1
|
O'Shea C, Miller GJ. Synthesis of S-Glycoside Building Blocks as Mimetics of the Repeating d-GlcN-α-1,4-d-GlcA Heparan Sulfate Disaccharide. Molecules 2024; 29:5809. [PMID: 39683968 DOI: 10.3390/molecules29235809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
Heparan sulfate (HS), a sulfated linear carbohydrate that decorates the cell surface and extracellular matrix, is a key regulator of biological processes. Owing to the inherent structural complexity of HS, structure-to-function studies with its ligands are required, and materials to improve the understanding of such interactions are therefore of high importance. Herein, the synthesis of novel S-linked GlcN-α(1→4)-GlcA disaccharide building blocks is detailed. Initial attempts at constructing the desired disaccharide using d-GlcN donors and d-Glc/GlcA acceptors via an S-glycosylation failed. Reversing the reactivity polarity of the monosaccharide building blocks enabled successful SN2 coupling using α-d-GlcN thiohemiacetals and d-galactosyl triflates. Subsequent C6-oxidation furnished the desired S-linked GlcN-α(1→4)-GlcA disaccharide building blocks on a gram scale. Such disaccharides offer potential for incorporation into wider synthetic HS sequences to provide glycomimetic tools.
Collapse
Affiliation(s)
- Conor O'Shea
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, UK
| | - Gavin J Miller
- School of Chemical and Physical Sciences and Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, UK
| |
Collapse
|
2
|
Zhao S, Zhang T, Kan Y, Li H, Li JP. Overview of the current procedures in synthesis of heparin saccharides. Carbohydr Polym 2024; 339:122220. [PMID: 38823902 DOI: 10.1016/j.carbpol.2024.122220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024]
Abstract
Natural heparin, a glycosaminoglycan consisting of repeating hexuronic acid and glucosamine linked by 1 → 4 glycosidic bonds, is the most widely used anticoagulant. To subvert the dependence on animal sourced heparin, alternative methods to produce heparin saccharides, i.e., either heterogenous sugar chains similar to natural heparin, or structurally defined oligosaccharides, are becoming hot subjects. Although the success by chemical synthesis of the pentasaccharide, fondaparinux, encourages to proceed through a chemical approach generating homogenous product, synthesizing larger oligos is still cumbersome and beyond reach so far. Alternatively, the chemoenzymatic pathway exhibited exquisite stereoselectivity of glycosylation and regioselectivity of modification, with the advantage to skip the tedious protection steps unavoidable in chemical synthesis. However, to a scale of drug production needed today is still not in sight. In comparison, a procedure of de novo biosynthesis in an organism could be an ultimate goal. The main purpose of this review is to summarize the current available/developing strategies and techniques, which is expected to provide a comprehensive picture for production of heparin saccharides to replenish or eventually to replace the animal derived products. In chemical and chemoenzymatic approaches, the methodologies are discussed according to the synthesis procedures: building block preparation, chain elongation, and backbone modification.
Collapse
Affiliation(s)
- Siran Zhao
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China.
| | - Ying Kan
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Hongmei Li
- Division of Chemistry and Analytical Science, National Institute of Metrology, Beijing, China; Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, Beijing, China
| | - Jin-Ping Li
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China; Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden.
| |
Collapse
|
3
|
Pongener I, Sletten ET, Danglad-Flores J, Seeberger PH, Miller GJ. Synthesis of a heparan sulfate tetrasaccharide using automated glycan assembly. Org Biomol Chem 2024; 22:1395-1399. [PMID: 38291974 PMCID: PMC10865181 DOI: 10.1039/d3ob01909h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Herein we utilise automated glycan assembly to complete solid-phase synthesis of defined heparan sulfate oligosaccharides, employing challenging D-glucuronate disaccharide donors. Using an orthogonally protected D-GlcN-α-D-GlcA donor, milligram-scale synthesis of a heparan sulfate tetrasaccharide is completed in 18% yield over five steps. Furthermore, orthogonal protecting groups enabled regiospecific on-resin 6-O-sulfation. This methodology provides an important benchmark for the rapid assembly of biologically relevant heparan sulfate sequences.
Collapse
Affiliation(s)
- Imlirenla Pongener
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| | - Eric T Sletten
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - José Danglad-Flores
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max-Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Gavin J Miller
- School of Chemical and Physical Sciences & Centre for Glycoscience, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
4
|
Pongener I, Miller GJ. d-Glucuronate and d-Glucuronate Glycal Acceptors for the Scalable Synthesis of d-GlcN-α-1,4-d-GlcA Disaccharides and Modular Assembly of Heparan Sulfate. J Org Chem 2023; 88:11130-11139. [PMID: 37458063 PMCID: PMC10407932 DOI: 10.1021/acs.joc.3c01108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 07/18/2023]
Abstract
Reported herein is a scalable chemical synthesis of disaccharide building blocks for heparan sulfate (HS) oligosaccharide assembly. The use of d-glucuronate-based acceptors for dehydrative glycosylation with d-glucosamine partners is explored, enabling diastereoselective synthesis of appropriately protected HS disaccharide building blocks (d-GlcN-α-1,4-d-GlcA) on a multigram scale. Isolation and characterization of key donor (1,2 glycal)- and acceptor (ortho-ester, anhydro)-derived side products ensure methodology improvements to reduce their formation; protecting the d-glucuronate acceptor at the anomeric position with a para-methoxyphenyl unit proves optimal. We also introduce glycal uronate acceptors, showing them to be comparative in reactivity to their pyranuronate counterparts. Taken together, this gram-scale access offers the capability to explore the iterative assembly of defined HS sequences containing the d-GlcN-α-1,4-d-GlcA repeat, highlighted by completing this for two tetrasaccharide syntheses.
Collapse
Affiliation(s)
- Imlirenla Pongener
- School of Chemical and Physical Sciences
& Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| | - Gavin J. Miller
- School of Chemical and Physical Sciences
& Centre for Glycoscience, Keele University, Keele, Staffordshire ST5 5BG, U.K.
| |
Collapse
|
5
|
Baryal KN, Ramadan S, Su G, Huo C, Zhao Y, Liu J, Hsieh‐Wilson LC, Huang X. Synthesis of a Systematic 64-Membered Heparan Sulfate Tetrasaccharide Library. Angew Chem Int Ed Engl 2023; 62:e202211985. [PMID: 36173931 PMCID: PMC9933061 DOI: 10.1002/anie.202211985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Indexed: 02/02/2023]
Abstract
Heparan sulfate (HS) has multifaceted biological activities. To date, no libraries of HS oligosaccharides bearing systematically varied sulfation structures are available owing to the challenges in synthesizing a large number of HS oligosaccharides. To overcome the obstacles and expedite the synthesis, a divergent approach was designed, where 64 HS tetrasaccharides covering all possible structures of 2-O-, 6-O- and N-sulfation with the glucosamine-glucuronic acid-glucosamine-iduronic acid backbone were successfully produced from a single strategically protected tetrasaccharide intermediate. This extensive library helped identify the structural requirements for HS sequences to have strong fibroblast growth factor-2 binding but a weak affinity for platelet factor-4. Such a strategy to separate out these two interactions could lead to new HS-based potential therapeutics without the dangerous adverse effect of heparin-induced thrombocytopenia.
Collapse
Affiliation(s)
- Kedar N. Baryal
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
| | - Sherif Ramadan
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- Chemistry DepartmentFaculty of ScienceBenha UniversityBenhaQaliobiya13518Egypt
| | - Guowei Su
- Glycan Therapeutics617 Hutton StreetRaleighNC 27606USA
| | - Changxin Huo
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
| | - Yuetao Zhao
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- School of Life SciencesCentral South UniversityChangshaHunan410013China
| | - Jian Liu
- Division of Chemical Biology and Medicinal ChemistryEshelman School of PharmacyUniversity of North CarolinaChapel HillNC 27599USA
| | - Linda C. Hsieh‐Wilson
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCA 91125USA
| | - Xuefei Huang
- Department of ChemistryMichigan State University578 S. Shaw LaneEast LansingMI 48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI 48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI 48824USA
| |
Collapse
|
6
|
Sun L, Chopra P, Boons G. Chemoenzymatic Synthesis of Heparan Sulfate Oligosaccharides having a Domain Structure. Angew Chem Int Ed Engl 2022; 61:e202211112. [PMID: 36148891 PMCID: PMC9828060 DOI: 10.1002/anie.202211112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Heparan sulfate (HS) has a domain structure in which regions that are modified by epimerization and sulfonation (NS domains) are interspersed by unmodified fragments (NA domains). There is data to support that domain organization of HS can regulate binding of proteins, however, such model has been difficult to probe. Here, we report a chemoenzymatic methodology that can provide HS oligosaccharides composed of two or more NS domains separated by NA domains of different length. It is based on the chemical synthesis of a HS oligosaccharide that enzymatically was extended by various GlcA-GlcNAc units and terminated in GlcNAc having an azido moiety at C-6 position. HS oligosaccharides having an azide and alkyne moiety could be assembled by copper catalyzed alkyne-azide cycloaddition to give compounds having various NS domains separated by unsulfonated regions. Competition binding studies showed that the length of an NA domain modulates the binding of the chemokines CCL5 and CXCL8.
Collapse
Affiliation(s)
- Lifeng Sun
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrecht (TheNetherlands
| | - Pradeep Chopra
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA-30602USA
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug DiscoveryUtrecht Institute for Pharmaceutical SciencesUtrecht University3584 CGUtrecht (TheNetherlands
- Complex Carbohydrate Research CenterUniversity of GeorgiaAthensGA-30602USA
- Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrecht (TheNetherlands
- Chemistry DepartmentUniversity of GeorgiaAthensGA-30602USA
| |
Collapse
|
7
|
Peptide-Based HIV Entry Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1366:15-26. [DOI: 10.1007/978-981-16-8702-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Ramadan S, Su G, Baryal K, Hsieh-Wilson LC, Liu J, Huang X. Automated Solid Phase Assisted Synthesis of a Heparan Sulfate Disaccharide Library. Org Chem Front 2022; 9:2910-2920. [PMID: 36212917 PMCID: PMC9536483 DOI: 10.1039/d2qo00439a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heparan sulfate (HS) regulates a wide range of biological events, including blood coagulation, cancer development, cell differentiation, and viral infections. It is generally recognized that structures of HS can critically...
Collapse
Affiliation(s)
- Sherif Ramadan
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
- Chemistry Department, Faculty of Science, Benha University, Benha, Qaliobiya 13518, Egypt
| | - Guowei Su
- Glycan Therapeutics, 617 Hutton Street, Raleigh, North Carolina 27606, USA
| | - Kedar Baryal
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Jian Liu
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
9
|
Dulaney SB, Huang X. Strategies in Synthesis of Heparin/Heparan Sulfate Oligosaccharides: 2000-Present. Adv Carbohydr Chem Biochem 2021; 80:121-164. [PMID: 34872655 DOI: 10.1016/bs.accb.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heparin and heparan sulfate are members of the glycosaminoglycan family that are involved in a multitude of biological processes. The great interests in the anticoagulant properties of heparin have stimulated major advances in synthetic strategies toward clinically effective analogues, as demonstrated importantly by the approval of the fully synthetic pentasaccharide fragment, termed fondaparinux (Arixtra®), of the heparin macromolecule for treatment of deep-vein thrombosis. Given the highly complex nature of heparin and heparan sulfate, the chemical synthesis of their components is a challenging endeavor. In the past decade, multiple approaches have been developed to improve the overall synthetic efficiency. New strategies have emerged that can generate libraries of oligosaccharide components of heparin and heparan sulfate. This article discusses recent developments in the assembly of heparin and heparan sulfate oligosaccharides and the associated challenges in their synthesis.
Collapse
Affiliation(s)
- Steven B Dulaney
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
10
|
Pongener I, O'Shea C, Wootton H, Watkinson M, Miller GJ. Developments in the Chemical Synthesis of Heparin and Heparan Sulfate. CHEM REC 2021; 21:3238-3255. [PMID: 34523797 DOI: 10.1002/tcr.202100173] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/19/2021] [Indexed: 11/08/2022]
Abstract
Heparin and heparan sulfate represent key members of the glycosaminoglycan family of carbohydrates and underpin considerable repertoires of biological importance. As such, their efficiency of synthesis represents a key requirement, to further understand and exploit the H/HS structure-to-biological function axis. In this review we focus on chemical approaches to and methodology improvements for the synthesis of these essential sugars (from 2015 onwards). We first consider advances in accessing the heparin-derived pentasaccharide anticoagulant fondaparinux. This is followed by heparan sulfate targets, including key building block synthesis, oligosaccharide construction and chemical sulfation techniques. We end with a consideration of technological improvements to traditional, solution-phase synthesis approaches that are increasingly being utilised.
Collapse
Affiliation(s)
- Imlirenla Pongener
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Conor O'Shea
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Hannah Wootton
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Michael Watkinson
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| | - Gavin J Miller
- Lennard-Jones Laboratories, School of Chemical and Physical Sciences, Keele University, ST5 5BG, Staffordshire, UK
| |
Collapse
|
11
|
Sun L, Chopra P, Boons GJ. Modular Synthesis of Heparan Sulfate Oligosaccharides Having N-Acetyl and N-Sulfate Moieties. J Org Chem 2020; 85:16082-16098. [DOI: 10.1021/acs.joc.0c01881] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Lifeng Sun
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
12
|
Ní Cheallaigh A, Guimond SE, Oscarson S, Miller GJ. Chemical synthesis of a sulfated d-glucosamine library and evaluation of cell proliferation capabilities. Carbohydr Res 2020; 495:108085. [PMID: 32807354 DOI: 10.1016/j.carres.2020.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Aisling Ní Cheallaigh
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK; Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Scott E Guimond
- School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Gavin J Miller
- Lennard-Jones Laboratory, School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
13
|
Sheppard DJ, Cameron SA, Tyler PC, Schwörer R. Comparison of disaccharide donors for heparan sulfate synthesis: uronic acids vs. their pyranose equivalents. Org Biomol Chem 2020; 18:4728-4733. [PMID: 32531013 DOI: 10.1039/d0ob00671h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Late oxidation of hexose based building blocks or the use of uronic acid containing building blocks are two complementary strategies in the synthesis of glycosaminoglycans, the latter simplifiying the later stages of the process. Here we report the synthesis and evaluation of various disaccharide donors-uronic acids and their pyranose equivalents-for the synthesis of heparan sulfate, using an established protective group strategy. Hexose based "imidate" type donors perform well in the studied glycosylations, while their corresponding uronate esters fall short; a uronate ester thioglycoside performs equal to, if not better than, a hexose thioglycoside equivalent.
Collapse
Affiliation(s)
- Daniel J Sheppard
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Scott A Cameron
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Peter C Tyler
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| | - Ralf Schwörer
- The Ferrier Research Institute - Te Kāuru, Te Herenga Waka - Victoria University of Wellington, 69 Gracefield Road, Gracefield, Lower Hutt 5010, New Zealand.
| |
Collapse
|
14
|
Budhadev D, Saxby K, Walton J, Davies G, Tyler PC, Schwörer R, Fascione MA. Using automated glycan assembly (AGA) for the practical synthesis of heparan sulfate oligosaccharide precursors. Org Biomol Chem 2019; 17:1817-1821. [PMID: 30543331 DOI: 10.1039/c8ob02756k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report synthesis of complex heparan sulfate oligosaccharide precursors by automated glycan assembly using disaccharide donor building blocks. Rapid access to a hexasaccharide was achieved through iterative solid phase glycosylations on a photolabile resin using Glyconeer™, an automated oligosaccharide synthesiser, followed by photochemical cleavage and glycan purification using simple flash column chromatography.
Collapse
|
15
|
Dimitriou E, Miller GJ. Exploring a glycosylation methodology for the synthesis of hydroxamate-modified alginate building blocks. Org Biomol Chem 2019; 17:9321-9335. [DOI: 10.1039/c9ob02053e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mixed sequence, C6-hydroxamate-modified alginate disaccharides are prepared using NIS/TMSOTf glycosylation.
Collapse
Affiliation(s)
- Eleni Dimitriou
- Lennard-Jones Laboratory
- School of Chemical and Physical Sciences
- Keele University
- Keele
- UK
| | - Gavin J. Miller
- Lennard-Jones Laboratory
- School of Chemical and Physical Sciences
- Keele University
- Keele
- UK
| |
Collapse
|
16
|
Joseph JA, Wales DJ. Intrinsically Disordered Landscapes for Human CD4 Receptor Peptide. J Phys Chem B 2018; 122:11906-11921. [DOI: 10.1021/acs.jpcb.8b08371] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Jerelle A. Joseph
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| | - David J. Wales
- Department of Chemistry, University of Cambridge, Lenfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
17
|
CCR5 Revisited: How Mechanisms of HIV Entry Govern AIDS Pathogenesis. J Mol Biol 2018; 430:2557-2589. [PMID: 29932942 DOI: 10.1016/j.jmb.2018.06.027] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/10/2018] [Accepted: 06/13/2018] [Indexed: 01/01/2023]
Abstract
The chemokine receptor CCR5 has been the focus of intensive studies since its role as a coreceptor for HIV entry was discovered in 1996. These studies lead to the development of small molecular drugs targeting CCR5, with maraviroc becoming in 2007 the first clinically approved chemokine receptor inhibitor. More recently, the apparent HIV cure in a patient transplanted with hematopoietic stem cells devoid of functional CCR5 rekindled the interest for inactivating CCR5 through gene therapy and pharmacological approaches. Fundamental research on CCR5 has also been boosted by key advances in the field of G-protein coupled receptor research, with the realization that CCR5 adopts a variety of conformations, and that only a subset of these conformations may be targeted by chemokine ligands. In addition, recent genetic and pathogenesis studies have emphasized the central role of CCR5 expression levels in determining the risk of HIV and SIV acquisition and disease progression. In this article, we propose to review the key properties of CCR5 that account for its central role in HIV pathogenesis, with a focus on mechanisms that regulate CCR5 expression, conformation, and interaction with HIV envelope glycoproteins.
Collapse
|
18
|
Wang X, Wang J, Zhang W, Li B, Zhu Y, Hu Q, Yang Y, Zhang X, Yan H, Zeng Y. Inhibition of Human Immunodeficiency Virus Type 1 Entry by a Keggin Polyoxometalate. Viruses 2018; 10:v10050265. [PMID: 29772712 PMCID: PMC5977258 DOI: 10.3390/v10050265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 12/20/2022] Open
Abstract
Here, we report the anti-human immunodeficiency virus (HIV) potency and underlying mechanisms of a Keggin polyoxometalate (PT-1, K6HPTi2W10O40). Our findings showed that PT-1 exhibited highly potent effects against a diverse group of HIV type 1 (HIV-1) strains and displayed low cytotoxicity and genotoxicity. The time-addition assay revealed that PT-1 acted at an early stage of infection, and these findings were supported by the observation that PT-1 had more potency against Env-pseudotyped virus than vesicular stomatitis virus glycoprotein (VSVG) pseudotyped virus. Surface plasmon resonance binding assays and flow cytometry analysis showed that PT-1 blocked the gp120 binding site in the CD4 receptor. Moreover, PT-1 bound directly to gp41 NHR (N36 peptide), thereby interrupting the core bundle formation of gp41. In conclusion, our data suggested that PT-1 may be developed as a new anti-HIV-1 agent through its effects on entry inhibition.
Collapse
Affiliation(s)
- Xiaoli Wang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Jiao Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Wenmei Zhang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Boye Li
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Ying Zhu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Qin Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yishu Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Xiaoguang Zhang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Hong Yan
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China.
| | - Yi Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| |
Collapse
|
19
|
Lee E, Nguyen CTH, Strounina E, Davis-Poynter N, Ross BP. Structure-Activity Relationships of GAG Mimetic-Functionalized Mesoporous Silica Nanoparticles and Evaluation of Acyclovir-Loaded Antiviral Nanoparticles with Dual Mechanisms of Action. ACS OMEGA 2018; 3:1689-1699. [PMID: 30023813 PMCID: PMC6045419 DOI: 10.1021/acsomega.7b01662] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/24/2018] [Indexed: 05/20/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) are drug delivery agents that are able to incorporate drugs within their pores. Furthermore, MSNs can be functionalized by attachment of bioactive ligands on their surface to enhance their activity, and nanoparticles modified with glycosaminoglycan (GAG) mimetics inhibit the entry of herpes simplex virus (HSV) into cells. In this study, structure-activity relationships of GAGs attached to MSNs were investigated in relation to HSV-1 and HSV-2, and acyclovir was loaded into the pores of MSNs. The sulfonate group was demonstrated to be essential for antiviral activity, which was enhanced by incorporating a benzene group within the ligand. Loading acyclovir into GAG mimetic-functionalized MSNs reduced the viral infection, resulting in nanoparticles that simultaneously target two distinct viral pathways, namely, inhibition of viral entry and inhibition of DNA replication.
Collapse
Affiliation(s)
- Edward
C. Lee
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Chau T. H. Nguyen
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Ekaterina Strounina
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| | - Nicholas Davis-Poynter
- Centre
for Children’s Health Research, The
University of Queensland, 46 Graham Street, Brisbane, Queensland 4101, Australia
| | - Benjamin P. Ross
- School
of Pharmacy and Centre for Advanced Imaging, The University
of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
20
|
Yasen A, Herrera R, Rosbe K, Lien K, Tugizov SM. HIV internalization into oral and genital epithelial cells by endocytosis and macropinocytosis leads to viral sequestration in the vesicles. Virology 2018; 515:92-107. [PMID: 29277006 PMCID: PMC5823522 DOI: 10.1016/j.virol.2017.12.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/11/2023]
Abstract
Recently, we showed that HIV-1 is sequestered, i.e., trapped, in the intracellular vesicles of oral and genital epithelial cells. Here, we investigated the mechanisms of HIV-1 sequestration in vesicles of polarized tonsil, foreskin and cervical epithelial cells. HIV-1 internalization into epithelial cells is initiated by multiple entry pathways, including clathrin-, caveolin/lipid raft-associated endocytosis and macropinocytosis. Inhibition of HIV-1 attachment to galactosylceramide and heparan sulfate proteoglycans, and virus endocytosis and macropinocytosis reduced HIV-1 sequestration by 30-40%. T-cell immunoglobulin and mucin domain 1 (TIM-1) were expressed on the apical surface of polarized tonsil, cervical and foreskin epithelial cells. However, TIM-1-associated HIV-1 macropinocytosis and sequestration were detected mostly in tonsil epithelial cells. Sequestered HIV-1 was resistant to trypsin, pronase, and soluble CD4, indicating that the sequestered virus was intracellular. Inhibition of HIV-1 intraepithelial sequestration and elimination of vesicles containing virus in the mucosal epithelium may help in the prevention of HIV-1 mucosal transmission.
Collapse
Affiliation(s)
- Aizezi Yasen
- Department of Medicine and University of California, San Francisco, San Francisco, CA 94143-0512 USA
| | - Rossana Herrera
- Department of Medicine and University of California, San Francisco, San Francisco, CA 94143-0512 USA
| | - Kristina Rosbe
- Department of Otolaryngology, University of California, San Francisco, San Francisco, CA 94143-0512 USA
| | - Kathy Lien
- Department of Medicine and University of California, San Francisco, San Francisco, CA 94143-0512 USA
| | - Sharof M Tugizov
- Department of Medicine and University of California, San Francisco, San Francisco, CA 94143-0512 USA.
| |
Collapse
|
21
|
Milovanovic M, Arsenijevic A, Milovanovic J, Kanjevac T, Arsenijevic N. Nanoparticles in Antiviral Therapy. ANTIMICROBIAL NANOARCHITECTONICS 2017. [PMCID: PMC7173505 DOI: 10.1016/b978-0-323-52733-0.00014-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to general unavailability of specific antiviral therapeutics for a variety of viral diseases, usage of most antiviral drugs is linked to their limited solubility in aqueous media, short half-life time, and inadequate penetration to specified anatomic compartments. Accordingly, there is continuous effort to improve physicochemical characteristics of existing antiviral drugs. Since nanomaterials display remarkable physical and chemical properties, high surface area to volume ratio, and increased reactivity, new approaches for antiviral therapies include combinations of nanomaterials and current antiviral agents. Multivalent nanostructures, polymers, dendrimers, and liposomes can establish multivalent binding interactions with many biological systems and thus can target pathogenic interactions. There are reports about anitiviral activities of different metal nanoparticles, especially silver nanoparticles and their potential for treatment, prophylaxis, and control of viral infections. Integration of classic antiviral drugs, in the form of multiple ligands, onto nanostructures provides the advantages by creating a high local concentration of active molecules. This article will summarize the antiviral activity of different nanoparticle-based approaches currently available for the treatment of viral infections, and it will discuss metal nanoparticles as possible future antiviral drugs.
Collapse
|
22
|
Yang W, Yoshida K, Yang B, Huang X. Obstacles and solutions for chemical synthesis of syndecan-3 (53-62) glycopeptides with two heparan sulfate chains. Carbohydr Res 2016; 435:180-194. [PMID: 27810711 PMCID: PMC5110403 DOI: 10.1016/j.carres.2016.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 12/21/2022]
Abstract
Proteoglycans play critical roles in many biological events. Due to their structural complexities, strategies towards synthesis of this class of glycopeptides bearing well-defined glycan chains are urgently needed. In this work, we give the full account of the synthesis of syndecan-3 glycopeptide (53-62) containing two different heparan sulfate chains. For assembly of glycans, a convergent 3+2+3 approach was developed producing two different octasaccharide amino acid cassettes, which were utilized towards syndecan-3 glycopeptides. The glycopeptides presented many obstacles for post-glycosylation manipulation, peptide elongation, and deprotection. Following screening of multiple synthetic sequences, a successful strategy was finally established by constructing partially deprotected single glycan chain containing glycopeptides first, followed by coupling of the glycan-bearing fragments and cleavage of the acyl protecting groups.
Collapse
Affiliation(s)
- Weizhun Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Keisuke Yoshida
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Bo Yang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA
| | - Xuefei Huang
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Connell BJ, Chang SY, Prakash E, Yousfi R, Mohan V, Posch W, Wilflingseder D, Moog C, Kodama EN, Clayette P, Lortat-Jacob H. A Cinnamon-Derived Procyanidin Compound Displays Anti-HIV-1 Activity by Blocking Heparan Sulfate- and Co-Receptor- Binding Sites on gp120 and Reverses T Cell Exhaustion via Impeding Tim-3 and PD-1 Upregulation. PLoS One 2016; 11:e0165386. [PMID: 27788205 PMCID: PMC5082894 DOI: 10.1371/journal.pone.0165386] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 10/11/2016] [Indexed: 11/18/2022] Open
Abstract
Amongst the many strategies aiming at inhibiting HIV-1 infection, blocking viral entry has been recently recognized as a very promising approach. Using diverse in vitro models and a broad range of HIV-1 primary patient isolates, we report here that IND02, a type A procyanidin polyphenol extracted from cinnamon, that features trimeric and pentameric forms displays an anti-HIV-1 activity against CXCR4 and CCR5 viruses with 1–7 μM ED50 for the trimer. Competition experiments, using a surface plasmon resonance-based binding assay, revealed that IND02 inhibited envelope binding to CD4 and heparan sulphate (HS) as well as to an antibody (mAb 17b) directed against the gp120 co-receptor binding site with an IC50 in the low μM range. IND02 has thus the remarkable property of simultaneously blocking gp120 binding to its major host cell surface counterparts. Additionally, the IND02-trimer impeded up-regulation of the inhibitory receptors Tim-3 and PD-1 on CD4+ and CD8+ cells, thereby demonstrating its beneficial effect by limiting T cell exhaustion. Among naturally derived products significantly inhibiting HIV-1, the IND02-trimer is the first component demonstrating an entry inhibition property through binding to the viral envelope glycoprotein. These data suggest that cinnamon, a widely consumed spice, could represent a novel and promising candidate for a cost-effective, natural entry inhibitor for HIV-1 which can also down-modulate T cell exhaustion markers Tim-3 and PD-1.
Collapse
Affiliation(s)
- Bridgette Janine Connell
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, F-38027 Grenoble, France
| | - Sui-Yuan Chang
- School of Medical Technology, College of Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Rahima Yousfi
- Laboratoire de Neurovirologie, Bertin Pharma, CEA, 92265 Fontenay aux Roses, France
| | | | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Innsbruck Medical University, Innsbruck, Austria
| | - Christiane Moog
- INSERM U1110, Fédération de médecine translationnelle de Strasbourg (FMTS), Institut de Virologie, 3 rue Koeberlé, 67000 Strasbourg, France
| | - Eiichi N. Kodama
- Division of Emerging Infectious Diseases, Miyagi Communitiy Health Promotion, Tohoku University School of Medicine, Bldg. 1, Rm. 515, 2–1 Seiryocho, Aoba-ku, Sendai 980–8575, Japan
| | - Pascal Clayette
- Laboratoire de Neurovirologie, Bertin Pharma, CEA, 92265 Fontenay aux Roses, France
| | - Hugues Lortat-Jacob
- Institut de Biologie Structurale, UMR 5075, Univ. Grenoble Alpes, CNRS, CEA, F-38027 Grenoble, France
- * E-mail: (HLJ); (EP)
| |
Collapse
|
24
|
CD4-mimetic sulfopeptide conjugates display sub-nanomolar anti-HIV-1 activity and protect macaques against a SHIV162P3 vaginal challenge. Sci Rep 2016; 6:34829. [PMID: 27721488 PMCID: PMC5056392 DOI: 10.1038/srep34829] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/15/2016] [Indexed: 11/18/2022] Open
Abstract
The CD4 and the cryptic coreceptor binding sites of the HIV-1 envelope glycoprotein are key to viral attachment and entry. We developed new molecules comprising a CD4 mimetic peptide linked to anionic compounds (mCD4.1-HS12 and mCD4.1-PS1), that block the CD4-gp120 interaction and simultaneously induce the exposure of the cryptic coreceptor binding site, rendering it accessible to HS12- or PS1- mediated inhibition. Using a cynomolgus macaque model of vaginal challenge with SHIV162P3, we report that mCD4.1-PS1, formulated into a hydroxyethyl-cellulose gel provides 83% protection (5/6 animals). We next engineered the mCD4 moiety of the compound, giving rise to mCD4.2 and mCD4.3 that, when conjugated to PS1, inhibited cell-free and cell-associated HIV-1 with particularly low IC50, in the nM to pM range, including some viral strains that were resistant to the parent molecule mCD4.1. These chemically defined molecules, which target major sites of vulnerability of gp120, are stable for at least 48 hours in conditions replicating the vaginal milieu (37 °C, pH 4.5). They efficiently mimic several large gp120 ligands, including CD4, coreceptor or neutralizing antibodies, to which their efficacy compares very favorably, despite a molecular mass reduced to 5500 Da. Together, these results support the development of such molecules as potential microbicides.
Collapse
|
25
|
Zong C, Huang R, Condac E, Chiu Y, Xiao W, Li X, Lu W, Ishihara M, Wang S, Ramiah A, Stickney M, Azadi P, Amster IJ, Moremen KW, Wang L, Sharp JS, Boons GJ. Integrated Approach to Identify Heparan Sulfate Ligand Requirements of Robo1. J Am Chem Soc 2016; 138:13059-13067. [PMID: 27611601 PMCID: PMC5068570 DOI: 10.1021/jacs.6b08161] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An integrated methodology is described to establish ligand requirements for heparan sulfate (HS) binding proteins based on a workflow in which HS octasaccharides are produced by partial enzymatic degradation of natural HS followed by size exclusion purification, affinity enrichment using an immobilized HS-binding protein of interest, putative structure determination of isolated compounds by a hydrophilic interaction chromatography-high-resolution mass spectrometry platform, and chemical synthesis of well-defined HS oligosaccharides for structure-activity relationship studies. The methodology was used to establish the ligand requirements of human Roundabout receptor 1 (Robo1), which is involved in a number of developmental processes. Mass spectrometric analysis of the starting octasaccharide mixture and the Robo1-bound fraction indicated that Robo1 has a preference for a specific set of structures. Further analysis was performed by sequential permethylation, desulfation, and pertrideuteroacetylation followed by online separation and structural analysis by MS/MS. Sequences of tetrasaccharides could be deduced from the data, and by combining the compositional and sequence data, a putative octasaccharide ligand could be proposed (GlA-GlcNS6S-IdoA-GlcNS-IdoA2S-GlcNS6S-IdoA-GlcNAc6S). A modular synthetic approach was employed to prepare the target compound, and binding studies by surface plasmon resonance (SPR) confirmed it to be a high affinity ligand for Robo1. Further studies with a number of tetrasaccharides confirmed that sulfate esters at C-6 are critical for binding, whereas such functionalities at C-2 substantially reduce binding. High affinity ligands were able to reverse a reduction in endothelial cell migration induced by Slit2-Robo1 signaling.
Collapse
Affiliation(s)
- Chengli Zong
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Rongrong Huang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Eduard Condac
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Yulun Chiu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Institute of Bioinformatics, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Wenyuan Xiao
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Xiuru Li
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Mayumi Ishihara
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Morgan Stickney
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - I. Jonathan Amster
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Lianchun Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Joshua S. Sharp
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
26
|
Mende M, Bednarek C, Wawryszyn M, Sauter P, Biskup MB, Schepers U, Bräse S. Chemical Synthesis of Glycosaminoglycans. Chem Rev 2016; 116:8193-255. [DOI: 10.1021/acs.chemrev.6b00010] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Marco Mende
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Christin Bednarek
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Mirella Wawryszyn
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Paul Sauter
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
| | - Moritz B. Biskup
- Division
2—Informatics, Economics and Society, Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, D-76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Bräse
- Institute
of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, D-76131 Karlsruhe, Germany
- Institute
of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
27
|
Xu P, Laval S, Guo Z, Yu B. Microwave-assisted simultaneous O,N-sulfonation in the synthesis of heparin-like oligosaccharides. Org Chem Front 2016. [DOI: 10.1039/c5qo00320b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simultaneous O,N-sulfonation of heparin-like saccharides was achieved in short reaction times and excellent yields (>90%) under microwave irradiation.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Stephane Laval
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| | - Zheng Guo
- School of Physical Science and Technology
- ShanghaiTech University
- Shanghai 201210
- China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
- China
| |
Collapse
|
28
|
Dulaney S, Xu Y, Wang P, Tiruchinapally G, Wang Z, Kathawa J, El-Dakdouki MH, Yang B, Liu J, Huang X. Divergent Synthesis of Heparan Sulfate Oligosaccharides. J Org Chem 2015; 80:12265-79. [PMID: 26574650 PMCID: PMC4685427 DOI: 10.1021/acs.joc.5b02172] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/01/2022]
Abstract
Heparan sulfates are implicated in a wide range of biological processes. A major challenge in deciphering their structure and activity relationship is the synthetic difficulties to access diverse heparan sulfate oligosaccharides with well-defined sulfation patterns. In order to expedite the synthesis, a divergent synthetic strategy was developed. By integrating chemical synthesis and two types of O-sulfo transferases, seven different hexasaccharides were obtained from a single hexasaccharide precursor. This approach combined the flexibility of chemical synthesis with the selectivity of enzyme-catalyzed sulfations, thus simplifying the overall synthetic operations. In an attempt to establish structure activity relationships of heparan sulfate binding with its receptor, the synthesized oligosaccharides were incorporated onto a glycan microarray, and their bindings with a growth factor FGF-2 were examined. The unique combination of chemical and enzymatic approaches expanded the capability of oligosaccharide synthesis. In addition, the well-defined heparan sulfate structures helped shine light on the fine substrate specificities of biosynthetic enzymes and confirm the potential sequence of enzymatic reactions in biosynthesis.
Collapse
Affiliation(s)
- Steven
B. Dulaney
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Yongmei Xu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Peng Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gopinath Tiruchinapally
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Zhen Wang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jolian Kathawa
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Mohammad H. El-Dakdouki
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Department
of Chemistry, Beirut Arab University, P.O. Box 11-5020, Riad El Solh 11072809, Beirut, Lebanon
| | - Bo Yang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Jian Liu
- Division
of Medicinal Chemistry and Natural Products, UNC Eshelman School of
Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Xuefei Huang
- Department
of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
29
|
Miller GJ, Broberg KR, Rudd C, Helliwell MR, Jayson GC, Gardiner JM. A latent reactive handle for functionalising heparin-like and LMWH deca- and dodecasaccharides. Org Biomol Chem 2015; 13:11208-19. [PMID: 26381107 PMCID: PMC4672752 DOI: 10.1039/c5ob01706h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disaccharide units containing a latent aldehyde surrogate at O4 provide late-stage access to terminal aldehyde LMWH and HS deca and dodecasaccharides.
d-Glucosamine derivatives bearing latent O4 functionality provide modified H/HS-type disaccharide donors for a final stage capping approach enabling introduction of conjugation-suitable, non-reducing terminal functionality to biologically important glycosaminoglycan oligosaccharides. Application to the synthesis of the first O4-terminus modified synthetic LMWH decasaccharide and an HS-like dodecasaccharide is reported.
Collapse
Affiliation(s)
- Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry, 131 Princess Street, University of Manchester M1 7DN, UK.
| | | | | | | | | | | |
Collapse
|
30
|
Szunerits S, Barras A, Khanal M, Pagneux Q, Boukherroub R. Nanostructures for the Inhibition of Viral Infections. Molecules 2015; 20:14051-81. [PMID: 26247927 PMCID: PMC6332336 DOI: 10.3390/molecules200814051] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 01/26/2023] Open
Abstract
Multivalent interactions are omnipresent in biology and confer biological systems with dramatically enhanced affinities towards different receptors. Such multivalent binding interactions have lately been considered for the development of new therapeutic strategies against bacterial and viral infections. Multivalent polymers, dendrimers, and liposomes have successfully targeted pathogenic interactions. While a high synthetic effort was often needed for the development of such therapeutics, the integration of multiple ligands onto nanostructures turned to be a viable alternative. Particles modified with multiple ligands have the additional advantage of creating a high local concentration of binding molecules. This review article will summarize the different nanoparticle-based approaches currently available for the treatment of viral infections.
Collapse
Affiliation(s)
- Sabine Szunerits
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Alexandre Barras
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Manakamana Khanal
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Quentin Pagneux
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| | - Rabah Boukherroub
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), UMR 8520 CNRS, Lille1 University, Avenue Poincaré-BP 60069, 59652 Villeneuve d\'Ascq, France.
| |
Collapse
|
31
|
Hansen SU, Miller GJ, Cliff MJ, Jayson GC, Gardiner JM. Making the longest sugars: a chemical synthesis of heparin-related [4] n oligosaccharides from 16-mer to 40-mer. Chem Sci 2015; 6:6158-6164. [PMID: 30090231 PMCID: PMC6054106 DOI: 10.1039/c5sc02091c] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/23/2015] [Indexed: 01/07/2023] Open
Abstract
The chemical synthesis of long oligosaccharides remains a major challenge. In particular, the synthesis of glycosaminoglycan (GAG) oligosaccharides belonging to the heparin and heparan sulfate (H/HS) family has been a high profile target, particularly with respect to the longer heparanome. Herein we describe a synthesis of the longest heparin-related oligosaccharide to date and concurrently provide an entry to the longest synthetic oligosaccharides of any type yet reported. Specifically, the iterative construction of a series of [4] n -mer heparin-backbone oligosaccharides ranging from 16-mer through to the 40-mer in length is described. This demonstrates for the first time the viability of generating long sequence heparanoids by chemical synthesis, via practical solution-phase synthesis. Pure-Shift HSQC NMR provides a dramatic improvement in anomeric signal resolution, allowing full resolution of all 12 anomeric protons and extrapolation to support anomeric integrity of the longer species. A chemically pure 6-O-desfulfated GlcNS-IdoAS icosasaccharide (20-mer) represents the longest pure synthetic heparin-like oligosaccharide.
Collapse
Affiliation(s)
- Steen U Hansen
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Gavin J Miller
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| | - Matthew J Cliff
- Manchester Institute of Biotechnology and Faculty of Life Sciences , The University of Manchester , 131 Princess Street , Manchester M1 7DN , UK
| | - Gordon C Jayson
- Institute or Cancer Studies , University of Manchester , Manchester , UK
| | - John M Gardiner
- Manchester Institute of Biotechnology and School of Chemistry , University of Manchester , 131 Princess Street , M1 7DN , UK . ; Tel: +44 (0)161 306 4530
| |
Collapse
|
32
|
Hansen SU, Dalton CE, Baráth M, Kwan G, Raftery J, Jayson GC, Miller GJ, Gardiner JM. Synthesis of l-Iduronic Acid Derivatives via [3.2.1] and [2.2.2] l-Iduronic Lactones from Bulk Glucose-Derived Cyanohydrin Hydrolysis: A Reversible Conformationally Switched Superdisarmed/Rearmed Lactone Route to Heparin Disaccharides. J Org Chem 2015; 80:3777-89. [DOI: 10.1021/jo502776f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Steen U. Hansen
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - Charlotte E. Dalton
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - Marek Baráth
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - Glenn Kwan
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| | - James Raftery
- The
School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Gordon C. Jayson
- Institute
of Cancer Sciences, Christie Hospital and University of Manchester, Wilmslow Road, Manchester M20 4BX, U.K
| | - Gavin J. Miller
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
- The
School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - John M. Gardiner
- Manchester
Institute of Biotechnology and the School of Chemistry, 131 Princess Street, The University of Manchester, Manchester M1 7DN, U.K
| |
Collapse
|
33
|
Farrugia BL, Lord MS, Melrose J, Whitelock JM. Can we produce heparin/heparan sulfate biomimetics using "mother-nature" as the gold standard? Molecules 2015; 20:4254-76. [PMID: 25751786 PMCID: PMC6272578 DOI: 10.3390/molecules20034254] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022] Open
Abstract
Heparan sulfate (HS) and heparin are glycosaminoglycans (GAGs) that are heterogeneous in nature, not only due to differing disaccharide combinations, but also their sulfate modifications. HS is well known for its interactions with various growth factors and cytokines; and heparin for its clinical use as an anticoagulant. Due to their potential use in tissue regeneration; and the recent adverse events due to contamination of heparin; there is an increased surge to produce these GAGs on a commercial scale. The production of HS from natural sources is limited so strategies are being explored to be biomimetically produced via chemical; chemoenzymatic synthesis methods and through the recombinant expression of proteoglycans. This review details the most recent advances in the field of HS/heparin synthesis for the production of low molecular weight heparin (LMWH) and as a tool further our understanding of the interactions that occur between GAGs and growth factors and cytokines involved in tissue development and repair.
Collapse
Affiliation(s)
- Brooke L Farrugia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
- The Raymond Purves Research Labs, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney, The Royal North Shore Hospital of Sydney, St. Leonards, NSW 2065, Australia.
| | - John M Whitelock
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
34
|
Rowlands D, Sugahara K, Kwok JCF. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules 2015; 20:3527-48. [PMID: 25706756 PMCID: PMC6272379 DOI: 10.3390/molecules20033527] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 02/13/2015] [Indexed: 01/05/2023] Open
Abstract
With recent advances in the construction of synthetic glycans, selective targeting of the extracellular matrix (ECM) as a potential treatment for a wide range of diseases has become increasingly popular. The use of compounds that mimic the structure or bioactive function of carbohydrate structures has been termed glycomimetics. These compounds are mostly synthetic glycans or glycan-binding constructs which manipulate cellular interactions. Glycosaminoglycans (GAGs) are major components of the ECM and exist as a diverse array of differentially sulphated disaccharide units. In the central nervous system (CNS), they are expressed by both neurons and glia and are crucial for brain development and brain homeostasis. The inherent diversity of GAGs make them an essential biological tool for regulating a complex range of cellular processes such as plasticity, cell interactions and inflammation. They are also involved in the pathologies of various neurological disorders, such as glial scar formation and psychiatric illnesses. It is this diversity of functions and potential for selective interventions which makes GAGs a tempting target. In this review, we shall describe the molecular make-up of GAGs and their incorporation into the ECM of the CNS. We shall highlight the different glycomimetic strategies that are currently being used in the nervous system. Finally, we shall discuss some possible targets in neurological disorders that may be addressed using glycomimetics.
Collapse
Affiliation(s)
- Dáire Rowlands
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| | - Kazuyuki Sugahara
- Proteoglycan Signaling and Therapeutics Research Group, Graduate School of Life Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| | - Jessica C F Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK.
| |
Collapse
|
35
|
Tiwari V, Tarbutton MS, Shukla D. Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies. Molecules 2015; 20:2707-27. [PMID: 25665065 PMCID: PMC6272628 DOI: 10.3390/molecules20022707] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/02/2015] [Indexed: 12/30/2022] Open
Abstract
A modified form of heparan sulfate (HS) known as 3-O-sulfated heparan sulfate (3-OS HS) generates fusion receptor for herpes simplex virus (HSV) entry and spread. Primary cultures of corneal fibroblasts derived from human eye donors have shown the clinical significance of this receptor during HSV corneal infection. 3-OS HS- is a product of a rare enzymatic modification at C3 position of glucosamine residue which is catalyzed by 3-O-sulfotransferases (3-OSTs) enzymes. From humans to zebrafish, the 3-OST enzymes are highly conserved and widely expressed in cells and tissues. There are multiple forms of 3-OSTs each producing unique subset of sulfated HS making it chemically diverse and heterogeneous. HSV infection of cells or zebrafish can be used as a unique tool to understand the structural-functional activities of HS and 3-OS HS and likewise, the infection can be used as a functional assay to screen phage display libraries for identifying HS and 3-OS HS binding peptides or small molecule inhibitors. Using this approach over 200 unique 12-mer HS and 3-OS HS recognizing peptides were isolated and characterized against HSV corneal infection where 3-OS HS is known to be a key receptor. In this review we discuss emerging role of 3-OS HS based therapeutic strategies in preventing viral infection and tissue damage.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Morgan S Tarbutton
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, USA.
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Microbiology & Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Li YC, Ho IH, Ku CC, Zhong YQ, Hu YP, Chen ZG, Chen CY, Lin WC, Zulueta MML, Hung SC, Lin MG, Wang CC, Hsiao CD. Interactions that influence the binding of synthetic heparan sulfate based disaccharides to fibroblast growth factor-2. ACS Chem Biol 2014; 9:1712-7. [PMID: 24959968 DOI: 10.1021/cb500298q] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Heparan sulfate (HS) is a linear sulfated polysaccharide that mediates protein activities at the cell-extracellular interface. Its interactions with proteins depend on the complex patterns of sulfonations and sugar residues. Previously, we synthesized all 48 potential disaccharides found in HS and used them for affinity screening and X-ray structural analysis with fibroblast growth factor-1 (FGF1). Herein, we evaluated the affinities of the same sugars against FGF2 and determined the crystal structures of FGF2 in complex with three disaccharides carrying N-sulfonated glucosamine and 2-O-sulfonated iduronic acid as basic backbones. The crystal structures show that water molecules mediate different interactions between the 3-O-sulfonate group and Lys125. Moreover, the 6-O-sulfonate group forms intermolecular interactions with another FGF2 unit apart from the main binding site. These findings suggest that the water-mediated interactions and the intermolecular interactions influence the binding affinity of different disaccharides with FGF2, correlating with their respective dissociation constants in solution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Min-Guan Lin
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | | | | |
Collapse
|
37
|
Wisskirchen K, Lucifora J, Michler T, Protzer U. New pharmacological strategies to fight enveloped viruses. Trends Pharmacol Sci 2014; 35:470-8. [PMID: 25108320 PMCID: PMC7112871 DOI: 10.1016/j.tips.2014.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/07/2023]
Abstract
Many emerging or known, chronic viral diseases are caused by enveloped viruses. The review discusses research driven development of antivirals that became recently available or are in clinical evaluation. The main focus is on antiviral strategies with a broader therapeutic range, and on novel immune based therapeutics. Broad-spectrum antivirals will help to react faster to newly emerging viral diseases. Targeting immune cells against infected cells can restore immune responses in chronic infections.
Enveloped viruses pose an important health threat because most of the persistent and many emerging viruses are enveloped. In particular, newly emerging viruses create a need to develop broad-spectrum antivirals, which usually are obtained by targeting host cell factors. Persistent viruses have developed efficient strategies to escape host immune control, and treatment options are limited. Targeting host cell factors essential for virus persistence, or immune-based therapies provide alternative approaches. In this review, we therefore focus on recent developments to generate antivirals targeting host cell factors or immune-based therapeutic approaches to fight infections with enveloped viruses.
Collapse
Affiliation(s)
- Karin Wisskirchen
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany
| | - Julie Lucifora
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Thomas Michler
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich site, Munich, Germany.
| |
Collapse
|
38
|
Chang CH, Lico LS, Huang TY, Lin SY, Chang CL, Arco SD, Hung SC. Synthesis of the heparin-based anticoagulant drug fondaparinux. Angew Chem Int Ed Engl 2014; 53:9876-9. [PMID: 25044485 DOI: 10.1002/anie.201404154] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 11/10/2022]
Abstract
Fondaparinux, a synthetic pentasaccharide based on the heparin antithrombin-binding domain, is an approved clinical anticoagulant. Although it is a better and safer alternative to pharmaceutical heparins in many cases, its high cost, which results from the difficult and tedious synthesis, is a deterrent for its widespread use. The chemical synthesis of fondaparinux was achieved in an efficient and concise manner from commercially available D-glucosamine, diacetone α-D-glucose, and penta-O-acetyl-D-glucose. The method involves suitably functionalized building blocks that are readily accessible and employs shared intermediates and a series of one-pot reactions that considerably reduce the synthetic effort and improve the yield.
Collapse
Affiliation(s)
- Cheng-Hsiu Chang
- Genomics Research Center, Academia Sinica, No. 128 Academia Road, Section 2, Taipei 115 (Taiwan); Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300 (Taiwan)
| | | | | | | | | | | | | |
Collapse
|
39
|
Chang CH, Lico LS, Huang TY, Lin SY, Chang CL, Arco SD, Hung SC. Synthesis of the Heparin-Based Anticoagulant Drug Fondaparinux. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
40
|
Yoshida K, Yang B, Yang W, Zhang Z, Zhang J, Huang X. Chemical Synthesis of Syndecan-3 Glycopeptides Bearing Two Heparan Sulfate Glycan Chains. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Yoshida K, Yang B, Yang W, Zhang Z, Zhang J, Huang X. Chemical synthesis of syndecan-3 glycopeptides bearing two heparan sulfate glycan chains. Angew Chem Int Ed Engl 2014; 53:9051-8. [PMID: 24981920 DOI: 10.1002/anie.201404625] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 11/05/2022]
Abstract
Despite the ubiquitous presence of proteoglycans in mammalian systems, methodologies to synthesize this class of glycopeptides with homogeneous glycans are not well developed. Herein, we report the first synthesis of a glycosaminoglycan family glycopeptide containing two different heparan sulfate chains, namely the extracellular domain of syndecan-3. With the large size and tremendous structural complexity of these molecules, multiple unexpected obstacles were encountered during the synthesis, including high sensitivity to base treatment and the instability of glycopeptides with two glycan chains towards catalytic hydrogenation conditions. A successful strategy was established by constructing the partially deprotected single glycan chain containing glycopeptides first, followed by union of the glycan-bearing fragments and cleavage of the ester-type protecting groups. This work lays the foundation for preparing other members of this important class of molecules.
Collapse
Affiliation(s)
- Keisuke Yoshida
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, MI 48824 (USA)
| | | | | | | | | | | |
Collapse
|
42
|
Besret S, Vicogne J, Dahmani F, Fafeur V, Desmet R, Drobecq H, Romieu A, Melnyk P, Melnyk O. Thiocarbamate-linked polysulfonate-peptide conjugates as selective hepatocyte growth factor receptor binders. Bioconjug Chem 2014; 25:1000-10. [PMID: 24749766 PMCID: PMC4064695 DOI: 10.1021/bc500137j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The capacity of many proteins to interact with natural or synthetic polyanions has been exploited for modulating their biological action. However, the polydispersity of these macromolecular polyanions as well as their poor specificity is a severe limitation to their use as drugs. An emerging trend in this field is the synthesis of homogeneous and well-defined polyanion-peptide conjugates, which act as bivalent ligands, with the peptide part bringing the selectivity of the scaffold. Alternately, this strategy can be used for improving the binding of short peptides to polyanion-binding protein targets. This work describes the design and first synthesis of homogeneous polysulfonate-peptide conjugates using thiocarbamate ligation for binding to the extracellular domain of MET tyrosine kinase receptor for hepatocyte growth factor.
Collapse
|
43
|
CCR5/CD4/CXCR4 oligomerization prevents HIV-1 gp120IIIB binding to the cell surface. Proc Natl Acad Sci U S A 2014; 111:E1960-9. [PMID: 24778234 DOI: 10.1073/pnas.1322887111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CCR5 and CXCR4, the respective cell surface coreceptors of R5 and X4 HIV-1 strains, both form heterodimers with CD4, the principal HIV-1 receptor. Using several resonance energy transfer techniques, we determined that CD4, CXCR4, and CCR5 formed heterotrimers, and that CCR5 coexpression altered the conformation of both CXCR4/CXCR4 homodimers and CD4/CXCR4 heterodimers. As a result, binding of the HIV-1 envelope protein gp120IIIB to the CD4/CXCR4/CCR5 heterooligomer was negligible, and the gp120-induced cytoskeletal rearrangements necessary for HIV-1 entry were prevented. CCR5 reduced HIV-1 envelope-induced CD4/CXCR4-mediated cell-cell fusion. In nucleofected Jurkat CD4 cells and primary human CD4(+) T cells, CCR5 expression led to a reduction in X4 HIV-1 infectivity. These findings can help to understand why X4 HIV-1 strains infection affect T-cell types differently during AIDS development and indicate that receptor oligomerization might be a target for previously unidentified therapeutic approaches for AIDS intervention.
Collapse
|
44
|
Abstract
Heparan sulfate was isolated from two bivalve mollusks such as Tridacna maxima and Perna viridis. The isolated heparin was quantified in crude as well as purified samples and they were estimated as 2.72 and 2.2g/kg (crude) and 260 and 248 mg/g (purified) in T. maxima and P. viridis, respectively. Both the bivalves showed the anticoagulant activity of the crude and purified sample as 20,128 USP units/kg and 7.4 USP units/mg, 39,000 USP units/kg and 75 USP units/mg, 9460 USP units/kg and 4.3 USP units/mg, and 13,392 USP units/kg and 54 USP units/mg correspondingly in T. maxima and P. viridis. The antiproliferative activity that was studied with pulmonary artery smooth muscle cells using RPMI media reported that the result is in a dose-dependent manner. Among the two clams, P. viridis showed more antiproliferative activity than that of T. maxima.
Collapse
Affiliation(s)
- Muthuvel Arumugam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India.
| | - Sadhasivam Giji
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India
| |
Collapse
|
45
|
Xu P, Xu W, Dai Y, Yang Y, Yu B. Efficient synthesis of a library of heparin tri- and tetrasaccharides relevant to the substrate of heparanase. Org Chem Front 2014. [DOI: 10.1039/c4qo00039k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A robust glycosylation protocol was fixed to construct the GlcN–(1α→4)-GlcA/IdoA linkagesen routeto heparin oligosaccharides.
Collapse
Affiliation(s)
- Peng Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - Weichang Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - Yuanwei Dai
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - You Yang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| | - Biao Yu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032, China
| |
Collapse
|
46
|
Tetrasaccharide iteration synthesis of a heparin-like dodecasaccharide and radiolabelling for in vivo tissue distribution studies. Nat Commun 2013; 4:2016. [PMID: 23828390 PMCID: PMC3715853 DOI: 10.1038/ncomms3016] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 05/16/2013] [Indexed: 01/10/2023] Open
Abstract
Heparin-like oligosaccharides mediate numerous important biological interactions, of which many are implicated in various diseases. Synthetic improvements are central to the development of such oligosaccharides as therapeutics and, in addition, there are no methods to elucidate the pharmacokinetics of structurally defined heparin-like oligosaccharides. Here we report an efficient two-cycle [4+4+4] tetrasaccharide-iteration-based approach for rapid chemical synthesis of a structurally defined heparin-related dodecasaccharide, combined with the incorporation of a latent aldehyde tag, unmasked in the final step of chemical synthesis, providing a generic end group for labelling/conjugation. We exploit this latent aldehyde tag for 3H radiolabelling to provide the first example of this kind of agent for monitoring in vivo tissue distribution and in vivo stability of a biologically active, structurally defined heparin related dodecasaccharide. Such studies are critical for the development of related saccharide therapeutics, and the data here establish that a biologically active, synthetic, heparin-like dodecasaccharide provides good organ distribution, and serum lifetimes relevant to developing future oligosaccharide therapeutics. Heparin-like oligosaccharides are implicated in various diseases. Hansen et al. report an efficient two-cycle [4+4+4] tetrasaccharide-iteration-based approach to synthesize a structurally defined heparin dodecasaccharide with a latent aldehyde tag for labelling and conjugation.
Collapse
|
47
|
Zulueta MML, Lin SY, Hu YP, Hung SC. Synthetic heparin and heparan sulfate oligosaccharides and their protein interactions. Curr Opin Chem Biol 2013; 17:1023-9. [DOI: 10.1016/j.cbpa.2013.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/01/2013] [Indexed: 11/28/2022]
|
48
|
Connell BJ, Lortat-Jacob H. Human immunodeficiency virus and heparan sulfate: from attachment to entry inhibition. Front Immunol 2013; 4:385. [PMID: 24312095 PMCID: PMC3834540 DOI: 10.3389/fimmu.2013.00385] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/05/2013] [Indexed: 11/13/2022] Open
Abstract
By targeting cells that provide protection against infection, HIV-1 causes acquired immunodeficiency syndrome. Infection starts when gp120, the viral envelope glycoprotein, binds to CD4 and to a chemokine receptor usually CCR5 or CXCR4. As many microorganisms, HIV-1 also interacts with heparan sulfate (HS), a complex group of cell surface associated anionic polysaccharides. It has been thought that this binding, occurring at a step prior to CD4 recognition, increases infectivity by pre-concentrating the virion particles at the cell surface. Early work, dating from before the identification of CCR5 and CXCR4, showed that a variety of HS mimetics bind to the gp120 V3 loop through electrostatic interactions, compete with cell surface associated HS to bind the virus and consequently, neutralize the infectivity of a number of T-cell line-adapted HIV-1 strains. However, progress made to better understand HIV-1 attachment and entry, coupled with the recent identification of additional gp120 regions mediating HS recognition, have considerably modified this view. Firstly, the V3 loop from CXCR4-using viruses is much more positively charged compared to those using CCR5. HS inhibition of cell attachment is thus restricted to CXCR4-using viruses (such as T-cell line-adapted HIV-1). Secondly, studies aiming at characterizing the gp120/HS complex revealed that HS binding was far more complex than previously thought: in addition to the V3 loop of CXCR4 tropic gp120, HS interacts with several other cryptic areas of the protein, which can be induced upon CD4 binding, and are conserved amongst CCR5 and CXCR4 viruses. In view of these data, this review will detail the present knowledge on HS binding to HIV-1, with regards to attachment and entry processes. It will discuss the perspective of targeting the gp120 co-receptor binding site with HS mimetic compounds, a strategy that recently gave rise to entry inhibitors that work in the low nanomolar range, independently of co-receptor usage.
Collapse
Affiliation(s)
- Bridgette J Connell
- University of Grenoble Alpes, Institut de Biologie Structurale , Grenoble , France ; Centre National de la Recherche Scientifique, Institut de Biologie Structurale , Grenoble , France ; Commissariat à l'Énergie Atomique, Direction des Sciences du Vivant, Institut de Biologie Structurale , Grenoble , France
| | | |
Collapse
|
49
|
Griffin ME, Hsieh-Wilson LC. Synthetic probes of glycosaminoglycan function. Curr Opin Chem Biol 2013; 17:1014-22. [PMID: 24148269 PMCID: PMC3934325 DOI: 10.1016/j.cbpa.2013.09.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/24/2013] [Indexed: 01/07/2023]
Abstract
Glycosaminoglycans (GAGs) participate in many critical biological processes by modulating the activities of a wide range of proteins, including growth factors, chemokines, and viral receptors. Recent studies using synthetic oligosaccharides and glycomimetic polymers have established the importance of specific structural determinants in controlling GAG function. These findings illustrate the power of synthetic molecules to elucidate glycan-mediated signaling events, as well as the prospect of further advancements to understand the roles of GAGs in vivo and explore their therapeutic potential.
Collapse
Affiliation(s)
- Matthew E Griffin
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
50
|
Borst EM, Ständker L, Wagner K, Schulz TF, Forssmann WG, Messerle M. A peptide inhibitor of cytomegalovirus infection from human hemofiltrate. Antimicrob Agents Chemother 2013; 57:4751-60. [PMID: 23856778 PMCID: PMC3811406 DOI: 10.1128/aac.00854-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/10/2013] [Indexed: 12/18/2022] Open
Abstract
Naturally occurring substances with antimicrobial activity can serve as a starting point for the rational design of new drugs to treat infectious diseases. Here, we screened a library of peptides derived from human hemofiltrate for inhibitory effects on human cytomegalovirus (CMV) infection. We isolated a previously unknown derivative of the neutrophil-activating peptide 2, which we termed CYVIP, for CMV-inhibiting peptide. The peptide blocked infection with human and mouse CMV as well as with herpes simplex virus type 1 in different cell types. We found that CYVIP interferes with virus attachment to the cell surface, and structure-activity relationship studies revealed that positively charged lysine and arginine residues of CYVIP are essential for its inhibitory activity. The N-terminal 29 amino acids of the peptide were sufficient for inhibition, and substitution with an acidic residue further improved its activity. The target structure of CYVIP on the cell surface seems to be the sulfate residues of heparan sulfate proteoglycans, which are known to serve as herpesvirus attachment receptors. Our data suggest that O-sulfation of heparan sulfate is required for binding of CYVIP, and furthermore, that the initial interaction of CMV particles with cells takes place preferentially via 6-O-linked sulfate groups. These findings about CYVIP's mode of action lay the basis for further development of antivirals interfering with attachment of CMV to cells, a crucial step of the infection cycle.
Collapse
Affiliation(s)
| | - Ludger Ständker
- Center of Pharmacology and Clinic of Immunology, Research Group of Peptide Chemistry
| | | | - Thomas F. Schulz
- Department of Virology
- German Centre for Infection Research, Hannover Medical School, Hannover, Germany
| | - Wolf-Georg Forssmann
- Center of Pharmacology and Clinic of Immunology, Research Group of Peptide Chemistry
| | - Martin Messerle
- Department of Virology
- German Centre for Infection Research, Hannover Medical School, Hannover, Germany
| |
Collapse
|