1
|
Ha K, Ryu S, Trinh CT. Alpha-ketoacid decarboxylases: Diversity, structures, reaction mechanisms, and applications for biomanufacturing of platform chemicals and fuels. Biotechnol Adv 2025; 81:108531. [PMID: 39955038 DOI: 10.1016/j.biotechadv.2025.108531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025]
Abstract
In living cells, alpha-ketoacid decarboxylases (KDCs, EC 4.1.1.-) are a class of enzymes that convert alpha-ketoacids into aldehydes through decarboxylation. These aldehydes serve as either drop-in chemicals or precursors for the biosynthesis of alcohols, carboxylic acids, esters, and alkanes. These compounds play crucial roles in cellular metabolism and fitness and the bioeconomy, facilitating the sustainable and renewable biomanufacturing of platform chemicals and fuels. This review explores the diversity and classification of KDCs, detailing their structures, mechanisms, and functions. We highlight recent advancements in repurposing KDCs to enhance their efficiency and robustness for biomanufacturing. Additionally, we present modular KDC-dependent metabolic pathways for the microbial biosynthesis of aldehydes, alcohols, carboxylic acids, esters, and alkanes. Finally, we discuss recent developments in the modular cell engineering technology that can potentially be applied to harness the diversity of KDC-dependent pathways for biomanufacturing platform chemicals and fuels.
Collapse
Affiliation(s)
- Khanh Ha
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Seunghyun Ryu
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA; Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
2
|
Bracalente F, Tripaldi M, Galván V, Tsai YT, Takano E, Altabe S, Gramajo H, Arabolaza A. Exploring the versatility of fatty acid biosynthesis in Escherichia coli: Production of random methyl branched fatty acids. Metab Eng 2025; 90:78-91. [PMID: 40057264 DOI: 10.1016/j.ymben.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 03/18/2025]
Abstract
Microbial fatty acids (FAs) hold significant potential as alternatives for the oleochemical industry. However, expanding the functional and structural diversity of microbial FA-derived products is essential to fully leverage this potential. Methyl-branched-chain FAs (MBFAs) are of particular interest as high-performance industrial compounds. This study examines the ability of the Escherichia coli FA biosynthesis pathway to produce a diverse mixture of random MBFAs (R-MBFAs) by utilizing both the natural malonyl-ACP substrate and the branched-chain methylmalonyl-ACP (mm-ACP) as an unnatural elongation unit. First, E. coli was engineered to accumulate methylmalonyl-CoA (mm-CoA) through a methylmalonate or a propionate-dependent pathway, and the capacity of E. coli FASII enzymes to synthesize mm-ACP and utilize it as a substrate was confirmed by the production of R-MBFAs. However, low R-MBFA accumulation and propionate-induced growth inhibition was observed. To improve R-MBFA yields, various malonyl-/mm-CoA acyltransferase (AT) enzymes were expressed, and their efficacy in generating mm-ACP was indirectly assessed through R-MBFA production levels. When expressing selected ATs, including native malonyl CoA-acyl carrier protein transacylase FabD, propionate-induced growth inhibition was alleviated and R-MBFA titers ranged from 5.9% to 7.7% of total FAs. Further strain optimization, analyzing two thioesterase (TE) activities and overexpression of the E. coli transciptional regulator EcFadR, significantly boosted R-MBFA titers. While an engineered strain carrying the Mus musculus TE domain (MmTE) produced 55.2 mg/L of R-MBFAs, representing an 11.8% of total FAs, another strain combining the overexpression of the cytosolic version of the TE TesA from E. coli (Ec'TesA) and EcFadR produced approximately 1.1 g/L of total FAs, with an R-MBFA fraction of 6.7% (70.5 mg/L), marking the highest yield recorded in shake-flask cultures. Finally, these two recombinant E. coli strains were grown in laboratory-scale fed-batch fermentations, and produced approximately 10 g/L of total FAs and over 1-1.2 g/L of R-MBFAs, underscoring the potential for large-scale production of these valuable FA-derived compounds.
Collapse
Affiliation(s)
- Fernando Bracalente
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Matías Tripaldi
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Virginia Galván
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Yi-Ting Tsai
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Eriko Takano
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, Manchester Institute of Biotechnology (MIB), University of Manchester, United Kingdom
| | - Silvia Altabe
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Hugo Gramajo
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina.
| | - Ana Arabolaza
- Microbiology Division, IBR (Instituto de Biología Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina.
| |
Collapse
|
3
|
Ni B, Fu Z, Zhao J, Yao X, Li W, Li X, Sun B. Characterization and Mechanism Study of a Novel Ethanol Acetyltransferase from Hanseniaspora uvarum (EatH) with Good Thermostability, pH Stability, and Broad Alcohol Substrate Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6828-6841. [PMID: 40062491 DOI: 10.1021/acs.jafc.4c12376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Ethyl acetate, one of the most essential industrial compounds, has a broad range of applications, including flavors, fragrances, pharmaceuticals, cosmetics, and green solvents. Eat1 is accountable for bulk ethyl acetate production in yeasts, yet its properties and molecular mechanism are not well characterized. In this study, an eat1 gene from Hanseniaspora uvarum was obtained through gene mining. EatH showed the highest activity at pH 7.5 and 35 °C and preferred short-chain acyl substrates but had a broad alcohol substrate spectrum from short-chain primary alcohols to aromatic alcohols. Its Km and kcat/Km values toward pNPA were measured to be 1.16 mM and 29.03 L·mmol-1·s-1, respectively. The structure of EatH was composed of a lid domain and a core catalytic domain, with the catalytic triad of Ser124, Asp148, and His296. Additionally, crucial residues and their mechanism were analyzed through molecular docking, site-directed mutagenesis, and molecular dynamics simulation. The mutants N149A, N149K, and N149S showed enhanced enzyme activity toward pNP-hexanoate to 5.0-, 6.6-, and 3.6-fold, and Y204S enhanced enzyme activity for pNP-butyrate by 2.6 times via creating a wider substrate binding pocket and enhancing hydrophobicity. Collectively, this work provided a theoretical basis for the further rational design of EatH and enriched the understanding of the Eat family.
Collapse
Affiliation(s)
- Bingqian Ni
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Zhilei Fu
- School of Biology and Food Science, Hebei Normal University for Nationalities, Chengde 067000, China
| | - Jingrong Zhao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xin Yao
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- China Bio-Specialty Food Enzyme Technology Research Development and Promotion Center, Beijing 100048, China
| | - Baoguo Sun
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Geng L, Luo K, Lin Y, Li G, Cao Y, Zhao J, Liu C. Facile Ester-based Phase Change Materials Synthesis for Enhanced Energy Storage Toward Battery Thermal Management. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413703. [PMID: 39806936 PMCID: PMC11884538 DOI: 10.1002/advs.202413703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Indexed: 01/16/2025]
Abstract
With the increasing demand for thermal management, phase change materials (PCMs) have garnered widespread attention due to their unique advantages in energy storage and temperature regulation. However, traditional PCMs present challenges in modification, with commonly used physical methods facing stability and compatibility issues. This study introduces a simple and effective chemical method by synthesizing seven ester-based PCMs through chemical reactions involving lauric acid (LA) and seven different alcohols. These materials notably broaden the phase change temperature range, exhibiting melting temperature from -8.99 to 46.60 °C, expanding by 203.18% compared to raw alcohol materials. In addition, these samples exhibit excellent thermal stability and high latent heat, with a maximum latent heat value of 182.98 J g-1. In subsequent application studies, this material demonstrates outstanding energy storage characteristics and proposed an innovative thermal management method for batteries based on the PCM immersion technique, allowing the battery to maintain a temperature below 60 °C for 20.5 h, while the blank group rapidly reached 60 °C within 0.82 h and increased to 75 °C within 2.35 h. This approach greatly improves temperature regulation, enhances battery safety, and boosts operational efficiency, highlighting the immense potential of the material in advanced energy storage applications.
Collapse
Affiliation(s)
- Long Geng
- School of Low‐Carbon Energy and Power EngineeringChina University of Mining and TechnologyNO. 1 DAXUE ROADXuzhouJiangsu221116China
| | - Kaifeng Luo
- School of Low‐Carbon Energy and Power EngineeringChina University of Mining and TechnologyNO. 1 DAXUE ROADXuzhouJiangsu221116China
| | - Yixuan Lin
- School of Low‐Carbon Energy and Power EngineeringChina University of Mining and TechnologyNO. 1 DAXUE ROADXuzhouJiangsu221116China
| | - Guo Li
- School of Low‐Carbon Energy and Power EngineeringChina University of Mining and TechnologyNO. 1 DAXUE ROADXuzhouJiangsu221116China
| | - Yitong Cao
- School of Low‐Carbon Energy and Power EngineeringChina University of Mining and TechnologyNO. 1 DAXUE ROADXuzhouJiangsu221116China
| | - Jiateng Zhao
- School of Low‐Carbon Energy and Power EngineeringChina University of Mining and TechnologyNO. 1 DAXUE ROADXuzhouJiangsu221116China
| | - Changhui Liu
- School of Low‐Carbon Energy and Power EngineeringChina University of Mining and TechnologyNO. 1 DAXUE ROADXuzhouJiangsu221116China
| |
Collapse
|
5
|
Boto ST, Gerges K, Bardl B, Rosenbaum MA. Evaluation of Yeast Alcohol Acetyltransferases for Ethyl Acetate Production in Clostridium ljungdahlii. Eng Life Sci 2025; 25:e202400076. [PMID: 39850489 PMCID: PMC11756512 DOI: 10.1002/elsc.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Sustainable chemical production from C1 gaseous substrates, such as syngas or CO2/H2, can be achieved through gas fermentation. In gas fermentation, acetogenic bacteria are able to utilize oxidized inorganic carbon sources as the sole carbon source and electron acceptor, while reduced inorganic species are used as the electron donor. Clostridium ljungdahlii, a model acetogen, is only capable of reducing CO2 to acetate and ethanol, with H2 as electron donor. In order to expand the product profile of this bacterium, five alcohol acetyltransferases (AATs) from yeast were heterologously expressed in C. ljungdahlii to evaluate its potential to produce ethyl acetate. When growing on CO2 and H2, up to 7.38 ± 0.43 mg/L of ethyl acetate were produced. Using fructose as the main carbon and energy source, up to 23.15 ± 1.28 mg/L of ethyl acetate were produced. Ethanol and fumarate supplementation were able to boost ethyl acetate titers (up to 37.51 ± 9.44 mg/L). Hence, ethyl acetate production was enabled in C. ljungdahlii at low titers, which could be explained by the high energetic cost of operation of AATs, and their shown promiscuity. However, we also show that this opens the door to more complex esterification reactions of higher added value biomolecules.
Collapse
Affiliation(s)
- Santiago T. Boto
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐InstituteJenaGermany
| | - Kareem Gerges
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich Schiller UniversityJenaGermany
| | - Bettina Bardl
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐InstituteJenaGermany
| | - Miriam A. Rosenbaum
- Bio Pilot PlantLeibniz Institute for Natural Product Research and Infection Biology – Hans‐Knöll‐InstituteJenaGermany
- Faculty of Biological SciencesFriedrich Schiller UniversityJenaGermany
| |
Collapse
|
6
|
Koshiba A, Nakano M, Hirata Y, Konishi R, Matsuoka Y, Miwa Y, Mori A, Kondo A, Tanaka T. Enhanced production of isobutyl and isoamyl acetate using Yarrowia lipolytica. Biotechnol Prog 2024; 40:e3499. [PMID: 39056525 DOI: 10.1002/btpr.3499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Short-chain esters, particularly isobutyl acetate and isoamyl acetate, hold significant industrial value due to their wide-ranging applications in flavors, fragrances, solvents, and biofuels. In this study, we demonstrated the biosynthesis of acetate esters using Yarrowia lipolytica as a host by feeding alcohols to the yeast culture. Initially, we screened for optimal alcohol acyltransferases for ester biosynthesis in Y. lipolytica. Strains of Y. lipolytica expressing atf1 from Saccharomyces cerevisiae, produced 251 or 613 mg/L of isobutyl acetate or of isoamyl acetate, respectively. We found that introducing additional copies of ATF1 enhanced ester production. Furthermore, by increasing the supply of acetyl-CoA and refining the culture conditions, we achieved high production of isoamyl acetate, reaching titers of 3404 mg/L. We expanded our study to include the synthesis of a range of acetate esters, facilitated by enriching the culture medium with various alcohols. This study underscores the versatility and potential of Y. lipolytica in the industrial production of acetate esters.
Collapse
Affiliation(s)
- Ayumi Koshiba
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Mariko Nakano
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Rie Konishi
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Matsuoka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Yuta Miwa
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
7
|
Zhang Y, Yu H, Ye L. From β-Carotene to Retinoids: A Review of Microbial Production of Vitamin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20752-20762. [PMID: 39285668 DOI: 10.1021/acs.jafc.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Vitamin A (retinoids) is crucial for human health, with significant demand across the food, pharmaceutical, and animal feed industries. Currently, the market primarily relies on chemical synthesis and natural extraction methods, which face challenges such as low synthesis efficiency and complex extraction processes. Advances in synthetic biology have enabled vitamin A biosynthesis using microbial cell factories, offering a promising and sustainable solution to meet the increasing market demands. This review introduces the key enzymes involved in the biosynthesis of vitamin A from β-carotene, evaluates achievements in vitamin A production using various microbial hosts, and summarizes strategies for optimizing vitamin A biosynthesis. Additionally, we outline the remaining challenges and propose future directions for the biotechnological production of vitamin A.
Collapse
Affiliation(s)
- Yijun Zhang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lidan Ye
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Koirala M, Merindol N, Karimzadegan V, Gélinas SE, Liyanage NS, Lamichhane B, Tobón MCG, Lagüe P, Desgagné-Penix I. Kinetic and in silico structural characterization of norbelladine O-methyltransferase of Amaryllidaceae alkaloids biosynthesis. J Biol Chem 2024; 300:107649. [PMID: 39122011 PMCID: PMC11407090 DOI: 10.1016/j.jbc.2024.107649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Amaryllidaceae alkaloids are a diverse group of alkaloids exclusively reported from the Amaryllidaceae plant family. In planta, their biosynthesis is still not fully characterized; however, a labeling study established 4'-O-methylnorbelladine as the key intermediate compound of the pathway. Previous reports have characterized O-methyltransferases from several Amaryllidaceae species. Nevertheless, the formation of the different O-methylnorbelladine derivatives (3'-O-methylnorbelladine, 4'-O-methylnorbelladine, and 3'4'-O-dimethylnorbelladine), the role, and the preferred substrates of O-methyltransferases are not clearly understood. In this study, we performed the biochemical characterization of an O-methyltransferase candidate from Narcissus papyraceus (NpOMT) in vitro and in vivo, following biotransformation of norbelladine in Nicotiana benthamiana having transient expression of NpOMT. Docking analysis was further used to investigate substrate preferences, as well as key interacting residues of NpOMT. Our study shows that NpOMT methylates norbelladine preferentially at the 4'-OH position in vitro and in planta. Interestingly, NpOMT also catalyzed the synthesis of 3',4'-O-dimethylnorbelladine from norbelladine and 4'-O-methylnorbelladine during in vitro enzymatic assay. Furthermore, we show that NpOMT methylates 3,4-dihydroxybenzylaldehyde and caffeic acid in a nonregiospecific manner to produce meta/para monomethylated products. This study reveals a novel catalytic potential of an Amaryllidaceae O-methyltransferase and its ability to regioselectively methylate norbelladine in the heterologous host N. benthamiana.
Collapse
Affiliation(s)
- Manoj Koirala
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Natacha Merindol
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Vahid Karimzadegan
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Sarah-Eve Gélinas
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Nuwan Sameera Liyanage
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Basanta Lamichhane
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Maria Camila García Tobón
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Patrick Lagüe
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada; Plant Biology Research Group, Trois-Rivières, Québec, Canada.
| |
Collapse
|
9
|
Ponsetto P, Sasal EM, Mazzoli R, Valetti F, Gilardi G. The potential of native and engineered Clostridia for biomass biorefining. Front Bioeng Biotechnol 2024; 12:1423935. [PMID: 39219620 PMCID: PMC11365079 DOI: 10.3389/fbioe.2024.1423935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Since their first industrial application in the acetone-butanol-ethanol (ABE) fermentation in the early 1900s, Clostridia have found large application in biomass biorefining. Overall, their fermentation products include organic acids (e.g., acetate, butyrate, lactate), short chain alcohols (e.g., ethanol, n-butanol, isobutanol), diols (e.g., 1,2-propanediol, 1,3-propanediol) and H2 which have several applications such as fuels, building block chemicals, solvents, food and cosmetic additives. Advantageously, several clostridial strains are able to use cheap feedstocks such as lignocellulosic biomass, food waste, glycerol or C1-gases (CO2, CO) which confer them additional potential as key players for the development of processes less dependent from fossil fuels and with reduced greenhouse gas emissions. The present review aims to provide a survey of research progress aimed at developing Clostridium-mediated biomass fermentation processes, especially as regards strain improvement by metabolic engineering.
Collapse
Affiliation(s)
| | | | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | | | | |
Collapse
|
10
|
Shipmon JC, Rathinasabapathi P, Broich ML, Hemansi, Eiteman MA. Production of Esters in Escherichia coli Using Citrate Synthase Variants. Microorganisms 2024; 12:1338. [PMID: 39065106 PMCID: PMC11278746 DOI: 10.3390/microorganisms12071338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Acetate esters comprise a wide range of products including fragrances and industrial solvents. Biosynthesis of esters offers a promising alternative to chemical synthesis because such routes use renewable carbohydrate resources and minimize the generation of waste. One biochemical method for ester formation relies on the ATF1 gene from Saccharomyces cerevisiae, which encodes alcohol-O-acyltransferase (AAT) which converts acetyl-CoA and an exogenously supplied alcohol into the ester. In this study, the formation of several acetate esters via AAT was examined in Escherichia coli chromosomally expressing citrate synthase variants, which create a metabolic bottleneck at acetyl-CoA. In shake flask cultures, variant strains generated more acetate esters than the strains expressing the wild-type citrate synthase. In a controlled bioreactor, E. coli GltA[A267T] generated 3.9 g propyl acetate in 13 h, corresponding to a yield of 0.155 g propyl acetate/g glucose, which is 18% greater than that obtained by the wild-type GltA control. These results demonstrate the ability of citrate synthase variants to redistribute carbon from central metabolism into acetyl-CoA-derived biochemicals.
Collapse
Affiliation(s)
- Jacoby C. Shipmon
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; (J.C.S.)
| | - Pasupathi Rathinasabapathi
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; (J.C.S.)
- Department of Genetic Engineering, SRM Institute of Science and Technology, Chengalpattu District, Kattankulathur 603202, Tamil Nadu, India
| | - Michael L. Broich
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; (J.C.S.)
| | - Hemansi
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; (J.C.S.)
- Department of Microbiology, Central University of Haryana, Mahendergarh 123029, Haryana, India
| | - Mark A. Eiteman
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA; (J.C.S.)
| |
Collapse
|
11
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
12
|
Oehlenschläger K, Schepp E, Stiefelmaier J, Holtmann D, Ulber R. Simultaneous fermentation and enzymatic biocatalysis-a useful process option? BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:67. [PMID: 38796486 PMCID: PMC11128117 DOI: 10.1186/s13068-024-02519-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Biotransformation with enzymes and de novo syntheses with whole-cell biocatalysts each have specific advantages. These can be combined to achieve processes with optimal performance. A recent approach is to perform bioconversion processes and enzymatic catalysis simultaneously in one-pot. This is a well-established process in the biorefinery, where starchy or cellulosic material is degraded enzymatically and simultaneously used as substrate for microbial cultivations. This procedure leads to a number of advantages like saving in time but also in the needed equipment (e.g., reaction vessels). In addition, the inhibition or side-reaction of high sugar concentrations can be overcome by combining the processes. These benefits of coupling microbial conversion and enzymatic biotransformation can also be transferred to other processes for example in the sector of biofuel production or in the food industry. However, finding a compromise between the different requirements of the two processes is challenging in some cases. This article summarises the latest developments and process variations.
Collapse
Affiliation(s)
- Katharina Oehlenschläger
- Institute of Bioprocess Engineering, University of Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663, Kaiserslautern, Germany
| | - Emily Schepp
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Judith Stiefelmaier
- Institute of Bioprocess Engineering, University of Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663, Kaiserslautern, Germany
| | - Dirk Holtmann
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany
| | - Roland Ulber
- Institute of Bioprocess Engineering, University of Kaiserslautern-Landau, Gottlieb-Daimler-Straße 49, 67663, Kaiserslautern, Germany.
| |
Collapse
|
13
|
Seo H, Castro G, Trinh CT. Engineering a Synthetic Escherichia coli Coculture for Compartmentalized de novo Biosynthesis of Isobutyl Butyrate from Mixed Sugars. ACS Synth Biol 2024; 13:259-268. [PMID: 38091519 PMCID: PMC10804408 DOI: 10.1021/acssynbio.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/23/2024]
Abstract
Short-chain esters are versatile chemicals that can be used as flavors, fragrances, solvents, and fuels. The de novo ester biosynthesis consists of diverging and converging pathway submodules, which is challenging to engineer to achieve optimal metabolic fluxes and selective product synthesis. Compartmentalizing the pathway submodules into specialist cells that facilitate pathway modularization and labor division is a promising solution. Here, we engineered a synthetic Escherichia coli coculture with the compartmentalized sugar utilization and ester biosynthesis pathways to produce isobutyl butyrate from a mixture of glucose and xylose. To compartmentalize the sugar-utilizing pathway submodules, we engineered a xylose-utilizing E. coli specialist that selectively consumes xylose over glucose and bypasses carbon catabolite repression (CCR) while leveraging the native CCR machinery to activate a glucose-utilizing E. coli specialist. We found that the compartmentalization of sugar catabolism enabled simultaneous co-utilization of glucose and xylose by a coculture of the two E. coli specialists, improving the stability of the coculture population. Next, we modularized the isobutyl butyrate pathway into the isobutanol, butyl-CoA, and ester condensation submodules, where we distributed the isobutanol submodule to the glucose-utilizing specialist and the other submodules to the xylose-utilizing specialist. Upon compartmentalization of the isobutyl butyrate pathway submodules into these sugar-utilizing specialist cells, a robust synthetic coculture was engineered to selectively produce isobutyl butyrate, reduce the biosynthesis of unwanted ester byproducts, and improve the production titer as compared to the monoculture.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department
of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
of Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Gillian Castro
- Department
of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Cong T. Trinh
- Department
of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Center
of Bioenergy Innovation, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
14
|
Casolari F, Alrashdi S, Carr R, Deng H. Exploring a Streptomyces wax synthase using acyl-SNACs as donor substrates. RSC Chem Biol 2023; 4:742-747. [PMID: 37799584 PMCID: PMC10549239 DOI: 10.1039/d3cb00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/09/2023] [Indexed: 10/07/2023] Open
Abstract
The demand of fragrance and food industries for short/branched wax esters is increasing due to their rich scent and low toxicity. Wax synthase and acyl-CoA:diacylglycerol O-acyltransferase (WS/DGAT) are a family of bacterial enzymes capable of catalysing the production of wax esters. Here, we report that a WS/DGAT from Streptomyces coelicolor is able to mediate the reactions between alcohol acceptors and synthetic acyl-donor mimics, acyl-SNACs. The enzyme displayed considerable substrate tolerance towards acyl-donors with structural diversity. Structural modelling-guided site directed mutagenesis resulted in a variant, L25F, the catalytic efficiency of which was improved toward aromatic, short-linear, and branched acyl-donors compared to the wild type.
Collapse
Affiliation(s)
- Federica Casolari
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| | - Saad Alrashdi
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
- College of Science and Arts in Gurayat, Jouf University King Khaled Road Saudi Arabia
| | | | - Hai Deng
- Department of Chemistry, University of Aberdeen Aberdeen AB24 3UE UK
| |
Collapse
|
15
|
Edwards AN, Blue AJ, Conforti JM, Cordes MS, Trakselis MA, Gallagher ES. Gas-phase stability and thermodynamics of ligand-bound, binary complexes of chloramphenicol acetyltransferase reveal negative cooperativity. Anal Bioanal Chem 2023; 415:6201-6212. [PMID: 37542535 DOI: 10.1007/s00216-023-04891-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/07/2023]
Abstract
The biological role of the bacterial chloramphenicol (Chl)-resistance enzyme, chloramphenicol acetyltransferase (CAT), has seen renewed interest due to the resurgent use of Chl against multi-drug-resistant microbes. This looming threat calls for more rationally designed antibiotic derivatives that have improved antimicrobial properties and reduced toxicity in humans. Herein, we utilize native ion mobility spectrometry-mass spectrometry (IMS-MS) to investigate the gas-phase structure and thermodynamic stability of the type I variant of CAT from Escherichia coli (EcCATI) and several EcCATI:ligand-bound complexes. EcCATI readily binds multiple Chl without incurring significant changes to its gas-phase structure or stability. A non-hydrolyzable acetyl-CoA derivative (S-ethyl-CoA, S-Et-CoA) was used to kinetically trap EcCATI and Chl in a ternary, ligand-bound state (EcCATI:S-Et-CoA:Chl). Using collision-induced unfolding (CIU)-IMS-MS, we find that Chl dissociates from EcCATI:S-Et-CoA:Chl complexes at low collision energies, while S-Et-CoA remains bound to EcCATI even as protein unfolding occurs. Gas-phase binding constants further suggest that EcCATI binds S-Et-CoA more tightly than Chl. Both ligands exhibit negative cooperativity of subsequent ligand binding in their respective binary complexes. While we observe no significant change in structure or stability to EcCATI when bound to either or both ligands, we have elucidated novel gas-phase unfolding and dissociation behavior and provided a foundation for further characterization of alternative substrates and/or inhibitors of EcCATI.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Anthony J Blue
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Jessica M Conforti
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael S Cordes
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA
| | - Elyssia S Gallagher
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|
16
|
Sarnaik AP, Shinde S, Mhatre A, Jansen A, Jha AK, McKeown H, Davis R, Varman AM. Unravelling the hidden power of esterases for biomanufacturing of short-chain esters. Sci Rep 2023; 13:10766. [PMID: 37402758 DOI: 10.1038/s41598-023-37542-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023] Open
Abstract
Microbial production of esters has recently garnered wide attention, but the current production metrics are low. Evidently, the ester precursors (organic acids and alcohols) can be accumulated at higher titers by microbes like Escherichia coli. Hence, we hypothesized that their 'direct esterification' using esterases will be efficient. We engineered esterases from various microorganisms into E. coli, along with overexpression of ethanol and lactate pathway genes. High cell density fermentation exhibited the strains possessing esterase-A (SSL76) and carbohydrate esterase (SSL74) as the potent candidates. Fed-batch fermentation at pH 7 resulted in 80 mg/L of ethyl acetate and 10 mg/L of ethyl lactate accumulation by SSL76. At pH 6, the total ester titer improved by 2.5-fold, with SSL76 producing 225 mg/L of ethyl acetate, and 18.2 mg/L of ethyl lactate, the highest reported titer in E. coli. To our knowledge, this is the first successful demonstration of short-chain ester production by engineering 'esterases' in E. coli.
Collapse
Affiliation(s)
- Aditya P Sarnaik
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Somnath Shinde
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Abigail Jansen
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Amit Kumar Jha
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA
| | - Haley McKeown
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Ryan Davis
- Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA, USA.
| | - Arul M Varman
- Chemical Engineering Program, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
17
|
Liu G, Huang L, Lian J. Alcohol acyltransferases for the biosynthesis of esters. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:93. [PMID: 37264424 DOI: 10.1186/s13068-023-02343-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/18/2023] [Indexed: 06/03/2023]
Abstract
Esters are widely used in food, energy, spices, chemical industry, etc., becoming an indispensable part of life. However, their production heavily relies on the fossil energy industry, which presents significant challenges associated with energy shortages and environmental pollution. Consequently, there is an urgent need to identify alternative green methods for ester production. One promising solution is biosynthesis, which offers sustainable and environmentally friendly processes. In ester biosynthesis, alcohol acyltransferases (AATs) catalyze the condensation of acyl-CoAs and alcohols to form esters, enabling the biosynthesis of nearly 100 different kinds of esters, such as ethyl acetate, hexyl acetate, ethyl crotonate, isoamyl acetate, and butyl butyrate. However, low catalytic efficiency and low selectivity of AATs represent the major bottlenecks for the biosynthesis of certain specific esters, which should be addressed with protein molecular engineering approaches before practical biotechnological applications. This review provides an overview of AAT enzymes, including their sequences, structures, active sites, catalytic mechanisms, and metabolic engineering applications. Furthermore, considering the critical role of AATs in determining the final ester products, the current research progresses of AAT modification using protein molecular engineering are also discussed. This review summarized the major challenges and prospects of AAT enzymes in ester biosynthesis.
Collapse
Affiliation(s)
- Gaofei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
- Zhejiang Key Laboratory of Smart Biomaterials, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
18
|
Cui D, Liu L, Sun L, Lin X, Lin L, Zhang C. Genome-wide analysis reveals Hsf1 maintains high transcript abundance of target genes controlled by strong constitutive promoter in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:72. [PMID: 37118827 PMCID: PMC10141939 DOI: 10.1186/s13068-023-02322-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND In synthetic biology, the strength of promoter elements is the basis for precise regulation of target gene transcription levels, which in turn increases the yield of the target product. However, the results of many researches proved that excessive transcription levels of target genes actually reduced the yield of the target product. This phenomenon has been found in studies using different microorganisms as chassis cells, thus, it becomes a bottleneck problem to improve the yield of the target product. RESULTS In this study, promoters PGK1p and TDH3p with different strengths were used to regulate the transcription level of alcohol acetyl transferase encoding gene ATF1. The results demonstrated that the strong promoter TDH3p decreased the production of ethyl acetate. The results of Real-time PCR proved that the transcription level of ATF1 decreased rapidly under the control of TDH3p, and the unfolded protein reaction was activated, which may be the reason for the abnormal production caused by the strong promoter. RNA-sequencing analysis showed that the overexpression of differential gene HSP30 increased the transcriptional abundance of ATF1 gene and production of ethyl acetate. Interestingly, deletion of the heat shock protein family (e.g., Hsp26, Hsp78, Hsp82) decreased the production of ethyl acetate, suggesting that the Hsp family was also involved in the regulation of ATF1 gene transcription. Furthermore, the results proved that the Hsf1, an upstream transcription factor of Hsps, had a positive effect on alleviating the unfolded protein response and that overexpression of Hsf1 reprogramed the pattern of ATF1 gene transcript levels. The combined overexpression of Hsf1 and Hsps further increased the production of ethyl acetate. In addition, kinase Rim15 may be involved in this regulatory pathway. Finally, the regulation effect of Hsf1 on recombinant strains constructed by other promoters was verified, which confirmed the universality of the strategy. CONCLUSIONS Our results elucidated the mechanism by which Rim15-Hsf1-Hsps pathway reconstructed the repression of high transcription level stress and increased the production of target products, thereby providing new insights and application strategies for the construction of recombinant strains in synthetic biology.
Collapse
Affiliation(s)
- Danyao Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ling Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lijing Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xue Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Liangcai Lin
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
19
|
Carruthers DN, Kim J, Mendez-Perez D, Monroe E, Myllenbeck N, Liu Y, Davis RW, Sundstrom E, Lee TS. Microbial production of high octane and high sensitivity olefinic ester biofuels. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:60. [PMID: 37016410 PMCID: PMC10071710 DOI: 10.1186/s13068-023-02301-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/08/2023] [Indexed: 04/06/2023]
Abstract
BACKGROUND Advanced spark ignition engines require high performance fuels with improved resistance to autoignition. Biologically derived olefinic alcohols have arisen as promising blendstock candidates due to favorable octane numbers and synergistic blending characteristics. However, production and downstream separation of these alcohols are limited by their intrinsic toxicity and high aqueous solubility, respectively. Bioproduction of carboxylate esters of alcohols can improve partitioning and reduce toxicity, but in practice has been limited to saturated esters with characteristically low octane sensitivity. If olefinic esters retain the synergistic blending characteristics of their alcohol counterparts, they could improve the bioblendstock combustion performance while also retaining the production advantages of the ester moiety. RESULTS Optimization of Escherichia coli isoprenoid pathways has led to high titers of isoprenol and prenol, which are not only excellent standalone biofuel and blend candidates, but also novel targets for esterification. Here, a selection of olefinic esters enhanced blendstock performance according to their degree of unsaturation and branching. E. coli strains harboring optimized mevalonate pathways, thioester pathways, and heterologous alcohol acyltransferases (ATF1, ATF2, and SAAT) were engineered for the bioproduction of four novel olefinic esters. Although prenyl and isoprenyl lactate titers were limited to 1.48 ± 0.41 mg/L and 5.57 ± 1.36 mg/L, strains engineered for prenyl and isoprenyl acetate attained titers of 176.3 ± 16.0 mg/L and 3.08 ± 0.27 g/L, respectively. Furthermore, prenyl acetate (20% bRON = 125.8) and isoprenyl acetate (20% bRON = 108.4) exhibited blend properties comparable to ethanol and significantly better than any saturated ester. By further scaling cultures to a 2-L bioreactor under fed-batch conditions, 15.0 ± 0.9 g/L isoprenyl acetate was achieved on minimal medium. Metabolic engineering of acetate pathway flux further improved titer to attain an unprecedented 28.0 ± 1.0 g/L isoprenyl acetate, accounting for 75.7% theoretical yield from glucose. CONCLUSION Our study demonstrated novel bioproduction of four isoprenoid oxygenates for fuel blending. Our optimized E. coli production strain generated an unprecedented titer of isoprenyl acetate and when paired with its favorable blend properties, may enable rapid scale-up of olefinic alcohol esters for use as a fuel blend additive or as a precursor for longer-chain biofuels and biochemicals.
Collapse
Affiliation(s)
- David N Carruthers
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Jinho Kim
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Daniel Mendez-Perez
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Eric Monroe
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | | | - Yuzhong Liu
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA
| | - Ryan W Davis
- Sandia National Laboratories, Livermore, CA, 94551, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, 94608, USA
| | - Taek Soon Lee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA.
| |
Collapse
|
20
|
Kim GB, Choi SY, Cho IJ, Ahn DH, Lee SY. Metabolic engineering for sustainability and health. Trends Biotechnol 2023; 41:425-451. [PMID: 36635195 DOI: 10.1016/j.tibtech.2022.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Bio-based production of chemicals and materials has attracted much attention due to the urgent need to establish sustainability and enhance human health. Metabolic engineering (ME) allows purposeful modification of cellular metabolic, regulatory, and signaling networks to achieve enhanced production of desired chemicals and degradation of environmentally harmful chemicals. ME has significantly progressed over the past 30 years through further integration of the strategies of synthetic biology, systems biology, evolutionary engineering, and data science aided by artificial intelligence. Here we review the field of ME from its emergence to the current state-of-the-art, highlighting its contribution to sustainable production of chemicals, health, and the environment through representative examples. Future challenges of ME and perspectives are also discussed.
Collapse
Affiliation(s)
- Gi Bae Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Da-Hee Ahn
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
21
|
Lim PK, Julca I, Mutwil M. Redesigning plant specialized metabolism with supervised machine learning using publicly available reactome data. Comput Struct Biotechnol J 2023; 21:1639-1650. [PMID: 36874159 PMCID: PMC9976193 DOI: 10.1016/j.csbj.2023.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
The immense structural diversity of products and intermediates of plant specialized metabolism (specialized metabolites) makes them rich sources of therapeutic medicine, nutrients, and other useful materials. With the rapid accumulation of reactome data that can be accessible on biological and chemical databases, along with recent advances in machine learning, this review sets out to outline how supervised machine learning can be used to design new compounds and pathways by exploiting the wealth of said data. We will first examine the various sources from which reactome data can be obtained, followed by explaining the different machine learning encoding methods for reactome data. We then discuss current supervised machine learning developments that can be employed in various aspects to help redesign plant specialized metabolism.
Collapse
Affiliation(s)
- Peng Ken Lim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Irene Julca
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
22
|
Dykstra JC, van Oort J, Yazdi AT, Vossen E, Patinios C, van der Oost J, Sousa DZ, Kengen SWM. Metabolic engineering of Clostridium autoethanogenum for ethyl acetate production from CO. Microb Cell Fact 2022; 21:243. [DOI: 10.1186/s12934-022-01964-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Abstract
Background
Ethyl acetate is a bulk chemical traditionally produced via energy intensive chemical esterification. Microbial production of this compound offers promise as a more sustainable alternative process. So far, efforts have focused on using sugar-based feedstocks for microbial ester production, but extension to one-carbon substrates, such as CO and CO2/H2, is desirable. Acetogens present a promising microbial platform for the production of ethyl esters from these one-carbon substrates.
Results
We engineered the acetogen C. autoethanogenum to produce ethyl acetate from CO by heterologous expression of an alcohol acetyltransferase (AAT), which catalyzes the formation of ethyl acetate from acetyl-CoA and ethanol. Two AATs, Eat1 from Kluyveromyces marxianus and Atf1 from Saccharomyces cerevisiae, were expressed in C. autoethanogenum. Strains expressing Atf1 produced up to 0.2 mM ethyl acetate. Ethyl acetate production was barely detectable (< 0.01 mM) for strains expressing Eat1. Supplementation of ethanol was investigated as potential boost for ethyl acetate production but resulted only in a 1.5-fold increase (0.3 mM ethyl acetate). Besides ethyl acetate, C. autoethanogenum expressing Atf1 could produce 4.5 mM of butyl acetate when 20 mM butanol was supplemented to the growth medium.
Conclusions
This work offers for the first time a proof-of-principle that autotrophic short chain ester production from C1-carbon feedstocks is possible and offers leads on how this approach can be optimized in the future.
Collapse
|
23
|
Escherichia coli minicells with targeted enzymes as bioreactors for producing toxic compounds. Metab Eng 2022; 73:214-224. [PMID: 35970507 DOI: 10.1016/j.ymben.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 08/06/2022] [Indexed: 11/20/2022]
Abstract
Formed by aberrant cell division, minicells possess functional metabolism despite their inability to grow and divide. Minicells exhibit not only superior stability when compared with bacterial cells but also exceptional tolerance-characteristics that are essential for a de novo bioreactor platform. Accordingly, we engineered minicells to accumulate protein, ensuring sufficient production capability. When tested with chemicals regarded as toxic against cells, the engineered minicells produced titers of C6-C10 alcohols and esters, far surpassing the corresponding production from bacterial cells. Additionally, microbial autoinducer production that is limited in expanding bacterial population was conducted in the minicells. Because bacterial population growth was nonexistent, the minicells produced autoinducers in constant amounts, which allowed precise control of the bacterial population having autoinducer-responsive gene circuits. When bacterial population growth was nonexistent, the minicells produced autoinducers in constant amounts, which allowed precise control of the bacterial population having autoinducer-based gene circuits with the minicells. This study demonstrates the potential of minicells as bioreactors suitable for products with known limitations in microbial production, thus providing new possibilities for bioreactor engineering.
Collapse
|
24
|
Seo H, Giannone RJ, Yang YH, Trinh CT. Proteome reallocation enables the selective de novo biosynthesis of non-linear, branched-chain acetate esters. Metab Eng 2022; 73:38-49. [PMID: 35561848 DOI: 10.1016/j.ymben.2022.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/21/2022] [Accepted: 05/06/2022] [Indexed: 10/25/2022]
Abstract
The one-carbon recursive ketoacid elongation pathway is responsible for making various branched-chain amino acids, aldehydes, alcohols, and acetate esters in living cells. Controlling selective microbial biosynthesis of these target molecules at high efficiency is challenging due to enzyme promiscuity, regulation, and metabolic burden. In this study, we present a systematic modular design approach to control proteome reallocation for selective microbial biosynthesis of branched-chain acetate esters. Through pathway modularization, we partitioned the branched-chain ester pathways into four submodules including keto-isovalerate submodule for converting pyruvate to keto-isovalerate, ketoacid elongation submodule for producing longer carbon-chain keto-acids, ketoacid decarboxylase submodule for converting ketoacids to alcohols, and alcohol acyltransferase submodule for producing branched-chain acetate esters by condensing alcohols and acetyl-CoA. By systematic manipulation of pathway gene replication and transcription, enzyme specificity of the first committed steps of these submodules, and downstream competing pathways, we demonstrated selective microbial production of isoamyl acetate over isobutyl acetate. We found that the optimized isoamyl acetate pathway globally redistributed the amino acid fractions in the proteomes and required up to 23-31% proteome reallocation at the expense of other cellular resources, such as those required to generate precursor metabolites and energy for growth and amino acid biosynthesis. From glucose fed-batch fermentation, the engineered strains produced isoamyl acetate up to a titer of 8.8 g/L (>0.25 g/L toxicity limit), a yield of 0.22 g/g (61% of maximal theoretical value), and 86% selectivity, achieving the highest titers, yields and selectivity of isoamyl acetate reported to date.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard J Giannone
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Yung-Hun Yang
- Department of Biological Engineering, Konkuk University, Seoul, South Korea
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
25
|
Ku JT, Chen AY, Lan EI. Metabolic engineering of Escherichia coli for efficient biosynthesis of butyl acetate. Microb Cell Fact 2022; 21:28. [PMID: 35193559 PMCID: PMC8864926 DOI: 10.1186/s12934-022-01755-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background Butyl acetate is a versatile compound that is widely used in the chemical and food industry. The conventional butyl acetate synthesis via Fischer esterification of butanol and acetic acid using catalytic strong acids under high temperature is not environmentally benign. Alternative lipase-catalyzed ester formation requires a significant amount of organic solvent which also presents another environmental challenge. Therefore, a microbial cell factory capable of producing butyl acetate through fermentation of renewable resources would provide a greener approach to butyl acetate production. Result Here, we developed a metabolically engineered strain of Escherichia coli that efficiently converts glucose to butyl acetate. A modified Clostridium CoA-dependent butanol production pathway was used to synthesize butanol which was then condensed with acetyl-CoA through an alcohol acetyltransferase. Optimization of alcohol acetyltransferase expression and redox balance with auto-inducible fermentative controlled gene expression led to an effective titer of 22.8 ± 1.8 g/L butyl acetate produced in a bench-top bioreactor. Conclusion Building on the well-developed Clostridium CoA-dependent butanol biosynthetic pathway, expression of an alcohol acetyltransferase converts the butanol produced into butyl acetate. The results from this study provided a strain of E. coli capable of directly producing butyl acetate from renewable resources at ambient conditions. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01755-y.
Collapse
Affiliation(s)
- Jason T Ku
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 1001 Daxue Road, Hsinchu City, 300, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City, 300, Taiwan
| | - Arvin Y Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, 1001 Daxue Road, Hsinchu City, 300, Taiwan.,Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City, 300, Taiwan
| | - Ethan I Lan
- Department of Biological Science and Technology, National Chiao Tung University, 1001 Daxue Road, Hsinchu City, 300, Taiwan. .,Department of Biological Science and Technology, National Yang Ming Chiao Tung University, 1001 Daxue Road, Hsinchu City, 300, Taiwan.
| |
Collapse
|
26
|
Bracalente F, Sabatini M, Arabolaza A, Gramajo H. Escherichia coli coculture for de novo production of esters derived of methyl-branched alcohols and multi-methyl branched fatty acids. Microb Cell Fact 2022; 21:10. [PMID: 35033081 PMCID: PMC8760833 DOI: 10.1186/s12934-022-01737-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A broad diversity of natural and non-natural esters have now been made in bacteria, and in other microorganisms, as a result of original metabolic engineering approaches. However, the fact that the properties of these molecules, and therefore their applications, are largely defined by the structural features of the fatty acid and alcohol moieties, has driven a persistent interest in generating novel structures of these chemicals. RESULTS In this research, we engineered Escherichia coli to synthesize de novo esters composed of multi-methyl-branched-chain fatty acids and short branched-chain alcohols (BCA), from glucose and propionate. A coculture engineering strategy was developed to avoid metabolic burden generated by the reconstitution of long heterologous biosynthetic pathways. The cocultures were composed of two independently optimized E. coli strains, one dedicated to efficiently achieve the biosynthesis and release of the BCA, and the other to synthesize the multi methyl-branched fatty acid and the corresponding multi-methyl-branched esters (MBE) as the final products. Response surface methodology, a cost-efficient multivariate statistical technique, was used to empirical model the BCA-derived MBE production landscape of the coculture and to optimize its productivity. Compared with the monoculture strategy, the utilization of the designed coculture improved the BCA-derived MBE production in 45%. Finally, the coculture was scaled up in a high-cell density fed-batch fermentation in a 2 L bioreactor by fine-tuning the inoculation ratio between the two engineered E. coli strains. CONCLUSION Previous work revealed that esters containing multiple methyl branches in their molecule present favorable physicochemical properties which are superior to those of linear esters. Here, we have successfully engineered an E. coli strain to broaden the diversity of these molecules by incorporating methyl branches also in the alcohol moiety. The limited production of these esters by a monoculture was considerable improved by a design of a coculture system and its optimization using response surface methodology. The possibility to scale-up this process was confirmed in high-cell density fed-batch fermentations.
Collapse
Affiliation(s)
- Fernando Bracalente
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Martín Sabatini
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina
| | - Ana Arabolaza
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina.
| | - Hugo Gramajo
- Microbiology Division, Facultad de Ciencias Bioquímicas Y Farmacéuticas, IBR (Instituto de Biología Molecular Y Celular de Rosario), Consejo Nacional de Investigaciones Científicas Y Técnicas, Universidad Nacional de Rosario, Ocampo y Esmeralda, 2000, Rosario, Argentina.
| |
Collapse
|
27
|
Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters. Metab Eng 2021; 69:262-274. [PMID: 34883244 DOI: 10.1016/j.ymben.2021.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 02/02/2023]
Abstract
Short-chain esters have broad utility as flavors, fragrances, solvents, and biofuels. Controlling selectivity of ester microbial biosynthesis has been an outstanding metabolic engineering problem. In this study, we enabled the de novo fermentative microbial biosynthesis of butyryl-CoA-derived designer esters (e.g., butyl acetate, ethyl butyrate, butyl butyrate) in Escherichia coli with controllable selectivity. Using the modular design principles, we generated the butyryl-CoA-derived ester pathways as exchangeable production modules compatible with an engineered chassis cell for anaerobic production of designer esters. We designed these modules derived from an acyl-CoA submodule (e.g., acetyl-CoA, butyryl-CoA), an alcohol submodule (e.g., ethanol, butanol), a cofactor regeneration submodule (e.g., NADH), and an alcohol acetyltransferase (AAT) submodule (e.g., ATF1, SAAT) for rapid module construction and optimization by manipulating replication (e.g., plasmid copy number), transcription (e.g., promoters), translation (e.g., codon optimization), pathway enzymes, and pathway induction conditions. To further enhance production of designer esters with high selectivity, we systematically screened various strategies of protein solubilization using protein fusion tags and chaperones to improve the soluble expression of multiple pathway enzymes. Finally, our engineered ester-producing strains could achieve 19-fold increase in butyl acetate production (0.64 g/L, 96% selectivity), 6-fold increase in ethyl butyrate production (0.41 g/L, 86% selectivity), and 13-fold increase in butyl butyrate production (0.45 g/L, 54% selectivity) as compared to the initial strains. Overall, this study presented a generalizable framework to engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designer esters from renewable feedstocks.
Collapse
|
28
|
Matson MM, Cepeda MM, Zhang A, Case AE, Kavvas ES, Wang X, Carroll AL, Tagkopoulos I, Atsumi S. Adaptive laboratory evolution for improved tolerance of isobutyl acetate in Escherichia coli. Metab Eng 2021; 69:50-58. [PMID: 34763090 DOI: 10.1016/j.ymben.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 02/08/2023]
Abstract
Previously, Escherichia coli was engineered to produce isobutyl acetate (IBA). Titers greater than the toxicity threshold (3 g/L) were achieved by using layer-assisted production. To avoid this costly and complex method, adaptive laboratory evolution (ALE) was applied to E. coli for improved IBA tolerance. Over 37 rounds of selective pressure, 22 IBA-tolerant mutants were isolated. Remarkably, these mutants not only tolerate high IBA concentrations, they also produce higher IBA titers. Using whole-genome sequencing followed by CRISPR/Cas9 mediated genome editing, the mutations (SNPs in metH, rho and deletion of arcA) that confer improved tolerance and higher titers were elucidated. The improved IBA titers in the evolved mutants were a result of an increased supply of acetyl-CoA and altered transcriptional machinery. Without the use of phase separation, a strain capable of 3.2-fold greater IBA production than the parent strain was constructed by combing select beneficial mutations. These results highlight the impact improved tolerance has on the production capability of a biosynthetic system.
Collapse
Affiliation(s)
- Morgan M Matson
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Mateo M Cepeda
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Angela Zhang
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Anna E Case
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Erol S Kavvas
- Genome Center, University of California, Davis, CA, 95616, USA
| | - Xiaokang Wang
- Genome Center, University of California, Davis, CA, 95616, USA; Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Austin L Carroll
- Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Ilias Tagkopoulos
- Genome Center, University of California, Davis, CA, 95616, USA; Department of Computer Science, University of California, Davis, CA, 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
29
|
Keasling J, Garcia Martin H, Lee TS, Mukhopadhyay A, Singer SW, Sundstrom E. Microbial production of advanced biofuels. Nat Rev Microbiol 2021; 19:701-715. [PMID: 34172951 DOI: 10.1038/s41579-021-00577-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
Concerns over climate change have necessitated a rethinking of our transportation infrastructure. One possible alternative to carbon-polluting fossil fuels is biofuels produced by engineered microorganisms that use a renewable carbon source. Two biofuels, ethanol and biodiesel, have made inroads in displacing petroleum-based fuels, but their uptake has been limited by the amounts that can be used in conventional engines and by their cost. Advanced biofuels that mimic petroleum-based fuels are not limited by the amounts that can be used in existing transportation infrastructure but have had limited uptake due to costs. In this Review, we discuss engineering metabolic pathways to produce advanced biofuels, challenges with substrate and product toxicity with regard to host microorganisms and methods to engineer tolerance, and the use of functional genomics and machine learning approaches to produce advanced biofuels and prospects for reducing their costs.
Collapse
Affiliation(s)
- Jay Keasling
- Joint BioEnergy Institute, Emeryville, CA, USA. .,Department of Chemical & Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA. .,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA. .,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. .,Center for Biosustainability, Danish Technical University, Lyngby, Denmark. .,Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China.
| | - Hector Garcia Martin
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,DOE Agile BioFoundry, Emeryville, CA, USA.,BCAM,Basque Center for Applied Mathematics, Bilbao, Spain.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Taek Soon Lee
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Eric Sundstrom
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA, USA
| |
Collapse
|
30
|
Wang L, Upadhyay V, Maranas CD. dGPredictor: Automated fragmentation method for metabolic reaction free energy prediction and de novo pathway design. PLoS Comput Biol 2021; 17:e1009448. [PMID: 34570771 PMCID: PMC8496854 DOI: 10.1371/journal.pcbi.1009448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/07/2021] [Accepted: 09/13/2021] [Indexed: 11/19/2022] Open
Abstract
Group contribution (GC) methods are conventionally used in thermodynamics analysis of metabolic pathways to estimate the standard Gibbs energy change (ΔrG′o) of enzymatic reactions from limited experimental measurements. However, these methods are limited by their dependence on manually curated groups and inability to capture stereochemical information, leading to low reaction coverage. Herein, we introduce an automated molecular fingerprint-based thermodynamic analysis tool called dGPredictor that enables the consideration of stereochemistry within metabolite structures and thus increases reaction coverage. dGPredictor has comparable prediction accuracy compared to existing GC methods and can capture Gibbs energy changes for isomerase and transferase reactions, which exhibit no overall group changes. We also demonstrate dGPredictor’s ability to predict the Gibbs energy change for novel reactions and seamless integration within de novo metabolic pathway design tools such as novoStoic for safeguarding against the inclusion of reaction steps with infeasible directionalities. To facilitate easy access to dGPredictor, we developed a graphical user interface to predict the standard Gibbs energy change for reactions at various pH and ionic strengths. The tool allows customized user input of known metabolites as KEGG IDs and novel metabolites as InChI strings (https://github.com/maranasgroup/dGPredictor). The standard Gibbs energy change is commonly used to check for the feasibility of enzyme-catalyzed reactions as thermodynamics plays a crucial role in pathway design for biochemical synthesis. The group contribution methods using expert-defined functional groups have been extensively used for estimating standard Gibbs energy change. Here, we introduce a molecular fingerprint-based thermodynamic tool, dGPredictor, that enables distinguishing between (stereo)isomers in metabolic reactions leading to improved reaction coverage and comparable prediction accuracy as GC methods. dGPredictor can also be used alongside de novo pathway design tools to ensure the correct directionality of chosen reaction steps. We applied and tested dGPredictor on reactions from the KEGG database and applied it to screen an isobutanol synthesis pathway design. An open-source, user-friendly web interface is provided to facilitate easy access for standard Gibbs energy change of reactions at different pH values. (https://github.com/maranasgroup/dGPredictor).
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States America
| | - Vikas Upadhyay
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States America
| | - Costas D. Maranas
- Department of Chemical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States America
- * E-mail:
| |
Collapse
|
31
|
De novo biosynthesis of tyrosol acetate and hydroxytyrosol acetate from glucose in engineered Escherichia coli. Enzyme Microb Technol 2021; 150:109886. [PMID: 34489039 DOI: 10.1016/j.enzmictec.2021.109886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 11/21/2022]
Abstract
Tyrosol and hydroxytyrosol derived from virgin olive oil and olives extract, have wide applications both as functional food components and as nutraceuticals. However, they have low bioavailability due to their low absorption and high metabolism in human liver and small intestine. Acetylation of tyrosol and hydroxytyrosol can effectively improve their bioavailability and thus increase their potential use in the food and cosmeceutical industries. There is no report on the bioproductin of tyrosol acetate and hydroxytyrosol acetate so far. Thus, it is of great significance to develop microbial cell factories for achieving tyrosol acetate or hydroxytyrosol acetate biosynthesis. In this study, a de novo biosynthetic pathway for the production of tyrosol acetate and hydroxytyrosol acetate was constructed in Escherichia coli. First, an engineered E. coli that allows production of tyrosol from simple carbon sources was established. Four aldehyde reductases were compared, and it was found that yeaE is the best aldehyde reductase for tyrosol accumulation. Subsequently, the pathway was extended for tyrosol acetate production by further overexpression of alcohol acetyltransferase ATF1 for the conversion of tyrosol to tyrosol acetate. Finally, the pathway was further extended for hydroxytyrosol acetate production by overexpression of 4-hydroxyphenylacetate 3-hydroxylase HpaBC.
Collapse
|
32
|
Lee JW, Seo H, Young C, Trinh CT. Probing specificities of alcohol acyltransferases for designer ester biosynthesis with a high-throughput microbial screening platform. Biotechnol Bioeng 2021; 118:4655-4667. [PMID: 34436763 DOI: 10.1002/bit.27926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 11/07/2022]
Abstract
Alcohol acyltransferases (AATs) enables microbial biosynthesis of a large space of esters by condensing an alcohol and an acyl-CoA. However, substrate promiscuity of AATs prevents microbial biosynthesis of designer esters with high selectivity. Here, we developed a high-throughput microbial screening platform that facilitates rapid identification of AATs for designer ester biosynthesis. First, we established a microplate-based culturing technique with in situ fermentation and extraction of esters. We validated its capability in rapid profiling of the alcohol substrate specificity of 20 chloramphenicol acetyltransferase variants derived from Staphylococcus aureus (CATSa ) for microbial biosynthesis of acetate esters with various exogeneous alcohol supply. By coupling the microplate-based culturing technique with a previously established colorimetric assay, we developed a high-throughput microbial screening platform for AATs. We demonstrated that this platform could not only probe the alcohol substrate specificity of both native and engineered AATs but also identify the beneficial mutations in engineered AATs for enhanced ester synthesis. We anticipate the high-throughput microbial screening platform provides a useful tool to identify novel wildtype and engineered AATs that have important roles in nature and industrial biocatalysis for designer bioester production.
Collapse
Affiliation(s)
- Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Hyeongmin Seo
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Caleb Young
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| | - Cong T Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
33
|
Feng J, Zhang J, Ma Y, Feng Y, Wang S, Guo N, Wang H, Wang P, Jiménez-Bonilla P, Gu Y, Zhou J, Zhang ZT, Cao M, Jiang D, Wang S, Liu XW, Shao Z, Borovok I, Huang H, Wang Y. Renewable fatty acid ester production in Clostridium. Nat Commun 2021; 12:4368. [PMID: 34272383 PMCID: PMC8285483 DOI: 10.1038/s41467-021-24038-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/26/2021] [Indexed: 11/25/2022] Open
Abstract
Bioproduction of renewable chemicals is considered as an urgent solution for fossil energy crisis. However, despite tremendous efforts, it is still challenging to generate microbial strains that can produce target biochemical to high levels. Here, we report an example of biosynthesis of high-value and easy-recoverable derivatives built upon natural microbial pathways, leading to improvement in bioproduction efficiency. By leveraging pathways in solventogenic clostridia for co-producing acyl-CoAs, acids and alcohols as precursors, through rational screening for host strains and enzymes, systematic metabolic engineering-including elimination of putative prophages, we develop strains that can produce 20.3 g/L butyl acetate and 1.6 g/L butyl butyrate. Techno-economic analysis results suggest the economic competitiveness of our developed bioprocess. Our principles of selecting the most appropriate host for specific bioproduction and engineering microbial chassis to produce high-value and easy-separable end products may be applicable to other bioprocesses. Esters can be used as fuels and specialty chemicals for food flavoring, cosmetic and pharmaceutical industries. Here, the authors systematically engineer clostridia, including discovery and deletion of prophages to increase strain stability, for the production of butyl acetate and butyl butyrate from corn stover at low cost.
Collapse
Affiliation(s)
- Jun Feng
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Jie Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Yuechao Ma
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Yiming Feng
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA
| | - Shangjun Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Na Guo
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Haijiao Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Pixiang Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Pablo Jiménez-Bonilla
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA.,School of Chemistry, National University (UNA), Heredia, Costa Rica
| | - Yanyan Gu
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Junping Zhou
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Zhong-Tian Zhang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA.,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Di Jiang
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Shuning Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xian-Wei Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, China
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Ilya Borovok
- The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Haibo Huang
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, USA.
| | - Yi Wang
- Department of Biosystems Engineering, Auburn University, Auburn, AL, USA. .,Center for Bioenergy and Bioproducts, Auburn University, Auburn, AL, USA.
| |
Collapse
|
34
|
Paiva P, Medina FE, Viegas M, Ferreira P, Neves RPP, Sousa JPM, Ramos MJ, Fernandes PA. Animal Fatty Acid Synthase: A Chemical Nanofactory. Chem Rev 2021; 121:9502-9553. [PMID: 34156235 DOI: 10.1021/acs.chemrev.1c00147] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.
Collapse
Affiliation(s)
- Pedro Paiva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fabiola E Medina
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100 Talcahuano, Chile
| | - Matilde Viegas
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro Ferreira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Rui P P Neves
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - João P M Sousa
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
35
|
Sinumvayo JP, Li Y, Zhang Y. Microbial production of butyl butyrate: from single strain to cognate consortium. BIORESOUR BIOPROCESS 2021; 8:50. [PMID: 38650250 PMCID: PMC10992917 DOI: 10.1186/s40643-021-00403-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/07/2021] [Indexed: 11/10/2022] Open
Abstract
Butyl butyrate (BB) is an important chemical with versatile applications in beverage, food and cosmetics industries. Since chemical synthesis of BB may cause adverse impacts on the environment, biotechnology is an emerging alternative approach for microbial esters biosynthesis. BB can be synthesized by using a single Clostridium strain natively producing butanol or butyrate, with exogenously supplemented butyrate or butanol, in the presence of lipase. Recently, E. coli strains have been engineered to produce BB, but the titer and yield remained very low. This review highlighted a new trend of developing cognate microbial consortium for BB production and associated challenges, and end up with new prospects for further improvement for microbial BB biosynthesis.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
36
|
Wang Q, Al Makishah NH, Li Q, Li Y, Liu W, Sun X, Wen Z, Yang S. Developing Clostridia as Cell Factories for Short- and Medium-Chain Ester Production. Front Bioeng Biotechnol 2021; 9:661694. [PMID: 34164382 PMCID: PMC8215697 DOI: 10.3389/fbioe.2021.661694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Abstract
Short- and medium-chain volatile esters with flavors and fruity fragrances, such as ethyl acetate, butyl acetate, and butyl butyrate, are usually value-added in brewing, food, and pharmacy. The esters can be naturally produced by some microorganisms. As ester-forming reactions are increasingly deeply understood, it is possible to produce esters in non-natural but more potential hosts. Clostridia are a group of important industrial microorganisms since they can produce a variety of volatile organic acids and alcohols with high titers, especially butanol and butyric acid through the CoA-dependent carbon chain elongation pathway. This implies sufficient supplies of acyl-CoA, organic acids, and alcohols in cells, which are precursors for ester production. Besides, some Clostridia could utilize lignocellulosic biomass, industrial off-gas, or crude glycerol to produce other branched or straight-chain alcohols and acids. Therefore, Clostridia offer great potential to be engineered to produce short- and medium-chain volatile esters. In the review, the efforts to produce esters from Clostridia via in vitro lipase-mediated catalysis and in vivo alcohol acyltransferase (AAT)-mediated reaction are comprehensively revisited. Besides, the advantageous characteristics of several Clostridia and clostridial consortia for bio-ester production and the driving force of synthetic biology to clostridial chassis development are also discussed. It is believed that synthetic biotechnology should enable the future development of more effective Clostridia for ester production.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Naief H Al Makishah
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yanan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Wenzheng Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Sheng Yang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
37
|
Moon HY, Kim HJ, Kim KS, Yoo SJ, Lee DW, Shin HJ, Seo JA, Kang HA. Molecular characterization of the Saccharomycopsis fibuligera ATF genes, encoding alcohol acetyltransferase for volatile acetate ester formation. J Microbiol 2021; 59:598-608. [PMID: 34052992 DOI: 10.1007/s12275-021-1159-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
Aroma ester components produced by fermenting yeast cells via alcohol acetyltransferase (AATase)-catalyzed intracellular reactions are responsible for the fruity character of fermented alcoholic beverages, such as beer and wine. Acetate esters are reportedly produced at relatively high concentrations by non-Saccharomyces species. Here, we identified 12 ATF orthologues (SfATFs) encoding putative AATases, in the diploid genome of Saccharomycopsis fibuligera KJJ81, an isolate from wheat-based Nuruk in Korea. The identified SfATF proteins (SfAtfp) display low sequence identities with S. cerevisiae Atf1p (between 13.3 and 27.0%). All SfAtfp identified, except SfAtf(A)4p and SfAtf(B)4p, contained the activation domain (HXXXD) conserved in other Atf proteins. Culture supernatant analysis using headspace gas chromatography mass spectrometry confirmed that the recombinant S. cerevisiae strains expressing SfAtf(A)2p, SfAtf(B)2p, and SfAtf(B)6p produced high levels of isoamyl and phenethyl acetates. The volatile aroma profiles generated by the SfAtf proteins were distinctive from that of S. cerevisiae Atf1p, implying difference in the substrate preference. Cellular localization analysis using GFP fusion revealed the localization of SfAtf proteins proximal to the lipid particles, consistent with the presence of amphipathic helices at their N- and C-termini. This is the first report that systematically characterizes the S. fibuligera ATF genes encoding functional AATases responsible for acetate ester formation using higher alcohols as substrate, demonstrating their biotechnological potential for volatile ester production.
Collapse
Affiliation(s)
- Hye Yun Moon
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyeon Jin Kim
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ki Seung Kim
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Su Jin Yoo
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dong Wook Lee
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hee Je Shin
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jeong-Ah Seo
- School of Systems Biomedical Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Hyun Ah Kang
- Molecular Systems Biology Laboratory of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
38
|
Poudel S, Cope AL, O'Dell KB, Guss AM, Seo H, Trinh CT, Hettich RL. Identification and characterization of proteins of unknown function (PUFs) in Clostridium thermocellum DSM 1313 strains as potential genetic engineering targets. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:116. [PMID: 33971924 PMCID: PMC8112048 DOI: 10.1186/s13068-021-01964-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/26/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Mass spectrometry-based proteomics can identify and quantify thousands of proteins from individual microbial species, but a significant percentage of these proteins are unannotated and hence classified as proteins of unknown function (PUFs). Due to the difficulty in extracting meaningful metabolic information, PUFs are often overlooked or discarded during data analysis, even though they might be critically important in functional activities, in particular for metabolic engineering research. RESULTS We optimized and employed a pipeline integrating various "guilt-by-association" (GBA) metrics, including differential expression and co-expression analyses of high-throughput mass spectrometry proteome data and phylogenetic coevolution analysis, and sequence homology-based approaches to determine putative functions for PUFs in Clostridium thermocellum. Our various analyses provided putative functional information for over 95% of the PUFs detected by mass spectrometry in a wild-type and/or an engineered strain of C. thermocellum. In particular, we validated a predicted acyltransferase PUF (WP_003519433.1) with functional activity towards 2-phenylethyl alcohol, consistent with our GBA and sequence homology-based predictions. CONCLUSIONS This work demonstrates the value of leveraging sequence homology-based annotations with empirical evidence based on the concept of GBA to broadly predict putative functions for PUFs, opening avenues to further interrogation via targeted experiments.
Collapse
Affiliation(s)
- Suresh Poudel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation at Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Alexander L Cope
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
| | - Kaela B O'Dell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Center for Bioenergy Innovation at Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Bredesen Center, University of Tennessee, Knoxville, TN, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- The Bredesen Center, University of Tennessee, Knoxville, TN, USA
| | - Hyeongmin Seo
- The Center for Bioenergy Innovation at Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Cong T Trinh
- The Center for Bioenergy Innovation at Oak Ridge National Laboratory, Oak Ridge, TN, USA
- The Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, USA
- The Bredesen Center, University of Tennessee, Knoxville, TN, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
39
|
Seo H, Lee JW, Giannone RJ, Dunlap NJ, Trinh CT. Engineering promiscuity of chloramphenicol acetyltransferase for microbial designer ester biosynthesis. Metab Eng 2021; 66:179-190. [PMID: 33872779 DOI: 10.1016/j.ymben.2021.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023]
Abstract
Robust and efficient enzymes are essential modules for metabolic engineering and synthetic biology strategies across biological systems to engineer whole-cell biocatalysts. By condensing an acyl-CoA and an alcohol, alcohol acyltransferases (AATs) can serve as interchangeable metabolic modules for microbial biosynthesis of a diverse class of ester molecules with broad applications as flavors, fragrances, solvents, and drop-in biofuels. However, the current lack of robust and efficient AATs significantly limits their compatibility with heterologous precursor pathways and microbial hosts. Through bioprospecting and rational protein engineering, we identified and engineered promiscuity of chloramphenicol acetyltransferases (CATs) from mesophilic prokaryotes to function as robust and efficient AATs compatible with at least 21 alcohol and 8 acyl-CoA substrates for microbial biosynthesis of linear, branched, saturated, unsaturated and/or aromatic esters. By plugging the best engineered CAT (CATec3 Y20F) into the gram-negative mesophilic bacterium Escherichia coli, we demonstrated that the recombinant strain could effectively convert various alcohols into desirable esters, for instance, achieving a titer of 13.9 g/L isoamyl acetate with 95% conversion by fed-batch fermentation. The recombinant E. coli was also capable of simulating the ester profile of roses with high conversion (>97%) and titer (>1 g/L) from fermentable sugars at 37 °C. Likewise, a recombinant gram-positive, cellulolytic, thermophilic bacterium Clostridium thermocellum harboring CATec3 Y20F could produce many of these esters from recalcitrant cellulosic biomass at elevated temperatures (>50 °C) due to the engineered enzyme's remarkable thermostability. Overall, the engineered CATs can serve as a robust and efficient platform for designer ester biosynthesis from renewable and sustainable feedstocks.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard J Giannone
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Noah J Dunlap
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
40
|
Kim Y, Lama S, Agrawal D, Kumar V, Park S. Acetate as a potential feedstock for the production of value-added chemicals: Metabolism and applications. Biotechnol Adv 2021; 49:107736. [PMID: 33781888 DOI: 10.1016/j.biotechadv.2021.107736] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/22/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Acetate is regarded as a promising carbon feedstock in biological production owing to its possible derivation from C1 gases such as CO, CO2 and methane. To best use of acetate, comprehensive understanding of acetate metabolisms from genes and enzymes to pathways and regulations is needed. This review aims to provide an overview on the potential of acetate as carbon feedstock for industrial biotechnology. Biochemical, microbial and biotechnological aspects of acetate metabolism are described. Especially, the current state-of-the art in the production of value-added chemicals from acetate is summarized. Challenges and future perspectives are also provided.
Collapse
Affiliation(s)
- Yeonhee Kim
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Suman Lama
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea
| | - Deepti Agrawal
- Biochemistry and Biotechnology Area, Material Resource Efficiency Division, CSIR- Indian Institute of Petroleum, Mohkampur, Dehradun 248005, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK430AL, United Kingdom.
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, 50, UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
41
|
Sinumvayo JP, Zhao C, Liu G, Li Y, Zhang Y. One-pot production of butyl butyrate from glucose using a cognate "diamond-shaped" E. coli consortium. BIORESOUR BIOPROCESS 2021; 8:18. [PMID: 38650238 PMCID: PMC10992435 DOI: 10.1186/s40643-021-00372-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/15/2021] [Indexed: 11/10/2022] Open
Abstract
Esters are widely used in plastics, textile fibers, and general petrochemicals. Usually, esters are produced via chemical synthesis or enzymatic processes from the corresponding alcohols and acids. However, the fermentative production of esters from alcohols and/or acids has recently also become feasible. Here we report a cognate microbial consortium capable of producing butyl butyrate. This microbial consortium consists of two engineered butyrate- and butanol-producing E. coli strains with nearly identical genetic background. The pathways for the synthesis of butyrate and butanol from butyryl-CoA in the respective E. coli strains, together with a lipase-catalyzed esterification reaction, created a "diamond-shaped" consortium. The concentration of butyrate and butanol in the fermentation vessel could be altered by adjusting the inoculation ratios of each E. coli strain in the consortium. After optimization, the consortium produced 7.2 g/L butyl butyrate with a yield of 0.12 g/g glucose without the exogenous addition of butanol or butyrate. To our best knowledge, this is the highest titer and yield of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.
Collapse
Affiliation(s)
- Jean Paul Sinumvayo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunhua Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guoxia Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
42
|
Kim DI, Chae TU, Kim HU, Jang WD, Lee SY. Microbial production of multiple short-chain primary amines via retrobiosynthesis. Nat Commun 2021; 12:173. [PMID: 33420084 PMCID: PMC7794544 DOI: 10.1038/s41467-020-20423-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/27/2020] [Indexed: 01/11/2023] Open
Abstract
Bio-based production of many chemicals is not yet possible due to the unknown biosynthetic pathways. Here, we report a strategy combining retrobiosynthesis and precursor selection step to design biosynthetic pathways for multiple short-chain primary amines (SCPAs) that have a wide range of applications in chemical industries. Using direct precursors of 15 target SCPAs determined by the above strategy, Streptomyces viridifaciens vlmD encoding valine decarboxylase is examined as a proof-of-concept promiscuous enzyme both in vitro and in vivo for generating SCPAs from their precursors. Escherichia coli expressing the heterologous vlmD produces 10 SCPAs by feeding their direct precursors. Furthermore, metabolically engineered E. coli strains are developed to produce representative SCPAs from glucose, including the one producing 10.67 g L-1 of iso-butylamine by fed-batch culture. This study presents the strategy of systematically designing biosynthetic pathways for the production of a group of related chemicals as demonstrated by multiple SCPAs as examples.
Collapse
Affiliation(s)
- Dong In Kim
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Tong Un Chae
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- Systems Biology and Medicine Laboratory, Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, 34141, Republic of Korea
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
| | - Woo Dae Jang
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering, KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea.
- KAIST Institute for Artificial Intelligence, BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
43
|
Sun L, Xin F, Alper HS. Bio-synthesis of food additives and colorants-a growing trend in future food. Biotechnol Adv 2021; 47:107694. [PMID: 33388370 DOI: 10.1016/j.biotechadv.2020.107694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 02/07/2023]
Abstract
Food additives and colorants are extensively used in the food industry to improve food quality and safety during processing, storage and packing. Sourcing of these molecules is predominately through three means: extraction from natural sources, chemical synthesis, and bio-production, with the first two being the most utilized. However, growing demands for sustainability, safety and "natural" products have renewed interest in using bio-based production methods. Likewise, the move to more cultured foods and meat alternatives requires the production of new additives and colorants. The production of bio-based food additives and colorants is an interdisciplinary research endeavor and represents a growing trend in future food. To highlight the potential of microbial hosts for food additive and colorant production, we focus on current advances for example molecules based on their utilization stage and bio-production yield as follows: (I) approved and industrially produced with high titers; (II) approved and produced with decent titers (in the g/L range), but requiring further engineering to reduce production costs; (III) approved and produced with very early stage titers (in the mg/L range); and (IV) new/potential candidates that have not been approved but can be sourced through microbes. Promising approaches, as well as current challenges and future directions will also be thoroughly discussed for the bioproduction of these food additives and colorants.
Collapse
Affiliation(s)
- Lichao Sun
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Fengjiao Xin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China.
| | - Hal S Alper
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, United States; McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, United States.
| |
Collapse
|
44
|
Latimer LN, Russ ZN, Lucas J, Dueber JE. Exploration of Acetylation as a Base-Labile Protecting Group in Escherichia coli for an Indigo Precursor. ACS Synth Biol 2020; 9:2775-2783. [PMID: 32886882 DOI: 10.1021/acssynbio.0c00297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Biochemical protecting groups are observed in natural metabolic pathways to control reactivity and properties of chemical intermediates; similarly, they hold promise as a tool for metabolic engineers to achieve the same goals. Protecting groups come with costs: lower yields from carbon, metabolic load to the production host, deprotection catalyst costs and kinetics limitations, and wastewater treatment of the group. Compared to glycosyl biochemical protection, such as glucosyl groups, acetylation can mitigate each of these costs. As an example application where these benefits could be valuable, we explored acetylation protection of indoxyl, the reactive precursor to the clothing dye, indigo. First, we demonstrated denim dyeing with chemically sourced indoxyl acetate by deprotection with base, showing results comparable to industry-standard denim dyeing. Second, we modified an Escherichia coli production host for improved indoxyl acetate stability by the knockout of 14 endogenous hydrolases. Cumulatively, these knockouts yielded a 67% reduction in the indoxyl acetate hydrolysis rate from 0.22 mmol/g DCW/h to 0.07 mmol/g DCW/h. To biosynthesize indoxyl acetate, we identified three promiscuous acetyltransferases which acetylate indoxyl in vivo. Indoxyl acetate titer, while low, was improved 50%, from 43 μM to 67 μM, in the hydrolase knockout strain compared to wild-type E. coli. Unfortunately, low millimolar concentrations of indoxyl acetate proved to be toxic to the E. coli production host; however, the principle of acetylation as a readily cleavable and low impact biochemical protecting group and the engineered hydrolase knockout production host should prove useful for other metabolic products.
Collapse
Affiliation(s)
- Luke N. Latimer
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Zachary N. Russ
- The UC Berkeley & UCSF Graduate Program in Bioengineering, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - James Lucas
- The UC Berkeley & UCSF Graduate Program in Bioengineering, Berkeley, California 94720, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - John E. Dueber
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Fang D, Wen Z, Lu M, Li A, Ma Y, Tao Y, Jin M. Metabolic and Process Engineering of Clostridium beijerinckii for Butyl Acetate Production in One Step. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9475-9487. [PMID: 32806108 DOI: 10.1021/acs.jafc.0c00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
n-Butyl acetate is an important food additive commonly produced via concentrated sulfuric acid catalysis or immobilized lipase catalysis of butanol and acetic acid. Compared with chemical methods, an enzymatic approach is more environmentally friendly; however, it incurs a higher cost due to lipase production. In vivo biosynthesis via metabolic engineering offers an alternative to produce n-butyl acetate. This alternative combines substrate production (butanol and acetyl-coenzyme A (acetyl-CoA)), alcohol acyltransferase expression, and esterification reaction in one reactor. The alcohol acyltransferase gene ATF1 from Saccharomyces cerevisiae was introduced into Clostridium beijerinckii NCIMB 8052, enabling it to directly produce n-butyl acetate from glucose without lipase addition. Extractants were compared and adapted to realize glucose fermentation with in situ n-butyl acetate extraction. Finally, 5.57 g/L of butyl acetate was produced from 38.2 g/L of glucose within 48 h, which is 665-fold higher than that reported previously. This demonstrated the potential of such a metabolic approach to produce n-butyl acetate from biomass.
Collapse
Affiliation(s)
- Dahui Fang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Zhiqiang Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Minrui Lu
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ang Li
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Yuheng Ma
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Ye Tao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
46
|
Zargar A, Valencia L, Wang J, Lal R, Chang S, Werts M, Wong AR, Hernández AC, Benites V, Baidoo EE, Katz L, Keasling JD. A bimodular PKS platform that expands the biological design space. Metab Eng 2020; 61:389-396. [DOI: 10.1016/j.ymben.2020.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 01/21/2023]
|
47
|
Byproduct-free geraniol glycosylation by whole-cell biotransformation with recombinant Escherichia coli. Biotechnol Lett 2020; 43:247-259. [PMID: 32860164 PMCID: PMC7796880 DOI: 10.1007/s10529-020-02993-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/18/2020] [Indexed: 11/15/2022]
Abstract
Objective Geraniol, a fragrance of great importance in the consumer goods industry, can be glucosylated by the UDP-glucose-dependent glucosyltransferase VvGT14a from Vitis vinifera, yielding more stable geranyl glucoside. Escherichia coli expressing VvGT14a is a convenient whole-cell biocatalyst for this biotransformation due to its intrinsic capability for UDP-glucose regeneration. The low water solubility and high cytotoxicity of geraniol can be overcome in a biphasic system where the non-aqueous phase functions as an in situ substrate reservoir. However, the effect of different process variables on the biphasic whole-cell biotransformation is unknown. Thus, the goal of this study was to identify potential bottlenecks during biotransformation with in situ geraniol supply via isopropyl myristate as second non-aqueous phase. Results First, insufficient UDP-glucose supply could be ruled out by measurement of intracellular UDP-glucose concentrations. Instead, oxygen supply was determined as a bottleneck. Moreover, the formation of the byproduct geranyl acetate by chloramphenicol acetyltransferase (CAT) was identified as a constraint for high product yields. The use of a CAT-deficient whole-cell biocatalyst prevented the formation of geranyl acetate, and geranyl glucoside could be obtained with 100% selectivity during a biotransformation on L-scale. Conclusion This study is the first to closely analyze the whole-cell biotransformation of geraniol with Escherichia coli expressing an UDP-glucose-dependent glucosyltransferase and can be used as an optimal starting point for the design of other glycosylation processes. Electronic supplementary material The online version of this article (10.1007/s10529-020-02993-z) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Bacterial synthesis of C3-C5 diols via extending amino acid catabolism. Proc Natl Acad Sci U S A 2020; 117:19159-19167. [PMID: 32719126 DOI: 10.1073/pnas.2003032117] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Amino acids are naturally occurring and structurally diverse metabolites in biological system, whose potentials for chemical expansion, however, have not been fully explored. Here, we devise a metabolic platform capable of producing industrially important C3-C5 diols from amino acids. The presented platform combines the natural catabolism of charged amino acids with a catalytically efficient and thermodynamically favorable diol formation pathway, created by expanding the substrate scope of the carboxylic acid reductase toward noncognate ω-hydroxylic acids. Using the established platform as gateways, seven different diol-convertible amino acids are converted to diols including 1,3-propanediol, 1,4-butanediol, and 1,5-pentanediol. Particularly, we afford to optimize the production of 1,4-butanediol and demonstrate the de novo production of 1,5-pentanediol from glucose, with titers reaching 1.41 and 0.97 g l-1, respectively. Our work presents a metabolic platform that enriches the pathway repertoire for nonnatural diols with feedstock flexibility to both sugar and protein hydrolysates.
Collapse
|
49
|
Garcia S, Trinh CT. Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals. ACS Synth Biol 2020; 9:1665-1681. [PMID: 32470305 DOI: 10.1021/acssynbio.9b00518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Modular design is key to achieve efficient and robust systems across engineering disciplines. Modular design potentially offers advantages to engineer microbial systems for biocatalysis, bioremediation, and biosensing, overcoming the slow and costly design-build-test-learn cycles in the conventional cell engineering approach. These systems consist of a modular (chassis) cell compatible with exchangeable modules that enable programmed functions such as overproduction of a desirable chemical. We previously proposed a multiobjective optimization framework coupled with metabolic flux models to design modular cells and solved it using multiobjective evolutionary algorithms. However, such approach might not achieve solution optimality and hence limits design options for experimental implementation. In this study, we developed the goal attainment formulation compatible with optimization algorithms that guarantee solution optimality. We applied goal attainment to design an Escherichia coli modular cell capable of synthesizing all molecules in a biochemically diverse library at high yields and rates with only a few genetic manipulations. To elucidate modular organization of the designed cells, we developed a flux variance clustering (FVC) method by identifying reactions with high flux variance and clustering them to identify metabolic modules. Using FVC, we identified reaction usage patterns for different modules in the modular cell, revealing that its broad pathway compatibility is enabled by the natural modularity and flexible flux capacity of endogenous core metabolism. Overall, this study not only sheds light on modularity in metabolic networks from their topology and metabolic functions but also presents a useful synthetic biology toolbox to design modular cells with broad applications.
Collapse
Affiliation(s)
- Sergio Garcia
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory Oak Ridge, Tennessee 37830, United States
| | - Cong T. Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory Oak Ridge, Tennessee 37830, United States
| |
Collapse
|
50
|
Zhang S, Guo F, Yan W, Dong W, Zhou J, Zhang W, Xin F, Jiang M. Perspectives for the microbial production of ethyl acetate. Appl Microbiol Biotechnol 2020; 104:7239-7245. [PMID: 32656615 DOI: 10.1007/s00253-020-10756-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/13/2020] [Accepted: 06/24/2020] [Indexed: 12/21/2022]
Abstract
Ethyl acetate is one of the short-chain esters and widely used in the food, beverage, and solvent areas. The ethyl acetate production currently proceeds through unsustainable and energy intensive processes, which are based on natural gas and crude oil. Microbial conversion of biomass-derived sugars into ethyl acetate may provide a sustainable alternative. In this review, the perspectives of bio-catalyzing ethanol and acetic acid to ethyl acetate using lipases in vitro was introduced. Besides, the crucial elements for high yield of ethyl acetate in fermentation was expounded. Also, metabolic engineering in yeasts to product ethyl acetate in vivo using alcohol acyl transferases (AAT) was discussed. KEY POINTS: •The accumulation of acetyl-CoA is crucial for synthesizing ethyl acetate in vivo; AAT-mediated metabolic engineering could efficiently improve ethyl acetate production.
Collapse
Affiliation(s)
- Shangjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Feng Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Wei Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Jie Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Puzhu South Road 30#, Nanjing, 211800, People's Republic of China.,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211800, People's Republic of China
| |
Collapse
|