1
|
Espada CR, Anthon C, Magalhães RD, Quilles Junior JC, Teles NM, Pais FS, Orsine LA, de Almeida L, Defina TP, Dowle A, Gorodkin J, Walrad PB, Cruz AK. Computational discovery of conserved RNA structures and functional characterization of a structured lncRNA in Leishmania braziliensis. Noncoding RNA Res 2025; 14:51-64. [PMID: 40529229 PMCID: PMC12173672 DOI: 10.1016/j.ncrna.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 05/14/2025] [Accepted: 05/18/2025] [Indexed: 06/20/2025] Open
Abstract
Leishmania parasites alternate between hosts, facing environmental changes that demand rapid gene expression adaptation. Lacking canonical RNA polymerase II promoters, transcription in these eukaryotes is polycistronic, with gene regulation occurring post-transcriptionally. Although non-coding RNAs (ncRNAs) have been identified in Leishmania transcriptomes, their functions remain unclear. Recognizing RNA structure's importance, we performed a genome-wide alignment of L. braziliensis and related species, identifying conserved RNA structures, 38 of which overlap with known ncRNAs. One such ncRNA, lncRNA45, was functionally characterized. Using a knockout cell line, we demonstrated that lncRNA45 is crucial for parasite fitness. Reintroducing the wild type lncRNA45 restored fitness, while a version with a single nucleotide substitution in the structured region did not. This mutation also altered RNA-protein interactions. These findings suggest that lncRNA45's regulatory role and protein interactions rely on its secondary structure. This study highlights the significance of structured lncRNAs in Leishmania biology and their potential as therapeutic targets. Further research into these ncRNAs could uncover new parasite regulation mechanisms and inspire novel treatment strategies.
Collapse
Affiliation(s)
- Caroline R. Espada
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo FMRP-USP, Ribeirão Preto, São Paulo, Brazil
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Christian Anthon
- Center for Non-coding RNA in Technology and Health, Department of Animal and Veterinary Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rubens D.M. Magalhães
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - José Carlos Quilles Junior
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Natalia M.M. Teles
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Fabiano S. Pais
- Data Science Lab, Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Lissur A. Orsine
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Letícia de Almeida
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Tânia P.A. Defina
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| | - Adam Dowle
- Data Science Lab, Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, York, United Kingdom
| | - Jan Gorodkin
- Center for Non-coding RNA in Technology and Health, Department of Animal and Veterinary Sciences, Faculty for Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pegine B. Walrad
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo FMRP-USP, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Lotti F, Melixetian M, Vlachou T, Nobile MS, Bacciu L, Malferrari M, Quaresima N, Rapino S, Marocchi F, Barberis M, Soriani C, Gallo B, Mollo V, Ferrarotto I, Bossi D, Ferrucci PF, Pelicci PG, Luzi L, Lanfrancone L. GPNMB marks a quiescent cell population in melanoma and promotes metastasis formation. EMBO Rep 2025:10.1038/s44319-025-00501-w. [PMID: 40528051 DOI: 10.1038/s44319-025-00501-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 05/26/2025] [Accepted: 06/02/2025] [Indexed: 06/20/2025] Open
Abstract
Melanoma exhibits high intratumoral heterogeneity, characterized by a diverse population of cells undergoing dynamic transitions between cellular states. These adaptive changes enable melanoma cells to survive in the harsh tumor microenvironment, acquire drug resistance, and metastasize. One such state, quiescence, has been linked to both relapse and drug resistance, but its underlying biology and molecular mechanisms remain poorly understood. Our study challenges the conventional understanding of melanoma quiescence. Contrary to the notion of a rare, unique subpopulation, we demonstrate that quiescence is a highly dynamic state accessible to most, if not all, melanoma cells. This state is exquisitely sensitive to microenvironmental cues. We identify GPNMB as a marker of quiescence, that is expressed in both primary and metastatic tumors. GPNMB-positive cells exhibit a pro-metastatic phenotype and are enriched in metastatic sites, suggesting a potential role for quiescence in tumor dissemination. Our findings position GPNMB as a valuable marker for isolating quiescent melanoma cells and as a potential therapeutic target to tackle metastasis.
Collapse
Affiliation(s)
- Fiorenza Lotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Marine Melixetian
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Thalia Vlachou
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Purposeful, Tritis Septembriou 144, Athens, 11251, Greece
| | - Marco S Nobile
- Department of Environmental Science, Computer Science and Statistics, University of Ca' Foscari, Venice, Italy
| | - Leone Bacciu
- Department of Environmental Science, Computer Science and Statistics, University of Ca' Foscari, Venice, Italy
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Nicolò Quaresima
- Department of Chemistry "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", Università di Bologna, Via Selmi 2, 40126, Bologna, Italy
| | - Federica Marocchi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Massimo Barberis
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Barbara Gallo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Velia Mollo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Ilaria Ferrarotto
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Daniela Bossi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Institute of Oncology Research, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Pier Francesco Ferrucci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology, Gruppo MultiMedica, Milano, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lucilla Luzi
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Luisa Lanfrancone
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
3
|
Jin P, Bai X. Exploring the roles and clinical potential of exosome-derived non-coding RNAs in glioma. IBRO Neurosci Rep 2025; 18:323-337. [PMID: 40034544 PMCID: PMC11872630 DOI: 10.1016/j.ibneur.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Non-coding accounts for 98 %-99 % of the human genome and performs many essential regulatory functions in eukaryotes, involved in cancer development and development. Non-coding RNAs are abundantly enriched in exosomes, which play a biological role as vectors. Some biofunctional non-coding RNAs are specifically designed as exosomes for the treatment of cancers such as glioma. Glioma is one of the most common primary tumors within the skull and has varying degrees of malignancy and histologic subtypes of grades I-IV. Gliomas are characterized by high malignancy and an abundant blood supply due to rapid cell proliferation and vascularization, often with a poor prognosis. Exosomal non-coding RNAs can be involved in the tumorigenesis process of glioma from multiple directions, such as angiogenesis, tumor proliferation, metastatic invasion, immune evasion, apoptosis, and autophagy. Therefore, non-coding RNAs in exosomes are suitable as markers or therapeutic targets for early diagnosis of diseases and for predicting the prognosis of a variety of diseases. Regulating exosome production and the level of exosomal non-coding RNA expression may be a new approach to prevent or eliminate glioma. In this review, we review the origin and characteristics of exosomal non-coding RNAs, and introduce the functional studies of exosomal non-coding RNAs in glioma and their potential clinical applications, in order to broaden new ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Peng Jin
- Department of Neurosurgery, Hulunbuir People’s Hospital, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| | - Xue Bai
- Department of Intensive Care Unit, Hulunbuir People’s Hospital, No. 20, Shengli Street, Hailar District, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| |
Collapse
|
4
|
Khan G, Hussain MS, Ahmad S, Alam N, Ali MS, Alam P. Metabolomics as a tool for understanding and treating triple-negative breast cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04234-4. [PMID: 40314763 DOI: 10.1007/s00210-025-04234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous variant of breast cancer distinguished by a lack of targeted therapies, posing significant challenges in diagnosis and treatment. Metabolomics, the comprehensive study of small compounds in biological systems, has been identified as an instrument for revealing the metabolic underpinnings of TNBC. This review highlights recent advancements in metabolomic approaches, such as mass spectrometry and nuclear magnetic resonance, which have identified metabolic vulnerabilities, resistance mechanisms, and potential therapeutic targets. Key findings include alterations in fatty acid, amino acid, and glutathione metabolism, along with hypoxia-driven metabolic reprogramming that contributes to disease progression. The combination of metabolomics with multi-omics techniques, supported by advanced computational methods such as machine learning, offers a pathway to overcome challenges in data standardization and biological complexity. Emerging strategies, including the use of artificial intelligence and multidimensional omics approaches, are paving the way for personalized medicine by enabling the discovery of novel biomarkers and targeted therapies. Despite these advances, significant hurdles remain, including the need for robust data standardization, validation of findings in diverse patient cohorts, and seamless integration with clinical workflows. By addressing these challenges, metabolomics has the potential to revolutionize TNBC management, offering tools for early detection, precision therapy, and improved patient outcomes. This review underscores the importance of interdisciplinary collaboration to translate metabolomic insights into actionable clinical applications.
Collapse
Affiliation(s)
- Gyas Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Prem Nagar, Dehradun, Uttarakhand, 248007, India.
| | - Sarfaraz Ahmad
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Nawazish Alam
- Department of Clinical Practice, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, 45142, Jazan, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| |
Collapse
|
5
|
Wang R, Gao Y, Wang Y, Zhang Y, Yang R. LncRNA29RIK in macrophages promotes LPS-mediated sensitivity to obesity. Front Immunol 2025; 16:1574507. [PMID: 40356927 PMCID: PMC12066258 DOI: 10.3389/fimmu.2025.1574507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/25/2025] [Indexed: 05/15/2025] Open
Abstract
Lipopolysaccharide (LPS, endotoxin) -mediated signaling of caspase-4 (human) and -11 (rodent) can induce the maturation of inflammatory cytokine IL-1β and cell pyroptosis, which is associated with the pathophysiology of many diseases such as obesity. However, the process by which LPS induces inflammation through caspase 4/11 is not fully understood. We found here that lncRNA29RIK plays a key role in LPS-mediated maturation of inflammatory cytokine IL-1β and pyroptosis of macrophages. Mechanistic ally, the binding of caspase 4/11 to LPS requires lncRNARIK to cause activation of the caspase 4/11 complex, which ultimately caused inflammation to promote sensitivity to high fat diet (HFD) -mediated obesity. Notably, lncRNA29RIK expression can be up-regulated by LPS. This lncRNA29 is highly conserved between humans and mice. Taken together, these results suggest that lncRNA29RIK determines the occurrence and progression of LPS-related diseases such as obesity.
Collapse
Affiliation(s)
- Rong Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Ya Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Su Y, Bai Q, Zhang W, Xu B, Hu T. The Role of Long Non-Coding RNAs in Modulating the Immune Microenvironment of Triple-Negative Breast Cancer: Mechanistic Insights and Therapeutic Potential. Biomolecules 2025; 15:454. [PMID: 40149989 PMCID: PMC11939868 DOI: 10.3390/biom15030454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly heterogeneous and aggressive subtype of breast cancer that faces therapeutic challenges due to a shortage of effective targeted therapies. The complex biology of TNBC renders its clinical management fraught with difficulties, especially regarding the immune microenvironment of the tumor. In recent years, long non-coding RNAs (lncRNAs) have been recognized as important gene regulators with key roles in tumor development and microenvironmental regulation. Previous studies have shown that lncRNAs play important roles in the immune microenvironment of TNBC, including the regulation of tumor immune escape and the function of tumor-infiltrating immune cells. However, despite the increasing research on lncRNAs, there are still many unanswered questions, such as their specific mechanism of action and how to effectively utilize them as therapeutic targets. Therefore, the aim of this study was to review the mechanisms of lncRNAs in the TNBC immune microenvironment, explore their regulatory roles in tumor immune escape and immune cell infiltration, and explore their prospects as potential therapeutic targets. By integrating the latest research results, this study aims to provide new ideas and directions for future TNBC treatment.
Collapse
Affiliation(s)
- Yongcheng Su
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Qingquan Bai
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Wenqing Zhang
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
| | - Beibei Xu
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tianhui Hu
- Xiamen Key Laboratory for Tumor Metastasis, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.S.); (Q.B.); (W.Z.)
- Shenzhen Research Institute, Xiamen University, Shenzhen 518057, China
| |
Collapse
|
7
|
Liu Q. Role of exercise on the reduction of cancer development: a mechanistic review from the lncRNA point of view. Clin Exp Med 2025; 25:77. [PMID: 40063304 PMCID: PMC11893680 DOI: 10.1007/s10238-025-01618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
More research has been done on the correlation between exercise and cancer, which has revealed several ways that physical activity decreases the risk of developing the disease. The developing function of lncRNAs as an important molecular link between exercise and cancer suppression is the main topic of this review. According to recent research, regular physical exercise also alters the expression levels of several lncRNAs, which are generally elevated in cancer. A complex network of interactions that may provide protective effects against carcinogenesis is suggested by the contribution of these lncRNAs in various cellular processes, such as epigenetic alterations, proliferation, and apoptosis regulation. We offer a comprehensive summary of the existing information regarding specific lncRNAs that are influenced by physical activity and could potentially impact cancer-related processes. We also go over the difficulties in interpreting these alterations, taking into account the fact that several lncRNAs have a dual function in promoting and preventing cancer in various physiological settings. To understand the complex impacts of exercise-induced lncRNA regulation in cancer biology, more study is required. The critique strongly highlights the possibility of lncRNAs serving as both indicators and treatment prospects for cancer-preventive strategies.
Collapse
Affiliation(s)
- Qi Liu
- Nanchang Institute of Technology, Nanchang, 330044, China.
| |
Collapse
|
8
|
Ramu D, Kim E. Exosomal Lipids in Cancer Progression and Metastasis. Cancer Med 2025; 14:e70687. [PMID: 40111100 PMCID: PMC11924287 DOI: 10.1002/cam4.70687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Metastasis is the primary cause of cancer mortality. It is responsible for 90% of all cancer-related deaths. Intercellular communication is a crucial feature underlying cancer metastasis and progression. Cancerous tumors secrete membrane-derived small extracellular vesicles (30-150 nm) into their extracellular milieu. These tiny organelles, known as exosomes, facilitate intercellular communication by transferring bioactive molecules. These exosomes harbor different cargos, such as proteins, nucleic acids, and lipids, that mediate multifaceted functions in various oncogenic processes. Of note, the amount of lipids in exosomes is multifold higher than that of other cargos. Most studies have investigated the role of exosomes' protein and nucleic acid content in various oncogenic processes, while the role of lipid cargo in cancer pathophysiology remains largely obscure. MATERIALS AND METHODS We conducted an extensive literature review on the role of exosomes and lipids in cancer progression, specifically addressing the topic of exosomal lipids and their involvement in cancer metastasis and progression. CONCLUSIONS This review aims to shed light on the lipid contents of exosomes in cancer metastasis. In this context, the role of exosomal lipids in signaling pathways, immunomodulation, and energy production for cancer cell survival provides insights into overcoming cancer progression and metastasis.
Collapse
Affiliation(s)
- Dandugudumula Ramu
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| | - Eunjoo Kim
- Division of ABB ResearchDaegu Gyeongbuk Institute of Science and Technology (DGIST)DaeguRepublic of Korea
| |
Collapse
|
9
|
Elhinnawi MA, Okita Y, Shigematsu K, Abdelaziz M, Shiratani R, Kawanishi K, Hengphasatporn K, Dang Cao TL, Shigeta Y, Kato M. GPNMB is a novel binding partner of FGFR1 that affects tumorigenic potential through AKT phosphorylation in TNBC. Cancer Sci 2025; 116:432-443. [PMID: 39609108 PMCID: PMC11786315 DOI: 10.1111/cas.16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Breast cancer is a heterogeneous disease and is one of the most prevalent cancers in women. Triple-negative breast cancer (TNBC) is a relatively aggressive subtype of breast cancer, which is difficult to treat. Glycoprotein nonmetastatic melanoma protein B (GPNMB) is a type I transmembrane protein that is overexpressed in various types of cancers, including breast cancer, especially TNBC. In this study, bioinformatic analyses revealed enhanced fibroblast growth factor receptor 1 (FGFR1) signaling in patients with invasive breast cancer, and the GPNMBhigh/FGFR1high group exhibited a lower probability of relapse-free survival (RFS) than the GPNMBlow/FGFR1low group. Additionally, we observed that GPNMB and FGFR1 were essential for sphere formation, cellular migration, and epithelial-mesenchymal transition (EMT)-like changes in TNBC cells. To explore the mutual interaction between these two molecules, we conducted in silico protein-protein docking studies and molecular dynamics simulations. The results revealed that GPNMB isoform b exhibits high binding affinity for FGFR1 isoform c (FGFR1c), which correlates with cancer aggressiveness. We also confirmed the interaction between GPNMB and FGFR1 in TNBC cells. Furthermore, our study demonstrated that GPNMB is essential for AKT phosphorylation at T308 following FGF2 stimulation, resulting in high affinity for FGFR1c. Inhibition of AKT phosphorylation substantially reduces the tumorigenic potential of TNBC cells.
Collapse
Affiliation(s)
- Manar A. Elhinnawi
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Hormones DepartmentMedical Research and Clinical Studies Institute, National Research CentreGizaEgypt
- Stem Cells Lab Center of Excellence for Advanced SciencesNational Research CentreCairoEgypt
| | - Yukari Okita
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Division of Cell Dynamics, Transborder Medical Research CenterUniversity of TsukubaIbarakiJapan
| | - Katsunobu Shigematsu
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Mohammed Abdelaziz
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Department of Pathology, Faculty of MedicineSohag UniversitySohagEgypt
| | - Rie Shiratani
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Kunio Kawanishi
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Department of Anatomy, School of MedicineShowa UniversityTokyoJapan
| | | | - Thuy Linh Dang Cao
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
| | - Yasuteru Shigeta
- Center for Computational SciencesUniversity of TsukubaIbarakiJapan
| | - Mitsuyasu Kato
- Department of Experimental PathologyInstitute of Medicine, University of TsukubaIbarakiJapan
- Division of Cell Dynamics, Transborder Medical Research CenterUniversity of TsukubaIbarakiJapan
| |
Collapse
|
10
|
Han Y, Pu Q, Fan T, Wei T, Xu Y, Zhao L, Liu S. Long non-coding RNAs as promising targets for controlling disease vector mosquitoes. INSECT SCIENCE 2025; 32:24-41. [PMID: 38783627 DOI: 10.1111/1744-7917.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
Hematophagous female mosquitoes are important vectors of numerous devastating human diseases, posing a major public health threat. Effective prevention and control of mosquito-borne diseases rely considerably on progress in understanding the molecular mechanisms of various life activities, and accordingly, the molecules that regulate the various life activities of mosquitoes are potential targets for implementing future vector control strategies. Many long non-coding RNAs (lncRNAs) have been identified in mosquitoes and significant progress has been made in determining their functions. Here, we present a comprehensive overview of the research advances on mosquito lncRNAs, including their molecular identification, function, and interaction with other non-coding RNAs, as well as their synergistic regulatory roles in mosquito life activities. We also highlight the potential roles of competitive endogenous RNAs in mosquito growth and development, as well as in insecticide resistance and virus-host interactions. Insights into the biological functions and mechanisms of lncRNAs in mosquito life activities, viral replication, pathogenesis, and transmission will contribute to the development of novel drugs and safe vaccines.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Qian Pu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Ting Fan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Tianqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yankun Xu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Lu Zhao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| |
Collapse
|
11
|
Qiao Z, Nguyen LC, Yang D, Dann C, Thomas DM, Henn M, Valdespino A, Swenson CS, Oakes SA, Rosner MR, Moellering RE. Direct inhibition of tumor hypoxia response with synthetic transcriptional repressors. Nat Chem Biol 2025; 21:247-255. [PMID: 39215099 DOI: 10.1038/s41589-024-01716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
Many oncogenic transcription factors (TFs) are considered to be undruggable because of their reliance on large protein-protein and protein-DNA interfaces. TFs such as hypoxia-inducible factors (HIFs) and X-box-binding protein 1 (XBP1) are induced by hypoxia and other stressors in solid tumors and bind to unfolded protein response element (UPRE) and hypoxia-induced response element (HRE) motifs to control oncogenic gene programs. Here, we report a strategy to create synthetic transcriptional repressors (STRs) that mimic the basic leucine zipper domain of XBP1 and recognize UPRE and HRE motifs. A lead molecule, STR22, binds UPRE and HRE DNA sequences with high fidelity and competes with both TFs in cells. Under hypoxia, STR22 globally suppresses HIF1α binding to HRE-containing promoters and enhancers, inhibits hypoxia-induced gene expression and blocks protumorigenic phenotypes in triple-negative breast cancer (TNBC) cells. In vivo, intratumoral and systemic STR22 treatment inhibited hypoxia-dependent gene expression, primary tumor growth and metastasis of TNBC tumors. These data validate a novel strategy to target the tumor hypoxia response through coordinated inhibition of TF-DNA binding.
Collapse
Affiliation(s)
- Zeyu Qiao
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Long C Nguyen
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Dongbo Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Christopher Dann
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Deborah M Thomas
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Madeline Henn
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Andrea Valdespino
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Colin S Swenson
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA
| | - Scott A Oakes
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA.
| | - Raymond E Moellering
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
- Institute for Genomics and Systems Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
12
|
Xu M, Yuan S, Luo X, Xu M, Hu G, He Z, Yang X, Gao R. Construction of an lncRNA-mediated ceRNA network to investigate the inflammatory regulatory mechanisms of ischemic stroke. PLoS One 2025; 20:e0317710. [PMID: 39847586 PMCID: PMC11756804 DOI: 10.1371/journal.pone.0317710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/25/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats. High-throughput sequencing was performed to profile the expression of cortical lncRNAs post-stroke, with subsequent validation using RT-PCR and qRT-PCR. Among the 31,183 lncRNAs detected in the rat cerebral cortex, 551 were differentially expressed between the MCAO and sham-operated groups in the ipsilateral cortex (fold change ≥2.0, P < 0.05). An integrated analysis of the 20 most abundant and significantly differentially expressed lncRNAs (DELs) identified 25 core cytoplasmic DELs, which were used to construct an interaction network based on their targeting relationships. This led to the establishment of a comprehensive lncRNA-miRNA-mRNA regulatory network comprising 12 lncRNAs, 16 sponge miRNAs, and 191 target mRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed that differentially expressed mRNAs (DEmRNAs) were significantly enriched in stroke-related pathways. Our analysis predicted four key lncRNAs, four miRNAs, and eleven crucial mRNAs involved in post-transcriptional regulation through competing endogenous RNA (ceRNA) mechanisms. These molecules were shown to participate extensively in post-stroke processes, including angiogenesis, axonal regeneration, inflammatory responses, microglial activation, blood-brain barrier (BBB) disruption, apoptosis, autophagy, ferroptosis, and thrombocytopenia. These findings highlight the role of lncRNAs as multi-level regulators in the complex network of post-stroke mechanisms, providing novel insights into the pathophysiological processes of stroke.
Collapse
Affiliation(s)
- Meimei Xu
- Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shan Yuan
- Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xing Luo
- Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Mengsi Xu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, Xinjiang, China
| | - Guangze Hu
- Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhe He
- Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Xinyuan Yang
- Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Rui Gao
- Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| |
Collapse
|
13
|
Wang DT, Luo J, Feng HJ, Wang YY. Serum HOTTIP expression is upregulated in nasopharyngeal carcinoma patients and predicts poor prognosis. Braz J Otorhinolaryngol 2025; 91:101471. [PMID: 39500018 PMCID: PMC11580017 DOI: 10.1016/j.bjorl.2024.101471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVE Nasopharyngeal Carcinoma (NPC) is a tumor with ethnic and geographic distribution characteristics. HOXA Transcript at the distal Tip (HOTTIP) has been confirmed to have cancer-promoting effects in various tumors. The aim of this study was to investigate the clinical significance of HOTTIP in the development of NPC and its role in prognostic assessment. METHODS Reverse transcription real-time PCR was used to analyze the expression of HOTTIP in the serum of 122 NPC patients before treatment, 35 controls and 30 NPC patients after treatment, and the relationship between HOTTIP expression and the clinicopathological features and prognosis of NPC patients was analyzed. The NPC cell lines CNE1 and HNE1 stably overexpressing HOTTIP were constructed using the retroviral method. Plate clone formation assays, MTT assays, flow cytometry, and Transwell migration and invasion assays were used to investigate the effects of HOTTIP overexpression on the colony-formation ability, cell proliferation ability, apoptosis, and migration and invasion abilities of CNE1 and HNE1 cells, respectively. RESULTS HOTTIP was highly expressed in NPC serum and cells compared with the control group; serum HOTTIP expression in NPC patients after treatment was significantly lower than that before treatment; Kaplan-Meier survival curve revealed that the Progression-Free Survival (PFS) and Overall Survival (OS) of the HOTTIP low-expression group were both better than those of the HOTTIP high-expression group; COX proportional hazard models showed that high HOTTIP expression was an independent risk factor for PFS in NPC patients. The overexpression of HOTTIP promoted the proliferation, migration and invasion abilities of CNE1 and HNE1 NPC cells and inhibited cell apoptosis in vitro cell experiments. CONCLUSION Increased HOTTIP expression in serum indicates a poor prognosis and may be used as a molecular marker and therapeutic target in NPC. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Ding-Ting Wang
- The Affiliated Hospital of Southwest Medical University, Department of Otolaryngology Head and Neck Surgery, Luzhou, China
| | - Jian Luo
- The First People's Hospital of Yibin, Department of Otolaryngology Head and Neck Surgery, Yibin, China
| | - Hua-Jun Feng
- The Affiliated Hospital of Southwest Medical University, Department of Otolaryngology Head and Neck Surgery, Luzhou, China
| | - Yuan-Yuan Wang
- The Affiliated Hospital of Southwest Medical University, Department of Otolaryngology Head and Neck Surgery, Luzhou, China.
| |
Collapse
|
14
|
Beňačka R, Szabóová D, Guľašová Z, Hertelyová Z. Non-Coding RNAs in Breast Cancer: Diagnostic and Therapeutic Implications. Int J Mol Sci 2024; 26:127. [PMID: 39795985 PMCID: PMC11719911 DOI: 10.3390/ijms26010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Breast cancer (BC) is one of the most prevalent forms of cancer globally, and has recently become the leading cause of cancer-related mortality in women. BC is a heterogeneous disease comprising various histopathological and molecular subtypes with differing levels of malignancy, and each patient has an individual prognosis. Etiology and pathogenesis are complex and involve a considerable number of genetic alterations and dozens of alterations in non-coding RNA expression. Non-coding RNAs are part of an abundant family of single-stranded RNA molecules acting as key regulators in DNA replication, mRNA processing and translation, cell differentiation, growth, and overall genomic stability. In the context of breast cancer, non-coding RNAs are involved in cell cycle control and tumor cell migration and invasion, as well as treatment resistance. Alterations in non-coding RNA expression may contribute to the development and progression of breast cancer, making them promising biomarkers and targets for novel therapeutic approaches. Currently, the use of non-coding RNAs has not yet been applied to routine practice; however, their potential has been very well studied. The present review is a literature overview of current knowledge and its objective is to delineate the function of diverse classes of non-coding RNAs in breast cancer, with a particular emphasis on their potential utility as diagnostic and prognostic markers or as therapeutic targets and tools.
Collapse
Affiliation(s)
- Roman Beňačka
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Daniela Szabóová
- Department of Pathophysiology, Medical Faculty, Pavol Jozef Šafarik University, 04011 Košice, Slovakia;
| | - Zuzana Guľašová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| | - Zdenka Hertelyová
- Center of Clinical and Preclinical Research MEDIPARK, Pavol Jozef Šafarik University, 04011 Košice, Slovakia; (Z.G.); (Z.H.)
| |
Collapse
|
15
|
Liu Y, Song J, Shi Q, Chen B, Qiu W, Liu Y, Huang S, He X. Glucose-induced LINC01419 reprograms the glycolytic pathway by recruiting YBX1 to enhance PDK1 mRNA stability in hepatocellular carcinoma. Clin Transl Med 2024; 14:e70122. [PMID: 39625183 PMCID: PMC11613097 DOI: 10.1002/ctm2.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/22/2024] [Accepted: 11/23/2024] [Indexed: 12/06/2024] Open
Abstract
Metabolic reprogramming provides the necessary energy for the development of malignant tumours and is emerging as a novel tumour treatment strategy. However, the widespread expression of metabolic enzymes in diverse cell types makes the development of specific drugs that target cancer cells without affecting normal cellular functions challenging. Accumulating evidence has demonstrated the essential roles of long non-coding RNAs (lncRNAs) in the regulatory network associated with glucose metabolism in tumour cells. The mechanism and therapeutic potential of cancer-specific lncRNAs in modulating tumour glucose metabolism warrant in-depth exploration. Here we revealed that glucose-induced LINC01419 promoted the growth and metastasis of HCC cells by driving metabolic reprogramming. Mechanistically, LINC01419 directly interacted with Y-box binding protein 1 (YBX1) in the cytoplasm and facilitated its binding to PDK1 mRNA, thus enhancing PDK1 mRNA stability and increasing lactate production. Furthermore, YY1 contributed to the transcriptional activation of LINC01419 in HCC under high-glucose conditions. Notably, administration of an N-acetylgalactosamine (GalNAc)-conjugated siRNA specifically targeting LINC01419 markedly retarded the growth of orthotopic xenograft tumours. These findings provide evidence for an unprecedented regulatory mechanism of LINC01419 involving metabolic reprogramming in human cancer. The newly identified LINC01419/YBX1-PDK1 axis may represent a promising therapeutic target for HCC. Moreover, GalNAc-siLINC01419 holds significant potential for clinical application. KEY POINTS: This study highlights the considerable regulatory role of LINC01419 in the metabolism of HCC. The newly identified LINC01419/YBX1-PDK1 axis constitutes a valuable target. Hepatic-specific delivery of GalNAc-siLINC01419 presents a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Yanfang Liu
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Junjiao Song
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Qili Shi
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Bing Chen
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Wenying Qiu
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Yizhe Liu
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Shenglin Huang
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
| | - Xianghuo He
- Department of OncologyShanghai Medical CollegeFudan University Shanghai Cancer Center and Institutes of Biomedical SciencesFudan UniversityShanghaiChina
- Key Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterFudan UniversityShanghaiChina
- Collaborative Innovation Center for Cancer Personalized MedicineNanjing UniversityNanjingChina
| |
Collapse
|
16
|
Eftekhari Kenzerki M, Mohajeri Khorasani A, Zare I, Amirmahani F, Ghasemi Y, Hamblin MR, Mousavi P. Deciphering the role of LOC124905135-related non-coding RNA cluster in human cancers: A comprehensive review. Heliyon 2024; 10:e39931. [PMID: 39641053 PMCID: PMC11617737 DOI: 10.1016/j.heliyon.2024.e39931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long ncRNAs (lncRNAs), are essential regulators of processes, such as the cell cycle and apoptosis. In addition to interacting with intracellular complexes and participating in diverse molecular pathways, ncRNAs can be used as clinical diagnostic biomarkers and therapeutic targets for fighting cancer. Studying ncRNA gene clusters is crucial for understanding their role in cancer and developing new treatments. LOC124905135 is a protein-coding gene encoding a collagen alpha-1(III) chain-like protein, and also acts as a gene for several ncRNAs, including miR-3619, PRR34 antisense RNA 1 (PRR34-AS1), PRR34, long intergenic ncRNA 2939 (LINC02939), LOC112268288, and MIRLET7BHG. It also serves as a host gene for three miRNAs (hsa-let7-A3, hsa-miR-4763, and hsa-let-7b). Notably, the ncRNAs derived from this particular genomic region significantly affect various cell functions, including the cell cycle and apoptosis. This cluster of ncRNAs is dysregulated in several types of cancer, exhibiting mutations, alterations in copy number, and being subject to DNA methylation and histone modification. In summary, the ncRNAs derived from the LOC124905135 cluster could be used as targets for diagnosis, therapy monitoring, and drug discovery in human cancers.
Collapse
Affiliation(s)
- Maryam Eftekhari Kenzerki
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirhossein Mohajeri Khorasani
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co., Ltd., Shiraz, 7178795844, Iran
| | - Farzane Amirmahani
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Younes Ghasemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Pegah Mousavi
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
17
|
Fang K, Xu H, Yuan S, Li X, Chen X, Fan X, Gao X, Zhang L, Sun S, Zhu X. LncRNA mediated metabolic reprogramming: the chief culprits of solid tumor malignant progression: an update review. Nutr Metab (Lond) 2024; 21:89. [PMID: 39516895 PMCID: PMC11549785 DOI: 10.1186/s12986-024-00866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolism reprogramming (MR) is one of the top ten hallmarks of malignant tumors. The aberrant activation of MR has been recognized as a critical contributory factor to the malignant progression of solid tumors. Moreover, various long non-coding RNAs (lncRNAs) are implicated in the aberrant activation of MR in solid tumor cells. Therefore, in this review, we mainly focus on summarizing the functional relevance and molecular mechanistic underpinnings of lncRNAs in modulating MR of solid tumors by targeting glucose metabolism, lipid metabolism, affecting mitochondrial function, and regulating interactions between tumor and non-tumor cells in tumor microenvironment. Besides, we also underscore the potential for constructing lncRNAs-centered tumor metabolic regulation networks and developing novel anti-tumor strategies by targeting lncRNAs and abnormal MR. Ultimately, this review seeks to offer new targets and avenues for the clinical treatment of solid tumors in the future.
Collapse
Affiliation(s)
- Kun Fang
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Huizhe Xu
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Shuai Yuan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxi Li
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoyu Chen
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiushi Fan
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Xiaoxin Gao
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China
| | - Lu Zhang
- Department of Human Resources, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Shulan Sun
- Central Laboratory, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
| | - Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning, China.
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
18
|
Gao Y, Yue J, Ha F, Wang Y, Wang R, Yang X, Zhang J, Liu X, Zhang Y, Han T, Yang R. Bile acid derivatives from gut microbiota promote GBPs-mediated activation of caspase-4/11 by LPS through lncRNA57RIK. Int J Biol Sci 2024; 20:5831-5849. [PMID: 39664579 PMCID: PMC11628326 DOI: 10.7150/ijbs.97059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/11/2024] [Indexed: 12/13/2024] Open
Abstract
Lipopolysaccharide (LPS) mediated caspases-4 (humans) and caspase-11 (rodent) (caspase-4/11) signaling can cause maturation of inflammatory cytokine IL-1β and cellular pyroptosis in the macrophages through guanylate-binding proteins (GBPs). However, how caspase-4/11s bind with GBPs together to activate caspase-4/11 by LPS remains elusive. We here found that BA derivatives from gut microbiota can regulate sensitivity of macrophages to LPS and Gram-negative bacteria through lncRNA57RIK. BA derivatives such as deoxycholic acid (DCA) could induce lncRNA57RIK expression through sphingosine-1-phosphate receptor 2 (S1PR2) in the macrophages of mice and humans. Both murine and human lncRNA57RIK knockout (KO) macrophages did not produce immune response(s) to LPS or gram negative bacteria. LncRNA57RIK KO mice had also reduced inflammatory responses to LPS or Salmonella typhimurium (S. T) infection. Mechanistically, lncRNA57RIK could bind intracellular proteases caspase-4/11 with GBP1 together in the macrophages of human and mice to cause LPS-mediated activation of caspase-4/11. Thus, BA derivatives from gut microbiota promote GBPs-mediated activation of caspase-4/11 by LPS through lncRNA57RIK.
Collapse
Affiliation(s)
- Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin 300071, China
| | - Jianmei Yue
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin 300071, China
| | - Fushuang Ha
- The Third Central Clinical College of Tianjin Medical University, Tianjin 300170, China
| | - Ya Wang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin 300071, China
| | - Rong Wang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin 300071, China
| | - Xiaorong Yang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin 300071, China
| | - Junqi Zhang
- College of life Science, Nankai University, Tianjin, China, Tianjin 300121, China
| | - Xinqi Liu
- College of life Science, Nankai University, Tianjin, China, Tianjin 300121, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin 300071, China
| | - Tao Han
- Tianjin Union Medical Center, Tianjin Medical University, Tianjin 300270, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Department of Immunology, Nankai University School of Medicine; Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Haque M, Shyanti RK, Mishra MK. Targeted therapy approaches for epithelial-mesenchymal transition in triple negative breast cancer. Front Oncol 2024; 14:1431418. [PMID: 39450256 PMCID: PMC11499239 DOI: 10.3389/fonc.2024.1431418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is distinguished by negative expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), making it an aggressive subtype of breast cancer and contributes to 15-20% of the total incidence. TNBC is a diverse disease with various genetic variations and molecular subtypes. The tumor microenvironment involves multiple cells, including immune cells, fibroblast cells, extracellular matrix (ECM), and blood vessels that constantly interact with tumor cells and influence each other. The ECM undergoes significant structural changes, leading to induced cell proliferation, migration, adhesion, invasion, and epithelial-to-mesenchymal transition (EMT). The involvement of EMT in the occurrence and development of tumors through invasion and metastasis in TNBC has been a matter of concern. Therefore, EMT markers could be prognostic predictors and potential therapeutic targets in TNBC. Chemotherapy has been one of the primary options for treating patients with TNBC, but its efficacy against TNBC is still limited. Targeted therapy is a critical emerging option with enhanced efficacy and less adverse effects on patients. Various targeted therapy approaches have been developed based on the specific molecules and the signaling pathways involved in TNBC. These include inhibitors of signaling pathways such as TGF-β, Wnt/β-catenin, Notch, TNF-α/NF-κB and EGFR, as well as immune checkpoint inhibitors, such as pembrolizumab, 2laparib, and talazoparib have been widely explored. This article reviews recent developments in EMT in TNBC invasion and metastasis and potential targeted therapy strategies.
Collapse
Affiliation(s)
| | | | - Manoj K. Mishra
- Cancer Research Center, Department of Biological Sciences, Alabama State
University, Montgomery, AL, United States
| |
Collapse
|
20
|
Chen K, You Y, Tang W, Tian X, Zhu C, Yin Z, Zeng M, He X. HAND2-AS1 plays a tumor-suppressive role in hepatoblastoma through the negative regulation of CDK1. Heliyon 2024; 10:e35930. [PMID: 39286228 PMCID: PMC11402935 DOI: 10.1016/j.heliyon.2024.e35930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024] Open
Abstract
Objective Hepatoblastoma (HB) is the most commonly seen pediatric liver malignancy. The preliminary experiment of our research group found that cyclin dependent kinase 1 (CDK1) was upregulated in HB. By in silico analysis, long noncoding RNA (lncRNA) HAND2 antisense RNA 1 (HAND2-AS1) was determined as the research object. Herein, HAND2-AS1 expression in HB and its effect and mechanism on HB were extensively investigated. Methods CDK1-related lncRNAs were searched using the microarray data from the Gene Expression Omnibus (GEO) database and Gene Expression Profiling Interactive Analysis (GEPIA) online database. qRT-PCR, Western blot, and immunohistochemistry were performed to determine the mRNA expression and protein levels of target genes. MTT, flow cytometry and DAPI staining assays were conducted to measure proliferation activity, cell cycle progression, and apoptosis of HB cells. The interaction between lncRNA and protein was determined by RNA pull-down and FISH assays. Luciferase assay was applied to identify whether HAND2-AS1 stimulates the transcription of CDK1. CDK1 mRNA stability was detected through actinomycin D assay. Aycloheximide assay was used to detect the CDK1 protein stability. Results HAND2-AS1 was downregulated in HB tissues and cells. HAND2-AS1 overexpression impeded HB cells proliferation activity and cycle progression while inducing cell apoptosis of HB cells, while knockdown of HAND2-AS1 emerged the opposite effect. HAND2-AS1 negatively correlated with CDK1. HAND2-AS1 downregulated CDK1 expression by affecting the transcriptional activity, mRNA and protein stability of CDK1. Furthermore, HAND2-AS1 impeded HB cell proliferation and cycle progression while inducing cell apoptosis by downregulating CDK1. Conclusion Our research highlights that HAND2-AS1 can exert a tumor-suppressive effect on HB through the negative regulation of CDK1, and the HAND2-AS1/CDK1 is expected to be a diagnostic molecular marker and therapeutic target for HB in clinical practice.
Collapse
Affiliation(s)
- Keke Chen
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Yalan You
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Wenfang Tang
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Xin Tian
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Chengguang Zhu
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Zexi Yin
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Minhui Zeng
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| | - Xiangling He
- Department of Pediatric Hematology and Oncology, School of Medicine, Children's Medical Center of Hunan Provincial People's Hospital of the First-Affiliated Hospital, Changsha, Hunan, 410005, China
| |
Collapse
|
21
|
Rong J, Wang Q, Li T, Qian J, Cheng J. Glucose metabolism in glioma: an emerging sight with ncRNAs. Cancer Cell Int 2024; 24:316. [PMID: 39272133 PMCID: PMC11395608 DOI: 10.1186/s12935-024-03499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Glioma is a primary brain tumor that grows quickly, has an unfavorable prognosis, and can spread intracerebrally. Glioma cells rely on glucose as the major energy source, and glycolysis plays a critical role in tumorigenesis and progression. Substrate utilization shifts throughout glioma progression to facilitate energy generation and biomass accumulation. This metabolic reprogramming promotes glioma cell proliferation and metastasis and ultimately decreases the efficacy of conventional treatments. Non-coding RNAs (ncRNAs) are involved in several glucose metabolism pathways during tumor initiation and progression. These RNAs influence cell viability and glucose metabolism by modulating the expression of key genes of the glycolytic pathway. They can directly or indirectly affect glycolysis in glioma cells by influencing the transcription and post-transcriptional regulation of oncogenes and suppressor genes. In this review, we discussed the role of ncRNAs in the metabolic reprogramming of glioma cells and tumor microenvironments and their abnormal expression in the glucometabolic pathway in glioma. In addition, we consolidated the existing theoretical knowledge to facilitate the use of this emerging class of biomarkers as biological indicators and potential therapeutic targets for glioma.
Collapse
Affiliation(s)
- Jun Rong
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China
| | - Qifu Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), WuHu, People's Republic of China
| | - Tingzheng Li
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China
| | - Jin Qian
- Department of Neurosurgery, Xuancheng People's Hospital, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng, People's Republic of China.
| | - Jinchao Cheng
- Department of Neurosurgery, Xuancheng Central Hospital, Xuancheng, People's Republic of China.
| |
Collapse
|
22
|
Lin S, Shen ZY, Wang MD, Zhou XM, Xu T, Jiao XH, Wang LL, Guo XJ, Wu P. Lnc557 promotes Bombyx mori nucleopolyhedrovirus replication by interacting with BmELAVL1 to enhance its stability and expression. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106046. [PMID: 39277373 DOI: 10.1016/j.pestbp.2024.106046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 09/17/2024]
Abstract
Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that threatens the growth and sustainability of the sericultural industry. Currently, accumulated studies showed that long non-coding RNAs (lncRNAs) play important roles in the genesis and progression of various viruses and host-pathogens interactions. However, the functions and regulatory mechanisms of lncRNAs in insect-virus interaction are still limited. In this study, transcriptome sequencing and ribosome profiling sequencing (Ribo-seq) were performed in the BmNPV-infected midgut and control tissue, and a total of 9 differentially expressed (DE) lncRNAs and 27 small ORFs (sORFs) with micropeptide coding potential were identified. Among them, lncRNA XR_001139971.3 (lnc557) is verified to be significantly up-regulated upon BmNPV infection and may have the potential to encode a small peptide (ORF-674). The subcellular localization experiment showed that lnc557 was expressed in the cytoplasm. Overexpression of lnc557 promotes BmNPV replication and vice versa. By combining RNA pull-down, mass spectrometry, protein truncation and RNA immunoprecipitation (RIP) assays, we confirmed that lnc557 can bind to the RRM-5 domain of BmELAVL1 protein. Subsequently, we found that lnc557 could promote the expression of BmELAVL1 by enhancing the stability of BmELAVL1. Further, enhancing the expression of BmELAVL1 can promote the proliferation of BmNPV, while knockdown shows the opposite effect. Our data suggest that lnc557-mediated BmELAVL1 expression enhancement could play a positive role in BmNPV replication, which will provide a new insight into the molecular mechanism of interaction between Bombyx mori and virus.
Collapse
Affiliation(s)
- Su Lin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Zhen-Yu Shen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Meng-Dong Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xue-Min Zhou
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Tao Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xin-Hao Jiao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lu-Lai Wang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xi-Jie Guo
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ping Wu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
23
|
Chand Dakal T, Choudhary K, Tiwari I, Yadav V, Kumar Maurya P, Kumar Sharma N. Unraveling the Triad: Hypoxia, Oxidative Stress and Inflammation in Neurodegenerative Disorders. Neuroscience 2024; 552:126-141. [PMID: 38936458 DOI: 10.1016/j.neuroscience.2024.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/07/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
The mammalian brain's complete dependence on oxygen for ATP production makes it highly susceptible to hypoxia, at high altitudes or in clinical scenarios including anemia or pulmonary disease. Hypoxia plays a crucial role in the development of various brain disorders, such as Alzheimer's, Parkinson's, and other age-related neurodegenerative diseases. On the other hand, a decrease in environmental oxygen levels, such as prolonged stays at high elevations, may have beneficial impacts on the process of ageing and the likelihood of death. Additionally, the utilization of controlled hypoxia exposure could potentially serve as a therapeutic approach for age-related brain diseases. Recent findings indicate that the involvement of HIF-1α and the NLRP3 inflammasome is of significant importance in the development of Alzheimer's disease. HIF-1α serves as a pivotal controller of various cellular reactions to oxygen deprivation, exerting influence on a multitude of physiological mechanisms such as energy metabolism and inflammatory responses. The NLRP3 plays a crucial role in the innate immune system by coordinating the initiation of inflammatory reactions through the assembly of the inflammasome complex. This review examines the information pertaining to the contrasting effects of hypoxia on the brain, highlighting both its positive and deleterious effects and molecular pathways that are involved in mediating these different effects. This study explores potential strategies for therapeutic intervention that focus on restoring cellular balance and reducing neuroinflammation, which are critical aspects in addressing this severe neurodegenerative condition and addresses crucial inquiries that warrant further future investigations.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Genome and Computational Biology Lab, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kanika Choudhary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Isha Tiwari
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vikas Yadav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India.
| |
Collapse
|
24
|
Huang H, Shah H, Hao J, Lin J, Prayson RA, Xie L, Bao S, Chakraborty AA, Jankowsky E, Zhao J, Yu JS. Long non-coding RNA lung cancer-associated transcript-1 promotes glioblastoma progression by enhancing Hypoxia-inducible factor 1 alpha activity. Neuro Oncol 2024; 26:1388-1401. [PMID: 38456228 PMCID: PMC11300024 DOI: 10.1093/neuonc/noae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Hypoxia is associated with poor prognosis in many cancers including glioblastoma (GBM). Glioma stem-like cells (GSCs) often reside in hypoxic regions and serve as reservoirs for disease progression. Long non-coding RNAs (lncRNAs) have been implicated in GBM. However, the lncRNAs that modulate GSC adaptations to hypoxia are poorly understood. Identification of these lncRNAs may provide new therapeutic strategies to target GSCs under hypoxia. METHODS lncRNAs induced by hypoxia in GSCs were identified by RNA-seq. Lung cancer-associated transcript-1 (LUCAT1) expression was assessed by qPCR, RNA-seq, Northern blot, single molecule FISH in GSCs, and interrogated in IvyGAP, The Cancer Genome Atlas, and CGGA databases. LUCAT1 was depleted by shRNA, CRISPR/Cas9, and CRISPR/Cas13d. RNA-seq, Western blot, immunohistochemistry, co-IP, ChIP, ChIP-seq, RNA immunoprecipitation, and proximity ligation assay were performed to investigate mechanisms of action of LUCAT1. GSC viability, limiting dilution assay, and tumorigenic potential in orthotopic GBM xenograft models were performed to assess the functional consequences of depleting LUCAT1. RESULTS A new isoform of Lucat1 is induced by Hypoxia inducible factor 1 alpha (HIF1α) and Nuclear factor erythroid 2-related factor 2 (NRF2) in GSCs under hypoxia. LUCAT1 is highly expressed in hypoxic regions in GBM. Mechanistically, LUCAT1 formed a complex with HIF1α and its co-activator CBP to regulate HIF1α target gene expression and GSC adaptation to hypoxia. Depletion of LUCAT1 impaired GSC self-renewal. Silencing LUCAT1 decreased tumor growth and prolonged mouse survival in GBM xenograft models. CONCLUSIONS A HIF1α-LUCAT1 axis forms a positive feedback loop to amplify HIF1α signaling in GSCs under hypoxia. LUCAT1 promotes GSC self-renewal and GBM tumor growth. LUCAT1 is a potential therapeutic target in GBM.
Collapse
Affiliation(s)
- Haidong Huang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hariti Shah
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jing Hao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jianhong Lin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard A Prayson
- Department of Anatomic Pathology, The Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Liangqi Xie
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Abhishek A Chakraborty
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jianjun Zhao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jennifer S Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
25
|
Zou Z, Luo T, Wang X, Wang B, Li Q. Exploring the interplay between triple-negative breast cancer stem cells and tumor microenvironment for effective therapeutic strategies. J Cell Physiol 2024; 239:e31278. [PMID: 38807378 DOI: 10.1002/jcp.31278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/28/2024] [Accepted: 04/05/2024] [Indexed: 05/30/2024]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive and metastatic malignancy with poor treatment outcomes. The interaction between the tumor microenvironment (TME) and breast cancer stem cells (BCSCs) plays an important role in the development of TNBC. Owing to their ability of self-renewal and multidirectional differentiation, BCSCs maintain tumor growth, drive metastatic colonization, and facilitate the development of drug resistance. TME is the main factor regulating the phenotype and metastasis of BCSCs. Immune cells, cancer-related fibroblasts (CAFs), cytokines, mesenchymal cells, endothelial cells, and extracellular matrix within the TME form a complex communication network, exert highly selective pressure on the tumor, and provide a conducive environment for the formation of BCSC niches. Tumor growth and metastasis can be controlled by targeting the TME to eliminate BCSC niches or targeting BCSCs to modify the TME. These approaches may improve the treatment outcomes and possess great application potential in clinical settings. In this review, we summarized the relationship between BCSCs and the progression and drug resistance of TNBC, especially focusing on the interaction between BCSCs and TME. In addition, we discussed therapeutic strategies that target the TME to inhibit or eliminate BCSCs, providing valuable insights into the clinical treatment of TNBC.
Collapse
Affiliation(s)
- Zhuoling Zou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, China
| | - Tinglan Luo
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Xinyuan Wang
- Department of Clinical Medicine, The Second Clinical College of Chongqing Medicine University, Chongqing, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing, China
| | - Qing Li
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
26
|
González-Woge M, Contreras-Espinosa L, García-Gordillo JA, Aguilar-Villanueva S, Bargallo-Rocha E, Cabrera-Galeana P, Vasquez-Mata T, Cervantes-López X, Vargas-Lías DS, Montiel-Manríquez R, Bautista-Hinojosa L, Rebollar-Vega R, Castro-Hernández C, Álvarez-Gómez RM, De La Rosa-Velázquez IA, Díaz-Chávez J, Jiménez-Trejo F, Arriaga-Canon C, Herrera LA. The Expression Profiles of lncRNAs Are Associated with Neoadjuvant Chemotherapy Resistance in Locally Advanced, Luminal B-Type Breast Cancer. Int J Mol Sci 2024; 25:8077. [PMID: 39125649 PMCID: PMC11311431 DOI: 10.3390/ijms25158077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
lncRNAs are noncoding transcripts with tissue and cancer specificity. Particularly, in breast cancer, lncRNAs exhibit subtype-specific expression; they are particularly upregulated in luminal tumors. However, no gene signature-based laboratory tests have been developed for luminal breast cancer identification or the differential diagnosis of luminal tumors, since no luminal A- or B-specific genes have been identified. Particularly, luminal B patients are of clinical interest, since they have the most variable response to neoadjuvant treatment; thus, it is necessary to develop diagnostic and predictive biomarkers for these patients to optimize treatment decision-making and improve treatment quality. In this study, we analyzed the lncRNA expression profiles of breast cancer cell lines and patient tumor samples from RNA-Seq data to identify an lncRNA signature specific for luminal phenotypes. We identified an lncRNA signature consisting of LINC01016, GATA3-AS1, MAPT-IT1, and DSCAM-AS1 that exhibits luminal subtype-specific expression; among these lncRNAs, GATA3-AS1 is associated with the presence of residual disease (Wilcoxon test, p < 0.05), which is related to neoadjuvant chemotherapy resistance in luminal B breast cancer patients. Furthermore, analysis of GATA3-AS1 expression using RNA in situ hybridization (RNA ISH) demonstrated that this lncRNA is detectable in histological slides. Similar to estrogen receptors and Ki67, both commonly detected biomarkers, GATA3-AS1 proves to be a suitable predictive biomarker for clinical application in breast cancer laboratory tests.
Collapse
Affiliation(s)
- Miguel González-Woge
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Laura Contreras-Espinosa
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C. P. 04510, Mexico;
| | - José Antonio García-Gordillo
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C. P. 14080, Mexico; (J.A.G.-G.); (P.C.-G.)
| | - Sergio Aguilar-Villanueva
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (S.A.-V.); (E.B.-R.); (D.S.V.-L.)
| | - Enrique Bargallo-Rocha
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (S.A.-V.); (E.B.-R.); (D.S.V.-L.)
| | - Paula Cabrera-Galeana
- Departamento de Oncología Médica de Mama, Instituto Nacional de Cancerología, Tlalpan, Mexico City C. P. 14080, Mexico; (J.A.G.-G.); (P.C.-G.)
| | - Tania Vasquez-Mata
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Ximena Cervantes-López
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Diana Sofía Vargas-Lías
- Departamento de Tumores Mamarios, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (S.A.-V.); (E.B.-R.); (D.S.V.-L.)
| | - Rogelio Montiel-Manríquez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Luis Bautista-Hinojosa
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Mexico City C. P. 04510, Mexico;
| | - Rosa Rebollar-Vega
- Genomics Laboratory, Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Tlalpan, Mexico City C. P. 14080, Mexico;
| | - Clementina Castro-Hernández
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
| | - Rosa María Álvarez-Gómez
- Clínica de Cáncer Hereditario, Instituto Nacional de Cancerología, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico;
| | | | - José Díaz-Chávez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C. P. 64710, Mexico
| | - Francisco Jiménez-Trejo
- Instituto Nacional de Pediatría, Insurgentes Sur No. 3700-C, Coyoacán, Mexico City C. P. 04530, Mexico;
| | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C. P. 64710, Mexico
| | - Luis Alonso Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Avenida San Fernando No. 22 Col. Sección XVI, Tlalpan, Mexico City C. P. 14080, Mexico; (M.G.-W.); (L.C.-E.); (T.V.-M.); (X.C.-L.); (R.M.-M.); (C.C.-H.); (J.D.-C.)
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey C. P. 64710, Mexico
| |
Collapse
|
27
|
Guo S, Huang B, You Z, Luo Z, Xu D, Zhang J, Lin J. FOXD2-AS1 promotes malignant cell behavior in oral squamous cell carcinoma via the miR-378 g/CRABP2 axis. BMC Oral Health 2024; 24:625. [PMID: 38807101 PMCID: PMC11134640 DOI: 10.1186/s12903-024-04388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Oral squamous cell cancer (OSCC) is a prevalent malignancy in oral cavity, accounting for nearly 90% of oral malignancies. It ranks sixth among the most common types of cancer worldwide and is responsible for approximately 145,000 deaths each year. It is widely accepted that noncoding RNAs participate cancer development in competitive regulatory interaction, knowing as competing endogenous RNA (ceRNA) network, whereby long non-coding RNA (lncRNA) function as decoys of microRNAs to regulate gene expression. LncRNA FOXD2-AS1 was reported to exert an oncogenic role in OSCC. Nevertheless, the ceRNA network mediated by FOXD2-AS1 was not investigated yet. This study aimed to explore the effect of FOXD2-AS1 on OSCC cell process and the underlying ceRNA mechanism. METHODS FOXD2-AS1 expression in OSCC cells were determined via reverse transcription and quantitative polymerase chain reaction. Short hairpin RNA targeting FOXD2-AS1 was transfected into OSCC cells to silence FOXD2-AS1 expression. Then, loss-of-function experiments (n = 3 each assay) were performed to measure cell proliferation, apoptosis, migration, and invasion using colony formation, TdT-mediated dUTP Nick-End Labeling, wound healing and Transwell assays, respectively. RNA binding relation was verified by RNA immunoprecipitation and luciferase reporter assays. Rescue experiments were designed to validate whether FOXD2-AS1 affects cell behavior via the gene cellular retinoic acid binding protein 2 (CRABP2). Statistics were processed by GraphPad Prism 6.0 Software and SPSS software. RESULTS FOXD2-AS1 was significantly upregulated in Cal27 and SCC9 cells (6.8 and 6.4 folds). In response to FOXD2-AS1 knockout, OSCC cell proliferation, migration and invasion were suppressed (approximately 50% decrease) while OSCC cell apoptosis was enhanced (more than two-fold increase). FOXD2-AS1 interacted with miR-378 g to alter CRABP2 expression. CRABP2 upregulation partly rescued (*p < 0.05, **p < 0.01, ***p < 0.001) the inhibitory impact of FOXD2-AS1 depletion on malignant characteristics of OSCC cells. CONCLUSION FOXD2-AS1 enhances OSCC malignant cell behaviors by interacting with miR-378 g to regulate CRABP2 expression.
Collapse
Affiliation(s)
- Shaoyong Guo
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China.
| | - Bixia Huang
- Department of Neurology, The Affiliated Hospital of Putian University, Putian, 351100, China
| | - Zhisong You
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Zhenzhi Luo
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Da Xu
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Jieru Zhang
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| | - Jialin Lin
- Department of Stomatology, The First Hospital of Putian City, 449 Nanmen West Road, Chengxiang District, Putian City, Putian, 351100, China
| |
Collapse
|
28
|
Brandt A, Kopp F. Long Noncoding RNAs in Diet-Induced Metabolic Diseases. Int J Mol Sci 2024; 25:5678. [PMID: 38891865 PMCID: PMC11171519 DOI: 10.3390/ijms25115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The prevalence of metabolic diseases, including type 2 diabetes and metabolic dysfunction-associated steatotic liver disease (MASLD), is steadily increasing. Although many risk factors, such as obesity, insulin resistance, or hyperlipidemia, as well as several metabolic gene programs that contribute to the development of metabolic diseases are known, the underlying molecular mechanisms of these processes are still not fully understood. In recent years, it has become evident that not only protein-coding genes, but also noncoding genes, including a class of noncoding transcripts referred to as long noncoding RNAs (lncRNAs), play key roles in diet-induced metabolic disorders. Here, we provide an overview of selected lncRNA genes whose direct involvement in the development of diet-induced metabolic dysfunctions has been experimentally demonstrated in suitable in vivo mouse models. We further summarize and discuss the associated molecular modes of action for each lncRNA in the respective metabolic disease context. This overview provides examples of lncRNAs with well-established functions in diet-induced metabolic diseases, highlighting the need for appropriate in vivo models and rigorous molecular analyses to assign clear biological functions to lncRNAs.
Collapse
Affiliation(s)
- Annette Brandt
- Molecular Nutritional Science, Department of Nutritional Sciences, University of Vienna, 1090 Vienna, Austria;
| | - Florian Kopp
- Clinical Pharmacy Group, Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
29
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
30
|
Liao B, Wang J, Xie Y, Luo H, Min J. LINK-A: unveiling its functional role and clinical significance in human tumors. Front Cell Dev Biol 2024; 12:1354726. [PMID: 38645412 PMCID: PMC11032015 DOI: 10.3389/fcell.2024.1354726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
LINK-A, also recognized as LINC01139, has emerged as a key oncological lncRNA in cancer. LINK-A is upregulated in solid and liquid tumor samples, including breast cancer, ovarian cancer, glioma, non-small-cell lung cancer, and mantle cell lymphoma. Notably, LINK-A is involved in regulating critical cancer-related pathways, such as AKT and HIF1α signaling, and is implicated in a range of oncogenic activities, including cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), cell invasion and migration, and glycolysis reprogramming. LINK-A's differential expression and its correlation with clinical features enable it to be a promising biomarker for cancer diagnosis, prognosis, and the stratification of tumor progression. Additionally, LINK-A's contribution to the development of resistance to cancer therapies, including AKT inhibitors and immunotherapy, underscores its potential as a therapeutic target. This review provides a comprehensive overview of the available data on LINK-A, focusing on its molecular regulatory pathways and clinical significance. By exploring the multifaceted nature of LINK-A in cancer, the review aims to offer a valuable resource for future research directions, potentially guiding the development of novel therapeutic strategies targeting this lncRNA in cancer treatment.
Collapse
Affiliation(s)
- Bing Liao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jialing Wang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yilin Xie
- Second School of Clinical Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Min
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
31
|
Saeinasab M, Atlasi Y, M Matin M. Functional role of lncRNAs in gastrointestinal malignancies: the peculiar case of small nucleolar RNA host gene family. FEBS J 2024; 291:1353-1385. [PMID: 36282516 DOI: 10.1111/febs.16668] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Long noncoding RNAs (lncRNAs) play crucial roles in normal physiology and are often de-regulated in disease states such as cancer. Recently, a class of lncRNAs referred to as the small nucleolar RNA host gene (SNHG) family have emerged as important players in tumourigenesis. Here, we discuss new findings describing the role of SNHGs in gastrointestinal tumours and summarize the three main functions by which these lncRNAs promote carcinogenesis, namely: competing with endogenous RNAs, modulating protein function, and regulating epigenetic marking. Furthermore, we discuss how SNHGs participate in different hallmarks of cancer, and how this class of lncRNAs may serve as potential biomarkers in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Morvarid Saeinasab
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
| | - Yaser Atlasi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, UK
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Iran
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Iran
| |
Collapse
|
32
|
Liao X, Wei R, Zhou J, Wu K, Li J. Emerging roles of long non-coding RNAs in osteosarcoma. Front Mol Biosci 2024; 11:1327459. [PMID: 38516191 PMCID: PMC10955361 DOI: 10.3389/fmolb.2024.1327459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Osteosarcoma (OS) is a highly aggressive and lethal malignant bone tumor that primarily afflicts children, adolescents, and young adults. However, the molecular mechanisms underlying OS pathogenesis remain obscure. Mounting evidence implicates dysregulated long non-coding RNAs (lncRNAs) in tumorigenesis and progression. These lncRNAs play a pivotal role in modulating gene expression at diverse epigenetic, transcriptional, and post-transcriptional levels. Uncovering the roles of aberrant lncRNAs would provide new insights into OS pathogenesis and novel tools for its early diagnosis and treatment. In this review, we summarize the significance of lncRNAs in controlling signaling pathways implicated in OS development, including the Wnt/β-catenin, PI3K/AKT/mTOR, NF-κB, Notch, Hippo, and HIF-1α. Moreover, we discuss the multifaceted contributions of lncRNAs to drug resistance in OS, as well as their potential to serve as biomarkers and therapeutic targets. This review aims to encourage further research into lncRNA field and the development of more effective therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Xun Liao
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Rong Wei
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junxiu Zhou
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, Sichuan, China
| | - Ke Wu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Li
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Chen Y, Chen H, Wang Y, Liu F, Fan X, Shi C, Su X, Tan M, Yang Y, Lin B, Lei K, Qu L, Yang J, Zhu Z, Yuan Z, Xie S, Sun Q, Neculai D, Liu W, Yan Q, Wang X, Shao J, Liu J, Lin A. LncRNA LINK-A Remodels Tissue Inflammatory Microenvironments to Promote Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303341. [PMID: 38145352 PMCID: PMC10933663 DOI: 10.1002/advs.202303341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/09/2023] [Indexed: 12/26/2023]
Abstract
High-fat diet (HFD)-induced obesity is a crucial risk factor for metabolic syndrome, mainly due to adipose tissue dysfunctions associated with it. However, the underlying mechanism remains unclear. This study has used genetic screening to identify an obesity-associated human lncRNA LINK-A as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo by establishing the HFD-induced obesity knock-in (KI) mouse model. Mechanistically, HFD LINK-A KI mice induce the infiltration of inflammatory factors, including IL-1β and CXCL16, through the LINK-A/HB-EGF/HIF1α feedback loop axis in a self-amplified manner, thereby promoting the adipose tissue microenvironment remodeling and adaptive thermogenesis disorder, ultimately leading to obesity and insulin resistance. Notably, LINK-A expression is positively correlated with inflammatory factor expression in individuals who are overweight. Of note, targeting LINK-A via nucleic acid drug antisense oligonucleotides (ASO) attenuate HFD-induced obesity and metabolic syndrome, pointing out LINK-A as a valuable and effective therapeutic target for treating HFD-induced obesity. Briefly, the results reveale the roles of lncRNAs (such as LINK-A) in remodeling tissue inflammatory microenvironments to promote HFD-induced obesity.
Collapse
Affiliation(s)
- Yu Chen
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Hui Chen
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yebin Yang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouZhejiang310053China
| | - Bangxing Lin
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
| | - Kai Lei
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Qu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jiecheng Yang
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zhipeng Zhu
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Zengzhuang Yuan
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)University School of MedicineInternational CampusZhejiang UniversityHainingZhejiang314400China
| | - Shanshan Xie
- The Children's HospitalNational Clinical Research Center for Child HealthZhejiang University School of MedicineHangzhouZhejiang310003China
- Department of Cell BiologyZhejiang University School of MedicineHangzhouZhejiang310058China
| | - Qinming Sun
- Department of BiochemistryDepartment of Cardiology of Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang313000China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| | - Dante Neculai
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
- Department of Cell BiologyDepartment of General Surgery of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouZhejiang310016China
| | - Wei Liu
- Department of BiochemistryDepartment of Cardiology of Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang313000China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouZhejiang310006China
- Department of Central LaboratoryThe First People's Hospital of HuzhouHuzhouZhejiang313000China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jian Liu
- Zhejiang University‐University of Edinburgh Institute (ZJU‐UoE Institute)University School of MedicineInternational CampusZhejiang UniversityHainingZhejiang314400China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- Hangzhou Cancer InstitutionAffiliated Hangzhou Cancer HospitalZhejiang University School of MedicineZhejiang UniversityHangzhouZhejiang310002China
- College of Medicine and Veterinary MedicineThe University of EdinburghEdinburghEH16 4SBUK
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and ProtectionCollege of Life SciencesZhejiang UniversityHangzhouZhejiang310058China
- International School of MedicineInternational Institutes of MedicineThe 4th Affiliated Hospital of Zhejiang University School of MedicineYiwuZhejiang322000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
- Key Laboratory for Cell and Gene Engineering of Zhejiang ProvinceHangzhouZhejiang310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxingZhejiang314100China
- Key Laboratory of Cancer Prevention and InterventionChina National Ministry of EducationHangzhouZhejiang310009China
| |
Collapse
|
34
|
Fan X, Liu F, Wang X, Wang Y, Chen Y, Shi C, Su X, Tan M, Yan Q, Peng J, Shao J, Xiong Y, Lin A. LncFASA promotes cancer ferroptosis via modulating PRDX1 phase separation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:488-503. [PMID: 37955780 DOI: 10.1007/s11427-023-2425-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/30/2023] [Indexed: 11/14/2023]
Abstract
Ferroptosis, a unique type of non-apoptotic cell death resulting from iron-dependent lipid peroxidation, has a potential physiological function in tumor suppression, but its underlying mechanisms have not been fully elucidated. Here, we report that the long non-coding RNA (lncRNA) LncFASA increases the susceptibility of triple-negative breast cancer (TNBC) to ferroptosis. As a tumor suppressor, LncFASA drives the formation of droplets containing peroxiredoxin1 (PRDX1), a member of the peroxidase family, resulting in the accumulation of lipid peroxidation via the SLC7A11-GPX4 axis. Mechanistically, LncFASA directly binds to the Ahpc-TSA domain of PRDX1, inhibiting its peroxidase activity by driving liquid-liquid phase separation, which disrupts intracellular ROS homeostasis. Notably, high LncFASA expression indicates favorable overall survival in individuals with breast cancer, and LncFASA impairs the growth of breast xenograft tumors by modulating ferroptosis. Together, our findings illustrate the crucial role of this lncRNA in ferroptosis-mediated cancer development and provide new insights into therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xiao Fan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China
| | - Fangzhou Liu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
| | - Xiang Wang
- Department of Central Laboratory, the First People's Hospital of Huzhou, Huzhou, 313000, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ying Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Chen
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chengyu Shi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinwan Su
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Manman Tan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingfeng Yan
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinrong Peng
- MOE Key Laboratory for Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianzhong Shao
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Xiong
- Department of Orthopedic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Aifu Lin
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Hangzhou, 310009, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou, 310058, China.
- Breast Center of the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- International School of Medicine, International Institutes of Medicine, The 4th Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, 322000, China.
| |
Collapse
|
35
|
Zhuang JY, Huang ZN, Weng ZJ, Liu MM, Huang XQ, He D, Shao CK, Dong M. Expression and clinical significance of hypoxia-induced long non-coding RNA TCONS_I2_00001955 in breast cancer. Breast Cancer 2024; 31:317-328. [PMID: 38310620 DOI: 10.1007/s12282-023-01540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/24/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been found to play important roles in occurrence, development, and metastasis of various tumors. We aimed to screen long non-coding RNAs (lncRNAs) that promote invasion and metastasis of breast cancer cells under hypoxia, and investigate the relationship between lncRNA expression and clinicopathological features and prognosis in invasive breast cancer. METHODS LncRNA microarray was used to screen the differentially expressed lncRNAs in MCF7, MDA-MB-231, and SKBR3 breast cancer cell lines cultured under normoxia and hypoxia, respectively. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to verify the microarray results. CCK8 and Transwell experiments were performed to identify the lncRNA that promote proliferation, migration, and invasion of breast cancer cells. Expression of the lncRNA and HIF-1α in invasive breast cancer was detected by RNAscope and immunohistochemistry, respectively. Correlation between the lncRNA expression and baseline characteristics was analyzed. Prognostic value of the lncRNA was evaluated using univariate and multivariate Cox regression. RESULTS Expression of lncRNA TCONS_I2_00001955 in all the three breast cancer cells was increased under hypoxia. Overexpression of TCONS_I2_00001955 significantly enhanced proliferation, migration, and invasion of SKBR3 cells. Positive expression of TCONS_I2_00001955 was associated with recurrence, metastasis, and high expression of HIF-1α (P < 0.05), and it was an independent risk factor for poor disease-free survival of breast cancer. CONCLUSION Hypoxia-induced lncRNA TCONS_I2_00001955 was associated with aggressive feature and poor prognosis of breast cancer.
Collapse
Affiliation(s)
- Jie-Yin Zhuang
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
- Department of Medical Oncology, The Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Ze-Nan Huang
- Breast Cancer Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zi-Jin Weng
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng-Meng Liu
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang-Qi Huang
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Dan He
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chun-Kui Shao
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Min Dong
- Department of Medical Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou, 510630, China.
| |
Collapse
|
36
|
Mehrotra S, Sharma S, Pandey RK. A journey from omics to clinicomics in solid cancers: Success stories and challenges. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 139:89-139. [PMID: 38448145 DOI: 10.1016/bs.apcsb.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The word 'cancer' encompasses a heterogenous group of distinct disease types characterized by a spectrum of pathological features, genetic alterations and response to therapies. According to the World Health Organization, cancer is the second leading cause of death worldwide, responsible for one in six deaths and hence imposes a significant burden on global healthcare systems. High-throughput omics technologies combined with advanced imaging tools, have revolutionized our ability to interrogate the molecular landscape of tumors and has provided unprecedented understanding of the disease. Yet, there is a gap between basic research discoveries and their translation into clinically meaningful therapies for improving patient care. To bridge this gap, there is a need to analyse the vast amounts of high dimensional datasets from multi-omics platforms. The integration of multi-omics data with clinical information like patient history, histological examination and imaging has led to the novel concept of clinicomics and may expedite the bench-to-bedside transition in cancer. The journey from omics to clinicomics has gained momentum with development of radiomics which involves extracting quantitative features from medical imaging data with the help of deep learning and artificial intelligence (AI) tools. These features capture detailed information about the tumor's shape, texture, intensity, and spatial distribution. Together, the related fields of multiomics, translational bioinformatics, radiomics and clinicomics may provide evidence-based recommendations tailored to the individual cancer patient's molecular profile and clinical characteristics. In this chapter, we summarize multiomics studies in solid cancers with a specific focus on breast cancer. We also review machine learning and AI based algorithms and their use in cancer diagnosis, subtyping, prognosis and predicting treatment resistance and relapse.
Collapse
|
37
|
Amir N, Taube R. Role of long noncoding RNA in regulating HIV infection-a comprehensive review. mBio 2024; 15:e0192523. [PMID: 38179937 PMCID: PMC10865847 DOI: 10.1128/mbio.01925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
A complete cure against human immunodeficiency virus (HIV) infection remains out of reach, as the virus persists in stable cell reservoirs that are resistant to antiretroviral therapy. The key to eliminating these reservoirs lies in deciphering the processes that govern viral gene expression and latency. However, while we comprehensively understand how host proteins influence HIV gene expression and viral latency, the emerging role of long noncoding RNAs (lncRNAs) in the context of T cell activation, HIV gene expression, and viral latency remain unexplored. This review dives into the evolving significance of lncRNAs and their impact on HIV gene expression and viral latency. We provide an overview of the current knowledge regarding how lncRNAs regulate HIV gene expression, categorizing them as either activators or inhibitors of viral gene expression and infectivity. Furthermore, we offer insights into the potential therapeutic applications of lncRNAs in combatting HIV. A deeper understanding of how lncRNAs modulate HIV gene transcription holds promise for developing novel RNA-based therapies to complement existing treatment strategies to eradicate HIV reservoirs.
Collapse
Affiliation(s)
- Noa Amir
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| | - Ran Taube
- The Shraga Segal Department of Microbiology Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Negev, Israel
| |
Collapse
|
38
|
Malgundkar SH, Tamimi Y. The pivotal role of long non-coding RNAs as potential biomarkers and modulators of chemoresistance in ovarian cancer (OC). Hum Genet 2024; 143:107-124. [PMID: 38276976 DOI: 10.1007/s00439-023-02635-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological disease that is often diagnosed at later stages due to its asymptomatic nature and the absence of efficient early-stage biomarkers. Previous studies have identified genes with abnormal expression in OC that couldn't be explained by methylation or mutation, indicating alternative mechanisms of gene regulation. Recent advances in human transcriptome studies have led to research on non-coding RNAs (ncRNAs) as regulators of cancer gene expression. Long non-coding RNAs (lncRNAs), a class of ncRNAs with a length greater than 200 nucleotides, have been identified as crucial regulators of physiological processes and human diseases, including cancer. Dysregulated lncRNA expression has also been found to play a crucial role in ovarian carcinogenesis, indicating their potential as novel and non-invasive biomarkers for improving OC management. However, despite the discovery of several thousand lncRNAs, only one has been approved for clinical use as a biomarker in cancer, highlighting the importance of further research in this field. In addition to their potential as biomarkers, lncRNAs have been implicated in modulating chemoresistance, a major problem in OC. Several studies have identified altered lncRNA expression upon drug treatment, further emphasizing their potential to modulate chemoresistance. In this review, we highlight the characteristics of lncRNAs, their function, and their potential to serve as tumor markers in OC. We also discuss a few databases providing detailed information on lncRNAs in various cancer types. Despite the promising potential of lncRNAs, further research is necessary to fully understand their role in cancer and develop effective strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shika Hanif Malgundkar
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman
| | - Yahya Tamimi
- Biochemistry Department, College of Medicine and Health Sciences, Sultan Qaboos University, PC 123, PO Box 35, Muscat, Sultanate of Oman.
| |
Collapse
|
39
|
Davidson CL, Vengoji R, Jain M, Batra SK, Shonka N. Biological, diagnostic and therapeutic implications of exosomes in glioma. Cancer Lett 2024; 582:216592. [PMID: 38092145 PMCID: PMC10832613 DOI: 10.1016/j.canlet.2023.216592] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/11/2023] [Accepted: 12/05/2023] [Indexed: 01/04/2024]
Abstract
Despite therapeutic advances, overall survival in glioblastoma is dismal. To optimize progress, a more detailed understanding of glioma's molecular, cellular, and intercellular pathophysiology is needed. Recent investigation has revealed a vital role for exosomes in inter-cellular signaling, tumor cell support, and regulation of the tumor microenvironment. Exosomes carry miRNAs, lncRNAs, mRNAs, proteins, immune regulatory molecules, nucleic acids, and lipids; however, the composition of exosome cargo is variable depending on the cell of origin. Specific exosomal miRNA contents such as miR-21, miR-301a, miR-151a, miR-148a, and miR-5096 are altered in high-grade glioma. Unique proteomic, genomic, and miRNA signatures of tumor exosomes have been associated with disease pathobiology, temozolomide resistance, immunosuppression, and tumor proliferation. Exosomes hold promise for tissue diagnostic glioma diagnosis and monitoring response to therapy. This review summarizes the current understanding of exosomes, their crucial role in glioma pathology, and future directions for their use in diagnosis and treatment. METHODS: The MEDLINE/PubMed database was reviewed for papers written in English and publication dates of 1981-2023, using the search string "Exosome", "Extracellular vesicles", "Glioma", "Exosomes in glioma".
Collapse
Affiliation(s)
- Caroline L Davidson
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Raghupathy Vengoji
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Nicole Shonka
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
40
|
Rezaie M, Nasehi M, Shimia M, Ebrahimnezhad M, Yousefi B, Majidinia M. Polyphenols Modulate the miRNAs Expression that Involved in Glioblastoma. Mini Rev Med Chem 2024; 24:1953-1969. [PMID: 38639278 DOI: 10.2174/0113895575304605240408105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 04/20/2024]
Abstract
Glioblastoma multiforme (GBM), a solid tumor that develops from astrocytes, is one of the most aggressive types of brain cancer. While there have been improvements in the efficacy of treating GBM, many problems remain, especially with traditional therapy methods. Therefore, recent studies have extensively focused on developing novel therapeutic agents for combating glioblastoma. Natural polyphenols have been studied for their potential as chemopreventive and chemotherapeutic agents due to their wide range of positive qualities, including antioxidant, antiinflammatory, cytotoxic, antineoplastic, and immunomodulatory activities. These natural compounds have been suggested to act via modulated various macromolecules within cells, including microRNAs (miRNAs), which play a crucial role in the molecular milieu. In this article, we focus on how polyphenols may inhibit tumor growth by influencing the expression of key miRNAs that regulate oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Maede Rezaie
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center, Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Shimia
- Department of Neurosurgery, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Ebrahimnezhad
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
41
|
Sabikunnahar B, Caldwell S, Varnum S, Hogan T, Lahue KG, Rathkolb B, Gerlini R, Dragano NRV, Aguilar‐Pimentel A, Irmler M, Sanz‐Moreno A, da Silva‐Buttkus P, Beckers J, Wolf E, Gailus‐Durner V, Fuchs H, Hrabe de Angelis M, Ather JL, Poynter ME, Krementsov DN. LncRNA U90926 is dispensable for the development of obesity-associated phenotypes in vivo. Physiol Rep 2024; 12:e15901. [PMID: 38171546 PMCID: PMC10764201 DOI: 10.14814/phy2.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Obesity is a global health problem characterized by excessive fat accumulation, driven by adipogenesis and lipid accumulation. Long non-coding RNAs (lncRNAs) have recently been implicated in regulating adipogenesis and adipose tissue function. Mouse lncRNA U90926 was previously identified as a repressor of in vitro adipogenesis in 3T3-L1 preadipocytes. Consequently, we hypothesized that, in vivo, U90926 may repress adipogenesis, and hence its deletion would increase weight gain and adiposity. We tested the hypothesis by applying U90926-deficient (U9-KO) mice to a high-throughput phenotyping pipeline. Compared with WT, U9-KO mice showed no major differences across a wide range of behavioral, neurological, and other physiological parameters. In mice fed a standard diet, we have found no differences in obesity-related phenotypes, including weight gain, fat mass, and plasma concentrations of glucose, insulin, triglycerides, and free fatty acids, in U9-KO mice compared to WT. U90926 deficiency lacked a major effect on white adipose tissue morphology and gene expression profile. Furthermore, in mice fed a high-fat diet, we found increased expression of U90926 in adipose tissue stromal vascular cell fraction, yet observed no effect of U90926 deficiency on weight gain, fat mass, adipogenesis marker expression, and immune cell infiltration into the adipose tissue. These data suggest that the U90926 lacks an essential role in obesity-related phenotypes and adipose tissue biology in vivo.
Collapse
Affiliation(s)
- Bristy Sabikunnahar
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Sydney Caldwell
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Stella Varnum
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Tyler Hogan
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Karolyn G. Lahue
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| | - Birgit Rathkolb
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- Institute of Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐University MünchenMunichGermany
| | - Raffaele Gerlini
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Nathalia R. V. Dragano
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
| | - Antonio Aguilar‐Pimentel
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Irmler
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Adrián Sanz‐Moreno
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Patricia da Silva‐Buttkus
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Johannes Beckers
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- TUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene CenterLudwig‐Maximilians‐University MünchenMunichGermany
| | - Valerie Gailus‐Durner
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Helmut Fuchs
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
| | - Martin Hrabe de Angelis
- Institute of Experimental Genetics and German Mouse ClinicHelmholtz Zentrum MünchenNeuherbergGermany
- German Center for Diabetes Research (DZD)NeuherbergGermany
- TUM School of Life SciencesTechnische Universität MünchenFreisingGermany
| | | | | | - Dimitry N. Krementsov
- Department of Biomedical and Health SciencesUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
42
|
Wang Y, Gao Y, Su X, Hao Y, Zhang Y, Yang R. LNCGM1082 in Gut Epithelial Cells Promotes Expulsion of Infected Epithelial Cells and Release of IL-18. Immunohorizons 2024; 8:35-46. [PMID: 38189743 PMCID: PMC10835649 DOI: 10.4049/immunohorizons.2300110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 01/09/2024] Open
Abstract
Inflammasome NLRC4 (NLR family CARD domain containing 4) can protect mucosal barriers such as intestine from invading bacterial pathogens. However, it was incompletely clear how NLRC4 was activated in intestinal epithelial cells. In this study, we demonstrated that LNCGM1082 could mediate the activation of NLRC4 via binding NLRC4 with protein kinase C (PKC)δ. LNCGM1082 knockout (KO) mice had reduced resistance against Salmonella Typhimurium infection, as well as impaired expulsion of infected gut epithelial cells and release of IL-18 upon exposure to S. Typhimurium. Similar to NLRC4 KO and PKCδ knockdown gut organoids, there also was impaired expulsion of gut epithelial cells and release of IL-18 in LNCGM1082 KO gut organoids. Furthermore, there also was reduced activation of caspase-1 and caspase-8 in these LNCGM1082 KO, NLRC4 KO, and PKCδ knockdown gut organoids upon exposure to S. Typhimurium. Our results show that LNCGM1082 in the ICEs plays a critical role in mediating activation of NLRC4 through binding NLRC4 and PKCδ and promoting expulsion of infected epithelial cells and release of IL-18 upon exposure to bacteria such as S. Typhimurium.
Collapse
Affiliation(s)
- Ya Wang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yang Hao
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yuan Zhang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin, China; Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China; and State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
43
|
Tafech B, Mohabatpour F, Hedtrich S. Surface modification of lipid nanoparticles for gene therapy. J Gene Med 2024; 26:e3642. [PMID: 38043928 DOI: 10.1002/jgm.3642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Gene therapies have the potential to target and effectively treat a variety of diseases including cancer as well as genetic, neurological, and autoimmune disorders. Although we have made significant advances in identifying non-viral strategies to deliver genetic cargo, certain limitations remain. In general, gene delivery is challenging for several reasons including the instabilities of nucleic acids to enzymatic and chemical degradation and the presence of restrictive biological barriers such as cell, endosomal and nuclear membranes. The emergence of lipid nanoparticles (LNPs) helped overcome many of these challenges. Despite its success, further optimization is required for LNPs to yield efficient gene delivery to extrahepatic tissues, as LNPs favor accumulation in the liver after systemic administration. In this mini-review, we provide an overview of current preclinical approaches in that LNP surface modification was leveraged for cell and tissue targeting by conjugating aptamers, antibodies, and peptides among others. In addition to their cell uptake and efficiency-enhancing effects, we outline the (dis-)advantages of the different targeting moieties and commonly used conjugation strategies.
Collapse
Affiliation(s)
- Belal Tafech
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fatemeh Mohabatpour
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
44
|
Wang X, Qin S, Ren Y, Feng B, Liu J, Yu K, Yu H, Liao Z, Mei H, Tan M. Gpnmb silencing protects against hyperoxia-induced acute lung injury by inhibition of mitochondrial-mediated apoptosis. Hum Exp Toxicol 2024; 43:9603271231222873. [PMID: 38166464 DOI: 10.1177/09603271231222873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Background: Hyperoxia-induced acute lung injury (HALI) is a complication to ventilation in patients with respiratory failure, which can lead to acute inflammatory lung injury and chronic lung disease. The aim of this study was to integrate bioinformatics analysis to identify key genes associated with HALI and validate their role in H2O2-induced cell injury model.Methods: Integrated bioinformatics analysis was performed to screen vital genes involved in hyperoxia-induced lung injury (HLI). CCK-8 and flow cytometry assays were performed to assess cell viability and apoptosis. Western blotting was performed to assess protein expression.Results: In this study, glycoprotein non-metastatic melanoma protein B (Gpnmb) was identified as a key gene in HLI by integrated bioinformatics analysis of 4 Gene Expression Omnibus (GEO) datasets (GSE97804, GSE51039, GSE76301 and GSE87350). Knockdown of Gpnmb increased cell viability and decreased apoptosis in H2O2-treated MLE-12 cells, suggesting that Gpnmb was a proapoptotic gene during HALI. Western blotting results showed that knockdown of Gpnmb reduced the expression of Bcl-2 associated X (BAX) and cleaved-caspase 3, and increased the expression of Bcl-2 in H2O2 treated MLE-12 cells. Furthermore, Gpnmb knockdown could significantly reduce reactive oxygen species (ROS) generation and improve the mitochondrial membrane potential.Conclusion: The present study showed that knockdown of Gpnmb may protect against HLI by repressing mitochondrial-mediated apoptosis.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Department of Pediatrics, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Qin
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yingcong Ren
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Banghai Feng
- Department of Critical Care Medicine, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, China
| | - Junya Liu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Kun Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Yu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenliang Liao
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Hong Mei
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Mei Tan
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Pediatrics, Guizhou Children's Hospital, Zunyi, China
- Collaborative Innovation Center for Tissue Injury Repair and Regenerative Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|
45
|
Wang Y, Yao M, Li C, Yang K, Qin X, Xu L, Shi S, Yu C, Meng X, Xie C. Targeting ST8SIA6-AS1 counteracts KRAS G12C inhibitor resistance through abolishing the reciprocal activation of PLK1/c-Myc signaling. Exp Hematol Oncol 2023; 12:105. [PMID: 38104151 PMCID: PMC10724920 DOI: 10.1186/s40164-023-00466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND KRASG12C inhibitors (KRASG12Ci) AMG510 and MRTX849 have shown promising efficacy in clinical trials and been approved for the treatment of KRASG12C-mutant cancers. However, the emergence of therapy-related drug resistance limits their long-term potential. This study aimed to identify the critical mediators and develop overcoming strategies. METHODS By using RNA sequencing, RT-qPCR and immunoblotting, we identified and validated the upregulation of c-Myc activity and the amplification of the long noncoding RNA ST8SIA6-AS1 in KRASG12Ci-resistant cells. The regulatory axis ST8SIA6-AS1/Polo-like kinase 1 (PLK1)/c-Myc was investigated by bioinformatics, RNA fluorescence in situ hybridization, RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation. Gain/loss-of-function assays, cell viability assay, xenograft models, and IHC staining were conducted to evaluate the anti-cancer effects of co-inhibition of ST8SIA6-AS1/PLK1 pathway and KRAS both in vitro and in vivo. RESULTS KRASG12Ci sustainably decreased c-Myc levels in responsive cell lines but not in cell lines with intrinsic or acquired resistance to KRASG12Ci. PLK1 activation contributed to this ERK-independent c-Myc stability, which in turn directly induced PLK1 transcription, forming a positive feedback loop and conferring resistance to KRASG12Ci. ST8SIA6-AS1 was found significantly upregulated in resistant cells and facilitated the proliferation of KRASG12C-mutant cancers. ST8SIA6-AS1 bound to Aurora kinase A (Aurora A)/PLK1 and promoted Aurora A-mediated PLK1 phosphorylation. Concurrent targeting of KRAS and ST8SIA6-AS1/PLK1 signaling suppressed both ERK-dependent and -independent c-Myc expression, synergistically led to cell death and tumor regression and overcame KRASG12Ci resistance. CONCLUSIONS Our study deciphers that the axis of ST8SIA6-AS1/PLK1/c-Myc confers both intrinsic and acquired resistance to KRASG12Ci and represents a promising therapeutic target for combination strategies with KRASG12Ci in the treatment of KRASG12C-mutant cancers.
Collapse
Affiliation(s)
- Yafang Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
| | - Mingyue Yao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Cheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kexin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiaolong Qin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Lansong Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), University of Science and Technology of China, Hefei, Anhui, China
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
| | - Shangxuan Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Chengcheng Yu
- Drug Discovery and Development Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, People's Republic of China
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China
| | - Xiangjun Meng
- Gastroenterology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200001, China
- China Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai, 200001, China
- China Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai, 200001, China
| | - Chengying Xie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, People's Republic of China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Lingang Laboratory, 319 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
46
|
Tang Y, Tian W, Zheng S, Zou Y, Xie J, Zhang J, Li X, Sun Y, Lan J, Li N, Xie X, Tang H. Dissection of FOXO1-Induced LYPLAL1-DT Impeding Triple-Negative Breast Cancer Progression via Mediating hnRNPK/β-Catenin Complex. RESEARCH (WASHINGTON, D.C.) 2023; 6:0289. [PMID: 38111678 PMCID: PMC10726293 DOI: 10.34133/research.0289] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/26/2023] [Indexed: 12/20/2023]
Abstract
Triple-negative breast cancer (TNBC) is considered as the most hazardous subtype of breast cancer owing to its accelerated progression, enormous metastatic potential, and refractoriness to standard treatments. Long noncoding RNAs (lncRNAs) are extremely intricate in tumorigenesis and cancerous metastasis. Nonetheless, their roles in the initiation and augmentation of TNBC remain elusive. Here, in silico analysis and validation experiments were utilized to analyze the expression pattern of clinically effective lncRNAs in TNBC, among which a protective lncRNA LYPLAL1-DT was essentially curbed in TNBC samples and indicated a favorable prognosis. Gain- and loss-of-function assays elucidated that LYPLAL1-DT considerably attenuated the proliferative and metastatic properties along with epithelial-mesenchymal transition of TNBC cells. Moreover, forkhead box O1 (FOXO1) was validated to modulate the transcription of LYPLAL1-DT. Mechanistically, LYPLAL1-DT impinged on the malignancy of TNBC mainly by restraining the aberrant reactivation of the Wnt/β-catenin signaling pathway, explicitly destabilizing and diminishing β-catenin protein by interacting with heterogeneous nuclear ribonucleoprotein K (hnRNPK) and constricting the formation of the hnRNPK/β-catenin complex. Conclusively, our present research revealed the anti-oncogenic effects of LYPLAL1-DT in TNBC, unraveling the molecular mechanisms of the FOXO1/LYPLAL1-DT/hnRNPK/β-catenin signaling axis, which shed innovative light on the potential curative medicine of TNBC.
Collapse
Affiliation(s)
- Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Wenwen Tian
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, No.78 Hengzhigang Road, Guangzhou 510095, P. R. China
| | - Shaoquan Zheng
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, P. R. China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Junsheng Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xing Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Jing Lan
- Department of General Surgery,
The First Affiliated Hospital of Soochow University, Suzhou 215006, P. R. China
| | - Ning Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P. R. China
| |
Collapse
|
47
|
Yang Q, Fu Y, Wang J, Yang H, Zhang X. Roles of lncRNA in the diagnosis and prognosis of triple-negative breast cancer. J Zhejiang Univ Sci B 2023; 24:1123-1140. [PMID: 38057269 PMCID: PMC10710915 DOI: 10.1631/jzus.b2300067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 06/24/2023] [Indexed: 12/08/2023]
Abstract
Breast cancer is a malignant tumor that seriously endangers women's lives. The prognosis of breast cancer patients differs among molecular types. Compared with other subtypes, triple-negative breast cancer (TNBC) has been a research hotspot in recent years because of its high degree of malignancy, strong invasiveness, rapid progression, easy of recurrence, distant metastasis, poor prognosis, and high mortality. Many studies have found that long non-coding RNA (lncRNA) plays an important role in the occurrence, proliferation, migration, recurrence, chemotherapy resistance, and other characteristics of TNBC. Some lncRNAs are expected to become biomarkers in the diagnosis and prognosis of TNBC, and even new targets for its treatment. Based on a PubMed literature search, this review summarizes the progress in research on lncRNAs in TNBC and discusses their roles in TNBC diagnosis, prognosis, and chemotherapy with the hope of providing help for future research.
Collapse
Affiliation(s)
- Qiuhui Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Yeqin Fu
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou 310022, China
| | - Jiaxuan Wang
- Shanxi Medical University, Jinzhong 030600, China
| | - Hongjian Yang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Xiping Zhang
- Department of Breast Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China.
| |
Collapse
|
48
|
Li Y. Non-Coding RNA Performs Its Biological Function by Interacting with Macromolecules. Int J Mol Sci 2023; 24:16246. [PMID: 38003435 PMCID: PMC10671565 DOI: 10.3390/ijms242216246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
One of the most significant discoveries resulting from the sequencing of the human genome is the realization that a large portion (over 85%) of the genome is transcribed into RNA, yet less than 2% of it encodes protein-coding genes [...].
Collapse
Affiliation(s)
- Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
49
|
Xiang Y, Huang G, Wang J, Hua Q. lncRNA HOXC-AS2 promotes the progression of hypopharyngeal cancer by binding to the P62 protein mediating the autophagy process. Aging (Albany NY) 2023; 15:12476-12496. [PMID: 37944249 PMCID: PMC10683610 DOI: 10.18632/aging.205192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Hypopharyngeal carcinoma is the most malignant type of head and neck squamous cell carcinoma, and lncRNAs play an important role in its formation and progression. However, the related specific mechanisms are rarely studied. lncRNAs closely associated with hypopharyngeal cancer were examined by lncRNA sequencing for in-depth exploration of the relationship between HOXC-AS2 and hypopharyngeal cancer pathogenesis. The mRNA expression of HOXC-AS2 and related genes was measured by qRT-PCR, and the biological function of HOXC-AS2 in hypopharyngeal carcinoma was demonstrated by gain- and loss-of-function experiments. RNA pulldown, RNA immunoprecipitation (RIP) and gene body truncation experiments and transcriptome sequencing were used to investigate the potential mechanism of HOXC-AS2 and its downstream genes, including P62, NF-KB and HMOX1. Finally, the biological function of HOXC-AS2 was confirmed in animal experiments. HOXC-AS2 and P62 expression was significantly upregulated in hypopharyngeal cancer tissues compared with normal hypopharyngeal tissues, while HMOX1 expression was decreased. Functionally, HOXC-AS2 overexpression can promote the viability, proliferation, migration and invasion of hypopharyngeal cancer cells and facilitate hypopharyngeal cancer progression. It was confirmed that HOXC-AS2 can bind to the P62 protein and activate the NF-KB signaling pathway, thereby affecting HMOX1 expression and regulating autophagy in hypopharyngeal cancer cells, ultimately regulating the formation and progression of hypopharyngeal cancer. In conclusion, our findings suggest that HOXC-AS2 regulates the progression of hypopharyngeal cancer by regulating autophagy and is abnormally highly expressed in hypopharyngeal cancer tissues. HOXC-AS2 may become a new target for the diagnosis and treatment of hypopharyngeal cancer.
Collapse
Affiliation(s)
- Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Guoquan Huang
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, Hubei 445000, China
- Department of Gastrointestinal Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei 445000, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
50
|
Nan Y, Liu S, Luo Q, Wu X, Zhao P, Chang W, Zhang R, Li Y, Liu Z. m 6A demethylase FTO stabilizes LINK-A to exert oncogenic roles via MCM3-mediated cell-cycle progression and HIF-1α activation. Cell Rep 2023; 42:113273. [PMID: 37858471 DOI: 10.1016/j.celrep.2023.113273] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/28/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
RNA N6-methyladenosine (m6A) modification is implicated in cancer progression, yet its role in regulating long noncoding RNAs during cancer progression remains unclear. Here, we report that the m6A demethylase fat mass and obesity-associated protein (FTO) stabilizes long intergenic noncoding RNA for kinase activation (LINK-A) to promote cell proliferation and chemoresistance in esophageal squamous cell carcinoma (ESCC). Mechanistically, LINK-A promotes the interaction between minichromosome maintenance complex component 3 (MCM3) and cyclin-dependent kinase 1 (CDK1), increasing MCM3 phosphorylation. This phosphorylation facilitates the loading of the MCM complex onto chromatin, which promotes cell-cycle progression and subsequent cell proliferation. Moreover, LINK-A disrupts the interaction between MCM3 and hypoxia-inducible factor 1α (HIF-1α), abrogating MCM3-mediated HIF-1α transcriptional repression and promoting glycolysis and chemoresistance. These results elucidate the mechanism by which FTO-stabilized LINK-A plays oncogenic roles and identify the FTO/LINK-A/MCM3/HIF-1α axis as a promising therapeutic target for ESCC.
Collapse
Affiliation(s)
- Yabing Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shi Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyu Luo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaowei Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Pengfei Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wan Chang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ruixiang Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|