor orchestrates the fate and function of CD4 effector T cells.
Collapse
Affiliation(s)
- Soo Seok Hwang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Severance Biomedical Science Institute, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonjuro, Gangnam-gu, Seoul 135-720, South Korea
| | - Gap Ryol Lee
- Department of Life-Science, Sogang University, Baekbeom-ro, Seoul 121-742, South Korea
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
34
|
Affiliation(s)
- Agnieszka Bronisz
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jakub Godlewski
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Regulatory roles of Oct proteins in the mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:812-9. [PMID: 27044595 DOI: 10.1016/j.bbagrm.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
Abstract
The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
36
|
Rooj AK, Bronisz A, Godlewski J. The role of octamer binding transcription factors in glioblastoma multiforme. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:805-11. [PMID: 26968235 DOI: 10.1016/j.bbagrm.2016.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 12/24/2022]
Abstract
A group of transcription factors (TF) that are master developmental regulators of the establishment and maintenance of pluripotency during embryogenesis play additional roles to control tissue homeostasis and regeneration in adults. Among these TFs, members of the octamer-binding transcription factor (OCT) gene family are well documented as major regulators controlling the self-renewal and pluripotency of stem cells isolated from different adult organs including the brain. In the last few years a large number of studies show the aberrant expression and dysfunction of OCT in different types of cancers including glioblastoma multiforme (GBM). GBM is the most common malignant primary brain tumor, and contains a subpopulation of undifferentiated stem cells (GSCs), with self-renewal and tumorigenic potential that contribute to tumor initiation, invasion, recurrence, and therapeutic resistance. In this review, we have summarized the current knowledge about OCT family in GBM and their crucial role in the initiation, maintenance and drug resistance properties of GSCs. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
Affiliation(s)
- A K Rooj
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - A Bronisz
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - J Godlewski
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
37
|
Sengupta D, Pratx G. Imaging metabolic heterogeneity in cancer. Mol Cancer 2016; 15:4. [PMID: 26739333 PMCID: PMC4704434 DOI: 10.1186/s12943-015-0481-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/10/2015] [Indexed: 01/01/2023] Open
Abstract
As our knowledge of cancer metabolism has increased, it has become apparent that cancer metabolic processes are extremely heterogeneous. The reasons behind this heterogeneity include genetic diversity, the existence of multiple and redundant metabolic pathways, altered microenvironmental conditions, and so on. As a result, methods in the clinic and beyond have been developed in order to image and study tumor metabolism in the in vivo and in vitro regimes. Both regimes provide unique advantages and challenges, and may be used to provide a picture of tumor metabolic heterogeneity that is spatially and temporally comprehensive. Taken together, these methods may hold the key to appropriate cancer diagnoses and treatments in the future.
Collapse
Affiliation(s)
- Debanti Sengupta
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA
| | - Guillem Pratx
- Stanford University School of Medicine, A226 Building A, 1050 Arastradero Road, Palo Alto, CA, 94304, USA.
| |
Collapse
|
38
|
Zhang W, Zhang SL, Hu X, Tam KY. Targeting Tumor Metabolism for Cancer Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target? Int J Biol Sci 2015; 11:1390-400. [PMID: 26681918 PMCID: PMC4671996 DOI: 10.7150/ijbs.13325] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023] Open
Abstract
Cancer remains a lethal threat to global lives. Development of novel anticancer therapeutics is still a challenge to scientists in the field of biomedicine. In cancer cells, the metabolic features are significantly different from those of normal ones, which are hallmarks of several malignancies. Recent studies brought atypical cellular metabolism, such as aerobic glycolysis or the Warburg effect, into the scientific limelight. Targeting these altered metabolic pathways in cancer cells presents a promising therapeutic strategy. Pyruvate dehydrogenase kinases (PDKs), key enzymes in the pathway of glucose metabolism, could inactivate the pyruvate dehydrogenase complex (PDC) by phosphorylating it and preserving the substrates pyruvate, lactate and alanine for gluconeogenesis. Overexpression of PDKs could block the oxidative decarboxylation of pyruvate to satisfy high oxygen demand in cancer cells, while inhibition of PDKs could upregulate the activity of PDC and rectify the balance between the demand and supply of oxygen, which could lead to cancer cell death. Thus, inhibitors targeting PDKs represent a promising strategy for cancer treatment by acting on glycolytic tumors while showing minimal side effects on the oxidative healthy organs. This review considers the role of PDKs as regulator of PDC that catalyzes the oxidative decarboxylation of pyruvate in mitochondrion. It is concluded that PDKs are solid therapeutic targets. Inhibition of PDKs could be an attractive therapeutic approach for the development of anti-cancer drugs.
Collapse
Affiliation(s)
- Wen Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Shao-Lin Zhang
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xiaohui Hu
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| | - Kin Yip Tam
- Drug Development Core, Faculty of Health Sciences, University of Macau, Macau, China
| |
Collapse
|
39
|
Wang YP, Song GH, Chen J, Xiao C, Li C, Zhong L, Sun X, Wang ZW, Deng GL, Yu FD, Xue YM, Tang HM, Peng ZH, Wang XL. Elevated OCT1 participates in colon tumorigenesis and independently predicts poor prognoses of colorectal cancer patients. Tumour Biol 2015; 37:3247-55. [PMID: 26433389 PMCID: PMC4844638 DOI: 10.1007/s13277-015-4080-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/13/2015] [Indexed: 02/04/2023] Open
Abstract
Octamer transcription factor 1 (OCT1) was found to influence the genesis and progression of numerous cancers except for colorectal cancer (CRC). This study tried to explore the role of OCT1 in CRC and clarify the association between its expression and patients' clinical outcome. Transcriptional and post-transcriptional expression of OCT1 was detected in CRC cancerous tissues and paired normal mucosae by real-time PCR as well as immunohistochemistry. Moreover, the effect of OCT1 knockdown on CRC cell proliferation was investigated both in vitro and in vivo using Cell Counting Kit-8 assay, colony-forming assay, and mouse tumorigenicity assay. Expression of OCT1 was found to be elevated in CRC. Suppression of OCT1 significantly inhibited CRC cell proliferation both in vitro and in vivo. Furthermore, upregulated level of OCT1 was significantly associated with N stage, M stage, and American Joint Committee on Cancer (AJCC) stage (P = 0.027, 0.014, and 0.002, respectively) as well as differential degree (P = 0.022). By using multivariate Cox hazard model, OCT1 was also shown to be a factor independently predicting overall survival (OS; P = 0.013, hazard ratio = 2.747, 95 % confidence interval 1.125 to 3.715) and disease-free survival (DFS; P = 0.004, hazard ratio = 2.756, 95 % confidence interval 1.191 to 4.589) for CRC patients. Our data indicate that OCT1 carries weight in colorectal carcinogenesis and functions as a novel prognostic indicator and a promising target of anti-cancer therapy for CRC.
Collapse
Affiliation(s)
- Yu-Peng Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guo-He Song
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jian Chen
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chao Xiao
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Chao Li
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Lin Zhong
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhao-Wen Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Gui-Long Deng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Fu-Dong Yu
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ying-Ming Xue
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hua-Mei Tang
- Department of Pathology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhi-Hai Peng
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Xiao-Liang Wang
- Department of General Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
40
|
Octamer transcription factor 1 mediates epithelial-mesenchymal transition in colorectal cancer. Tumour Biol 2015; 36:9941-6. [PMID: 26178483 DOI: 10.1007/s13277-015-3766-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types worldwide. Octamer transcription factor 1 (OCT1) is associated with tumor progression and a poor patient survival rate. However, little is known regarding the effect of OCT1 in CRC. Moreover, because the epithelial-to-mesenchymal transition (EMT) is a key player in metastasis, whether OCT1 induces EMT in CRC remains unclear. In the present study, we investigate the role of OCT1 in CRC and its expression pattern and clinical significance. The expression of OCT1 in CRC tissues and the adjacent noncancerous tissues was detected using quantitative real-time PCR (QRT-PCR), Western blot, and immunohistochemistry analyses. In addition, silencing of OCT1 with small interfering RNA (siRNA) was performed in CRC cell lines, and the impact on proliferation, migration, and the EMT marker of CRC was analyzed. Our results found that OCT1 levels were significant higher in CRC tissues compared with the adjacent noncancerous tissues. Furthermore, OCT1 siRNA significantly reduced the proliferation rate of SW620 and LoVo cells, inhibited the migration and invasion, and could reverse EMT in these two CRC cells, indicating that OCT1 plays a critical role in CRC progression.
Collapse
|
41
|
Ansari KI, Ogawa D, Rooj AK, Lawler SE, Krichevsky AM, Johnson MD, Chiocca EA, Bronisz A, Godlewski J. Glucose-based regulation of miR-451/AMPK signaling depends on the OCT1 transcription factor. Cell Rep 2015; 11:902-909. [PMID: 25937278 DOI: 10.1016/j.celrep.2015.04.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/21/2015] [Accepted: 04/06/2015] [Indexed: 01/11/2023] Open
Abstract
In aggressive, rapidly growing solid tumors such as glioblastoma multiforme (GBM), cancer cells face frequent dynamic changes in their microenvironment, including the availability of glucose and other nutrients. These challenges require that tumor cells have the ability to adapt in order to survive periods of nutrient/energy starvation. We have identified a reciprocal negative feedback loop mechanism in which the levels of microRNA-451 (miR-451) are negatively regulated through the phosphorylation and inactivation of its direct transcriptional activator OCT1 by 5' AMP-activated protein kinase (AMPK), which is activated by glucose depletion-induced metabolic stress. Conversely, in a glucose-rich environment, unrestrained expression of miR-451 suppresses AMPK pathway activity. These findings uncover miR-451 as a major effector of glucose-regulated AMPK signaling, allowing tumor cell adaptation to variations in nutrient availability in the tumor microenvironment.
Collapse
Affiliation(s)
- Khairul I Ansari
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daisuke Ogawa
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Neurological Surgery, Kagawa University Hospital, Miki-cho, Kagawa 761-0793, Japan
| | - Arun K Rooj
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sean E Lawler
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark D Johnson
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Agnieszka Bronisz
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Jakub Godlewski
- Department of Neurosurgery, Harvey Cushing Neuro-oncology Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, Fang JY. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut 2015; 64:37-48. [PMID: 24717932 PMCID: PMC4283676 DOI: 10.1136/gutjnl-2013-306584] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Octamer transcription factor 1 (OCT1) was found to be expressed in intestinal metaplasia and gastric cancer (GC), but the exact roles of OCT1 in GC remain unclear. The objective of this study was to determine the functional and prognostic implications of OCT1 in GC. DESIGN Expression of OCT1 was examined in paired normal and cancerous gastric tissues and the prognostic significance of OCT1 was analysed by univariate and multivariate survival analyses. The functions of OCT1 on synbindin expression and extracellular signal-regulated kinase (ERK) phosphorylation were studied in vitro and in xenograft mouse models. RESULTS The OCT1 gene is recurrently amplified and upregulated in GC. OCT1 overexpression and amplification are associated with poor survival in patients with GC and the prognostic significance was confirmed by independent patient cohorts. Combining OCT1 overexpression with American Joint Committee on Cancer staging improved the prediction of survival in patients with GC. High expression of OCT1 associates with activation of the ERK mitogen-activated protein kinase signalling pathway in GC tissues. OCT1 functions by transactivating synbindin, which binds to ERK DEF domain and facilitates ERK phosphorylation by MEK. OCT1-synbindin signalling results in the activation of ERK substrates ELK1 and RSK, leading to increased cell proliferation and invasion. Immunofluorescent study of human GC tissue samples revealed strong association between OCT1 protein level and synbindin expression/ERK phosphorylation. Upregulation of OCT1 in mouse xenograft models induced synbindin expression and ERK activation, leading to accelerated tumour growth in vivo. CONCLUSIONS OCT1 is a driver of synbindin-mediated ERK signalling and a promising marker for the prognosis and molecular subtyping of GC.
Collapse
Affiliation(s)
- Jin Qian
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xuan Kong
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Niantao Deng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Haoyan Chen
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaoli Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ye Hu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Xu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
43
|
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application. Biotechnol Prog 2014; 31:468-81. [PMID: 25504836 DOI: 10.1002/btpr.2034] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/28/2014] [Indexed: 12/13/2022]
Abstract
Human mesenchymal or stromal cells (hMSCs) isolated from various adult tissues are primary candidates in cell therapy and tissue regeneration. Despite promising results in preclinical studies, robust therapeutic responses to MSC treatment have not been reproducibly demonstrated in clinical trials. In the translation of MSC-based therapy to clinical application, studies of MSC metabolism have significant implication in optimizing bioprocessing conditions to obtain therapeutically competent hMSC population for clinical application. In addition, understanding the contribution of metabolic cues in directing hMSC fate also provides avenues to potentiate their therapeutic effects by modulating their metabolic properties. This review focuses on MSC metabolism and discusses their unique metabolic features in the context of common metabolic properties shared by stem cells. Recent advances in the fundamental understanding of MSC metabolic characteristics in relation to their in vivo origin and metabolic regulation during proliferation, lineage-specific differentiation, and exposure to in vivo ischemic conditions are summarized. Metabolic strategies in directing MSC fate to enhance their therapeutic potential in tissue engineering and regenerative medicine are discussed.
Collapse
Affiliation(s)
- Yijun Liu
- Dept. of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, 32310
| | | |
Collapse
|
44
|
Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells. Cell Death Differ 2014; 21:1560-74. [PMID: 24832466 DOI: 10.1038/cdd.2014.66] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 02/28/2014] [Accepted: 04/07/2014] [Indexed: 12/29/2022] Open
Abstract
The relationship between mitochondrial metabolism and cell viability and differentiation in stem cells (SCs) remains poorly understood. In the present study, we compared mitochondrial physiology and metabolism between P19SCs before/after differentiation and present a unique fingerprint of the association between mitochondrial activity, cell differentiation and stemness. In comparison with their differentiated counterparts, pluripotency of P19SCs was correlated with a strong glycolytic profile and decreased mitochondrial biogenesis and complexity: round, low-polarized and inactive mitochondria with a closed permeability transition pore. This decreased mitochondrial capacity increased their resistance against dichloroacetate. Thus, stimulation of mitochondrial function by growing P19SCs in glutamine/pyruvate-containing medium reduced their glycolytic phenotype, induced loss of pluripotent potential, compromised differentiation and became P19SCs sensitive to dichloroacetate. Because of the central role of this type of SCs in teratocarcinoma development, our findings highlight the importance of mitochondrial metabolism in stemness, proliferation, differentiation and chemoresistance. In addition, the present work suggests the regulation of mitochondrial metabolism as a tool for inducing cell differentiation in stem line therapies.
Collapse
|
45
|
OCT-1 overexpression is associated with poor prognosis in patients with well-differentiated gastric cancer. Tumour Biol 2014; 35:5501-9. [PMID: 24566898 DOI: 10.1007/s13277-014-1724-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 02/03/2014] [Indexed: 12/28/2022] Open
Abstract
Octamer transcription factor-1 (OCT-1) is a well-known transcription factor that is reportedly overexpressed in intestinal metaplasia and gastric carcinoma in the intestine. In this study, we investigated OCT-1 overexpression as a prognostic factor for gastric cancer. The association between OCT-1 overexpression (detected using immunohistochemistry) and clinicopathological features including survival was evaluated. In vitro gain-of-function approaches were utilized to assess the function of OCT-1 in malignancy. Analysis of OCT-1 expression in patients with gastric cancer with well-differentiated carcinoma as per the World Health Organization classification showed that OCT-1 overexpression was correlated with advanced tumor invasion (58.8 % of patients with advanced tumor invasion vs. 21.2 % of patients with early tumor invasion; p<0.01), lymph node metastasis (63.9 % of patients with metastasis vs. 24.1 % of those without; p=0.015), and cancer recurrence (83.3 % of patients with recurrence vs. 25.4 % of those without; p<0.01), as well as a lower survival rate (62.8 vs. 87.9 Mo; p<0.01). However, there were no significant differences in the levels of OCT-1 expression in gastric cancer patients with other carcinoma types (p>0.05). Furthermore, we found that the proliferation rate of OCT-1-overexpressing MKN-45 cells was higher than that of the control cells. OCT-1 overexpression may be a marker for poor prognosis in patients with well-differentiated gastric adenocarcinoma.
Collapse
|
46
|
Brogna DMR, Tansawat R, Cornforth D, Ward R, Bella M, Luciano G, Priolo A, Villalba J. The quality of meat from sheep treated with tannin- and saponin-based remedies as a natural strategy for parasite control. Meat Sci 2013; 96:744-9. [PMID: 24211542 DOI: 10.1016/j.meatsci.2013.10.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/11/2013] [Accepted: 10/15/2013] [Indexed: 01/19/2023]
Abstract
Lambs were assigned to four groups of seven and treated as follows for 12 days: control group (BP) was fed beet pulp; group T (tannin remedy) received the BP diet including 80 g/kg of quebracho extract; group S (saponin remedy) received the BP diet including 15 g/kg of quillaja extract; and group C had a free choice between T and S remedies. Lipid oxidation was lower in meat from S lambs compared to T lambs (P<0.05). Among the volatile compounds, lactate was lower in meat from S lambs compared to T animals (P=0.05). Metabolomic analysis showed that the T treatment increased ribose, fructose, glucose and sorbitol concentration in meat (P<0.05), while cholesterol was decreased by S and C treatments. The T treatment increased the concentration of C14:1 cis-9 (P<0.05). These findings indicate that treatments for parasite control containing tannins and saponins do not detrimentally affect sheep meat quality.
Collapse
Affiliation(s)
- D M R Brogna
- Department DISPA, Sezione di Scienze delle Produzioni Animali, University of Catania, Via Valdisavoia 5, 95123 Catania, Italy
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Tantin D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140:2857-66. [PMID: 23821033 DOI: 10.1242/dev.095927] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The POU domain family of transcription factors regulates developmental processes ranging from specification of the early embryo to terminal differentiation. About half of these factors display substantial affinity for an 8 bp DNA site termed the octamer motif, and are hence known as Oct proteins. Oct4 (Pou5f1) is a well-known Oct factor, but there are other Oct proteins with varied and essential roles in development. This Primer outlines our current understanding of Oct proteins and the regulatory mechanisms that govern their role in developmental processes and concludes with the assertion that more investigation into their developmental functions is needed.
Collapse
Affiliation(s)
- Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
48
|
Rafalski VA, Mancini E, Brunet A. Energy metabolism and energy-sensing pathways in mammalian embryonic and adult stem cell fate. J Cell Sci 2013; 125:5597-608. [PMID: 23420198 DOI: 10.1242/jcs.114827] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Metabolism is influenced by age, food intake, and conditions such as diabetes and obesity. How do physiological or pathological metabolic changes influence stem cells, which are crucial for tissue homeostasis? This Commentary reviews recent evidence that stem cells have different metabolic demands than differentiated cells, and that the molecular mechanisms that control stem cell self-renewal and differentiation are functionally connected to the metabolic state of the cell and the surrounding stem cell niche. Furthermore, we present how energy-sensing signaling molecules and metabolism regulators are implicated in the regulation of stem cell self-renewal and differentiation. Finally, we discuss the emerging literature on the metabolism of induced pluripotent stem cells and how manipulating metabolic pathways might aid cellular reprogramming. Determining how energy metabolism regulates stem cell fate should shed light on the decline in tissue regeneration that occurs during aging and facilitate the development of therapies for degenerative or metabolic diseases.
Collapse
|
49
|
Folmes CDL, Dzeja PP, Nelson TJ, Terzic A. Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell 2013; 11:596-606. [PMID: 23122287 DOI: 10.1016/j.stem.2012.10.002] [Citation(s) in RCA: 514] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plasticity in energy metabolism allows stem cells to match the divergent demands of self-renewal and lineage specification. Beyond a role in energetic support, new evidence implicates nutrient-responsive metabolites as mediators of crosstalk between metabolic flux, cellular signaling, and epigenetic regulation of cell fate. Stem cell metabolism also offers a potential target for controlling tissue homeostasis and regeneration in aging and disease. In this Perspective, we cover recent progress establishing an emerging relationship between stem cell metabolism and cell fate control.
Collapse
|
50
|
Kang J, Shen Z, Lim JM, Handa H, Wells L, Tantin D. Regulation of Oct1/Pou2f1 transcription activity by O-GlcNAcylation. FASEB J 2013; 27:2807-17. [PMID: 23580612 DOI: 10.1096/fj.12-220897] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Oct1 transcription factor is a potent regulator of stress responses, metabolism, and tumorigenicity. Although Oct1 is regulated by phosphorylation and ubiquitination, the presence and importance of other modifications is unknown. Here we show that Oct1 is modified by O-linked β-N-acetylglucosamine (O-GlcNAc) moieties. We map two sites of O-GlcNAcylation at positions T255 and S728 within human Oct1. Under anchorage-independent overgrowth conditions, Oct1 associates 3-fold more strongly with the Gadd45a promoter and mediates transcriptional repression. Increased binding correlates with quantitative reductions in Oct1 nuclear periphery-associated puncta, and a reduced association with lamin B1. The O-GlcNAc modification sites are important for both Gadd45a repression and anchorage-independent survival. In contrast to chronic overgrowth conditions, following acute nutrient starvation Oct1 mediates Gadd45a activation. The O-GlcNAc sites are also important for Gadd45a activation under these conditions. We also, for the first time, identify specific Oct1 ubiquitination sites. The findings suggest that Oct1 integrates metabolic and stress signals via O-GlcNAc modification to regulate target gene activity.
Collapse
Affiliation(s)
- Jinsuk Kang
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | | | | | | | | | | |
Collapse
|