1
|
Wang H, Huang J, Zhang Z, An Y, Sun H, Chen J, Feng W, Duan H, Mou Y, Wang Y, Liu P, Zhou H, Chen HW, Zhang J, Lu X, Wang J. Phase separation of RXRγ drives tumor chemoresistance and represents a therapeutic target for small-cell lung cancer. Proc Natl Acad Sci U S A 2025; 122:e2421199122. [PMID: 40392852 DOI: 10.1073/pnas.2421199122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
Small-cell lung cancer (SCLC) is the most lethal type of lung cancer, characterized by rapid evolution from chemosensitivity to chemoresistance and limited treatment options. However, the mechanisms underlying this evolution remain poorly understood. Here, we show that Retinoid X receptor γ (RXRγ) is uniquely overexpressed in chemo-resistant SCLC tumors, and that RXRγ serves as an essential factor driving chemoresistance in SCLC. RXRγ forms phase-separated droplets with LSD1 in the nucleus, which enhances RXRγ-mediated gene transcription activity and reprograms gene expression, promoting tumor stemness and metastasis, and eventually driving SCLC chemoresistance. In turn, RXRγ antagonist disrupts RXRγ-LSD1 interaction, reducing their binding to the target gene locus, markedly suppressing the expression of the RXRγ target gene network. Finally, RXRγ antagonists strongly suppress tumor growth and metastasis and restore SCLC vulnerability to chemotherapy in multiple preclinical SCLC models, resulting in a substantial extension of survival in mouse models. Thus, these results establish RXRγ as a key player in SCLC by phase separation and as a potential therapeutic target for this deadly disease.
Collapse
Affiliation(s)
- Hong Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jie Huang
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Zhenhua Zhang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Yana An
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Huizi Sun
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Jianghe Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Weineng Feng
- Foshan Key Laboratory of Precision Therapy in Oncology and Neurology, Department of Pulmonary Oncology, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Hao Duan
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yonggao Mou
- Department of Neurosurgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yuanxiang Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Peiqing Liu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Huihao Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, School of Medicine, University of California Davis, Sacramento, CA 95817
| | - Jian Zhang
- Thoracic Surgery Department, The Third Affiliated Hospital of Sun Yat-sen University, Tianhe District, Guangzhou 510630, China
| | - Xiaoyun Lu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
- National-Local Joint Engineering Laboratory of Druggability and New Drugs Evaluation, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
2
|
Xu Y, Hu J, Fan Y, Sun L, Shen N, Jin Q, Zhang L, Zhang J, Zhang F, Chen H. LSD1 induces H3 K9 demethylation to promote adipogenesis in thyroid-associated ophthalmopathy. Epigenetics Chromatin 2025; 18:28. [PMID: 40340927 PMCID: PMC12060571 DOI: 10.1186/s13072-025-00586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/07/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Thyroid-associated ophthalmopathy (TAO) is an autoimmune orbital disease influenced by multiple factors, including genetic and immune factors. The enlargement of orbital fat tissues are mainly due to abnormal activation of adipocyte differentiation. Epigenetic modifications provide mechanistic insight for regulating gene expression and cellular differentiation. Lysine specific demethylase 1 (LSD1) is reported in regulation of adipogenesis. Therefore, it is critical to investigate the relationship between epigenetic modifier LSD1 and histone modification level during TAO process. RESULTS In this study, combined with the clinic study and highthrough sequencing approach, our results revealed that the volume of orbital fat tissue was lower in TAO patients compared to non-TAO patients, whereas the number of adipocytes was higher in TAO patients compared to non-TAO patients, the expression level of adipocyte differentiation markers were higher in TAO samples. Consistently, at the cellular system, the expression level of adipogenic markers were higher in the TAO derived cells compared with the non-TAO cells. And we found LSD1 was highly expressed in TAO-derived cells. However, knocking down LSD1 decreased the expression of adipocyte markers. Mechanistically, LSD1 promoted adipocyte gene activation by demethylating H3K9me2 at the promoter regions. Finally, treatment with pargyline, an LSD1 inhibitor, inhibited adipogenesis in a dose-dependent manner, and the same inhibition of adipogenesis results were obtained with treatment with teprotumumab alone or combined with pargyline. CONCLUSIONS Overall, our study indicates that epigenetic modifications were dysregulated in TAO process, and these data elucidated a novel mechanism of adipocyte differentiation during TAO progression and positioned LSD1 as a potential anti-adipogenesis target in TAO. Further understanding of the interaction betwen transcription factors and epigeneic modifiers or other histone modifications in TAO is essential for providing new perspectives in TAO mechanistic study and clinical intervention.
Collapse
Affiliation(s)
- Yuyan Xu
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jing Hu
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, 200080, China
| | - Yuhang Fan
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 315300, Zhejiang, China
| | - Licheng Sun
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, 200080, China
| | - Ning Shen
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, 200080, China
| | - Qihuang Jin
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, 200080, China
| | - Ling Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 315300, Zhejiang, China.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, 200080, China.
| | - Hui Chen
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
- Shanghai Key Laboratory of Fundus Diseases, Shanghai, 200080, China.
| |
Collapse
|
3
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
4
|
Kim S, Kim HJ. Histone lysine demethylase 1A inhibitors, seclidemstat and tranylcypromine, induce astrocytogenesis in rat neural stem cells. Biochem Biophys Res Commun 2025; 750:151330. [PMID: 39899938 DOI: 10.1016/j.bbrc.2025.151330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025]
Abstract
Identifying the molecules that control neural stem cell (NSC) fate would revolutionize treatment strategies for neurodegenerative diseases. Histone lysine demethylase 1A (KDM1A) demethylates the mono- and di-methyl groups of histone 3 lysine 4 (H3K4) and H3K9 and plays an essential role in NSC proliferation. In this study, we investigated the effects of Seclidemstat (SP-2577), a reversible KDM1A inhibitor, and tranylcypromine (TCP), a monoamine oxidase inhibitor and recently known as an irreversible histone lysine demethylase 1A inhibitor, on NSCs. SP-2577 and TCP increased glial fibrillary acidic protein expression (GFAP), decreased βIII-tubulin (TUBB3) expression, and phosphorylated signal transducer and activator of transcription 3 (STAT3) in rat NSCs. SP-2577 and TCP enhanced the transcription of Gfap and reduced Tubb3 transcription. Furthermore, SP-2577 increased the transcription levels of interleukin-6 and leukemia inhibitory factor, while TCP induced the transcription level of fibroblast growth factor 2. Therefore, we show that the KDM1A inhibitors, SP-2577 and TCP, induce astrocytogenesis in rat NSCs. These findings suggest that KDM1A is a target for regulating NSCs fate and provide insights into the molecular mechanisms underlying neurodevelopmental processes and epigenetics.
Collapse
Affiliation(s)
- Sohyeon Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
5
|
Kurita H, Ohuchi K, Inden M. Effects of Environmental Non-Essential Toxic Heavy Metals on Epigenetics During Development. TOXICS 2025; 13:167. [PMID: 40137494 PMCID: PMC11946632 DOI: 10.3390/toxics13030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025]
Abstract
We are exposed to a variety of environmental chemicals in our daily lives. It is possible that the effects of this daily chemical exposure could accumulate in the organism in some form and influence health and disease development. The exposure effects extend throughout the human lifetime, not only after birth, but also during the embryonic period. Epigenetics is an important target for the molecular mechanisms of daily environmental chemical effects. Epigenetics is a mechanism of gene transcription regulation that does not involve changes in DNA sequence. The Developmental Origins of Health and Disease (DOHaD) theory has also been proposed, in which effects such as exposure to environmental chemicals during embryonic period are mediated by epigenetic changes, which may lead to risk for disease development and adverse health effects after maturity. This review summarizes the association between embryonic exposure and the epigenetics of well-known non-essential toxic heavy metals (methylmercury, cadmium, arsenic, and lead), a representative group of environmental chemicals. In the future, it will be important to predict the epigenetic mechanisms of unknown chemical and combined exposures. In addition, further experimental investigations using experimental animals and the accumulation of knowledge are needed to study the transgenerational effects of environmental chemicals in the future.
Collapse
Affiliation(s)
- Hisaka Kurita
- Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan; (K.O.); (M.I.)
| | | | | |
Collapse
|
6
|
Kota SB, Kota SK. Lysine-specific demethylase 1a is obligatory for gene regulation during kidney development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640014. [PMID: 40060432 PMCID: PMC11888273 DOI: 10.1101/2025.02.25.640014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Histone methyltransferases and demethylases play crucial roles in gene regulation and are vital for proper functioning of multiple tissues. Lysine-specific histone demethylase 1A (Kdm1a), is responsible for the demethylation of specific lysines, namely K4 and K9, on histone H3. In this study, we investigated the functions of Kdm1a during mouse kidney development upon targeted deletion in renal progenitor cells. Loss of Kdm1a in Six2-positive nephron progenitors resulted in significant reduction in renal mass, tissue structural changes and impaired function. To further understand the molecular function of Kdm1a during kidney development, we conducted multi-omics analyses that included transcriptome profiling, Chromatin immunoprecipitation (ChIP) sequencing, and methylome assessments. These omic analyses identified Kdm1a as a critical gene regulator required for sustained expression of several nephron segment marker genes, as well as vast number of solute carrier (Slc) genes and a few imprinted genes. Absence of Kdm1a in kidneys led to an increase in global H3K9 methylation peaks, which correlated with the transcriptional downregulation of numerous genes. Among these were markers of nephron progenitors and presumptive tubular precursors. We also observed that specific gene bodies exhibited altered DNA methylation patterns at intragenic differentially methylated regions (DMRs) upon Kdm1a deletion, while the overall global levels of DNA methylation remained unchanged. Our data point to a key regulatory role for Kdm1a in the renal progenitor epigenome, influencing kidney specific gene expression in the developing nephrons. Together the study highlights an indispensable role for Kdm1a for proper development of mouse kidneys, and its absence leading to significant developmental and functional impairment.
Collapse
Affiliation(s)
- Savithri Balasubramanian Kota
- Nephrology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA; Current affiliation: Bayer U.S. LLC
| | - Satya K. Kota
- Division of Bone and Mineral Research, Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Harvard University, Boston, USA
| |
Collapse
|
7
|
Lee HT, Kim YA, Lee S, Jung YE, Kim H, Kim TW, Kwak S, Kim J, Lee CH, Cha SS, Choi J, Cho EJ, Youn HD. Phosphorylation-mediated disassembly of C-terminal binding protein 2 tetramer impedes epigenetic silencing of pluripotency in mouse embryonic stem cells. Nucleic Acids Res 2024; 52:13706-13722. [PMID: 39588763 DOI: 10.1093/nar/gkae1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/24/2024] [Accepted: 11/23/2024] [Indexed: 11/27/2024] Open
Abstract
Cells need to overcome both intrinsic and extrinsic threats. Although pluripotency is associated with damage responses, how stem cells respond to DNA damage remains controversial. Here, we elucidate that DNA damage activates Chk2, leading to the phosphorylation of serine 164 on C-terminal binding protein 2 (Ctbp2). The phosphorylation of Ctbp2 induces the disruption of Ctbp2 tetramer, weakening interactions with zinc finger proteins, leading to the dissociation of phosphorylated Ctbp2 from chromatin. This transition to a monomeric state results in the separation of histone deacetylase 1 from Ctbp2, consequently slowing the rate of H3K27 deacetylation. In contrast to the nucleosome remodeling and deacetylase complex, phosphorylated Ctbp2 increased binding affinity to polycomb repressive complex (PRC)2, interacting through the N-terminal domain of Suz12. Through this domain, Ctbp2 competes with Jarid2, inhibiting the function of PRC2. Thus, the phosphorylation of Ctbp2 under stress conditions represents a precise mechanism aimed at preserving stemness traits by inhibiting permanent transcriptional shutdown.
Collapse
Affiliation(s)
- Han-Teo Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Young Ah Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sangho Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ye-Eun Jung
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanbyeol Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Pharmacology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Tae Wan Kim
- Department of Interdisciplinary Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sojung Kwak
- Developmental Biology Laboratory, Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jaehyeon Kim
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Chul-Hwan Lee
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Department of Pharmacology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sun-Shin Cha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- R&D Division, TODD PHARM CO. LTD., Seoul 03760, Republic of Korea
| | - Jinmi Choi
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eun-Jung Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hong-Duk Youn
- Stochastic Stemness Research Center, Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| |
Collapse
|
8
|
Bouys L, Bertherat J. From the First Case Reports to KDM1A Identification: 35 Years of Food (GIP)-Dependent Cushing's Syndrome. Exp Clin Endocrinol Diabetes 2024; 132:697-704. [PMID: 39059410 DOI: 10.1055/a-2359-8051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Food-dependent Cushing's syndrome (FDCS) is a rare presentation of hypercortisolism from adrenal origin, mostly observed in primary bilateral macronodular adrenal hyperplasia (PBMAH) but also in some cases of unilateral adrenocortical adenoma. FDCS is mediated by the aberrant expression of glucose-dependent insulinotropic peptide (GIP) receptor (GIPR) in adrenocortical cells. GIP, secreted by duodenal K cells after food intake, binds to its ectopic adrenal receptor, and stimulates cortisol synthesis following meals. FDCS was first described more than 35 years ago, and its genetic cause in PBMAH has been recently elucidated: KDM1A inactivation by germline heterozygous pathogenic variants is constantly associated with a loss-of-heterozygosity of the short arm of chromosome 1, containing the KDM1A locus. This causes biallelic inactivation of KDM1A, resulting in the GIPR overexpression in the adrenal cortex. These new insights allow us to propose the KDM1A genetic screening to all PBMAH patients with signs of FDCS (low fasting cortisol that increases after a mixed meal or oral glucose load) and to all first-degree relatives of KDM1A variant carriers. Given that KDM1A is a tumor suppressor gene that has also been associated with monoclonal gammopathy of uncertain significance and multiple myeloma, the investigation of FDCS in the diagnostic management of patients with PBMAH and further genetic testing and screening for malignancies should be encouraged.
Collapse
Affiliation(s)
- Lucas Bouys
- Department of Endocrinology and National Reference Center for Rare Adrenal Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, F-75014, Paris, France
- Genomics and Signaling of Endocrine Tumors, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris-Cité
| | - Jérôme Bertherat
- Department of Endocrinology and National Reference Center for Rare Adrenal Diseases, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg Saint-Jacques, F-75014, Paris, France
- Genomics and Signaling of Endocrine Tumors, Institut Cochin, INSERM U1016, CNRS UMR 8104, Université Paris-Cité
| |
Collapse
|
9
|
Haase S, Carney S, Varela ML, Mukherji D, Zhu Z, Li Y, Nuñez FJ, Lowenstein PR, Castro MG. Epigenetic reprogramming in pediatric gliomas: from molecular mechanisms to therapeutic implications. Trends Cancer 2024; 10:1147-1160. [PMID: 39394009 PMCID: PMC11631670 DOI: 10.1016/j.trecan.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/13/2024]
Abstract
Brain tumors in children and adults differ greatly in patient outcomes and responses to radiotherapy and chemotherapy. Moreover, the prevalence of recurrent mutations in histones and chromatin regulatory proteins in pediatric and young adult gliomas suggests that the chromatin landscape is rewired to support oncogenic programs. These early somatic mutations dysregulate widespread genomic loci by altering the distribution of histone post-translational modifications (PTMs) and, in consequence, causing changes in chromatin accessibility and in the histone code, leading to gene transcriptional changes. We review how distinct chromatin imbalances in glioma subtypes impact on oncogenic features such as cellular fate, proliferation, immune landscape, and radio resistance. Understanding these mechanisms of epigenetic dysregulation carries substantial implications for advancing targeted epigenetic therapies.
Collapse
Affiliation(s)
- Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devarshi Mukherji
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yingxiang Li
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Felipe J Nuñez
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Biomedical Science Research Building, Ann Arbor, MI 48109, USA; Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Biointerfaces Institute, BioInnovations in Brain Cancer Initiative (BIBC), University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
10
|
Kim N, Filipovic D, Bhattacharya S, Cuddapah S. Epigenetic toxicity of heavy metals - implications for embryonic stem cells. ENVIRONMENT INTERNATIONAL 2024; 193:109084. [PMID: 39437622 DOI: 10.1016/j.envint.2024.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/14/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Exposure to heavy metals, such as cadmium, nickel, mercury, arsenic, lead, and hexavalent chromium has been linked to dysregulated developmental processes, such as impaired stem cell differentiation. Heavy metals are well-known modifiers of the epigenome. Stem and progenitor cells are particularly vulnerable to exposure to potentially toxic metals since these cells rely on epigenetic reprogramming for their proper functioning. Therefore, exposure to metals can impair stem and progenitor cell proliferation, pluripotency, stemness, and differentiation. In this review, we provide a comprehensive summary of current evidence on the epigenetic effects of heavy metals on stem cells, focusing particularly on DNA methylation and histone modifications. Moreover, we explore the underlying mechanisms responsible for these epigenetic changes. By providing an overview of heavy metal exposure-induced alterations to the epigenome, the underlying mechanisms, and the consequences of those alterations on stem cell function, this review provides a foundation for further research in this critical area of overlap between toxicology and developmental biology.
Collapse
Affiliation(s)
- Nicholas Kim
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA
| | - David Filipovic
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sudin Bhattacharya
- Institute for Quantitative Health Science and Engineering, Division of Systems Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI 48824, USA; Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI 48824, USA; Institute for Integrative Toxicology, Michigan State University, East Lansing, MI 48824, USA.
| | - Suresh Cuddapah
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10010, USA.
| |
Collapse
|
11
|
Jacques V, Benaouadi S, Descamps JG, Reina N, Espagnolle N, Marsal D, Sainte-Marie Y, Boudet A, Pinto C, Farge T, Savagner F. Metabolic conditioning enhances human bmMSC therapy of doxorubicin-induced heart failure. Stem Cells 2024; 42:874-888. [PMID: 39133028 DOI: 10.1093/stmcls/sxae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The therapeutic potential of bone marrow mesenchymal stromal cells (bmMSCs) to address heart failure needs improvement for better engraftment and survival. This study explores the role of metabolic sorting for human bmMSCs in coculture in vitro and on doxorubicin-induced heart failure mice models. Using functional, epigenetic, and gene expression approaches on cells sorted for mitochondrial membrane potential in terms of their metabolic status, we demonstrated that bmMSCs selected for their glycolytic metabolism presented proliferative advantage and resistance to oxidative stress thereby favoring cell engraftment. Therapeutic use of glycolytic bmMSCs rescued left ventricular ejection fraction and decreased fibrosis in mice models of acute heart failure. Metabolic changes were also related to epigenetic histone modifications such as lysine methylation. By targeting LSD1 (lysine-specific demethylase 1) as a conditioning agent to enhance the metabolic profile of bmMSCs, we deciphered the interplay between glycolysis and bmMSC functionality. Our study elucidates novel strategies for optimizing bmMSC-based treatments for heart failure, highlighting the metabolic properties of bmMSCs as a promising target for more effective cardiovascular regenerative therapies.
Collapse
Affiliation(s)
- Virginie Jacques
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| | - Sabrina Benaouadi
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | | | - Nicolas Reina
- Department of Orthopedic Surgery, Hôpital Pierre-Paul-Riquet, CHU de Toulouse, 31059 Toulouse, Cedex 9, France
- AMIS Laboratory-Laboratoire Anthropologie Moléculaire et Imagerie de Synthèse, Université de Toulouse, UMR 5288 CNRS, UPS, 31000 Toulouse, France
| | - Nicolas Espagnolle
- RESTORE, Université de Toulouse, EFS Occitanie, INP-ENVT, Inserm U1031, France
| | | | - Yannis Sainte-Marie
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Alexandre Boudet
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Carla Pinto
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
| | - Thomas Farge
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| | - Frédérique Savagner
- Université Paul Sabatier, 31062 Toulouse, France
- Inserm UMR 1297 (Team 9), I2MC, 31400 Toulouse, France
- Biochemistry Laboratory, IFB, CHU, 31059 Toulouse, France
| |
Collapse
|
12
|
Malla S, Kumari K, García-Prieto CA, Caroli J, Nordin A, Phan TTT, Bhattarai DP, Martinez-Gamero C, Dorafshan E, Stransky S, Álvarez-Errico D, Saiki PA, Lai W, Lyu C, Lizana L, Gilthorpe JD, Wang H, Sidoli S, Mateus A, Lee DF, Cantù C, Esteller M, Mattevi A, Roman AC, Aguilo F. The scaffolding function of LSD1 controls DNA methylation in mouse ESCs. Nat Commun 2024; 15:7758. [PMID: 39237615 PMCID: PMC11377572 DOI: 10.1038/s41467-024-51966-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/21/2024] [Indexed: 09/07/2024] Open
Abstract
Lysine-specific histone demethylase 1 (LSD1), which demethylates mono- or di- methylated histone H3 on lysine 4 (H3K4me1/2), is essential for early embryogenesis and development. Here we show that LSD1 is dispensable for mouse embryonic stem cell (ESC) self-renewal but is required for mouse ESC growth and differentiation. Reintroduction of a catalytically-impaired LSD1 (LSD1MUT) recovers the proliferation capability of mouse ESCs, yet the enzymatic activity of LSD1 is essential to ensure proper differentiation. Indeed, increased H3K4me1 in Lsd1 knockout (KO) mouse ESCs does not lead to major changes in global gene expression programs related to stemness. However, ablation of LSD1 but not LSD1MUT results in decreased DNMT1 and UHRF1 proteins coupled to global hypomethylation. We show that both LSD1 and LSD1MUT control protein stability of UHRF1 and DNMT1 through interaction with HDAC1 and the ubiquitin-specific peptidase 7 (USP7), consequently, facilitating the deacetylation and deubiquitination of DNMT1 and UHRF1. Our studies elucidate a mechanism by which LSD1 controls DNA methylation in mouse ESCs, independently of its lysine demethylase activity.
Collapse
Affiliation(s)
- Sandhya Malla
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Kanchan Kumari
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos A García-Prieto
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Anna Nordin
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Trinh T T Phan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Devi Prasad Bhattarai
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Carlos Martinez-Gamero
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Paulina Avovome Saiki
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Weiyi Lai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Cong Lyu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ludvig Lizana
- Department of Physics, Integrated Science Lab, Umeå University, Umeå, Sweden
| | | | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre Mateus
- Department of Chemistry, Umeå University, Umeå, Sweden
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå, Sweden
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Manel Esteller
- Cancer Epigenetics Group, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Centro de Investigacion Biomedica en Red Cancer (CIBERONC), Madrid, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Angel-Carlos Roman
- Department of Biochemistry, Molecular Biology and Genetics, University of Extremadura, Badajoz, Spain
| | - Francesca Aguilo
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden.
| |
Collapse
|
13
|
Kong L, Jin X. Dysregulation of deubiquitination in breast cancer. Gene 2024; 902:148175. [PMID: 38242375 DOI: 10.1016/j.gene.2024.148175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Breast cancer (BC) is a highly frequent malignant tumor that poses a serious threat to women's health and has different molecular subtypes, histological subtypes, and biological features, which act by activating oncogenic factors and suppressing cancer inhibitors. The ubiquitin-proteasome system (UPS) is the main process contributing to protein degradation, and deubiquitinases (DUBs) are reverse enzymes that counteract this process. There is growing evidence that dysregulation of DUBs is involved in the occurrence of BC. Herein, we review recent research findings in BC-associated DUBs, describe their nature, classification, and functions, and discuss the potential mechanisms of DUB-related dysregulation in BC. Furthermore, we present the successful treatment of malignant cancer with DUB inhibitors, as well as analyzing the status of targeting aberrant DUBs in BC.
Collapse
Affiliation(s)
- Lili Kong
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
14
|
Ahmed IA, Liu M, Gomez D. Nuclear Control of Vascular Smooth Muscle Cell Plasticity during Vascular Remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:525-538. [PMID: 37820925 PMCID: PMC10988766 DOI: 10.1016/j.ajpath.2023.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Control of vascular smooth muscle cell (SMC) gene expression is an essential process for establishing and maintaining lineage identity, contractility, and plasticity. Most mechanisms (epigenetic, transcriptional, and post-transcriptional) implicated in gene regulation occur in the nucleus. Still, intranuclear pathways are directly impacted by modifications in the extracellular environment in conditions of adaptive or maladaptive remodeling. Integration of extracellular, cellular, and genomic information into the nucleus through epigenetic and transcriptional control of genome organization plays a major role in regulating SMC functions and phenotypic transitions during vascular remodeling and diseases. This review aims to provide a comprehensive update on nuclear mechanisms, their interactions, and their integration in controlling SMC homeostasis and dysfunction. It summarizes and discusses the main nuclear mechanisms preponderant in SMCs in the context of vascular disease, such as atherosclerosis, with an emphasis on studies employing in vivo cell-specific loss-of-function and single-cell omics approaches.
Collapse
Affiliation(s)
- Ibrahim A Ahmed
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mingjun Liu
- Department of Pathology, New York University, New York, New York
| | - Delphine Gomez
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
15
|
Guo P, Lim RC, Rajawasam K, Trinh T, Sun H, Zhang H. A methylation-phosphorylation switch controls EZH2 stability and hematopoiesis. eLife 2024; 13:e86168. [PMID: 38346162 PMCID: PMC10901513 DOI: 10.7554/elife.86168] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024] Open
Abstract
The Polycomb Repressive Complex 2 (PRC2) methylates H3K27 to regulate development and cell fate by transcriptional silencing. Alteration of PRC2 is associated with various cancers. Here, we show that mouse Kdm1a deletion causes a dramatic reduction of PRC2 proteins, whereas mouse null mutation of L3mbtl3 or Dcaf5 results in PRC2 accumulation and increased H3K27 trimethylation. The catalytic subunit of PRC2, EZH2, is methylated at lysine 20 (K20), promoting EZH2 proteolysis by L3MBTL3 and the CLR4DCAF5 ubiquitin ligase. KDM1A (LSD1) demethylates the methylated K20 to stabilize EZH2. K20 methylation is inhibited by AKT-mediated phosphorylation of serine 21 in EZH2. Mouse Ezh2K20R/K20R mutants develop hepatosplenomegaly associated with high GFI1B expression, and Ezh2K20R/K20R mutant bone marrows expand hematopoietic stem cells and downstream hematopoietic populations. Our studies reveal that EZH2 is regulated by methylation-dependent proteolysis, which is negatively controlled by AKT-mediated S21 phosphorylation to establish a methylation-phosphorylation switch to regulate the PRC2 activity and hematopoiesis.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Rebecca C Lim
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Keshari Rajawasam
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Tiffany Trinh
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Las Vegas, United States
| |
Collapse
|
16
|
Terzi Çizmecioğlu N. Roles and Regulation of H3K4 Methylation During Mammalian Early Embryogenesis and Embryonic Stem Cell Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1470:73-96. [PMID: 38231346 DOI: 10.1007/5584_2023_794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
From generation of germ cells, fertilization, and throughout early mammalian embryonic development, the chromatin undergoes significant alterations to enable precise regulation of gene expression and genome use. Methylation of histone 3 lysine 4 (H3K4) correlates with active regions of the genome, and it has emerged as a dynamic mark throughout this timeline. The pattern and the level of H3K4 methylation are regulated by methyltransferases and demethylases. These enzymes, as well as their protein partners, play important roles in early embryonic development and show phenotypes in embryonic stem cell self-renewal and differentiation. The various roles of H3K4 methylation are interpreted by dedicated chromatin reader proteins, linking this modification to broader molecular and cellular phenotypes. In this review, we discuss the regulation of different levels of H3K4 methylation, their distinct accumulation pattern, and downstream molecular roles with an early embryogenesis perspective.
Collapse
|
17
|
Falkenberry E, Reeves M, Scott A, Myrick D, Fallini C, Bassell G, Katz D. LSD1/KDM1A is essential for neural stem cell differentiation in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.02.569711. [PMID: 38076951 PMCID: PMC10705553 DOI: 10.1101/2023.12.02.569711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The proper regulation of neural stem cell differentiation is required for the proper specification of the central nervous system. Here we investigated the function of the H3K4me1/2 demethylase LSD1/KDM1A during neural stem differentiation in mice. Conditional deletion of LSD1 in nestin- positive neural stem cells results in 100% perinatal lethality after birth with severe motor coordination deficits, retarded growth and defects in brain morphology. Despite these severe defects, motor neuron progenitors and the initial motor neuron population are specified normally and motor neurons with normal morphology can be cultured from these mice in vitro. However, motor neurons cultured from mice lacking LSD1 in neural stem cells continue to inappropriately maintain critical neural stem cell proteins. Taken together these results suggest that, as in other mouse stem cell populations, LSD1 is required to deactivate the stem cell program to enable normal neural stem cell differentiation. However, unlike in other mouse stem cell populations, the inappropriate maintenance of the stem cell program during neural stem cell differentiation may compromise neuronal function rather than neuronal specification.
Collapse
Affiliation(s)
- E.C. Falkenberry
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - M. Reeves
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | | | | | - C. Fallini
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - G.J. Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| | - D.J. Katz
- Department of Cell Biology, Emory University School of Medicine, Atlanta GA 30322, USA
| |
Collapse
|
18
|
López-Tobón A, Shyti R, Villa CE, Cheroni C, Fuentes-Bravo P, Trattaro S, Caporale N, Troglio F, Tenderini E, Mihailovich M, Skaros A, Gibson WT, Cuomo A, Bonaldi T, Mercurio C, Varasi M, Osborne L, Testa G. GTF2I dosage regulates neuronal differentiation and social behavior in 7q11.23 neurodevelopmental disorders. SCIENCE ADVANCES 2023; 9:eadh2726. [PMID: 38019906 PMCID: PMC10686562 DOI: 10.1126/sciadv.adh2726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Copy number variations at 7q11.23 cause neurodevelopmental disorders with shared and opposite manifestations. Deletion causes Williams-Beuren syndrome featuring hypersociability, while duplication causes 7q11.23 microduplication syndrome (7Dup), frequently exhibiting autism spectrum disorder (ASD). Converging evidence indicates GTF2I as key mediator of the cognitive-behavioral phenotypes, yet its role in cortical development and behavioral hallmarks remains largely unknown. We integrated proteomic and transcriptomic profiling of patient-derived cortical organoids, including longitudinally at single-cell resolution, to dissect 7q11.23 dosage-dependent and GTF2I-specific disease mechanisms. We observed dosage-dependent impaired dynamics of neural progenitor proliferation, transcriptional imbalances, and highly specific alterations in neuronal output, leading to precocious excitatory neuron production in 7Dup, which was rescued by restoring physiological GTF2I levels. Transgenic mice with Gtf2i duplication recapitulated progenitor proliferation and neuronal differentiation defects alongside ASD-like behaviors. Consistently, inhibition of lysine demethylase 1 (LSD1), a GTF2I effector, was sufficient to rescue ASD-like phenotypes in transgenic mice, establishing GTF2I-LSD1 axis as a molecular pathway amenable to therapeutic intervention in ASD.
Collapse
Affiliation(s)
- Alejandro López-Tobón
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Carlo Emanuele Villa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Patricio Fuentes-Bravo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Sebastiano Trattaro
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Flavia Troglio
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Adrianos Skaros
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro Cuomo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), 20139 Milan, Italy
| | - Lucy Osborne
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Zeng C, Chen J, Cooke EW, Subuddhi A, Roodman ET, Chen FX, Cao K. Demethylase-independent roles of LSD1 in regulating enhancers and cell fate transition. Nat Commun 2023; 14:4944. [PMID: 37607921 PMCID: PMC10444793 DOI: 10.1038/s41467-023-40606-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
The major enhancer regulator lysine-specific histone demethylase 1A (LSD1) is required for mammalian embryogenesis and is implicated in human congenital diseases and multiple types of cancer; however, the underlying mechanisms remain enigmatic. Here, we dissect the role of LSD1 and its demethylase activity in gene regulation and cell fate transition. Surprisingly, the catalytic inactivation of LSD1 has a mild impact on gene expression and cellular differentiation whereas the loss of LSD1 protein de-represses enhancers globally and impairs cell fate transition. LSD1 deletion increases H3K27ac levels and P300 occupancy at LSD1-targeted enhancers. The gain of H3K27ac catalyzed by P300/CBP, not the loss of CoREST complex components from chromatin, contributes to the transcription de-repression of LSD1 targets and differentiation defects caused by LSD1 loss. Together, our study demonstrates a demethylase-independent role of LSD1 in regulating enhancers and cell fate transition, providing insight into treating diseases driven by LSD1 mutations and misregulation.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Jiwei Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai, China
| | - Emmalee W Cooke
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Arijita Subuddhi
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Eliana T Roodman
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Fei Xavier Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, Shanghai, China
| | - Kaixiang Cao
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
| |
Collapse
|
20
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
21
|
Alejo S, Palacios B, Venkata PP, He Y, Li W, Johnson J, Chen Y, Jayamohan S, Pratap U, Clarke K, Zou Y, Lv Y, Weldon K, Viswanadhapalli S, Lai Z, Ye Z, Chen Y, Gilbert A, Suzuki T, Tekmal R, Zhao W, Zheng S, Vadlamudi R, Brenner A, Sareddy GR. Lysine-specific histone demethylase 1A (KDM1A/LSD1) inhibition attenuates DNA double-strand break repair and augments the efficacy of temozolomide in glioblastoma. Neuro Oncol 2023; 25:1249-1261. [PMID: 36652263 PMCID: PMC10326496 DOI: 10.1093/neuonc/noad018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Efficient DNA repair in response to standard chemo and radiation therapies often contributes to glioblastoma (GBM) therapy resistance. Understanding the mechanisms of therapy resistance and identifying the drugs that enhance the therapeutic efficacy of standard therapies may extend the survival of GBM patients. In this study, we investigated the role of KDM1A/LSD1 in DNA double-strand break (DSB) repair and a combination of KDM1A inhibitor and temozolomide (TMZ) in vitro and in vivo using patient-derived glioma stem cells (GSCs). METHODS Brain bioavailability of the KDM1A inhibitor (NCD38) was established using LS-MS/MS. The effect of a combination of KDM1A knockdown or inhibition with TMZ was studied using cell viability and self-renewal assays. Mechanistic studies were conducted using CUT&Tag-seq, RNA-seq, RT-qPCR, western blot, homologous recombination (HR) and non-homologous end joining (NHEJ) reporter, immunofluorescence, and comet assays. Orthotopic murine models were used to study efficacy in vivo. RESULTS TCGA analysis showed KDM1A is highly expressed in TMZ-treated GBM patients. Knockdown or knockout or inhibition of KDM1A enhanced TMZ efficacy in reducing the viability and self-renewal of GSCs. Pharmacokinetic studies established that NCD38 readily crosses the blood-brain barrier. CUT&Tag-seq studies showed that KDM1A is enriched at the promoters of DNA repair genes and RNA-seq studies confirmed that KDM1A inhibition reduced their expression. Knockdown or inhibition of KDM1A attenuated HR and NHEJ-mediated DNA repair capacity and enhanced TMZ-mediated DNA damage. A combination of KDM1A knockdown or inhibition and TMZ treatment significantly enhanced the survival of tumor-bearing mice. CONCLUSIONS Our results provide evidence that KDM1A inhibition sensitizes GBM to TMZ via attenuation of DNA DSB repair pathways.
Collapse
Affiliation(s)
- Salvador Alejo
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Bridgitte E Palacios
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Prabhakar Pitta Venkata
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi He
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Wenjing Li
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Jessica D Johnson
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yihong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Sridharan Jayamohan
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Kyra Clarke
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yi Zou
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yingli Lv
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Korri Weldon
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhao Lai
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Zhenqing Ye
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Yidong Chen
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Andrea R Gilbert
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Takayoshi Suzuki
- The Institute of Scientific and Industrial Research, Osaka University, Osaka, Japan
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Audie L. Murphy South Texas Veterans Health Care System, San Antonio, Texas, 78229, USA
| | - Andrew J Brenner
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Department of Hematology & Oncology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, 78229, USA
| |
Collapse
|
22
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 PMCID: PMC10309585 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M. Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T. Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P. Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M. F. van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
23
|
Kim T, Kim HJ, Oldfield AJ, Yang P. PAD2: interactive exploration of transcription factor genomic colocalization using ChIP-seq data. STAR Protoc 2023; 4:102203. [PMID: 37000617 PMCID: PMC10090434 DOI: 10.1016/j.xpro.2023.102203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Characterizing transcription factor (TF) genomic colocalization is essential for identifying cooperative binding of TFs in controlling gene expression. Here, we introduce a protocol for using PAD2, an interactive web application that enables the investigation of colocalization of various TFs and chromatin-regulating proteins from mouse embryonic stem cells at various functional genomic regions. We describe steps for accessing and searching the PAD2 database and selecting and submitting genomic regions. We then detail protein colocalization analysis using heatmap and ranked correlation plot. For complete details on the use and execution of this protocol, please refer to Kim et al. (2022).1.
Collapse
Affiliation(s)
- Taiyun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; School of Computer Science, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia.
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Andrew J Oldfield
- Institut de Génétique Humaine, Université de Montpellier, CNRS-UMR9002, 34000 Montpellier, France
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Sydney, NSW, Australia; Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia; School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
24
|
Lu CF, Zhou YN, Zhang J, Su S, Liu Y, Peng GH, Zang W, Cao J. The role of epigenetic methylation/demethylation in the regulation of retinal photoreceptors. Front Cell Dev Biol 2023; 11:1149132. [PMID: 37305686 PMCID: PMC10251769 DOI: 10.3389/fcell.2023.1149132] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Photoreceptors are integral and crucial for the retina, as they convert light into electrical signals. Epigenetics plays a vital role in determining the precise expression of genetic information in space and time during the development and maturation of photoreceptors, cell differentiation, degeneration, death, and various pathological processes. Epigenetic regulation has three main manifestations: histone modification, DNA methylation, and RNA-based mechanisms, where methylation is involved in two regulatory mechanisms-histone methylation and DNA methylation. DNA methylation is the most studied form of epigenetic modification, while histone methylation is a relatively stable regulatory mechanism. Evidence suggests that normal methylation regulation is essential for the growth and development of photoreceptors and the maintenance of their functions, while abnormal methylation can lead to many pathological forms of photoreceptors. However, the role of methylation/demethylation in regulating retinal photoreceptors remains unclear. Therefore, this study aims to review the role of methylation/demethylation in regulating photoreceptors in various physiological and pathological situations and discuss the underlying mechanisms involved. Given the critical role of epigenetic regulation in gene expression and cellular differentiation, investigating the specific molecular mechanisms underlying these processes in photoreceptors may provide valuable insights into the pathogenesis of retinal diseases. Moreover, understanding these mechanisms could lead to the development of novel therapies that target the epigenetic machinery, thereby promoting the maintenance of retinal function throughout an individual's lifespan.
Collapse
Affiliation(s)
- Chao-Fan Lu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ya-Nan Zhou
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jingjing Zhang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Songxue Su
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Yupeng Liu
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Guang-Hua Peng
- Department of Pathophysiology, Basic Medical College, Zhengzhou University, Zhengzhou, China
- Laboratory of Visual Cell Differentiation and Regulation, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Weidong Zang
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Lin R, Wu J, You Z, Xu D, Li C, Wang W, Qian G. Induction of Hibernation and Changes in Physiological and Metabolic Indices in Pelodiscus sinensis. BIOLOGY 2023; 12:biology12050720. [PMID: 37237532 DOI: 10.3390/biology12050720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Pelodiscus sinensis (P. sinensis) is a commonly cultivated turtle species with a habit of hibernation. To study the changes in histone expression and methylation of P. sinensis during hibernation induction, a model was established by artificial induction. Physiological and metabolic indices were measured, and the expression and localization of histone (H1, H2A, H2B, H3, and H4) and methylation-related genes (ASH2L, KMT2A, KMT2E, KDM1A, KDM1B, and KDM5A) were measured by quantitative PCR, immunohistochemistry, and Western blot analysis. The results indicated that the metabolism, antioxidation index, and relative expression of histone methyltransferase were significantly decreased (p < 0.05), whereas the activity and expression of histone demethyltransferase were significantly increased (p < 0.05). Although our results showed significant changes in physiological and gene expression after hibernation induction, we could not confirm that P. sinensis entered deep hibernation. Therefore, for the state after cooling-induced hibernation, cold torpor might be a more accurate description. The results indicate that the P. sinensis can enter cold torpor through artificial induction, and the expression of histones may promote gene transcription. Unlike histones expressed under normal conditions, histone methylation may activate gene transcription during hibernation induction. Western blot analysis revealed that the ASH2L and KDM5A proteins were differentially expressed in the testis at different months (p < 0.05), which may perform a role in regulating gene transcription. The immunohistochemical localization of ASH2L and KDM5A in spermatogonia and spermatozoa suggests that ASH2L and KDM5A may perform a role in mitosis and meiosis. In conclusion, this study is the first to report changes in histone-related genes in reptiles, which provides insight for further studies on the physiological metabolism and histone methylation regulation of P. sinensis during the hibernation induction and hibernation period.
Collapse
Affiliation(s)
- Runlan Lin
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Jiahao Wu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Ziyi You
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Dongjie Xu
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Caiyan Li
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wang
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biology and Environment, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
26
|
Lu Y, Cao Q, Yu Y, Sun Y, Jiang X, Li X. Pan-cancer analysis revealed H3K4me1 at bivalent promoters premarks DNA hypermethylation during tumor development and identified the regulatory role of DNA methylation in relation to histone modifications. BMC Genomics 2023; 24:235. [PMID: 37138231 PMCID: PMC10157937 DOI: 10.1186/s12864-023-09341-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND DNA hypermethylation at promoter CpG islands (CGIs) is a hallmark of cancers and could lead to dysregulation of gene expression in the development of cancers, however, its dynamics and regulatory mechanisms remain elusive. Bivalent genes, that direct development and differentiation of stem cells, are found to be frequent targets of hypermethylation in cancers. RESULTS Here we performed comprehensive analysis across multiple cancer types and identified that the decrease in H3K4me1 levels coincides with DNA hypermethylation at the bivalent promoter CGIs during tumorigenesis. Removal of DNA hypermethylation leads to increment of H3K4me1 at promoter CGIs with preference for bivalent genes. Nevertheless, the alteration of H3K4me1 by overexpressing or knockout LSD1, the demethylase of H3K4, doesn't change the level or pattern of DNA methylation. Moreover, LSD1 was found to regulate the expression of a bivalent gene OVOL2 to promote tumorigenesis. Knockdown of OVOL2 in LSD1 knockout HCT116 cells restored the cancer cell phenotype. CONCLUSION In summary, our work identified a universal indicator that can pre-mark DNA hypermethylation in cancer cells, and dissected the interplay between H3K4me1 and DNA hypermethylation in detail. Current study also reveals a novel mechanism underlying the oncogenic role of LSD1, providing clues for cancer therapies.
Collapse
Affiliation(s)
- Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
27
|
Zhang Y, Chen Q, Guo Y, Kang L, Sun Y, Jiang Y. Phosphoproteomic analysis on ovarian follicles reveals the involvement of LSD1 phosphorylation in Chicken follicle selection. BMC Genomics 2023; 24:109. [PMID: 36915048 PMCID: PMC10012441 DOI: 10.1186/s12864-023-09223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Follicle selection in chickens refers to the process of selecting one follicle from a group of small yellow follicles (SY, 6-8 mm in diameter) for development into 12-15 mm hierarchal follicles (usually F6 follicles), which is controlled by sex hormones including follicle-stimulating factor (FSH), estrogen and progesterone. Follicle selection is a critical process impacting egg production in chicken, therefore, is the focus of many studies. Phosphorylation is important for the proper function of proteins, thus, needs to be analyzed by proteomic level. RESULT In this study, we compared the phosphoproteomes of SY and F6 follicles in laying hens and identified 2,386 phosphoproteins and 5,940 phosphosites, of which 4,235 sites of 1,963 phosphoproteins were quantified. From SY to F6 follicles, 190 phosphorylation sites of 149 proteins changed significantly, among which the phosphorylation level of lysine demethylase 1 A (LSD1) at the conserved 54th serine (LSD1Ser54p) was significantly upregulated in F6 follicles compared to SY follicles (p < 0.05); however, the expression of chicken LSD1 were not significantly different on both mRNA and protein levels. LSD1Ser54p is mainly located in the nucleus of both SY and F6 follicles, and was higher in F6 follicles than that of SY follicles revealed by both immunofluorescence and Western blotting. LSD1Ser54p level increased after treatment with 5 ng/mL and 10 ng/mL of FSH in the theca cells and the granulosa cells of pre-hierarchal follicles, and with 50 ng/mL in granulosa cells of hierarchal follicles. In the theca cells of hierarchal follicles, estrogen stimulated the level of LSD1Ser54p in a dosage-dependent manner, and in granulosa cells of pre-hierarchal follicles, 10 ng/mL of estrogen increased LSD1Ser54p expression. Treatment with 50 ng/mL of progesterone increased LSD1Ser54p expression in theca cells of pre-hierarchal follicles, and with 10 to 100 ng/ml enhanced LSD1Ser54p expression in the granulosa cells of hierarchal follicles. CONCLUSION The expression dynamics of LSD1Ser54p in follicles from SY to F6 and its regulation by sex hormones suggest that it is involved in chicken follicle selection.
Collapse
Affiliation(s)
- Yanhong Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Tai'an, China.,College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Qiuyue Chen
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Tai'an, China.,Experimental Center, Shandong University of Traditional Chinese Medicine, 250355, Jinan, PR China
| | - Yuanyuan Guo
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Tai'an, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Tai'an, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Tai'an, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271018, Tai'an, China.
| |
Collapse
|
28
|
Ren X, Jiang M, Ding P, Zhang X, Zhou X, Shen J, Liu D, Yan X, Ma Z. Ubiquitin-specific protease 28: the decipherment of its dual roles in cancer development. Exp Hematol Oncol 2023; 12:27. [PMID: 36879346 PMCID: PMC9990303 DOI: 10.1186/s40164-023-00389-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
As significant posttranslational modifications, ubiquitination and deubiquitination, whose balance is modulated by ubiquitin-conjugating enzymes and deubiquitinating enzymes (DUBs), can regulate many biological processes, such as controlling cell cycle progression, signal transduction and transcriptional regulation. Belonging to DUBs, ubiquitin-specific protease 28 (USP28) plays an essential role in turning over ubiquitination and then contributing to the stabilization of quantities of substrates, including several cancer-related proteins. In previous studies, USP28 has been demonstrated to participate in the progression of various cancers. Nevertheless, several reports have recently shown that in addition to promoting cancers, USP28 can also play an oncostatic role in some cancers. In this review, we summarize the correlation between USP28 and tumor behaviors. We initially give a brief introduction of the structure and related biological functions of USP28, and we then introduce some concrete substrates of USP28 and the underlying molecular mechanisms. In addition, the regulation of the actions and expression of USP28 is also discussed. Moreover, we concentrate on the impacts of USP28 on diverse hallmarks of cancer and discuss whether USP28 can accelerate or inhibit tumor progression. Furthermore, clinical relevance, including impacting clinical prognosis, influencing therapy resistance and being the therapy target in some cancers, is depicted systematically. Thus, assistance may be given to future experimental designs by the information provided here, and the potential of targeting USP28 for cancer therapy is emphasized.
Collapse
Affiliation(s)
- Xiaoya Ren
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.,Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Menglong Jiang
- Department of Thoracic Surgery, 1st Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Peng Ding
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Xiaoyan Zhang
- Department of Aerospace Medicine, Air Force Medical University, Xi'an, China
| | - Xin Zhou
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China
| | - Jian Shen
- Senior Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital and Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China
| | - Dong Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, 167 Beilishi Road, Beijing, 100037, China.
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, 1 Xinsi Road, Xi'an, 710038, China.
| | - Zhiqiang Ma
- Department of Medical Oncology, Senior Department of Oncology, Chinese PLA General Hospital, The Fifth Medical Center, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
29
|
Lee DY, Salahuddin T, Iqbal J. Lysine-Specific Demethylase 1 (LSD1)-Mediated Epigenetic Modification of Immunogenicity and Immunomodulatory Effects in Breast Cancers. Curr Oncol 2023; 30:2127-2143. [PMID: 36826125 PMCID: PMC9955398 DOI: 10.3390/curroncol30020164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/05/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Tumor evolution to evade immune surveillance is a hallmark of carcinogenesis, and the modulation of tumor immunogenicity has been a challenge to present therapeutic responses in immunotherapies alone for numerous cancers. By altering the cell phenotype and reshaping the tumor microenvironment, epigenetic modifications enable tumor cells to overcome immune surveillance as a mechanism of cancer progression and immunotherapy resistance. Demethylase enzymatic activity of lysine-specific demethylase 1 (LSD1), a histone demethylase first identified in 2004, plays a pivotal role in the vast cellular processes of cancer. While FDA-approved indications for epigenetic therapies are limited to hematological malignancies, it is imperative to understand how epigenetic machinery can be targeted to prime immunotherapy responses in breast cancers. In this review, we discuss the potential roles of epigenetics and demethylating agent LSD1 as a potent new cancer management strategy to combat the current challenges of breast cancers, which have presented modest efficacy to immune checkpoint inhibitors till date. Additionally, we describe the combined use of LSD1-specific inhibitors and immune checkpoint inhibitors in existing breast cancer preclinical and clinical trials that elicits a robust immune response and benefit. Overall, the promising results observed in LSD1-targeting therapies signify the central role of epigenetics as a potential novel strategy to overcome resistance commonly seen in immunotherapies.
Collapse
Affiliation(s)
- Dong Yeul Lee
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Diagnostics Tower, Singapore 169856, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Correspondence: (D.Y.L.); (J.I.)
| | - Talha Salahuddin
- Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan Street, Parkville, VIC 3010, Australia
| | - Jabed Iqbal
- Department of Anatomical Pathology, Singapore General Hospital, 20 College Road, Academia, Level 10, Diagnostics Tower, Singapore 169856, Singapore
- Correspondence: (D.Y.L.); (J.I.)
| |
Collapse
|
30
|
Liu Q, Novak MK, Pepin RM, Maschhoff KR, Worner K, Chen X, Zhang S, Hu W. A congenital hydrocephalus-causing mutation in Trim71 induces stem cell defects via inhibiting Lsd1 mRNA translation. EMBO Rep 2023; 24:e55843. [PMID: 36573342 PMCID: PMC9900330 DOI: 10.15252/embr.202255843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Congenital hydrocephalus (CH) is a major cause of childhood morbidity. Mono-allelic mutations in Trim71, a conserved stem-cell-specific RNA-binding protein, cause CH; however, the molecular basis for pathogenesis mediated by these mutations remains unknown. Here, using mouse embryonic stem cells as a model, we reveal that the mouse R783H mutation (R796H in human) alters Trim71's mRNA substrate specificity and leads to accelerated stem-cell differentiation and neural lineage commitment. Mutant Trim71, but not wild-type Trim71, binds Lsd1 (Kdm1a) mRNA and represses its translation. Specific inhibition of this repression or a slight increase of Lsd1 in the mutant cells alleviates the defects in stem cell differentiation and neural lineage commitment. These results determine a functionally relevant target of the CH-causing Trim71 mutant that can potentially be a therapeutic target and provide molecular mechanistic insights into the pathogenesis of this disease.
Collapse
Affiliation(s)
- Qiuying Liu
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Mariah K Novak
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Rachel M Pepin
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | | | - Kailey Worner
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| | - Xiaoli Chen
- Department of Computer ScienceUniversity of Central FloridaOrlandoFLUSA
| | - Shaojie Zhang
- Department of Computer ScienceUniversity of Central FloridaOrlandoFLUSA
| | - Wenqian Hu
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMNUSA
| |
Collapse
|
31
|
Mao F, Shi YG. Targeting the LSD1/KDM1 Family of Lysine Demethylases in Cancer and Other Human Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:15-49. [PMID: 37751134 DOI: 10.1007/978-3-031-38176-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Lysine-specific demethylase 1 (LSD1) was the first histone demethylase discovered and the founding member of the flavin-dependent lysine demethylase family (KDM1). The human KDM1 family includes KDM1A and KDM1B, which primarily catalyze demethylation of histone H3K4me1/2. The KDM1 family is involved in epigenetic gene regulation and plays important roles in various biological and disease pathogenesis processes, including cell differentiation, embryonic development, hormone signaling, and carcinogenesis. Malfunction of many epigenetic regulators results in complex human diseases, including cancers. Regulators such as KDM1 have become potential therapeutic targets because of the reversibility of epigenetic control of genome function. Indeed, several classes of KDM1-selective small molecule inhibitors have been developed, some of which are currently in clinical trials to treat various cancers. In this chapter, we review the discovery, biochemical, and molecular mechanisms, atomic structure, genetics, biology, and pathology of the KDM1 family of lysine demethylases. Focusing on cancer, we also provide a comprehensive summary of recently developed KDM1 inhibitors and related preclinical and clinical studies to provide a better understanding of the mechanisms of action and applications of these KDM1-specific inhibitors in therapeutic treatment.
Collapse
Affiliation(s)
- Fei Mao
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yujiang Geno Shi
- Longevity and Aging Institute (LAI), IBS and Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China.
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Gu X, Qiao X, Yu S, Song X, Wang L, Song L. Histone lysine-specific demethylase 1 regulates the proliferation of hemocytes in the oyster Crassostrea gigas. Front Immunol 2022; 13:1088149. [PMID: 36591234 PMCID: PMC9797820 DOI: 10.3389/fimmu.2022.1088149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/28/2022] [Indexed: 12/16/2022] Open
Abstract
Background Lysine-specific demethylase 1 (LSD1) is an essential epigenetic regulator of hematopoietic differentiation, which can specifically mono-methylate H3K4 (H3K4me1) and di-methylate H3K4 (H3K4me2) as a transcriptional corepressor. Previous reports have been suggested that it participated in hematopoiesis and embryonic development process. Here, a conserved LSD1 (CgLSD1) with a SWIRM domain and an amino oxidase (AO) domain was identified from the Pacific oyster Crassostrea gigas. Methods We conducted a comprehensive analysis by various means to verify the function of CgLSD1 in hematopoietic process, including quantitative real-time PCR (qRT-PCR) analysis, western blot analysis, immunofluorescence assay, RNA interference (RNAi) and flow cytometry. Results The qRT-PCR analysis revealed that the transcripts of CgLSD1 were widely expressed in oyster tissues with the highest level in the mantle. And the transcripts of CgLSD1 were ubiquitously expressed during larval development with the highest expression level at the early D-veliger larvae stage. In hemocytes after Vibrio splendidus stimulation, the transcripts of CgLSD1 were significantly downregulated at 3, 6, 24, and 48 h with the lowest level at 3 h compared to that in the Seawater group (SW group). Immunocytochemical analysis showed that CgLSD1 was mainly distributed in the nucleus of hemocytes. After the CgLSD1 was knocked down by RNAi, the H3K4me1 and H3K4me2 methylation level significantly increased in hemocyte protein. Besides, the percentage of hemocytes with EdU-positive signals in the total circulating hemocytes significantly increased after V. splendidus stimulation. After RNAi of CgLSD1, the expression of potential granulocyte markers CgSOX11 and CgAATase as well as oyster cytokine-like factor CgAstakine were increased significantly in mRNA level, while the transcripts of potential agranulocyte marker CgCD9 was decreased significantly after V. splendidus stimulation. Conclusion The above results demonstrated that CgLSD1 was a conserved member of lysine demethylate enzymes that regulate hemocyte proliferation during the hematopoietic process.
Collapse
Affiliation(s)
- Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Xiaorui Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China,Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, China,*Correspondence: Linsheng Song,
| |
Collapse
|
33
|
Xu Y, Fan B, Gao Y, Chen Y, Han D, Lu J, Liu T, Gao Q, Zhang JZ, Wang M. Design Two Novel Tetrahydroquinoline Derivatives against Anticancer Target LSD1 with 3D-QSAR Model and Molecular Simulation. Molecules 2022; 27:molecules27238358. [PMID: 36500451 PMCID: PMC9739212 DOI: 10.3390/molecules27238358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is a histone-modifying enzyme, which is a significant target for anticancer drug research. In this work, 40 reported tetrahydroquinoline-derivative inhibitors targeting LSD1 were studied to establish the three-dimensional quantitative structure-activity relationship (3D-QSAR). The established models CoMFA (Comparative Molecular Field Analysis (q2 = 0.778, Rpred2 = 0.709)) and CoMSIA (Comparative Molecular Similarity Index Analysis (q2 = 0.764, Rpred2 = 0.713)) yielded good statistical and predictive properties. Based on the corresponding contour maps, seven novel tetrahydroquinoline derivatives were designed. For more information, three of the compounds (D1, D4, and Z17) and the template molecule 18x were explored with molecular dynamics simulations, binding free energy calculations by MM/PBSA method as well as the ADME (absorption, distribution, metabolism, and excretion) prediction. The results suggested that D1, D4, and Z17 performed better than template molecule 18x due to the introduction of the amino and hydrophobic groups, especially for the D1 and D4, which will provide guidance for the design of LSD1 inhibitors.
Collapse
Affiliation(s)
- Yongtao Xu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Baoyi Fan
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Yunlong Gao
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Yifan Chen
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Di Han
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Jiarui Lu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Taigang Liu
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
| | - Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - John Zenghui Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Meiting Wang
- School of Medical Engineering & Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang Medical University, Xinxiang 453003, China
- Department of Theoretical Chemistry, Chemical Centre, Lund University, SE-221 00 Lund, Sweden
- Correspondence:
| |
Collapse
|
34
|
Guo P, Hoang N, Sanchez J, Zhang EH, Rajawasam K, Trinidad K, Sun H, Zhang H. The assembly of mammalian SWI/SNF chromatin remodeling complexes is regulated by lysine-methylation dependent proteolysis. Nat Commun 2022; 13:6696. [PMID: 36335117 PMCID: PMC9637158 DOI: 10.1038/s41467-022-34348-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022] Open
Abstract
The assembly of mammalian SWI/SNF chromatin remodeling complexes is developmentally programed, and loss/mutations of SWI/SNF subunits alter the levels of other components through proteolysis, causing cancers. Here, we show that mouse Lsd1/Kdm1a deletion causes dramatic dissolution of SWI/SNF complexes and that LSD1 demethylates the methylated lysine residues in SMARCC1 and SMARCC2 to preserve the structural integrity of SWI/SNF complexes. The methylated SMARCC1/SMARCC2 are targeted for proteolysis by L3MBTL3 and the CRL4DCAF5 ubiquitin ligase complex. We identify SMARCC1 as the critical target of LSD1 and L3MBTL3 to maintain the pluripotency and self-renewal of embryonic stem cells. L3MBTL3 also regulates SMARCC1/SMARCC2 proteolysis induced by the loss of SWI/SNF subunits. Consistently, mouse L3mbtl3 deletion causes striking accumulation of SWI/SNF components, associated with embryonic lethality. Our studies reveal that the assembly/disassembly of SWI/SNF complexes is dynamically controlled by a lysine-methylation dependent proteolytic mechanism to maintain the integrity of the SWI/SNF complexes.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Nam Hoang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Joseph Sanchez
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Elaine H Zhang
- College of Natural Resources and College of Letters and Science, University of California, Berkeley, CA, 94720, USA
| | - Keshari Rajawasam
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Kristiana Trinidad
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Hong Sun
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA
| | - Hui Zhang
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
35
|
Integrative analysis reveals histone demethylase LSD1 promotes RNA polymerase II pausing. iScience 2022; 25:105049. [PMID: 36124234 PMCID: PMC9482124 DOI: 10.1016/j.isci.2022.105049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) is well-known for its role in decommissioning enhancers during mouse embryonic stem cell (ESC) differentiation. Its role in gene promoters remains poorly understood despite its widespread presence at these sites. Here, we report that LSD1 promotes RNA polymerase II (RNAPII) pausing, a rate-limiting step in transcription regulation, in ESCs. We found the knockdown of LSD1 preferentially affects genes with higher RNAPII pausing. Next, we demonstrate that the co-localization sites of LSD1 and MYC, a factor known to regulate pause-release, are enriched for other RNAPII pausing factors. We show that LSD1 and MYC directly interact and MYC recruitment to genes co-regulated with LSD1 is dependent on LSD1 but not vice versa. The co-regulated gene set is significantly enriched for housekeeping processes and depleted of transcription factors compared to those bound by LSD1 alone. Collectively, our integrative analysis reveals a pleiotropic role of LSD1 in promoting RNAPII pausing. LSD1 promotes RNA polymerase II pausing in mouse embryonic stem cells LSD1 knockdown causes global reduction of RNAPII pausing Co-localized sites of LSD1 and MYC are enriched for RNAPII pausing and releasing factors MYC recruitment to co-regulated genes is dependent on LSD1 but not vice versa
Collapse
|
36
|
Zhang X, Sun Y, Huang H, Wang X, Wu T, Yin W, Li X, Wang L, Gu Y, Zhao D, Cheng M. Identification of novel indole derivatives as highly potent and efficacious LSD1 inhibitors. Eur J Med Chem 2022; 239:114523. [PMID: 35732082 DOI: 10.1016/j.ejmech.2022.114523] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 11/04/2022]
Abstract
Lysine-specific demethylase 1 (LSD1) is a FAD-dependent histone demethylase to catalyze the demethylation of H3K4 and H3K9 and thus is an attractive target for therapeutic cancer. Starting with a high micromolar compound 17i, structure-based optimization of novel indole derivatives is described by a bioelectronic isosteric strategy. Grounded by molecular modeling, medicinal chemistry has efficiently yielded low nanomolar LSD1 inhibitors. One of the compounds, B35, exhibited excellent LSD1 inhibition (IC50 = 0.050 ± 0.005 μM) and anti-proliferation against A549 cells (IC50 = 0.74 ± 0.14 μM). The further PK studies indicated compound B35 possessed favorable metabolic stability, in which the plasma t1/2 of p.o. and i.v. were 6.27 ± 0.72 h and 8.78 ± 1.31 h, respectively. Additionally, inhibitor B35 shows a strong antitumor effect and good safety in vivo. Meanwhile, compound B35 regulated genes are closely associated with transcriptional dislocation in cancer and PI3K/AKT pathway involving IGFBP3. Taken together, B35 could be a potent LSD1 inhibitor for further drug development.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yixiang Sun
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Hailan Huang
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinran Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Chaoyang District, Beijing, 102488, China
| | - Tianxiao Wu
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Xiaojia Li
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Lin Wang
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| | - Yanting Gu
- Department of Physiology, Life Science and Biopharmaceutical Institution, Shenyang Pharmaceutical University, Shenyang, China.
| | - Dongmei Zhao
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China.
| | - Maosheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, PR China
| |
Collapse
|
37
|
Hollebecque A, Salvagni S, Plummer R, Niccoli P, Capdevila J, Curigliano G, Moreno V, de Braud F, de Villambrosia SG, Martin-Romano P, Baudin E, Arias M, de Alvaro J, Parra-Palau JL, Sánchez-Pérez T, Aronchik I, Filvaroff EH, Lamba M, Nikolova Z, de Bono JS. Clinical activity of CC-90011, an oral, potent, and reversible LSD1 inhibitor, in advanced malignancies. Cancer 2022; 128:3185-3195. [PMID: 35737639 PMCID: PMC9540525 DOI: 10.1002/cncr.34366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/05/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022]
Abstract
Background CC‐90011 is an oral, potent, selective, reversible inhibitor of lysine‐specific demethylase 1 (LSD1) that was well tolerated, with encouraging activity in patients who had advanced solid tumors or relapsed/refractory marginal zone lymphoma. The authors present long‐term safety and efficacy and novel pharmacodynamic and pharmacokinetic data from the first‐in‐human study of CC‐90011. Methods CC‐90011‐ST‐001 (ClincalTrials.gov identifier NCT02875223; Eudract number 2015–005243‐13) is a phase 1, multicenter study in which patients received CC‐90011 once per week in 28‐day cycles. The objectives were to determine the safety, maximum tolerated dose, and/or recommended phase 2 dose (primary) and to evaluate preliminary efficacy and pharmacokinetics (secondary). Results Sixty‐nine patients were enrolled, including 50 in the dose‐escalation arm and 19 in the dose‐expansion arm. Thrombocytopenia was the most common treatment‐related adverse event and was successfully managed with dose modifications. Clinical activity with prolonged, durable responses were observed, particularly in patients who had neuroendocrine neoplasms. In the dose‐escalation arm, one patient with relapsed/refractory marginal zone lymphoma achieved a complete response (ongoing in cycle 58). In the dose‐expansion arm, three patients with neuroendocrine neoplasms had stable disease after nine or more cycles, including one patient who was in cycle 46 of ongoing treatment. CC‐90011 decreased levels of secreted neuroendocrine peptides chromogranin A, progastrin‐releasing peptide, and RNA expression of the blood pharmacodynamic marker monocyte‐to‐macrophage differentiation–associated. Conclusions The safety profile of CC‐90011 suggested that its reversible mechanism of action may provide an advantage over other irreversible LSD1 inhibitors. The favorable tolerability profile, clinical activity, durable responses, and once‐per‐week dosing support further exploration of CC‐90011 as monotherapy and in combination with other treatments for patients with advanced solid tumors and other malignancies. This first‐in‐human study evaluated CC‐90011, a highly potent, selective, and reversible oral lysine‐specific demethylase 1 inhibitor, in patients with advanced solid tumors and relapsed/refractory lymphoma. The tolerability, clinical activity, and once‐weekly dosing support further exploration of CC‐90011 in patients with advanced malignancies.
Collapse
Affiliation(s)
- Antoine Hollebecque
- Gustave Roussy, Département d'innovation thérapeutique et essais précoces, Villejuif, France
| | | | - Ruth Plummer
- Clinical and Translational Research Institute Northern, Newcastle University, Newcastle, UK
| | - Patricia Niccoli
- Department of Medical Oncology, ENETS Center of Excellence, IPC NET Center, Institut Paoli-Calmettes, Marseille, France
| | - Jaume Capdevila
- Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, IOB-Teknon, Barcelona, Spain
| | | | - Victor Moreno
- START Center for Cancer Care, Jimenez Diaz University Hospital, Madrid, Spain
| | | | | | - Patricia Martin-Romano
- Gustave Roussy, Département d'innovation thérapeutique et essais précoces, Villejuif, France
| | - Eric Baudin
- Gustave Roussy, Département d'innovation thérapeutique et essais précoces, Villejuif, France.,Gustave Roussy, Département D'oncologie Endocrinienne, Villejuif, France
| | - Marina Arias
- Center for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Juan de Alvaro
- Center for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Josep L Parra-Palau
- Center for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Tania Sánchez-Pérez
- Center for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Ida Aronchik
- Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | | - Zariana Nikolova
- Center for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Seville, Spain
| | - Johann S de Bono
- The Institute of Cancer Research and Royal Marsden Hospital, London, UK
| |
Collapse
|
38
|
Astro V, Ramirez-Calderon G, Pennucci R, Caroli J, Saera-Vila A, Cardona-Londoño K, Forastieri C, Fiacco E, Maksoud F, Alowaysi M, Sogne E, Andrea Falqui, Gonzàlez F, Montserrat N, Battaglioli E, Andrea Mattevi, Adamo A. Fine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism. iScience 2022; 25:104665. [PMID: 35856020 PMCID: PMC9287196 DOI: 10.1016/j.isci.2022.104665] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/31/2022] [Accepted: 06/17/2022] [Indexed: 12/02/2022] Open
Abstract
The histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A−/− hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a−/− hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells. ubKDM1A and KDM1A+2a isoforms are fine-tuned during fetal cardiac development Depletion of KDM1A isoforms impairs hESC differentiation into cardiac cells KDM1A+2a ablation enhances the expression of key cardiac markers KDM1A isoforms exhibit enzymatic-independent divergent roles during cardiogenesis
Collapse
|
39
|
Rummukainen P, Tarkkonen K, Dudakovic A, Al-Majidi R, Nieminen-Pihala V, Valensisi C, Hawkins RD, van Wijnen AJ, Kiviranta R. Lysine-Specific Demethylase 1 (LSD1) epigenetically controls osteoblast differentiation. PLoS One 2022; 17:e0265027. [PMID: 35255108 PMCID: PMC8901060 DOI: 10.1371/journal.pone.0265027] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/18/2022] [Indexed: 02/03/2023] Open
Abstract
Epigenetic mechanisms regulate osteogenic lineage differentiation of mesenchymal stromal cells. Histone methylation is controlled by multiple lysine demethylases and is an important step in controlling local chromatin structure and gene expression. Here, we show that the lysine-specific histone demethylase Kdm1A/Lsd1 is abundantly expressed in osteoblasts and that its suppression impairs osteoblast differentiation and bone nodule formation in vitro. Although Lsd1 knockdown did not affect global H3K4 methylation levels, genome-wide ChIP-Seq analysis revealed high levels of Lsd1 at gene promoters and its binding was associated with di- and tri-methylation of histone 3 at lysine 4 (H3K4me2 and H3K4me3). Lsd1 binding sites in osteoblastic cells were enriched for the Runx2 consensus motif suggesting a functional link between the two proteins. Importantly, inhibition of Lsd1 activity decreased osteoblast activity in vivo. In support, mesenchymal-targeted knockdown of Lsd1 led to decreased osteoblast activity and disrupted primary spongiosa ossification and reorganization in vivo. Together, our studies demonstrate that Lsd1 occupies Runx2-binding cites at H3K4me2 and H3K4me3 and its activity is required for proper bone formation.
Collapse
Affiliation(s)
| | - Kati Tarkkonen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
| | - Rana Al-Majidi
- Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Cristina Valensisi
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - R. David Hawkins
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry & Molecular Biology, Mayo Clinic, Rochester, MN, United States of America
- Department of Biochemistry, University of Vermont, Burlington, VT, United States of America
- * E-mail: (AJW); (RK)
| | - Riku Kiviranta
- Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
- * E-mail: (AJW); (RK)
| |
Collapse
|
40
|
Kumar VE, Nambiar R, De Souza C, Nguyen A, Chien J, Lam KS. Targeting Epigenetic Modifiers of Tumor Plasticity and Cancer Stem Cell Behavior. Cells 2022; 11:cells11091403. [PMID: 35563709 PMCID: PMC9102449 DOI: 10.3390/cells11091403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/01/2023] Open
Abstract
Tumor heterogeneity poses one of the greatest challenges to a successful treatment of cancer. Tumor cell populations consist of different subpopulations that have distinct phenotypic and genotypic profiles. Such variability poses a challenge in successfully targeting all tumor subpopulations at the same time. Relapse after treatment has been previously explained using the cancer stem cell model and the clonal evolution model. Cancer stem cells are an important subpopulation of tumor cells that regulate tumor plasticity and determine therapeutic resistance. Tumor plasticity is controlled by genetic and epigenetic changes of crucial genes involved in cancer cell survival, growth and metastasis. Targeting epigenetic modulators associated with cancer stem cell survival can unlock a promising therapeutic approach in completely eradicating cancer. Here, we review various factors governing epigenetic dysregulation of cancer stem cells ranging from the role of epigenetic mediators such as histone and DNA methyltransferases, histone deacetylases, histone methyltransferases to various signaling pathways associated with cancer stem cell regulation. We also discuss current treatment regimens targeting these factors and other promising inhibitors in clinical trials.
Collapse
Affiliation(s)
- Vigneshwari Easwar Kumar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Roshni Nambiar
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Cristabelle De Souza
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Stem Cell Research and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Audrey Nguyen
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
- Department of Obstetrics and Gynecology, UC Davis Medical Center, Sacramento, CA 95817, USA
- Correspondence:
| | - Kit S. Lam
- Department of Biochemistry and Molecular Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA; (V.E.K.); (R.N.); (C.D.S.); (A.N.); (K.S.L.)
| |
Collapse
|
41
|
Taylor-Papadimitriou J, Burchell JM. Histone Methylases and Demethylases Regulating Antagonistic Methyl Marks: Changes Occurring in Cancer. Cells 2022; 11:1113. [PMID: 35406676 PMCID: PMC8997813 DOI: 10.3390/cells11071113] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation of gene expression is crucial to the determination of cell fate in development and differentiation, and the Polycomb (PcG) and Trithorax (TrxG) groups of proteins, acting antagonistically as complexes, play a major role in this regulation. Although originally identified in Drosophila, these complexes are conserved in evolution and the components are well defined in mammals. Each complex contains a protein with methylase activity (KMT), which can add methyl groups to a specific lysine in histone tails, histone 3 lysine 27 (H3K27), by PcG complexes, and H3K4 and H3K36 by TrxG complexes, creating transcriptionally repressive or active marks, respectively. Histone demethylases (KDMs), identified later, added a new dimension to histone methylation, and mutations or changes in levels of expression are seen in both methylases and demethylases and in components of the PcG and TrX complexes across a range of cancers. In this review, we focus on both methylases and demethylases governing the methylation state of the suppressive and active marks and consider their action and interaction in normal tissues and in cancer. A picture is emerging which indicates that the changes which occur in cancer during methylation of histone lysines can lead to repression of genes, including tumour suppressor genes, or to the activation of oncogenes. Methylases or demethylases, which are themselves tumour suppressors, are highly mutated. Novel targets for cancer therapy have been identified and a methylase (KMT6A/EZH2), which produces the repressive H3K27me3 mark, and a demethylase (KDM1A/LSD1), which demethylates the active H3K4me2 mark, are now under clinical evaluation.
Collapse
|
42
|
Levy S, Somasundaram L, Raj IX, Ic-Mex D, Phal A, Schmidt S, Ng WI, Mar D, Decarreau J, Moss N, Alghadeer A, Honkanen H, Sarthy J, Vitanza N, Hawkins RD, Mathieu J, Wang Y, Baker D, Bomsztyk K, Ruohola-Baker H. dCas9 fusion to computer-designed PRC2 inhibitor reveals functional TATA box in distal promoter region. Cell Rep 2022; 38:110457. [PMID: 35235780 PMCID: PMC8984963 DOI: 10.1016/j.celrep.2022.110457] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 11/23/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Bifurcation of cellular fates, a critical process in development, requires histone 3 lysine 27 methylation (H3K27me3) marks propagated by the polycomb repressive complex 2 (PRC2). However, precise chromatin loci of functional H3K27me3 marks are not yet known. Here, we identify critical PRC2 functional sites at high resolution. We fused a computationally designed protein, EED binder (EB), which competes with EZH2 and thereby inhibits PRC2 function, to dCas9 (EBdCas9) to allow for PRC2 inhibition at a precise locus using gRNA. Targeting EBdCas9 to four different genes (TBX18, p16, CDX2, and GATA3) results in precise H3K27me3 and EZH2 reduction, gene activation, and functional outcomes in the cell cycle (p16) or trophoblast transdifferentiation (CDX2 and GATA3). In the case of TBX18, we identify a PRC2-controlled, functional TATA box >500 bp upstream of the TBX18 transcription start site (TSS) using EBdCas9. Deletion of this TATA box eliminates EBdCas9-dependent TATA binding protein (TBP) recruitment and transcriptional activation. EBdCas9 technology may provide a broadly applicable tool for epigenomic control of gene regulation.
Collapse
Affiliation(s)
- Shiri Levy
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Logeshwaran Somasundaram
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Infencia Xavier Raj
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Diego Ic-Mex
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Ashish Phal
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, School of Medicine, Seattle, WA 98105, USA
| | - Sven Schmidt
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Weng I Ng
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Daniel Mar
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, WA 98195, USA
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Nicholas Moss
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Division of Medical Genetics, Department of Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Ammar Alghadeer
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98109, USA; Department of Biomedical Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Henrik Honkanen
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA
| | - Jay Sarthy
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Cancer and Blood Disorder Center, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Nicholas Vitanza
- The Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, WA, USA; Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - R David Hawkins
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Division of Medical Genetics, Department of Medicine, University of Washington, School of Medicine, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Julie Mathieu
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Karol Bomsztyk
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Medicine, Division of Allergy and Infectious Disease, University of Washington, Seattle, WA 98195, USA
| | - Hannele Ruohola-Baker
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA 98109, USA; Department of Biochemistry, University of Washington, School of Medicine, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, School of Medicine, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Oral Health Sciences, University of Washington, School of Dentistry, Seattle, WA 98109, USA.
| |
Collapse
|
43
|
Merkens L, Sailer V, Lessel D, Janzen E, Greimeier S, Kirfel J, Perner S, Pantel K, Werner S, von Amsberg G. Aggressive variants of prostate cancer: underlying mechanisms of neuroendocrine transdifferentiation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:46. [PMID: 35109899 PMCID: PMC8808994 DOI: 10.1186/s13046-022-02255-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
Prostate cancer is a hormone-driven disease and its tumor cell growth highly relies on increased androgen receptor (AR) signaling. Therefore, targeted therapy directed against androgen synthesis or AR activation is broadly used and continually improved. However, a subset of patients eventually progresses to castration-resistant disease. To date, various mechanisms of resistance have been identified including the development of AR-independent aggressive variant prostate cancer based on neuroendocrine transdifferentiation (NED). Here, we review the highly complex processes contributing to NED. Genetic, epigenetic, transcriptional aberrations and posttranscriptional modifications are highlighted and the potential interplay of the different factors is discussed. Background Aggressive variant prostate cancer (AVPC) with traits of neuroendocrine differentiation emerges in a rising number of patients in recent years. Among others, advanced therapies targeting the androgen receptor axis have been considered causative for this development. Cell growth of AVPC often occurs completely independent of the androgen receptor signal transduction pathway and cells have mostly lost the typical cellular features of prostate adenocarcinoma. This complicates both diagnosis and treatment of this very aggressive disease. We believe that a deeper understanding of the complex molecular pathological mechanisms contributing to transdifferentiation will help to improve diagnostic procedures and develop effective treatment strategies. Indeed, in recent years, many scientists have made important contributions to unravel possible causes and mechanisms in the context of neuroendocrine transdifferentiation. However, the complexity of the diverse molecular pathways has not been captured completely, yet. This narrative review comprehensively highlights the individual steps of neuroendocrine transdifferentiation and makes an important contribution in bringing together the results found so far.
Collapse
Affiliation(s)
- Lina Merkens
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Verena Sailer
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Ella Janzen
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Greimeier
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Jutta Kirfel
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany
| | - Sven Perner
- Institute of Pathology, University of Luebeck and University Hospital Schleswig-Holstein, Campus Luebeck, Ratzeburger Allee 160, 23538, Luebeck, Germany.,Pathology, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Klaus Pantel
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Stefan Werner
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg HaTRiCs4, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Hematology and Oncology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.,Martini-Klinik, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
44
|
Zhang Y, Wu T, Zhao B, Liu Z, Qian R, Zhang J, Shi Y, Wan Y, Li Z, Hu X. E239K mutation abolishes the suppressive effects of lysine-specific demethylase 1 on migration and invasion of MCF7 cells. Cancer Sci 2021; 113:489-499. [PMID: 34839571 PMCID: PMC8819338 DOI: 10.1111/cas.15220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/29/2022] Open
Abstract
Lysine‐specific demethylase 1 (LSD1) is an important histone demethylase that mediates epithelial to mesenchymal transition (EMT). The E239K mutation of LSD1 was identified in a luminal breast cancer patient from the COSMIC Breast Cancer dataset. To investigate the functional effects of the E239K mutation of LSD1, a stable LSD1 knockdown MCF7 cell line was generated. Rescue with WT LSD1, but not E239K mutated LSD1, suppressed the invasion and migration of the LSD1 knockdown cells, indicating that the E239K mutation abolished the suppressive effects of LSD1 on the invasion and migration of MCF7 cells. Further analysis showed that the E239K mutation abolished LSD1‐mediated invasion and migration of MCF7 cells through downregulation of estrogen receptor α (ERα). Most importantly, the E239K mutation disrupted the interaction between LSD1 and GATA3, which reduced the enrichment of LSD1 at the promoter region of the ERα gene; the reduced enrichment of LSD1 at the promoter region of the ERα gene caused enhanced histone H3K9 methylation, which subsequently suppressed the transcription of the ERα gene. In summary, the E239K mutation abolishes the suppressive function of LSD1 on migration and invasion of breast cancer cells by disrupting the interaction between LSD1 and GATA3.
Collapse
Affiliation(s)
- Yu Zhang
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China.,College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Tong Wu
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Bo Zhao
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Ziyu Liu
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Rui Qian
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jing Zhang
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China.,School of Life Sciences, Jilin University, Changchun, China
| | - Yueru Shi
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Youzhong Wan
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Hu
- The Laboratory of Cancer Biology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
45
|
LSD1: Expanding Functions in Stem Cells and Differentiation. Cells 2021; 10:cells10113252. [PMID: 34831474 PMCID: PMC8624367 DOI: 10.3390/cells10113252] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSC) provide a powerful model system to uncover fundamental mechanisms that control cellular identity during mammalian development. Histone methylation governs gene expression programs that play a key role in the regulation of the balance between self-renewal and differentiation of ESCs. Lysine-specific demethylase 1 (LSD1, also known as KDM1A), the first identified histone lysine demethylase, demethylates H3K4me1/2 and H3K9me1/2 at target loci in a context-dependent manner. Moreover, it has also been shown to demethylate non-histone substrates playing a central role in the regulation of numerous cellular processes. In this review, we summarize current knowledge about LSD1 and the molecular mechanism by which LSD1 influences the stem cells state, including the regulatory circuitry underlying self-renewal and pluripotency.
Collapse
|
46
|
KDM1A inactivation causes hereditary food-dependent Cushing syndrome. Genet Med 2021; 24:374-383. [PMID: 34906447 DOI: 10.1016/j.gim.2021.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 09/14/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE This study aimed to investigate the genetic cause of food-dependent Cushing syndrome (FDCS) observed in patients with primary bilateral macronodular adrenal hyperplasia (PBMAH) and adrenal ectopic expression of the glucose-dependent insulinotropic polypeptide receptor. Germline ARMC5 alterations have been reported in about 25% of PBMAH index cases but are absent in patients with FDCS. METHODS A multiomics analysis of PBMAH tissues from 36 patients treated by adrenalectomy was performed (RNA sequencing, single-nucleotide variant array, methylome, miRNome, exome sequencing). RESULTS The integrative analysis revealed 3 molecular groups with different clinical features, namely G1, comprising 16 patients with ARMC5 inactivating variants; G2, comprising 6 patients with FDCS with glucose-dependent insulinotropic polypeptide receptor ectopic expression; and G3, comprising 14 patients with a less severe phenotype. Exome sequencing revealed germline truncating variants of KDM1A in 5 G2 patients, constantly associated with a somatic loss of the KDM1A wild-type allele on 1p, leading to a loss of KDM1A expression both at messenger RNA and protein levels (P = 1.2 × 10-12 and P < .01, respectively). Subsequently, KDM1A pathogenic variants were identified in 4 of 4 additional index cases with FDCS. CONCLUSION KDM1A inactivation explains about 90% of FDCS PBMAH. Genetic screening for ARMC5 and KDM1A can now be offered for most PBMAH operated patients and their families, opening the way to earlier diagnosis and improved management.
Collapse
|
47
|
Kurmasheva RT, Erickson SW, Han R, Teicher BA, Smith MA, Roth M, Gorlick R, Houghton PJ. In vivo evaluation of the lysine-specific demethylase (KDM1A/LSD1) inhibitor SP-2577 (Seclidemstat) against pediatric sarcoma preclinical models: A report from the Pediatric Preclinical Testing Consortium (PPTC). Pediatr Blood Cancer 2021; 68:e29304. [PMID: 34453478 DOI: 10.1002/pbc.29304] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 11/08/2022]
Abstract
SP-2577(Seclidemstat), an inhibitor of lysine-specific demthylase KDM1A (LSD1) that is overexpressed in pediatric sarcomas, was evaluated against pediatric sarcoma xenografts. SP-2577 (100 mg/kg/day × 28 days) statistically significantly (p < .05) inhibited growth of three of eight Ewing sarcoma (EwS), four of five rhabdomyosarcoma (RMS), and four of six osteosarcoma (OS) xenografts. The increase in EFS T/C was modest (<1.5) for all models except RMS Rh10 (EFS T/C = 2.8). There were no tumor regressions or consistent changes in dimethyl histone H3(K4), HOXM1, DAX1, c-MYC and N-MYC, or tumor histology/differentiation. SP-2577 has limited activity against these pediatric sarcoma models at the dose and schedule evaluated.
Collapse
Affiliation(s)
| | | | - Ruolan Han
- Salarius Pharmaceuticals, Salt Lake City, Utah, USA
| | - Beverly A Teicher
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Malcolm A Smith
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Michael Roth
- Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Richard Gorlick
- Pediatrics, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, San Antonio, Texas, USA
| |
Collapse
|
48
|
Liu G, Guo W, Qin J, Lin Z. OTUB2 Facilitates Tumorigenesis of Gastric Cancer Through Promoting KDM1A-Mediated Stem Cell-Like Properties. Front Oncol 2021; 11:711735. [PMID: 34646768 PMCID: PMC8503518 DOI: 10.3389/fonc.2021.711735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Otubain 2 (OTUB2), a deubiquitinating enzyme, overexpression is considered to predict poor outcome in various cancers. However, the function and potential regulatory mechanisms of OTUB2 in gastric cancer (GC) progression remains unclear. To determine how OTUB2 participate in GC progression, the gain and loss of-function experiments were conducted in vivo and in vitro. We found that OTUB2 was upregulated in GC samples (n=140) and cells. Moreover, the overall, first progression and post progression survival rates of GC patients with high OTUB2 expression showed a poorer prognosis than that in those patients with low OTUB2 expression. Down-regulation of OTUB2 suppressed sphere formation and reduced expression of stem cell markers in GC cells. Furthermore, OTUB2-silenced GC cells also showed a decreased proliferation, invasion, migration, and in vivo tumorigenic ability. However, OTUB2 overexpression showed the opposite effects. Notably, we demonstrated that OTUB2 increased lysine-specific histone demethylase 1A (KDM1A) expression through deubiquitination. KDM1A, a demethylase known to promote demethylation of downstream genes, was identified to promote the maintenance of cancer stem cell characteristics. Moreover, the alterations caused by OTUB2 overexpression were partly inversed by KDM1A knockdown and in turn KDM1A overexpression reversed the changes induced by OTUB2 shRNA. Taken together, we demonstrate that OTUB2 may serve as a vital driver in GC tumorigenesis by enhancing KDM1A-mediated stem cell-like properties.
Collapse
Affiliation(s)
- Guangming Liu
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Wei Guo
- Department of Hematology, The First Hospital of Jilin University, Changchun, China
| | - Junjie Qin
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, China
| | - Zhiliang Lin
- Department of Colorectal Disease Specialty, Intestinal Microenvironment Treatment Center of General Surgery, Shanghai Tenth People's Hospital, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
49
|
Gong Z, Li A, Ding J, Li Q, Zhang L, Li Y, Meng Z, Chen F, Huang J, Zhou D, Hu R, Ye J, Liu W, You H. OTUD7B Deubiquitinates LSD1 to Govern Its Binding Partner Specificity, Homeostasis, and Breast Cancer Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004504. [PMID: 34050636 PMCID: PMC8336515 DOI: 10.1002/advs.202004504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/03/2021] [Indexed: 05/26/2023]
Abstract
Genomic amplification of OTUD7B is frequently found across human cancers. But its role in tumorigenesis is poorly understood. Lysine-specific demethylase 1 (LSD1) is known to execute epigenetic regulation by forming corepressor complex with CoREST/histone deacetylases (HDACs). However, the molecular mechanisms by which cells maintain LSD1/CoREST complex integrity are unknown. Here, it is reported that LSD1 protein undergoes K63-linked polyubiquitination. OTUD7B is responsible for LSD1 deubiquitination at K226/277 residues, resulting in dynamic control of LSD1 binding partner specificity and cellular homeostasis. OTUD7B deficiency increases K63-linked ubiquitination of LSD1, which disrupts LSD1/CoREST complex formation and targets LSD1 for p62-mediated proteolysis. Consequently, OTUD7B deficiency impairs genome-wide LSD1 occupancy and enhances the methylation of H3K4/H3K9, therefore profoundly impacting global gene expression and abrogating breast cancer metastasis. Moreover, physiological fluctuation of OTUD7B modulates cell cycle-dependent LSD1 oscillation, ensuring the G1/S transition. Both OTUD7B and LSD1 proteins are overpresented in high-grade or metastatic human breast cancer, while dysregulation of either protein is associated with poor survival and metastasis. Thus, OTUD7B plays a unique partner-switching role in maintaining the integrity of LSD1/CoREST corepressor complex, LSD1 turnover, and breast cancer metastasis.
Collapse
Affiliation(s)
- Zhicheng Gong
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Aicun Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jiancheng Ding
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Qing Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Yuanpei Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Zhe Meng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Fei Chen
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Jialiang Huang
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| | - Ronggui Hu
- State Key Laboratory of Molecular BiologyShanghai Science Research CenterCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jing Ye
- Department of PathologyXijing HospitalFourth Military Medical UniversityXi'anShanxi710032China
| | - Wen Liu
- School of Pharmaceutical SciencesFujian Provincial Key Laboratory of Innovative Drug Target ResearchXiamen UniversityXiamenFujian361102China
| | - Han You
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell Signaling NetworkSchool of Life SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
50
|
Antonio Urrutia G, Ramachandran H, Cauchy P, Boo K, Ramamoorthy S, Boller S, Dogan E, Clapes T, Trompouki E, Torres-Padilla ME, Palvimo JJ, Pichler A, Grosschedl R. ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation. Genes Dev 2021; 35:1142-1160. [PMID: 34244292 PMCID: PMC8336893 DOI: 10.1101/gad.345843.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Here, Urrutia et al. set out to study the mechanism that regulates the choice between pluripotency and differentiation in embryonic stem cells (ESCs). Using biochemical and genomic analyses, the authors identify SUMO2 modification of Satb2 by the E3 ligase Zfp451 as a driver of ESC differentiation. The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional Satb2 gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation. Mutations of two SUMO-acceptor lysines of Satb2 (Satb2K →R) or knockout of Zfp451 impair the ability of ESCs to silence pluripotency genes and activate differentiation-associated genes in response to retinoic acid (RA) treatment. Notably, the forced expression of a SUMO2-SATB2 fusion protein in either Satb2K →R or Zfp451−/− ESCs rescues, in part, their impaired differentiation potential and enhances the down-regulation of Nanog. The differentiation defect of Satb2K →R ESCs correlates with altered higher-order chromatin interactions relative to Satb2wt ESCs. Upon RA treatment of Satb2wt ESCs, SATB2 interacts with ZFP451 and the LSD1/CoREST complex and gains binding at differentiation genes, which is not observed in RA-treated Satb2K →R cells. Thus, SATB2 SUMOylation may contribute to the rewiring of transcriptional networks and the chromatin interactome of ESCs in the transition of pluripotency to differentiation.
Collapse
Affiliation(s)
- Gustavo Antonio Urrutia
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Haribaskar Ramachandran
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Kyungjin Boo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Soeren Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Esen Dogan
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|