1
|
Trzeciak AJ, Liu ZL, Gatie M, Krebs AS, Saitz Rojas W, O'Neal AJ, Baako AK, Wang Z, Nelson J, Miranda IC, Uddin J, Lipshutz A, Xie J, Huang CL, Saavedra PHV, Hadjantonakis AK, Overholtzer M, Glickman MS, Subramanya AR, Vierbuchen T, Etchegaray JI, Lucas CD, Parkhurst CN, Perry JSA. WNK1 mediates M-CSF-induced macropinocytosis to enforce macrophage lineage fidelity. Nat Commun 2025; 16:4945. [PMID: 40436823 PMCID: PMC12120055 DOI: 10.1038/s41467-025-59901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Accepted: 05/09/2025] [Indexed: 06/01/2025] Open
Abstract
Tissue-resident macrophages (TRM) are critical for mammalian organismal development and homeostasis. Here we report that with-no-lysine 1 (WNK1) controls myeloid progenitor fate, with Csf1riCre-mediated Wnk1 deletion in mice (WNK1-deficient mice) resulting in loss of TRMs and causing perinatal mortality. Mechanistically, absence of WNK1 or inhibition of WNK kinase activity disrupts macrophage colony-stimulating factor (M-CSF)-stimulated macropinocytosis, thereby blocking mouse and human progenitor and monocyte differentiation into macrophages and skewing progenitor differentiation into neutrophils. Treatment with PMA rescues macropinocytosis but not macrophage differentiation of WNK-inhibited progenitors, implicating that M-CSF-stimulated, macropinocytosis-induced activation of WNK1 is required for macrophage differentiation. Finally, M-CSF-stimulated macropinocytosis triggers WNK1 nuclear translocation and concomitant increased protein expression of interferon regulatory factor (IRF)8, whereas inhibition of macropinocytosis or WNK kinase activity suppresses IRF8 expression. Our results thus suggest that WNK1 and downstream IRF8-regulated genes are important for M-CSF/macropinocytosis-mediated regulation of myeloid cell lineage commitment during TRM development and homeostasis.
Collapse
Affiliation(s)
- Alissa J Trzeciak
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Zong-Lin Liu
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohamed Gatie
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Adam S Krebs
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Waleska Saitz Rojas
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anya J O'Neal
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ann K Baako
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Zhaoquan Wang
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
| | - Justin Nelson
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella C Miranda
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jazib Uddin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Allie Lipshutz
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Anna-Katerina Hadjantonakis
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Michael Overholtzer
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Michael S Glickman
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA
- Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arohan R Subramanya
- Dept of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Thomas Vierbuchen
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY, USA
| | - Jon Iker Etchegaray
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Christopher D Lucas
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, BioQuarter, UK
- Institute for Regeneration and Repair, Edinburgh, BioQuarter, UK
| | | | - Justin S A Perry
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Immunology and Microbial Pathogenesis, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Duan S, Agger K, Messling JE, Nishimura K, Han X, Peña-Rømer I, Shliaha P, Damhofer H, Douglas M, Kohli M, Pal A, Asad Y, Van Dyke A, Reilly R, Köchl R, Tybulewicz VLJ, Hendrickson RC, Raynaud FI, Gallipoli P, Poulogiannis G, Helin K. WNK1 signalling regulates amino acid transport and mTORC1 activity to sustain acute myeloid leukaemia growth. Nat Commun 2025; 16:4920. [PMID: 40425534 PMCID: PMC12116911 DOI: 10.1038/s41467-025-59969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The lack of curative therapies for acute myeloid leukaemia (AML) remains an ongoing challenge despite recent advances in the understanding of the molecular basis of the disease. Here we identify the WNK1-OXSR1/STK39 pathway as a previously uncharacterised dependency in AML. We show that genetic depletion and pharmacological inhibition of WNK1 or its downstream phosphorylation targets OXSR1 and STK39 strongly reduce cell proliferation and induce apoptosis in leukaemia cells in vitro and in vivo. Furthermore, we show that the WNK1-OXSR1/STK39 pathway controls mTORC1 signalling via regulating amino acid uptake through a mechanism involving the phosphorylation of amino acid transporters, such as SLC38A2. Our findings underscore an important role of the WNK1-OXSR1/STK39 pathway in regulating amino acid uptake and driving AML progression.
Collapse
Affiliation(s)
- Shunlei Duan
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karl Agger
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Erik Messling
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Koutarou Nishimura
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xuerui Han
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Isabel Peña-Rømer
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Pavel Shliaha
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helene Damhofer
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Max Douglas
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Manas Kohli
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Akos Pal
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Yasmin Asad
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Aaron Van Dyke
- Department of Chemistry & Biochemistry, Fairfield University, Fairfield, CT, USA
| | - Raquel Reilly
- Department of Chemistry & Biochemistry, Fairfield University, Fairfield, CT, USA
| | | | | | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Florence I Raynaud
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paolo Gallipoli
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - George Poulogiannis
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK
| | - Kristian Helin
- Division of Cell and Molecular Biology, The Institute of Cancer Research, Londo, UK.
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark.
- Cell Biology Program and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Fdel AM, Waters L, Sharma I, Jones S, Gee J, Atack JR, Banerjee S, Mehellou Y. Oxidative Stress-Responsive 1 Kinase Catalytic Activity Promotes Triple Negative Breast Cancer Oncogenic Potential. ACS Pharmacol Transl Sci 2025; 8:726-735. [PMID: 40109757 PMCID: PMC11915029 DOI: 10.1021/acsptsci.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/04/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
The protein kinase OSR1 has been highlighted as a biomarker for a poor prognosis in breast cancer (BC) patients. To further decipher the mechanism underpinning this, we studied the expression, phosphorylation status, and catalytic activity of OSR1 across a series of BC cell lines. OSR1 was found to be expressed across the various luminal and triple negative BC (TNBC) cell lines studied, although it was only constitutively active in the highly migratory TNBC cell line MDA-MB-231. Although this cell line carries p53 mutations, our data indicated that OSR1 constitutive kinase activity of the OSR1 in MDA-MB-231 was independent of p53. Interestingly, the inhibition of OSR1 had no significant impact on MDA-MB-231 cell viability, but it was found to contribute to its substantial cell migration and invasion, as this was significantly attenuated by the WNK/OSR1 inhibitor WNK463. Analogously, the overexpression of constitutively active OSR1 in the poorly migrating BC cell line MCF7 enhanced its cell mobility. Collectively, our results indicate that the pharmacological inhibition of OSR1 could be a promising novel strategy for preventing the oncogenic potential of TNBC.
Collapse
Affiliation(s)
- Azeza M Fdel
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
| | - Loren Waters
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| | - Ira Sharma
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Samuel Jones
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
| | - Julia Gee
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
| | - John R Atack
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| | - Sourav Banerjee
- Division of Cancer Research, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Youcef Mehellou
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, U.K
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, U.K
| |
Collapse
|
4
|
Hu J, Huynh DT, Dunn DE, Wu J, Manriquez-Rodriguez C, Zhang QE, Hirschkorn GA, Georgiou GR, Hirata T, Myers SA, Floyd SR, Chi JT, Boyce M. Evidence for Functional Regulation of the KLHL3/WNK Pathway by O-GlcNAcylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640596. [PMID: 40060460 PMCID: PMC11888436 DOI: 10.1101/2025.02.27.640596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The 42-member Kelch-like (KLHL) protein family are adaptors for ubiquitin E3 ligase complexes, governing the stability of a wide range of substrates. KLHL proteins are critical for maintaining proteostasis in a variety of tissues and are mutated in human diseases, including cancer, neurodegeneration, and familial hyperkalemic hypertension. However, the regulation of KLHL proteins remains incompletely understood. Previously, we reported that two KLHL family members, KEAP1 and gigaxonin, are regulated by O-linked β-N-acetylglucosamine (O-GlcNAc), an intracellular form of glycosylation. Interestingly, some ubiquitination targets of KEAP1 and gigaxonin are themselves also O-GlcNAcylated, suggesting that multi-level control by this posttranslational modification may influence many KLHL pathways. To test this hypothesis, we examined KLHL3, which ubiquitinates with-no-lysine (WNK) kinases to modulate downstream ion channel activity. Our biochemical and glycoproteomic data demonstrate that human KLHL3 and all four WNK kinases (WNK1-4) are O-GlcNAcylated. Moreover, our results suggest that O-GlcNAcylation affects WNK4 function in both osmolarity control and ferroptosis, with potential implications ranging from blood pressure regulation to neuronal health and survival. This work demonstrates the functional regulation of the KLHL3/WNK axis by O-GlcNAcylation and supports a broader model of O-GlcNAc serving as a general regulator of KLHL signaling and proteostasis.
Collapse
Affiliation(s)
- Jimin Hu
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Duc T. Huynh
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Denise E. Dunn
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jianli Wu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cindy Manriquez-Rodriguez
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Qianyi E. Zhang
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - George R. Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Tetsuya Hirata
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| | - Samuel A. Myers
- Laboratory for Immunochemical Circuits, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
5
|
Biggs O'May J, Vanes L, de Boer LL, Lewis DA, Hartweger H, Kunzelmann S, Hayward D, Llorian M, Köchl R, Tybulewicz VLJ. WNK1-dependent water influx is required for CD4 + T cell activation and T cell-dependent antibody responses. Nat Commun 2025; 16:1857. [PMID: 39984435 PMCID: PMC11845700 DOI: 10.1038/s41467-025-56778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/29/2025] [Indexed: 02/23/2025] Open
Abstract
Signaling from the T cell antigen receptor (TCR) on CD4+ T cells plays a critical role in adaptive immune responses by inducing T cell activation, proliferation, and differentiation. Here we demonstrate that WNK1, a kinase implicated in osmoregulation in the kidney, is required in T cells to support T-dependent antibody responses. We show that the canonical WNK1-OXSR1-STK39 kinase signaling pathway is required for TCR signaling in CD4+ T cells, their subsequent entry into the cell cycle, and suppression of the ATR-mediated G2/M cell cycle checkpoint. We show that the WNK1 pathway regulates ion influx leading to water influx, potentially through AQP3, and that water influx is required for TCR-induced signaling and cell cycle entry. Thus, TCR signaling via WNK1, OXSR1, STK39 and AQP3 leads to water entry that is essential for CD4+ T cell proliferation and hence T cell-dependent antibody responses.
Collapse
Affiliation(s)
| | - Lesley Vanes
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Leonard L de Boer
- The Francis Crick Institute, London, NW1 1AT, UK
- Imperial College, London, W12 0NN, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institute, Box 1031, SE-171 21, Solna, Sweden
| | | | - Harald Hartweger
- The Francis Crick Institute, London, NW1 1AT, UK
- Laboratory of Molecular Immunology, The Rockefeller University, 10065, New York, NY, USA
| | | | - Darryl Hayward
- The Francis Crick Institute, London, NW1 1AT, UK
- GSK, Stevenage, SG1 2NY, UK
| | | | - Robert Köchl
- The Francis Crick Institute, London, NW1 1AT, UK
- Kings College London, London, SE1 9RT, UK
| | | |
Collapse
|
6
|
Fidaleo AM, Bach MD, Orbeta S, Abdullaev IF, Martino N, Adam AP, Boulos MA, Dulin NO, Paul AR, Kuo YH, Mongin AA. LRRC8A-containing anion channels promote glioblastoma proliferation via a WNK1/mTORC2-dependent mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.02.636139. [PMID: 39975357 PMCID: PMC11838495 DOI: 10.1101/2025.02.02.636139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Leucine-rich repeat-containing protein 8A (LRRC8A) is the essential subunit of ubiquitous volume-regulated anion channels (VRACs). LRCC8A is overexpressed in several cancers and promotes negative survival outcomes via a poorly defined mechanism. Here, we explored the role of LRRC8A and VRACs in the progression of glioblastoma (GBM), the most common and deadly primary brain tumor. We found that, as compared to healthy controls, LRRC8A mRNA was strongly upregulated in surgical GBM specimens, patient-derived GBM cell lines, and GBM datasets from The Cancer Genome Atlas (TCGA). Our in-silico analysis indicated that patients belonging to the lowest LRRC8A expression quartile demonstrated a trend for extended life expectancy. In patient-derived GBM cultures, siRNA-driven LRRC8A knockdown reduced cell proliferation and additionally decreased intracellular chloride levels and inhibited activity of mTOR complex 2. The antiproliferative effect of LRRC8A downregulation was recapitulated with a pharmacological inhibitor of VRAC. Our ensuing biochemical and molecular biology analyses established that the LRRC8A-containing VRACs facilitate GBM proliferation via a new mechanism involving non-enzymatic actions of the chloride-sensitive protein kinase WNK1. Accordingly, the chloride-bound WNK1 stimulates mTORC2 and the mTORC2-dependent protein kinases AKT and SGK, which promote proliferation. These findings establish the new mTORC2-centric axis for VRAC dependent regulation of cellular functions and uncover potential targets for GBM intervention.
Collapse
Affiliation(s)
- Antonio M Fidaleo
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Martin D Bach
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Iskandar F Abdullaev
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nina Martino
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Mateo A Boulos
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL, USA
| | - Alexandra R Paul
- Department of Neurosurgery, Albany Medical College, Albany, NY, USA
| | - Yu-Hung Kuo
- Neurosurgery, Luminis Health Anne Arundel Medical Center, Annapolis, MD, USA
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
Teixeira LR, Akella R, Humphreys JM, He H, Goldsmith EJ. Water and chloride as allosteric inhibitors in WNK kinase osmosensing. eLife 2024; 12:RP88224. [PMID: 39584807 PMCID: PMC11588334 DOI: 10.7554/elife.88224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.
Collapse
Affiliation(s)
- Liliana R Teixeira
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Radha Akella
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - John M Humphreys
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Haixia He
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Elizabeth J Goldsmith
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
8
|
Kim JS, Kehrl JH. Inhibition of WNK Kinases in NK Cells Disrupts Cellular Osmoregulation and Control of Tumor Metastasis. J Innate Immun 2024; 16:451-469. [PMID: 39265537 PMCID: PMC11521464 DOI: 10.1159/000540744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 09/14/2024] Open
Abstract
INTRODUCTION The serine/threonine with-no-lysine (WNK) kinase family function in blood pressure control, electrolyte homeostasis, and cellular osmoregulation. These kinases and their downstream effectors are considered promising therapeutic targets in hypertension and stroke. However, the role of WNK kinases in immune cells remains poorly understood. METHODS Using the small-molecule WNK kinase inhibitors WNK463 and WNK-IN-11, we investigated how WNK kinase inhibition affects natural killer (NK) cell physiology. RESULTS WNK kinase inhibition with WNK463 or WNK-IN-11 significantly decreased IL-2-activated NK cell volume, motility, and cytolytic activity. Treatment of NK cells with these inhibitors induced autophagy by activating AMPK and inhibiting mTOR signaling. Moreover, WNK kinase inhibition increased phosphorylation of Akt and c-Myc by misaligning activity of activating kinases and inhibitory phosphatases. Treatment of tumor-bearing mice with WNK463 impaired tumor metastasis control by adoptively transferred NK cells. CONCLUSION The catalytic activity of WNK kinases has a critical role of multiple aspects of NK cell physiology and their pharmacologic inhibition negatively impacts NK cell function.
Collapse
Affiliation(s)
- Ji Sung Kim
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Li L, Xie D, Yu S, Ma M, Fan K, Chen J, Xiu M, Xie K, Li Y, Gao Y. WNK1 Interaction with KEAP1 Promotes NRF2 Stabilization to Enhance the Oxidative Stress Response in Hepatocellular Carcinoma. Cancer Res 2024; 84:2776-2791. [PMID: 38885324 DOI: 10.1158/0008-5472.can-23-1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/30/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Cellular oxidative stress plays a key role in the development and progression of hepatocellular carcinoma (HCC). A better understanding of the processes that regulate reactive oxygen species (ROS) homeostasis could uncover improved strategies for treating HCC. Herein, we identified protein kinase with-no-lysine kinase 1 (WNK1) as an antioxidative factor and therapeutic target in HCC. In human HCC, WNK1 expression was increased and correlated with poor patient prognosis. WNK1 knockdown significantly inhibited cell proliferation and xenograft tumor growth. Mechanistically, WNK1 competed with nuclear factor erythroid 2-related factor 2 (NRF2) for binding with the partial Kelch domain of Kelch-like ECH-associated protein 1 (KEAP1), reducing NRF2 ubiquitination and promoting NRF2 accumulation and nuclear translocation to increase antioxidant response. WNK1 silencing increased H2O2-induced apoptosis and inhibited cell growth by elevating ROS levels, which could be rescued by treatment with the antioxidant N-acetylcysteine and NRF2 activator tert-butylhydroquinone. Liver-specific WNK1 knockout mouse models of HCC substantiated that WNK1 promoted HCC development by regulating ROS levels. WNK463, an inhibitor of the WNK kinase family, suppressed HCC progression and altered the redox status. These findings suggest that WNK1 plays a critical role in HCC development and progression and that the WNK1-oxidative stress axis may be a promising therapeutic target for HCC. Significance: Inhibiting WNK1 induces NRF2 degradation and reduces the oxidative stress response to suppress hepatocellular carcinoma growth, indicating that targeting the WNK1-KEAP1-NRF2 axis is a potential strategy to treat liver cancer.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dacheng Xie
- Department of Medical Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shijun Yu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Muyuan Ma
- Center for Pancreatic Cancer Research, The South China University of Technology, Guangzhou, China
| | - Kailing Fan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jingde Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mengxi Xiu
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology, Guangzhou, China
| | - Yandong Li
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Hwang IY, Kim JS, Harrison KA, Park C, Shi CS, Kehrl JH. Chemokine-mediated F-actin dynamics, polarity, and migration in B lymphocytes depend on WNK1 signaling. Sci Signal 2024; 17:eade1119. [PMID: 39190707 PMCID: PMC11542683 DOI: 10.1126/scisignal.ade1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 05/01/2023] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
Ligand-engaged chemokine receptors trigger nucleotide exchange in heterotrimeric Gαi proteins, which stimulates cytoskeletal reorganization and cell polarity changes. To better understand the signaling events responsible for these cellular changes, we focused on early changes in F-actin dynamics after engagement of the chemokine receptor CXCR5 in murine splenic B cells. Within 10 seconds of exposure to the CXCR5 ligand CXCL13, three-dimensional lamellar-like pseudopods and F-actin-rich ridges appeared. The transient F-actin increase depended on Gαi2/3 signaling, the PI3K/AKT pathway, ERK activation, phospholipase C activity, and Rac1/2 activation mediated by Dock2 (dedicator of cytokinesis 2). Immunoblot analyses identified the kinase WNK1 (with no lysine kinase 1) as a potential early AKT effector. Treating B cells with specific WNK inhibitors disrupted F-actin dynamics and impaired B cell polarity, motility, and chemotaxis. These changes were mimicked in a murine B cell line by CRISPR-Cas9 gene editing of Wnk1, which also suggested that WNK1 contributed to B cell proliferation. Administration of a single dose of a WNK inhibitor transiently reduced B cell motility and polarity in the lymph nodes of live mice. These results indicate that WNK1 signaling maintains B cell responsiveness to CXCL13 and suggest that pharmacological inhibition of WNK1, which is involved in cancer progression and blood pressure regulation, may affect humoral immunity.
Collapse
Affiliation(s)
- Il-Young Hwang
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Ji Sung Kim
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kathleen A. Harrison
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chung Park
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Chong Shan Shi
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - John H. Kehrl
- B-cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
11
|
Teixeira LR, Akella R, Humphreys JM, He H, Goldsmith EJ. Water and chloride as allosteric inhibitors in WNK kinase osmosensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.29.555411. [PMID: 37693587 PMCID: PMC10491171 DOI: 10.1101/2023.08.29.555411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1and CWN2). Here we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride binding site and are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 Cluster mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.
Collapse
|
12
|
Zhao Y, Schubert H, Blakely A, Forbush B, Smith MD, Rinehart J, Cao E. Structural bases for Na +-Cl - cotransporter inhibition by thiazide diuretic drugs and activation by kinases. Nat Commun 2024; 15:7006. [PMID: 39143061 PMCID: PMC11324901 DOI: 10.1038/s41467-024-51381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024] Open
Abstract
The Na+-Cl- cotransporter (NCC) drives salt reabsorption in the kidney and plays a decisive role in balancing electrolytes and blood pressure. Thiazide and thiazide-like diuretics inhibit NCC-mediated renal salt retention and have been cornerstones for treating hypertension and edema since the 1950s. Here we determine NCC co-structures individually complexed with the thiazide drug hydrochlorothiazide, and two thiazide-like drugs chlorthalidone and indapamide, revealing that they fit into an orthosteric site and occlude the NCC ion translocation pathway. Aberrant NCC activation by the WNKs-SPAK kinase cascade underlies Familial Hyperkalemic Hypertension, but it remains unknown whether/how phosphorylation transforms the NCC structure to accelerate ion translocation. We show that an intracellular amino-terminal motif of NCC, once phosphorylated, associates with the carboxyl-terminal domain, and together, they interact with the transmembrane domain. These interactions suggest a phosphorylation-dependent allosteric network that directly influences NCC ion translocation.
Collapse
Affiliation(s)
- Yongxiang Zhao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Heidi Schubert
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Micholas Dean Smith
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37996, USA
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
- Systems Biology Institute, Yale University, New Haven, CT, USA
| | - Erhu Cao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
13
|
Xiao YX, Lee SY, Aguilera-Uribe M, Samson R, Au A, Khanna Y, Liu Z, Cheng R, Aulakh K, Wei J, Farias AG, Reilly T, Birkadze S, Habsid A, Brown KR, Chan K, Mero P, Huang JQ, Billmann M, Rahman M, Myers C, Andrews BJ, Youn JY, Yip CM, Rotin D, Derry WB, Forman-Kay JD, Moses AM, Pritišanac I, Gingras AC, Moffat J. The TSC22D, WNK, and NRBP gene families exhibit functional buffering and evolved with Metazoa for cell volume regulation. Cell Rep 2024; 43:114417. [PMID: 38980795 DOI: 10.1016/j.celrep.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/08/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
The ability to sense and respond to osmotic fluctuations is critical for the maintenance of cellular integrity. We used gene co-essentiality analysis to identify an unappreciated relationship between TSC22D2, WNK1, and NRBP1 in regulating cell volume homeostasis. All of these genes have paralogs and are functionally buffered for osmo-sensing and cell volume control. Within seconds of hyperosmotic stress, TSC22D, WNK, and NRBP family members physically associate into biomolecular condensates, a process that is dependent on intrinsically disordered regions (IDRs). A close examination of these protein families across metazoans revealed that TSC22D genes evolved alongside a domain in NRBPs that specifically binds to TSC22D proteins, which we have termed NbrT (NRBP binding region with TSC22D), and this co-evolution is accompanied by rapid IDR length expansion in WNK-family kinases. Our study reveals that TSC22D, WNK, and NRBP genes evolved in metazoans to co-regulate rapid cell volume changes in response to osmolarity.
Collapse
Affiliation(s)
- Yu-Xi Xiao
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Seon Yong Lee
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Magali Aguilera-Uribe
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Aaron Au
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Yukti Khanna
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Zetao Liu
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Ran Cheng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kamaldeep Aulakh
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jiarun Wei
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Adrian Granda Farias
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Taylor Reilly
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Saba Birkadze
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Andrea Habsid
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kevin R Brown
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Katherine Chan
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Patricia Mero
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jie Qi Huang
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Maximilian Billmann
- Institute of Human Genetics, School of Medicine and University Hospital Bonn, University of Bonn, 53127 Bonn, Germany
| | - Mahfuzur Rahman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chad Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda J Andrews
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Ji-Young Youn
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Christopher M Yip
- Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Daniela Rotin
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julie D Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alan M Moses
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Iva Pritišanac
- Otto-Loewi Research Center, Division of Medicinal Chemistry, Medical University of Graz, Neue Stiftingtalstrabe 6, 8010, Graz, Austria
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, ON, Canada
| | - Jason Moffat
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Institute for Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Yin T, He L, Du Y, Liu J, Peng L, Yang M, Sun S, Liu J, Li J, Cao J, Zhu H, Wang S. Macrophage WNK1 senses intracellular hypo-chlorine to regulate vulnerability to sepsis attack during hypochloremia. Int Immunopharmacol 2024; 139:112721. [PMID: 39033662 DOI: 10.1016/j.intimp.2024.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Sepsis is one of the leading causes of death in critical patients worldwide and its occurrence is related to the excessive activation of macrophages. Chloride loss worsens the prognosis of patients with sepsis but the underlying mechanism is currently unclear. In this study, we founded that macrophages deficient in intracellular Cl- secrete more inflammatory cytokines such as IL-1β, IL-6 and TNF-α compared with control group. The intracellular chloride level decreased in WNK1 deficiency or activity inhibited macrophages with more severe inflammatory response after LPS treatment. Remimazolam, as classic GABAa receptor agonist, alleviates excessive inflammation cascade by promoting macrophage chloride influx during sepsis progression. Collectively, this study proves that macrophage WNK1 acts as a negative regulator of inflammatory response by sensing chloride to maintain intracellular chloride balance during sepsis coupled with hypochloremia.
Collapse
Affiliation(s)
- Tianyue Yin
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Lingwei He
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Yuhao Du
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Mengmeng Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Shuaijie Sun
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Jingya Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jun Li
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jiangbing Cao
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China; Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, Anhui 230001, China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
15
|
Jaykumar AB, Binns D, Taylor CA, Anselmo A, Birnbaum SG, Huber KM, Cobb MH. WNKs regulate mouse behavior and alter central nervous system glucose uptake and insulin signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598125. [PMID: 38915673 PMCID: PMC11195145 DOI: 10.1101/2024.06.09.598125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions. In this study, we demonstrate that inhibition of WNK (With-No-lysine (K)) kinases improves learning and memory in mice. Neuronal inhibition of WNK enhances in vivo hippocampal glucose uptake. Inhibition of WNK enhances insulin signaling output and insulin-dependent GLUT4 trafficking to the plasma membrane in mice primary neuronal cultures and hippocampal slices. Therefore, we propose that the extent of neuronal WNK kinase activity has an important influence on learning, memory and anxiety-related behaviors, in part, by modulation of neuronal insulin signaling.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Derk Binns
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Clinton A. Taylor
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Anthony Anselmo
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| | - Shari G. Birnbaum
- Departments of Peter O’Donnell Jr. Brain Institute and Psychiatry, UT Southwestern Medical Center, Dallas, USA
| | | | - Melanie H. Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA
| |
Collapse
|
16
|
Wu W, Sun J, Zhang J, Zhao H, Qiu S, Li C, Shi C, Xu Y. Phosphoproteomics reveals a novel mechanism underlying the proarrhythmic effects of nilotinib, vandetanib, and mobocertinib. Toxicology 2024; 505:153830. [PMID: 38754619 DOI: 10.1016/j.tox.2024.153830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
The use of tyrosine kinase inhibitors (TKIs) has resulted in significant occurrence of arrhythmias. However, the precise mechanism of the proarrhythmic effect is not fully understood. In this study, we found that nilotinib (NIL), vandetanib (VAN), and mobocertinib (MOB) induced the development of "cellrhythmia" (arrhythmia-like events) in a concentration-dependent manner in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Continuous administration of NIL, VAN, or MOB in animals significantly prolonged the action potential durations (APD) and increased susceptibility to arrhythmias. Using phosphoproteomic analysis, we identified proteins with altered phosphorylation levels after treatment with 3 μM NIL, VAN, and MOB for 1.5 h. Using these identified proteins as substrates, we performed kinase-substrate enrichment analysis to identify the kinases driving the changes in phosphorylation levels of these proteins. MAPK and WNK were both inhibited by NIL, VAN, and MOB. A selective inhibitor of WNK1, WNK-IN-11, induced concentration- and time-dependent cellrhythmias and prolonged field potential duration (FPD) in hiPSC-CMs in vitro; furthermore, administration in guinea pigs confirmed that WNK-IN-11 prolonged ventricular repolarization and increased susceptibility to arrhythmias. Fingding indicated that WNK1 inhibition had an in vivo and in vitro arrhythmogenic phenotype similar to TKIs. Additionally,three of TKIs reduced hERG and KCNQ1 expression at protein level, not at transcription level. Similarly, the knockdown of WNK1 decreased hERG and KCNQ1 protein expression in hiPSC-CMs. Collectively, our data suggest that the proarrhythmic effects of NIL, VAN, and MOB occur through a kinase inhibition mechanism. NIL, VAN, and MOB inhibit WNK1 kinase, leading to a decrease in hERG and KCNQ1 protein expression, thereby prolonging action potential repolarization and consequently cause arrhythmias.
Collapse
Affiliation(s)
- Wenting Wu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Jiali Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Haining Zhao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Suhua Qiu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Congxin Li
- Department of Pharmacy, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Chenxia Shi
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China; Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang 050017, China; Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang 050017, China.
| |
Collapse
|
17
|
Ye T, Mishra AK, Banday S, Li R, Hu K, Coleman MM, Shan Y, Chowdhury SR, Zhou L, Pak ML, Simone TM, Malonia SK, Zhu LJ, Kelliher MA, Green MR. Identification of WNK1 as a therapeutic target to suppress IgH/MYC expression in multiple myeloma. Cell Rep 2024; 43:114211. [PMID: 38722741 DOI: 10.1016/j.celrep.2024.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/10/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells. Genetic and pharmacological inhibition of WNK1 reduces MYC expression and, further, disrupts the MYC-dependent transcriptional program. Mechanistically, WNK1 inhibition attenuates the activity of the immunoglobulin heavy chain (IgH) enhancer, thus reducing MYC transcription when this locus is translocated near the MYC locus. WNK1 inhibition profoundly impacts MM cell behaviors, leading to growth inhibition, cell-cycle arrest, senescence, and apoptosis. Importantly, the WNK inhibitor WNK463 inhibits MM growth in primary patient samples as well as xenograft mouse models and exhibits synergistic effects with various anti-MM compounds. Collectively, our study uncovers WNK1 as a potential therapeutic target in MM.
Collapse
Affiliation(s)
- Tianyi Ye
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
| | - Alok K Mishra
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shahid Banday
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rui Li
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kai Hu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Madison M Coleman
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Yi Shan
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Shreya Roy Chowdhury
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lin Zhou
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Magnolia L Pak
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Tessa M Simone
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Sunil K Malonia
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lihua Julie Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michelle A Kelliher
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
18
|
Tran S, Sipila P, Thakur S, Zhang C, Narendran A. Identification and In Vivo Validation of Unique Anti-Oncogenic Mechanisms Involving Protein Kinase Signaling and Autophagy Mediated by the Investigational Agent PV-10. Cancers (Basel) 2024; 16:1520. [PMID: 38672602 PMCID: PMC11048188 DOI: 10.3390/cancers16081520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
PV-10 is a 10% formulation of rose bengal sodium that has potent immunotherapeutic and anti-cancer activity against various tumors, including metastatic melanoma and refractory neuroblastoma. Currently, PV-10 is undergoing clinical testing for refractory metastatic neuroendocrine cancer and melanomas. However, preclinical investigation of PV-10 activity and its mechanisms against phenotypically and molecularly diverse adult solid tumors had not been conducted. In a panel of human cell lines derived from breast, colorectal, head and neck, and testicular cancers, we demonstrated that PV-10 induces cytotoxicity by apoptotic and autophagic pathways involving caspase-mediated PARP cleavage, downregulation of SQSTM1/p62, and upregulation of beclin-1. Treatment with PV-10 also consistently reduced phosphorylation of WNK1, which has been implicated in cancer cell migration and autophagy inhibition. By wound healing assay, PV-10 treatment inhibited the migration of cancer cells. Finally, significant inhibition of tumor growth was also noted in tumor-bearing mice treated with PV-10 by intralesional or systemic administration. In addition to known PV-10-mediated tumor-specific cytotoxic effects, we identified the mechanisms of PV-10 and provide new insights into its effect on autophagy and metastasis. Our data provide essential mechanism-based evidence and biomarkers of activity to formulate clinical studies of PV-10 in the future.
Collapse
Affiliation(s)
| | | | | | | | - Aru Narendran
- Department of Oncology, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
19
|
Liu Y, Huang R, Wang R, Tamalunas A, Waidelich R, Stief CG, Hennenberg M. Isoform-independent promotion of contractility and proliferation, and suppression of survival by with no lysine/K kinases in prostate stromal cells. FASEB J 2024; 38:e23604. [PMID: 38591106 DOI: 10.1096/fj.202400362r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
With no lysine/K kinases (WNKs) promote vasocontraction and vascular smooth muscle cell proliferation. In the prostate, smooth muscle contraction and growth may be critical for the development and medical treatment of voiding symptoms in benign prostatic hyperplasia. Here, we examined the effects of isoform-specific WNK silencing and of the WNK inhibitor WNK463 on growth-related functions and contraction in prostate stromal cells, and in human prostate tissues. Impacts of WNK silencing by transfection of cultured stromal cells with isoform-specific siRNAs were qualitatively and quantitatively similar for each WNK isoform. Effects of silencing were largest on cell death (3-5 fold increase in annexin V-positive/7-AAD-positive cells), on proliferation rate, Ki-67 mRNA expression and actin organization (reduced around two-thirds). Contraction in matrix contraction assays and viability were reduced to a lower degree (approximately half), but again to a similar extent for each WNK isoform. Effects of silencing were quantitatively and qualitatively reproduced by 10 μM WNK463, while 1 μM still induced cell death and breakdown in actin organization, without affecting proliferation or viability. Using 500 nM and 10 μM, WNK463 partly inhibited neurogenic and U46619-induced contractions of human prostate tissues (around half), while inhibition of α1-adrenergic contractions (around half) was limited to 10 μM. All four WNK isoforms suppress cell death and promote proliferation in prostate stromal cells. WNK-driven contraction of stromal cells appears possible, even though to a limited extent. Outcomes of isoform-specific WNK silencing can be fully reproduced by WNK463, including inhibition of smooth muscle contraction in human prostate tissues, but require high concentrations.
Collapse
Affiliation(s)
- Yuhan Liu
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ru Huang
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Ruixiao Wang
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Raphaela Waidelich
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian G Stief
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Martin Hennenberg
- Department of Urology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Rahman MS, Islam R, Bhuiyan MIH. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Front Pharmacol 2024; 15:1374408. [PMID: 38659577 PMCID: PMC11041382 DOI: 10.3389/fphar.2024.1374408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Cerebrovascular diseases and their sequalae, such as ischemic stroke, chronic cerebral hypoperfusion, and vascular dementia are significant contributors to adult disability and cognitive impairment in the modern world. Astrocytes are an integral part of the neurovascular unit in the CNS and play a pivotal role in CNS homeostasis, including ionic and pH balance, neurotransmission, cerebral blood flow, and metabolism. Astrocytes respond to cerebral insults, inflammation, and diseases through unique molecular, morphological, and functional changes, collectively known as reactive astrogliosis. The function of reactive astrocytes has been a subject of debate. Initially, astrocytes were thought to primarily play a supportive role in maintaining the structure and function of the nervous system. However, recent studies suggest that reactive astrocytes may have both beneficial and detrimental effects. For example, in chronic cerebral hypoperfusion, reactive astrocytes can cause oligodendrocyte death and demyelination. In this review, we will summarize the (1) roles of ion transporter cascade in reactive astrogliosis, (2) role of reactive astrocytes in vascular dementia and related dementias, and (3) potential therapeutic approaches for dementing disorders targeting reactive astrocytes. Understanding the relationship between ion transporter cascade, reactive astrogliosis, and cerebrovascular diseases may reveal mechanisms and targets for the development of therapies for brain diseases associated with reactive astrogliosis.
Collapse
Affiliation(s)
- Md Shamim Rahman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| | | | - Mohammad Iqbal H. Bhuiyan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
21
|
Garrud TAC, Bell B, Mata-Daboin A, Peixoto-Neves D, Collier DM, Cordero-Morales JF, Jaggar JH. WNK kinase is a vasoactive chloride sensor in endothelial cells. Proc Natl Acad Sci U S A 2024; 121:e2322135121. [PMID: 38568964 PMCID: PMC11009681 DOI: 10.1073/pnas.2322135121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Endothelial cells (ECs) line the wall of blood vessels and regulate arterial contractility to tune regional organ blood flow and systemic pressure. Chloride (Cl-) is the most abundant anion in ECs and the Cl- sensitive With-No-Lysine (WNK) kinase is expressed in this cell type. Whether intracellular Cl- signaling and WNK kinase regulate EC function to alter arterial contractility is unclear. Here, we tested the hypothesis that intracellular Cl- signaling in ECs regulates arterial contractility and examined the signaling mechanisms involved, including the participation of WNK kinase. Our data obtained using two-photon microscopy and cell-specific inducible knockout mice indicated that acetylcholine, a prototypical vasodilator, stimulated a rapid reduction in intracellular Cl- concentration ([Cl-]i) due to the activation of TMEM16A, a Cl- channel, in ECs of resistance-size arteries. TMEM16A channel-mediated Cl- signaling activated WNK kinase, which phosphorylated its substrate proteins SPAK and OSR1 in ECs. OSR1 potentiated transient receptor potential vanilloid 4 (TRPV4) currents in a kinase-dependent manner and required a conserved binding motif located in the channel C terminus. Intracellular Ca2+ signaling was measured in four dimensions in ECs using a high-speed lightsheet microscope. WNK kinase-dependent activation of TRPV4 channels increased local intracellular Ca2+ signaling in ECs and produced vasodilation. In summary, we show that TMEM16A channel activation reduces [Cl-]i, which activates WNK kinase in ECs. WNK kinase phosphorylates OSR1 which then stimulates TRPV4 channels to produce vasodilation. Thus, TMEM16A channels regulate intracellular Cl- signaling and WNK kinase activity in ECs to control arterial contractility.
Collapse
Affiliation(s)
- Tessa A. C. Garrud
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
| | - Briar Bell
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX77030
| | - Alejandro Mata-Daboin
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
| | | | - Daniel M. Collier
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN38163
| | - Julio F. Cordero-Morales
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX77030
| | - Jonathan H. Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN38163
| |
Collapse
|
22
|
Zhang J. Hereditary causes of hypertension due to increased sodium transport. Curr Opin Pediatr 2024; 36:211-218. [PMID: 37909881 DOI: 10.1097/mop.0000000000001304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
PURPOSE OF REVIEW Hypertension, commonly known as high blood pressure, is a widespread health condition affecting a large number of individuals across the globe. Although lifestyle choices and environmental factors are known to have a significant impact on its development, there is growing recognition of the influence of genetic factors in the pathogenesis of hypertension. This review specifically focuses on the hereditary causes of hypertension that are associated with increased sodium transport through the thiazide-sensitive NaCl cotransporter (NCC) or amiloride-sensitive epithelial sodium channel (ENaC), crucial mechanisms involved in regulating blood pressure in the kidneys. By examining genetic mutations and signaling molecules linked to the dysregulation of sodium transport, this review aims to deepen our understanding of the hereditary causes of hypertension and shed light on potential therapeutic targets. RECENT FINDINGS Liddle syndrome (LS) is a genetic disorder that typically manifests early in life and is characterized by hypertension, hypokalemic metabolic alkalosis, hyporeninemia, and suppressed aldosterone secretion. This condition is primarily caused by gain-of-function mutations in ENaC. In contrast, Pseudohypoaldosteronism type II (PHAII) is marked by hyperkalemia and hypertension, alongside other clinical features such as hyperchloremia, metabolic acidosis, and suppressed plasma renin levels. PHAII results from overactivations of NCC, brought about by gain-of-function mutations in its upstream signaling molecules, including WNK1 (with no lysine (K) 1), WNK4, Kelch-like 3 (KLHL3), and cullin3 (CUL3). SUMMARY NCC and ENaC are integral components, and their malfunctions lead to disorders like LS and PHAII, hereditary causes of hypertension. Current treatments for LS involve ENaC blockers (e.g., triamterene and amiloride) in conjunction with low-sodium diets, effectively normalizing blood pressure and potassium levels. In PHAII, thiazide diuretics, which inhibit NCC, are the mainstay treatment, albeit with some limitations and potential side effects. Ongoing research in developing alternative treatments, including small molecules targeting key regulators, holds promise for more effective and tailored hypertension solutions.
Collapse
Affiliation(s)
- Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Exeter, UK
| |
Collapse
|
23
|
Hu H, Liang W, Ding G. Ion homeostasis in diabetic kidney disease. Trends Endocrinol Metab 2024; 35:142-150. [PMID: 37880052 DOI: 10.1016/j.tem.2023.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023]
Abstract
The complications of type 2 diabetes are a major global public health problem with high incidence and mortality, affecting almost all individuals with diabetes worldwide. Diabetic kidney disease (DKD) is one such primary complication and has become a leading cause of end-stage renal disease in patients with diabetes. Progression from diabetes to DKD is a complex process typically involving multiple mechanisms. Recent remarkable clinical benefits of sodium-glucose cotransporter 2 (SGLT2) inhibitors in diabetes and DKD highlight the critical impact of renal ion homeostasis on disease progression. This review comprehensively examines the impact of ion homeostasis on the transition from diabetes to DKD, outlining possible therapeutic interventions and addressing the ongoing challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China.
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, 238 Jiefang Rd, Wuhan, Hubei 430060, China; Key Clinical Research Center of Kidney Disease, 238 Jiefang Rd, Wuhan, Hubei 430060, China.
| |
Collapse
|
24
|
McMoneagle E, Zhou J, Zhang S, Huang W, Josiah SS, Ding K, Wang Y, Zhang J. Neuronal K +-Cl - cotransporter KCC2 as a promising drug target for epilepsy treatment. Acta Pharmacol Sin 2024; 45:1-22. [PMID: 37704745 PMCID: PMC10770335 DOI: 10.1038/s41401-023-01149-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/02/2023] [Indexed: 09/14/2023]
Abstract
Epilepsy is a prevalent neurological disorder characterized by unprovoked seizures. γ-Aminobutyric acid (GABA) serves as the primary fast inhibitory neurotransmitter in the brain, and GABA binding to the GABAA receptor (GABAAR) regulates Cl- and bicarbonate (HCO3-) influx or efflux through the channel pore, leading to GABAergic inhibition or excitation, respectively. The neuron-specific K+-Cl- cotransporter 2 (KCC2) is essential for maintaining a low intracellular Cl- concentration, ensuring GABAAR-mediated inhibition. Impaired KCC2 function results in GABAergic excitation associated with epileptic activity. Loss-of-function mutations and altered expression of KCC2 lead to elevated [Cl-]i and compromised synaptic inhibition, contributing to epilepsy pathogenesis in human patients. KCC2 antagonism studies demonstrate the necessity of limiting neuronal hyperexcitability within the brain, as reduced KCC2 functioning leads to seizure activity. Strategies focusing on direct (enhancing KCC2 activation) and indirect KCC2 modulation (altering KCC2 phosphorylation and transcription) have proven effective in attenuating seizure severity and exhibiting anti-convulsant properties. These findings highlight KCC2 as a promising therapeutic target for treating epilepsy. Recent advances in understanding KCC2 regulatory mechanisms, particularly via signaling pathways such as WNK, PKC, BDNF, and its receptor TrkB, have led to the discovery of novel small molecules that modulate KCC2. Inhibiting WNK kinase or utilizing newly discovered KCC2 agonists has demonstrated KCC2 activation and seizure attenuation in animal models. This review discusses the role of KCC2 in epilepsy and evaluates its potential as a drug target for epilepsy treatment by exploring various strategies to regulate KCC2 activity.
Collapse
Affiliation(s)
- Erin McMoneagle
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Jin Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shiyao Zhang
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital Xiamen University, School of Medicine, Xiamen University, Xiang'an Nan Lu, Xiamen, 361102, China
| | - Weixue Huang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
- Institute of Cardiovascular Diseases, Xiamen Cardiovascular Hospital Xiamen University, School of Medicine, Xiamen University, Xiang'an Nan Lu, Xiamen, 361102, China.
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
25
|
Reed EB, Orbeta S, Miao BA, Sitikov A, Chen B, Levitan I, Solway J, Mutlu GM, Fang Y, Mongin AA, Dulin NO. Anoctamin-1 is induced by TGF-β and contributes to lung myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L111-L123. [PMID: 38084409 PMCID: PMC11279757 DOI: 10.1152/ajplung.00155.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 11/29/2023] [Indexed: 12/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by progressive scarring of the lungs and resulting in deterioration in lung function. Transforming growth factor-β (TGF-β) is one of the most established drivers of fibrotic processes. TGF-β promotes the transformation of tissue fibroblasts to myofibroblasts, a key finding in the pathogenesis of pulmonary fibrosis. We report here that TGF-β robustly upregulates the expression of the calcium-activated chloride channel anoctamin-1 (ANO1) in human lung fibroblasts (HLFs) at mRNA and protein levels. ANO1 is readily detected in fibrotic areas of IPF lungs in the same area with smooth muscle α-actin (SMA)-positive myofibroblasts. TGF-β-induced myofibroblast differentiation (determined by the expression of SMA, collagen-1, and fibronectin) is significantly inhibited by a specific ANO1 inhibitor, T16Ainh-A01, or by siRNA-mediated ANO1 knockdown. T16Ainh-A01 and ANO1 siRNA attenuate profibrotic TGF-β signaling, including activation of RhoA pathway and AKT, without affecting initial Smad2 phosphorylation. Mechanistically, TGF-β treatment of HLFs results in a significant increase in intracellular chloride levels, which is prevented by T16Ainh-A01 or by ANO1 knockdown. The downstream mechanism involves the chloride-sensing "with-no-lysine (K)" kinase (WNK1). WNK1 siRNA significantly attenuates TGF-β-induced myofibroblast differentiation and signaling (RhoA pathway and AKT), whereas the WNK1 kinase inhibitor WNK463 is largely ineffective. Together, these data demonstrate that 1) ANO1 is a TGF-β-inducible chloride channel that contributes to increased intracellular chloride concentration in response to TGF-β; and 2) ANO1 mediates TGF-β-induced myofibroblast differentiation and fibrotic signaling in a manner dependent on WNK1 protein but independent of WNK1 kinase activity.NEW & NOTEWORTHY This study describes a novel mechanism of differentiation of human lung fibroblasts (HLFs) to myofibroblasts: the key process in the pathogenesis of pulmonary fibrosis. Transforming growth factor-β (TGF-β) drives the expression of calcium-activated chloride channel anoctmin-1 (ANO1) leading to an increase in intracellular levels of chloride. The latter recruits chloride-sensitive with-no-lysine (K) kinase (WNK1) to activate profibrotic RhoA and AKT signaling pathways, possibly through activation of mammalian target of rapamycin complex-2 (mTORC2), altogether promoting myofibroblast differentiation.
Collapse
Affiliation(s)
- Eleanor B Reed
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Shaina Orbeta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States
| | - Bernadette A Miao
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Albert Sitikov
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Bohao Chen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Julian Solway
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Yun Fang
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, United States
| | - Nickolai O Dulin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, Illinois, United States
| |
Collapse
|
26
|
de Boer LL, Vanes L, Melgrati S, Biggs O'May J, Hayward D, Driscoll PC, Day J, Griffiths A, Magueta R, Morrell A, MacRae JI, Köchl R, Tybulewicz VLJ. T cell migration requires ion and water influx to regulate actin polymerization. Nat Commun 2023; 14:7844. [PMID: 38057317 PMCID: PMC10700356 DOI: 10.1038/s41467-023-43423-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/08/2023] [Indexed: 12/08/2023] Open
Abstract
Migration of T cells is essential for their ability to mount immune responses. Chemokine-induced T cell migration requires WNK1, a kinase that regulates ion influx into the cell. However, it is not known why ion entry is necessary for T cell movement. Here we show that signaling from the chemokine receptor CCR7 leads to activation of WNK1 and its downstream pathway at the leading edge of migrating CD4+ T cells, resulting in ion influx and water entry by osmosis. We propose that WNK1-induced water entry is required to swell the membrane at the leading edge, generating space into which actin filaments can polymerize, thereby facilitating forward movement of the cell. Given the broad expression of WNK1 pathway proteins, our study suggests that ion and water influx are likely to be essential for migration in many cell types, including leukocytes and metastatic tumor cells.
Collapse
Affiliation(s)
- Leonard L de Boer
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Lesley Vanes
- The Francis Crick Institute, London, NW1 1AT, UK
| | - Serena Melgrati
- The Francis Crick Institute, London, NW1 1AT, UK
- Department of Immunology and Inflammation, Imperial College London, London, W12 0NN, UK
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | | | - Darryl Hayward
- The Francis Crick Institute, London, NW1 1AT, UK
- GSK, Stevenage, SG1 2NY, UK
| | | | - Jason Day
- Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
| | - Alexander Griffiths
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Renata Magueta
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | - Alexander Morrell
- London Metallomics Facility, Research Management & Innovation Directorate, King's College London, London, SE1 1UL, UK
| | | | - Robert Köchl
- The Francis Crick Institute, London, NW1 1AT, UK
- Kings College London, London, SE1 9RT, UK
| | | |
Collapse
|
27
|
Zhang S, Meor Azlan NF, Josiah SS, Zhou J, Zhou X, Jie L, Zhang Y, Dai C, Liang D, Li P, Li Z, Wang Z, Wang Y, Ding K, Wang Y, Zhang J. The role of SLC12A family of cation-chloride cotransporters and drug discovery methodologies. J Pharm Anal 2023; 13:1471-1495. [PMID: 38223443 PMCID: PMC10785268 DOI: 10.1016/j.jpha.2023.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
The solute carrier family 12 (SLC12) of cation-chloride cotransporters (CCCs) comprises potassium chloride cotransporters (KCCs, e.g. KCC1, KCC2, KCC3, and KCC4)-mediated Cl- extrusion, and sodium potassium chloride cotransporters (N[K]CCs, NKCC1, NKCC2, and NCC)-mediated Cl- loading. The CCCs play vital roles in cell volume regulation and ion homeostasis. Gain-of-function or loss-of-function of these ion transporters can cause diseases in many tissues. In recent years, there have been considerable advances in our understanding of CCCs' control mechanisms in cell volume regulations, with many techniques developed in studying the functions and activities of CCCs. Classic approaches to directly measure CCC activity involve assays that measure the transport of potassium substitutes through the CCCs. These techniques include the ammonium pulse technique, radioactive or nonradioactive rubidium ion uptake-assay, and thallium ion-uptake assay. CCCs' activity can also be indirectly observed by measuring γ-aminobutyric acid (GABA) activity with patch-clamp electrophysiology and intracellular chloride concentration with sensitive microelectrodes, radiotracer 36Cl-, and fluorescent dyes. Other techniques include directly looking at kinase regulatory sites phosphorylation, flame photometry, 22Na+ uptake assay, structural biology, molecular modeling, and high-throughput drug screening. This review summarizes the role of CCCs in genetic disorders and cell volume regulation, current methods applied in studying CCCs biology, and compounds developed that directly or indirectly target the CCCs for disease treatments.
Collapse
Affiliation(s)
- Shiyao Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Nur Farah Meor Azlan
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Sunday Solomon Josiah
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
| | - Jing Zhou
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoxia Zhou
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Lingjun Jie
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Yanhui Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Dong Liang
- Aurora Discovery Inc., Foshan, Guangdong, 528300, China
| | - Peifeng Li
- Institute for Translational Medicine, Qingdao University, Qingdao, Shandong, 266021, China
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhen Wang
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yun Wang
- Department of Neurology, Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute of Biological Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ke Ding
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
| | - Jinwei Zhang
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 363001, China
- Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4PS, UK
- State Key Laboratory of Chemical Biology, Research Center of Chemical Kinomics, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
28
|
Humphreys JM, Teixeira LR, Akella R, He H, Kannangara AR, Sekulski K, Pleinis J, Liwocha J, Jiou J, Servage KA, Orth K, Joachimiak L, Rizo J, Cobb MH, Brautigam CA, Rodan AR, Goldsmith EJ. Hydrostatic Pressure Sensing by WNK kinases. Mol Biol Cell 2023; 34:ar109. [PMID: 37585288 PMCID: PMC10559305 DOI: 10.1091/mbc.e23-03-0113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Previous study has demonstrated that the WNK kinases 1 and 3 are direct osmosensors consistent with their established role in cell-volume control. WNK kinases may also be regulated by hydrostatic pressure. Hydrostatic pressure applied to cells in culture with N2 gas or to Drosophila Malpighian tubules by centrifugation induces phosphorylation of downstream effectors of endogenous WNKs. In vitro, the autophosphorylation and activity of the unphosphorylated kinase domain of WNK3 (uWNK3) is enhanced to a lesser extent than in cells by 190 kPa applied with N2 gas. Hydrostatic pressure measurably alters the structure of uWNK3. Data from size exclusion chromatography in line with multi-angle light scattering (SEC-MALS), SEC alone at different back pressures, analytical ultracentrifugation (AUC), NMR, and chemical crosslinking indicate a change in oligomeric structure in the presence of hydrostatic pressure from a WNK3 dimer to a monomer. The effects on the structure are related to those seen with osmolytes. Potential mechanisms of hydrostatic pressure activation of uWNK3 and the relationships of pressure activation to WNK osmosensing are discussed.
Collapse
Affiliation(s)
- John M. Humphreys
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Liliana R. Teixeira
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Radha Akella
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Haixia He
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Ashari R. Kannangara
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kamil Sekulski
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John Pleinis
- Department of Internal Medicine, Division of Nephrology and Hypertension and Department of Human Genetics, University of Utah, Salt Lake City UT 84112
| | - Joanna Liwocha
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jenny Jiou
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kelly A. Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lukasz Joachimiak
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Josep Rizo
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Melanie H. Cobb
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Chad A. Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Aylin R. Rodan
- Department of Internal Medicine, Division of Nephrology and Hypertension and Department of Human Genetics, University of Utah, Salt Lake City UT 84112
| | - Elizabeth J. Goldsmith
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
29
|
Jin X, Xie J, Yeh CW, Chen JC, Cheng CJ, Lien CC, Huang CL. WNK1 promotes water homeostasis by acting as a central osmolality sensor for arginine vasopressin release. J Clin Invest 2023; 133:e164222. [PMID: 37071482 PMCID: PMC10231991 DOI: 10.1172/jci164222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/14/2023] [Indexed: 04/19/2023] Open
Abstract
Maintaining internal osmolality constancy is essential for life. Release of arginine vasopressin (AVP) in response to hyperosmolality is critical. Current hypotheses for osmolality sensors in circumventricular organs (CVOs) of the brain focus on mechanosensitive membrane proteins. The present study demonstrated that intracellular protein kinase WNK1 was involved. Focusing on vascular-organ-of-lamina-terminalis (OVLT) nuclei, we showed that WNK1 kinase was activated by water restriction. Neuron-specific conditional KO (cKO) of Wnk1 caused polyuria with decreased urine osmolality that persisted in water restriction and blunted water restriction-induced AVP release. Wnk1 cKO also blunted mannitol-induced AVP release but had no effect on osmotic thirst response. The role of WNK1 in the osmosensory neurons in CVOs was supported by neuronal pathway tracing. Hyperosmolality-induced increases in action potential firing in OVLT neurons was blunted by Wnk1 deletion or pharmacological WNK inhibitors. Knockdown of Kv3.1 channel in OVLT by shRNA reproduced the phenotypes. Thus, WNK1 in osmosensory neurons in CVOs detects extracellular hypertonicity and mediates the increase in AVP release by activating Kv3.1 and increasing action potential firing from osmosensory neurons.
Collapse
Affiliation(s)
- Xin Jin
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Jian Xie
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | | | - Jen-Chi Chen
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Chih-Jen Cheng
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Cheng-Chang Lien
- Institute of Neuroscience and
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chou-Long Huang
- Department of Medicine, Division of Nephrology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
30
|
Yu X, Sui Y, Xi Y, Zhang Y, Luo G, Long Y, Yang W. Semisynthesis, Biological Evaluation and Molecular Docking Studies of Barbatic Acid Derivatives as Novel Diuretic Candidates. Molecules 2023; 28:molecules28104010. [PMID: 37241751 DOI: 10.3390/molecules28104010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
Barbatic acid, a compound isolated from lichen, has demonstrated a variety of biological activities. In this study, a series of esters based on barbatic acid (6a-q') were designed, synthesized, and evaluated for their diuretic and litholytic activity at a concentration of 100 μmol/L in vitro. All target compounds were characterized using 1H NMR, 13C NMR, and HRMS, and the spatial structure of compound 6w was confirmed using X-ray crystallography. The biological results showed that some derivatives, including 6c, 6b', and 6f', exhibited potent diuretic activity, and 6j and 6m displayed promising litholytic activity. Molecular docking studies further suggested that 6b' had an optimal binding affinity to WNK1 kinases related to diuresis, while 6j could bind to the bicarbonate transporter CaSR through a variety of forces. These findings indicate that some barbatic acid derivatives could be further developed into novel diuretic agents.
Collapse
Affiliation(s)
- Xiang Yu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Sui
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yinkai Xi
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yan Zhang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Guoyong Luo
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yi Long
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Wude Yang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
- Guizhou Joint Laboratory for International Cooperation in Ethnic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| |
Collapse
|
31
|
Trzeciak AJ, Rojas WS, Liu ZL, Krebs AS, Wang Z, Saavedra PHV, Miranda IC, Lipshutz A, Xie J, Huang CL, Overholtzer M, Glickman MS, Parkhurst CN, Vierbuchen T, Lucas CD, Perry JSA. WNK1 enforces macrophage lineage fidelity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538482. [PMID: 37383948 PMCID: PMC10299535 DOI: 10.1101/2023.04.26.538482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
The appropriate development of macrophages, the body's professional phagocyte, is essential for organismal development, especially in mammals. This dependence is exemplified by the observation that loss-of-function mutations in colony stimulating factor 1 receptor (CSF1R) results in multiple tissue abnormalities owing to an absence of macrophages. Despite this importance, little is known about the molecular and cell biological regulation of macrophage development. Here, we report the surprising finding that the chloride-sensing kinase With-no-lysine 1 (WNK1) is required for development of tissue-resident macrophages (TRMs). Myeloid-specific deletion of Wnk1 resulted in a dramatic loss of TRMs, disrupted organ development, systemic neutrophilia, and mortality between 3 and 4 weeks of age. Strikingly, we found that myeloid progenitors or precursors lacking WNK1 not only failed to differentiate into macrophages, but instead differentiated into neutrophils. Mechanistically, the cognate CSF1R cytokine macrophage-colony stimulating factor (M-CSF) stimulates macropinocytosis by both mouse and human myeloid progenitors and precursor cells. Macropinocytosis, in turn, induces chloride flux and WNK1 phosphorylation. Importantly, blocking macropinocytosis, perturbing chloride flux during macropinocytosis, and inhibiting WNK1 chloride-sensing activity each skewed myeloid progenitor differentiation from macrophages into neutrophils. Thus, we have elucidated a role for WNK1 during macropinocytosis and discovered a novel function of macropinocytosis in myeloid progenitors and precursor cells to ensure macrophage lineage fidelity. Highlights Myeloid-specific WNK1 loss causes failed macrophage development and premature deathM-CSF-stimulated myeloid progenitors and precursors become neutrophils instead of macrophagesM-CSF induces macropinocytosis by myeloid progenitors, which depends on WNK1Macropinocytosis enforces macrophage lineage commitment.
Collapse
|
32
|
Kim J, Rosenberger MG, Chen S, IP CKM, Bahmani A, Chen Q, Shen J, Tang Y, Wang A, Kenna E, Son M, Tay S, Ferguson AL, Esser-Kahn AP. Discovery of New States of Immunomodulation for Vaccine Adjuvants via High Throughput Screening: Expanding Innate Responses to PRRs. ACS CENTRAL SCIENCE 2023; 9:427-439. [PMID: 36968540 PMCID: PMC10037445 DOI: 10.1021/acscentsci.2c01351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Indexed: 06/18/2023]
Abstract
Stimulation of the innate immune system is crucial in both effective vaccinations and immunotherapies. This is often achieved through adjuvants, molecules that usually activate pattern recognition receptors (PRRs) and stimulate two innate immune signaling pathways: the nuclear factor kappa-light-chain-enhancer of activated B-cells pathway (NF-κB) and the interferon regulatory factors pathway (IRF). Here, we demonstrate the ability to alter and improve adjuvant activity via the addition of small molecule "immunomodulators". By modulating signaling activity instead of receptor binding, these molecules allow the customization of select innate responses. We demonstrate both inhibition and enhancement of the products of the NF-κB and IRF pathways by several orders of magnitude. Some modulators apply generally across many receptors, while others focus specifically on individual receptors. Modulators boost correlates of a protective immune responses in a commercial flu vaccine model and reduced correlates of reactogenicity in a typhoid vaccine model. These modulators have a range of applications: from adjuvanticity in prophylactics to enhancement of immunotherapy.
Collapse
Affiliation(s)
| | | | - Siquan Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Carman KM IP
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Azadeh Bahmani
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Qing Chen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jinjing Shen
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Yifeng Tang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew Wang
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Minjun Son
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew L. Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Aaron P. Esser-Kahn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
33
|
Hayward DA, Vanes L, Wissmann S, Sivapatham S, Hartweger H, Biggs O’May J, de Boer LL, Mitter R, Köchl R, Stein JV, Tybulewicz VL. B cell-intrinsic requirement for WNK1 kinase in antibody responses in mice. J Exp Med 2023; 220:e20211827. [PMID: 36662229 PMCID: PMC9872328 DOI: 10.1084/jem.20211827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/20/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
Migration and adhesion play critical roles in B cells, regulating recirculation between lymphoid organs, migration within lymphoid tissue, and interaction with CD4+ T cells. However, there is limited knowledge of how B cells integrate chemokine receptor and integrin signaling with B cell activation to generate efficient humoral responses. Here, we show that the WNK1 kinase, a regulator of migration and adhesion, is essential in B cells for T-dependent and -independent antibody responses. We demonstrate that WNK1 transduces signals from the BCR, CXCR5, and CD40, and using intravital imaging, we show that WNK1 regulates migration of naive and activated B cells, and their interactions with T cells. Unexpectedly, we show that WNK1 is required for BCR- and CD40-induced proliferation, acting through the OXSR1 and STK39 kinases, and for efficient B cell-T cell collaboration in vivo. Thus, WNK1 is critical for humoral immune responses, by regulating B cell migration, adhesion, and T cell-dependent activation.
Collapse
Affiliation(s)
| | | | - Stefanie Wissmann
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Sujana Sivapatham
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | | | | | - Jens V. Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | | |
Collapse
|
34
|
Abstract
The with no lysine (K) (WNK) kinases are an evolutionarily ancient group of kinases with atypical placement of the catalytic lysine and diverse physiological roles. Recent studies have shown that WNKs are directly regulated by chloride, potassium, and osmotic pressure. Here, we review the discovery of WNKs as chloride-sensitive kinases and discuss physiological contexts in which chloride regulation of WNKs has been demonstrated. These include the kidney, pancreatic duct, neurons, and inflammatory cells. We discuss the interdependent relationship of osmotic pressure and intracellular chloride in cell volume regulation. We review the recent demonstration of potassium regulation of WNKs and speculate on possible physiological roles. Finally, structural and mechanistic aspects of intracellular ion and osmotic pressure regulation of WNKs are discussed.
Collapse
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Aylin R Rodan
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, USA; .,Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA.,Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA.,Medical Service, Veterans Affairs Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| |
Collapse
|
35
|
Chlebowicz J, Akella R, Humphreys JM, He H, Kannangara AR, Wei S, Posner B, Goldsmith EJ. Identification of a Class of WNK Isoform-Specific Inhibitors Through High-Throughput Screening. Drug Des Devel Ther 2023; 17:93-105. [PMID: 36712947 PMCID: PMC9880028 DOI: 10.2147/dddt.s389461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/17/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction WNK [with no lysine (K)] kinases are serine/threonine kinases associated with familial hyperkalemic hypertension (FHHt). WNKs are therapeutic targets for blood pressure regulation, stroke and several cancers including triple negative breast cancer and glioblastoma. Here, we searched for and characterized novel WNK kinase inhibitors. Methods We used a ~210,000-compound library in a high-throughput screen, re-acquisition and assay, commercial specificity screens and crystallography to identify WNK-isoform-selective inhibitors. Results We identified five classes of compounds that inhibit the kinase activity of WNK1: quinoline compounds, halo-sulfones, cyclopropane-containing thiazoles, piperazine-containing compounds, and nitrophenol-derived compounds. The compounds are strongly pan-WNK selective, inhibiting all four WNK isoforms. A class of quinoline compounds was identified that further shows selectivity among the WNK isoforms, being more potent toward WNK3 than WNK1. The crystal structure of the quinoline-derived SW120619 bound to the kinase domain of WNK3 reveals active site binding, and comparison to the WNK1 structure reveals the potential origin of isoform specificity. Discussion The newly discovered classes of compounds may be starting points for generating pharmacological tools and potential drugs treating hypertension and cancer.
Collapse
Affiliation(s)
- Julita Chlebowicz
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Radha Akella
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John M Humphreys
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Haixia He
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashari R Kannangara
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shuguang Wei
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Posner
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth J Goldsmith
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX, USA,Correspondence: Elizabeth J Goldsmith, Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-8816, USA, Tel +1 214 645 6376, Email
| |
Collapse
|
36
|
Govindaraj RG, Thangapandian S, Schauperl M, Denny RA, Diller DJ. Recent applications of computational methods to allosteric drug discovery. Front Mol Biosci 2023; 9:1070328. [PMID: 36710877 PMCID: PMC9877542 DOI: 10.3389/fmolb.2022.1070328] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/13/2022] [Indexed: 01/13/2023] Open
Abstract
Interest in exploiting allosteric sites for the development of new therapeutics has grown considerably over the last two decades. The chief driving force behind the interest in allostery for drug discovery stems from the fact that in comparison to orthosteric sites, allosteric sites are less conserved across a protein family, thereby offering greater opportunity for selectivity and ultimately tolerability. While there is significant overlap between structure-based drug design for orthosteric and allosteric sites, allosteric sites offer additional challenges mostly involving the need to better understand protein flexibility and its relationship to protein function. Here we examine the extent to which structure-based drug design is impacting allosteric drug design by highlighting several targets across a variety of target classes.
Collapse
Affiliation(s)
- Rajiv Gandhi Govindaraj
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States,*Correspondence: Rajiv Gandhi Govindaraj,
| | | | - Michael Schauperl
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| | | | - David J. Diller
- Computational Chemistry, HotSpot Therapeutics Inc., Boston, MA, United States
| |
Collapse
|
37
|
Saha B, Leite-Dellova DCA, Demko J, Sørensen MV, Takagi E, Gleason CE, Shabbir W, Pearce D. WNK1 is a chloride-stimulated scaffold that regulates mTORC2 activity and ion transport. J Cell Sci 2022; 135:jcs260313. [PMID: 36373794 PMCID: PMC9789407 DOI: 10.1242/jcs.260313] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian (or mechanistic) target of rapamycin complex 2 (mTORC2) is a kinase complex that targets predominantly Akt family proteins, SGK1 and protein kinase C (PKC), and has well-characterized roles in mediating hormone and growth factor effects on a wide array of cellular processes. Recent evidence suggests that mTORC2 is also directly stimulated in renal tubule cells by increased extracellular K+ concentration, leading to activation of the Na+ channel, ENaC, and increasing the electrical driving force for K+ secretion. We identify here a signaling mechanism for this local effect of K+. We show that an increase in extracellular [K+] leads to a rise in intracellular chloride (Cl-), which stimulates a previously unknown scaffolding activity of the protein 'with no lysine-1' (WNK1) kinase. WNK1 interacts selectively with SGK1 and recruits it to mTORC2, resulting in enhanced SGK1 phosphorylation and SGK1-dependent activation of ENaC. This scaffolding effect of WNK1 is independent of its own kinase activity and does not cause a generalized stimulation of mTORC2 kinase activity. These findings establish a novel WNK1-dependent regulatory mechanism that harnesses mTORC2 kinase activity selectively toward SGK1 to control epithelial ion transport and electrolyte homeostasis.
Collapse
Affiliation(s)
- Bidisha Saha
- Division of Nephrology, Departments of Medicine and Cellular & Molecular Pharmacology,University of California at San Francisco, San Francisco, CA 94158, USA
| | - Deise C. A. Leite-Dellova
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Sao Paulo 13635-900, Brazil
| | - John Demko
- Division of Nephrology, Departments of Medicine and Cellular & Molecular Pharmacology,University of California at San Francisco, San Francisco, CA 94158, USA
| | - Mads Vaarby Sørensen
- Departments of Biomedicine and Physiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Enzo Takagi
- Division of Nephrology, Departments of Medicine and Cellular & Molecular Pharmacology,University of California at San Francisco, San Francisco, CA 94158, USA
| | - Catherine E. Gleason
- Division of Nephrology, Departments of Medicine and Cellular & Molecular Pharmacology,University of California at San Francisco, San Francisco, CA 94158, USA
| | - Waheed Shabbir
- Division of Nephrology, Departments of Medicine and Cellular & Molecular Pharmacology,University of California at San Francisco, San Francisco, CA 94158, USA
| | - David Pearce
- Division of Nephrology, Departments of Medicine and Cellular & Molecular Pharmacology,University of California at San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
38
|
Yoon HJ, Kim GC, Oh S, Kim H, Kim YK, Lee Y, Kim MS, Kwon G, Ok YS, Kwon HK, Kim HS. WNK3 inhibition elicits antitumor immunity by suppressing PD-L1 expression on tumor cells and activating T-cell function. Exp Mol Med 2022; 54:1913-1926. [PMID: 36357569 PMCID: PMC9722663 DOI: 10.1038/s12276-022-00876-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 11/12/2022] Open
Abstract
Immune checkpoint therapies, such as programmed cell death ligand 1 (PD-L1) blockade, have shown remarkable clinical benefit in many cancers by restoring the function of exhausted T cells. Hence, the identification of novel PD-L1 regulators and the development of their inhibition strategies have significant therapeutic advantages. Here, we conducted pooled shRNA screening to identify regulators of membrane PD-L1 levels in lung cancer cells targeting druggable genes and cancer drivers. We identified WNK lysine deficient protein kinase 3 (WNK3) as a novel positive regulator of PD-L1 expression. The kinase-dead WNK3 mutant failed to elevate PD-L1 levels, indicating the involvement of its kinase domain in this function. WNK3 perturbation increased cancer cell death in cancer cell-immune cell coculture conditions and boosted the secretion of cytokines and cytolytic enzymes, promoting antitumor activities in CD4+ and CD8+ T cells. WNK463, a pan-WNK inhibitor, enhanced CD8+ T-cell-mediated antitumor activity and suppressed tumor growth as a monotherapy as well as in combination with a low-dose anti-PD-1 antibody in the MC38 syngeneic mouse model. Furthermore, we demonstrated that the c-JUN N-terminal kinase (JNK)/c-JUN pathway underlies WNK3-mediated transcriptional regulation of PD-L1. Our findings highlight that WNK3 inhibition might serve as a potential therapeutic strategy for cancer immunotherapy through its concurrent impact on cancer cells and immune cells.
Collapse
Affiliation(s)
- Hyun Ju Yoon
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Gi-Cheon Kim
- grid.15444.300000 0004 0470 5454Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Sejin Oh
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Hakhyun Kim
- grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yong Keon Kim
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Yunji Lee
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Min Seo Kim
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Gino Kwon
- grid.15444.300000 0004 0470 5454Graduate Program for Nanomedical Science, Yonsei University, Seoul, Korea
| | - Yeon-Su Ok
- grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea
| | - Ho-Keun Kwon
- grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Seok Kim
- grid.15444.300000 0004 0470 5454Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea ,grid.15444.300000 0004 0470 5454Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Murillo-de-Ozores AR, Carbajal-Contreras H, Magaña-Ávila GR, Valdés R, Grajeda-Medina LI, Vázquez N, Zariñán T, López-Saavedra A, Sharma A, Lin DH, Wang WH, Delpire E, Ellison DH, Gamba G, Castañeda-Bueno M. Multiple molecular mechanisms are involved in the activation of the kidney sodium-chloride cotransporter by hypokalemia. Kidney Int 2022; 102:1030-1041. [PMID: 35870644 PMCID: PMC10411384 DOI: 10.1016/j.kint.2022.06.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.
Collapse
Affiliation(s)
- Adrián R Murillo-de-Ozores
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City
| | - Héctor Carbajal-Contreras
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; PECEM, Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico
| | - Germán R Magaña-Ávila
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City
| | - Raquel Valdés
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City
| | - Leoneli I Grajeda-Medina
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City
| | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City
| | - Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM), Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Alejandro López-Saavedra
- Unidad de Aplicaciones Avanzadas en Microscopía del Instituto Nacional de Cancerología y la Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Avika Sharma
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA
| | - Dao-Hong Lin
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Wen-Hui Wang
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David H Ellison
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, Oregon, USA; Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, Oregon, USA; Renal Section, VA Portland Health Care System, Portland, Oregon, USA
| | - Gerardo Gamba
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City; PECEM, Faculty of Medicine, Universidad Nacional Autónoma de México, Coyoacan, Mexico City, Mexico; Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Tlalpan, Mexico City
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Mexico City.
| |
Collapse
|
40
|
Rodriguez M, Kannangara A, Chlebowicz J, Akella R, He H, Tambar UK, Goldsmith EJ. Synthesis and Structural Characterization of Novel Trihalo-sulfone Inhibitors of WNK1. ACS Med Chem Lett 2022; 13:1678-1684. [PMID: 36262391 PMCID: PMC9575160 DOI: 10.1021/acsmedchemlett.2c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
With No lysine (K) [WNK] kinases are structurally unique serine/threonine protein kinases that have therapeutic potential for blood pressure regulation and cancer. A novel class of trihalo-sulfone compounds was identified by high-throughput screening. Trihalo-sulfone 1 emerged as an effective inhibitor of WNK1 with an IC50 value of 1.6 μM. Herein, we define chemical features necessary for inhibition of WNK1 using chemical synthesis and X-ray crystallography. Analogues that probed the role of specific functional groups to the inhibitory activity were synthesized. X-ray structures of trihalo-sulfone 1 and a second trihalo-sulfone 23 bound to WNK1 revealed active site binding to two of the three previously defined canonical inhibitor binding pockets as well as a novel binding site for the trihalo-sulfone moiety. The elucidation of these novel interaction sites may allow for the strategic design of even more selective and potent WNK inhibitors.
Collapse
Affiliation(s)
- Melanie Rodriguez
- Department
of Biochemistry, The University of Texas
Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Ashari Kannangara
- Department
of Biophysics, The University of Texas Southwestern
Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, United States
| | - Julita Chlebowicz
- Department
of Biophysics, The University of Texas Southwestern
Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, United States
| | - Radha Akella
- Department
of Biophysics, The University of Texas Southwestern
Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, United States
| | - Haixia He
- Department
of Biophysics, The University of Texas Southwestern
Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, United States
| | - Uttam K. Tambar
- Department
of Biochemistry, The University of Texas
Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Elizabeth J. Goldsmith
- Department
of Biophysics, The University of Texas Southwestern
Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, United States
| |
Collapse
|
41
|
Hou CY, Ma CY, Lin YJ, Huang CL, Wang HD, Yuh CH. WNK1–OSR1 Signaling Regulates Angiogenesis-Mediated Metastasis towards Developing a Combinatorial Anti-Cancer Strategy. Int J Mol Sci 2022; 23:ijms232012100. [PMID: 36292952 PMCID: PMC9602556 DOI: 10.3390/ijms232012100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 12/03/2022] Open
Abstract
Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53−/−] and [HBx,src,p53−/−,RPIA], while ppp2r1bb is downregulated in [tert x p53−/−]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53−/−,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1β expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated β-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1–OSR1–PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1–OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1–OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.
Collapse
Affiliation(s)
- Chia-Ying Hou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chung-Yung Ma
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yu-Ju Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Chou-Long Huang
- Division of Nephrology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Horng-Dar Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300044, Taiwan
- Correspondence: (H.-D.W.); (C.-H.Y.); Tel.: +886-3-5742470 (H.-D.W.); +886-37-206166 (ext. 35338) (C.-H.Y.)
| | - Chiou-Hwa Yuh
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: (H.-D.W.); (C.-H.Y.); Tel.: +886-3-5742470 (H.-D.W.); +886-37-206166 (ext. 35338) (C.-H.Y.)
| |
Collapse
|
42
|
Rehman T, Karp PH, Thurman AL, Mather SE, Jain A, Cooney AL, Sinn PL, Pezzulo AA, Duffey ME, Welsh MJ. WNK Inhibition Increases Surface Liquid pH and Host Defense in Cystic Fibrosis Airway Epithelia. Am J Respir Cell Mol Biol 2022; 67:491-502. [PMID: 35849656 PMCID: PMC9564924 DOI: 10.1165/rcmb.2022-0172oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
In cystic fibrosis (CF), reduced HCO3- secretion acidifies the airway surface liquid (ASL), and the acidic pH disrupts host defenses. Thus, understanding the control of ASL pH (pHASL) in CF may help identify novel targets and facilitate therapeutic development. In diverse epithelia, the WNK (with-no-lysine [K]) kinases coordinate HCO3- and Cl- transport, but their functions in airway epithelia are poorly understood. Here, we tested the hypothesis that WNK kinases regulate CF pHASL. In primary cultures of differentiated human airway epithelia, inhibiting WNK kinases acutely increased both CF and non-CF pHASL. This response was HCO3- dependent and involved downstream SPAK/OSR1 (Ste20/SPS1-related proline-alanine-rich protein kinase/oxidative stress responsive 1 kinase). Importantly, WNK inhibition enhanced key host defenses otherwise impaired in CF. Human airway epithelia expressed two WNK isoforms in secretory cells and ionocytes, and knockdown of either WNK1 or WNK2 increased CF pHASL. WNK inhibition decreased Cl- secretion and the response to bumetanide, an NKCC1 (sodium-potassium-chloride cotransporter 1) inhibitor. Surprisingly, bumetanide alone or basolateral Cl- substitution also alkalinized CF pHASL. These data suggest that WNK kinases influence the balance between transepithelial Cl- versus HCO3- secretion. Moreover, reducing basolateral Cl- entry may increase HCO3- secretion and raise pHASL, thereby improving CF host defenses.
Collapse
Affiliation(s)
| | - Philip H. Karp
- Department of Internal Medicine and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| | | | | | | | | | | | | | - Michael E. Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J. Welsh
- Department of Internal Medicine and
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, and
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa; and
| |
Collapse
|
43
|
Xiu M, Li L, Li Y, Gao Y. An update regarding the role of WNK kinases in cancer. Cell Death Dis 2022; 13:795. [PMID: 36123332 PMCID: PMC9485243 DOI: 10.1038/s41419-022-05249-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 01/23/2023]
Abstract
Mammalian WNK kinases (WNKs) are serine/threonine kinases that contain four members, WNK1-4. They function to maintain ion homeostasis and regulate blood pressure in mammals. Recent studies have revealed that the dysregulation of WNKs contributes to tumor growth, metastasis, and angiogenesis through complex mechanisms, especially through phosphorylating kinase substrates SPS1-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1). Here, we review and discuss the relationships between WNKs and several key factors/biological processes in cancer, including ion channels, cation chloride cotransporters, sodium bicarbonate cotransporters, signaling pathways, angiogenesis, autophagy, and non-coding RNAs. In addition, the potential drugs for targeting WNK-SPAK/OSR1 signaling have also been discussed. This review summarizes and discusses knowledge of the roles of WNKs in cancer, which provides a comprehensive reference for future studies.
Collapse
Affiliation(s)
- Mengxi Xiu
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Li Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yandong Li
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| | - Yong Gao
- grid.24516.340000000123704535Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, 200120 Shanghai, China
| |
Collapse
|
44
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
45
|
Liu Z, Demian W, Persaud A, Jiang C, Subramanaya AR, Rotin D. Regulation of the p38-MAPK pathway by hyperosmolarity and by WNK kinases. Sci Rep 2022; 12:14480. [PMID: 36008477 PMCID: PMC9411163 DOI: 10.1038/s41598-022-18630-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
p38-MAPK is a stress-response kinase activated by hyperosmolarity. Here we interrogated the pathways involved. We show that p38-MAPK signaling is activated by hyperosmotic stimulation in various solutions, cell types and colonic organoids. Hyperosmolarity sensing is detected at the level of the upstream activators of p38-MAPK: TRAF2/ASK1 (but not Rac1) and MKK3/6/4. While WNK kinases are known osmo-sensors, we found, unexpectedly, that short (2 h) inhibition of WNKs (with WNK463) led to elevated p38-MAPK activity under hyperosmolarity, which was mediated by WNK463-dependent stimulation of TAK1 or TRAF2/ASK1, the upstream activators of MKK3/6/4. However, this effect was temporary and was reversed by long-term (2 days) incubation with WNK463. Accordingly, 2 days (but not 2 h) inhibition of p38-MAPK or its upstream activators ASK1 or TAK1, or WNKs, diminished regulatory volume increase (RVI) following cell shrinkage under hyperosmolarity. We also show that RVI mediated by the ion transporter NKCC1 is dependent on p38-MAPK. Since WNKs are known activators of NKCC1, we propose a WNK- > NKCC1- > p38-MAPK pathway that controls RVI. This pathway is augmented by NHE1. Additionally, hyperosmolarity inhibited mTORC1 activation and cell proliferation. Thus, activation of p38-MAPK and WNKs is important for RVI and for cell proliferation.
Collapse
Affiliation(s)
- Zetao Liu
- Cell Biology Program, The Hospital for Sick Children, PGCRL 19-9715, 686 Bay St., Toronto, ON, M5G 0A4, Canada
- Biochemistry Department, University of Toronto, Toronto, ON, Canada
| | - Wael Demian
- Cell Biology Program, The Hospital for Sick Children, PGCRL 19-9715, 686 Bay St., Toronto, ON, M5G 0A4, Canada
- Biochemistry Department, University of Toronto, Toronto, ON, Canada
| | - Avinash Persaud
- Cell Biology Program, The Hospital for Sick Children, PGCRL 19-9715, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Chong Jiang
- Cell Biology Program, The Hospital for Sick Children, PGCRL 19-9715, 686 Bay St., Toronto, ON, M5G 0A4, Canada
| | - Arohan R Subramanaya
- Department of Medicine and Cell Biology, University of Pittsburgh, Pittsburgh, USA
| | - Daniela Rotin
- Cell Biology Program, The Hospital for Sick Children, PGCRL 19-9715, 686 Bay St., Toronto, ON, M5G 0A4, Canada.
- Biochemistry Department, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
46
|
Tang X, Yu D, Wang H, Lei Z, Zhai Y, Sun M, Chen S, Wang Y, Liu Z, Hu W, Wang X. Synaptotagmin 1-mediated cell membrane penetration and dopamine release enhancement by latroeggtoxin-VI. Int J Biol Macromol 2022; 216:906-915. [PMID: 35914553 DOI: 10.1016/j.ijbiomac.2022.07.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/05/2022]
Abstract
Latroeggtoxin-VI (LETX-VI), a proteinaceous neurotoxin mined from the egg transcriptome of spider L. tredecimguttatus, was previously found to promote the release of dopamine from PC12 cells. However, the relevant molecular mechanism has not been fully clear. Here LETX-VI was demonstrated to rapidly penetrate the plasma membrane of PC12 cells via the vesicle exocytosis/endocytosis cycle, during which vesicular transmembrane protein synaptotagmin 1 (Syt1) functions as a receptor, with its vesicle luminal domain interacting with the C-terminal region of LETX-VI. The C-terminal sequence of LETX-VI is the functional region for both entering cells and promoting dopamine release. After gaining entry into the PC12 cells, LETX-VI down-regulated the phosphorylation levels of Syt1 at T201 and T195, thereby facilitating vesicle fusion with plasma membrane and thus promoting dopamine release. The relevant mechanism analysis indicated that LETX-VI has a protein phosphatase 2A (PP2A) activator activity. The present work has not only probed into the Syt1-mediated action mechanism of LETX-VI, but also revealed the structure-function relationship of the toxin, thus suggesting its potential applications in the drug transmembrane delivery and treatment of the diseases related to dopamine release and PP2A activity deficiency.
Collapse
Affiliation(s)
- Xiaochao Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Dianmei Yu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Haiyan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhixiang Lei
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yiwen Zhai
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Minglu Sun
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Si Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Ying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zhen Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Weijun Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xianchun Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Protein Chemistry Laboratory, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
47
|
WNK1 collaborates with TGF-β in endothelial cell junction turnover and angiogenesis. Proc Natl Acad Sci U S A 2022; 119:e2203743119. [PMID: 35867836 PMCID: PMC9335306 DOI: 10.1073/pnas.2203743119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Angiogenesis is essential for growth of new blood vessels, remodeling existing vessels, and repair of damaged vessels, and these require reorganization of endothelial cell-cell junctions through a partial endothelial-mesenchymal transition. Homozygous disruption of the gene encoding the protein kinase WNK1 results in lethality in mice near embryonic day (E) 12 due to impaired angiogenesis. This angiogenesis defect can be rescued by endothelial-specific expression of an activated form of the WNK1 substrate kinase OSR1. We show that inhibition of WNK1 kinase activity not only prevents sprouting of endothelial cells from aortic slices but also vessel extension in inhibitor-treated embryos ex vivo. Mutations affecting TGF-β signaling also result in abnormal vascular development beginning by E10 and, ultimately, embryonic lethality. Previously, we demonstrated cross-talk of WNK1 with TGF-β-regulated SMAD signaling, and OSR1 was identified as a component of the TGF-β interactome. However, molecular events jointly regulated by TGF-β and WNK1/OSR1 have not been delineated. Here, we show that inhibition of WNK1 promotes TGF-β-dependent degradation of the tyrosine kinase receptor AXL, which is involved in TGF-β-mediated cell migration and angiogenesis. We also show that interaction between OSR1 and occludin, a protein associated with endothelial tight junctions, is an essential step to enable tight junction turnover. Furthermore, we show that these phenomena are WNK1 dependent, and sensitive to TGF-β. These findings demonstrate intimate connections between WNK1/OSR1 and multiple TGF-β-sensitive molecules controlling angiogenesis and suggest that WNK1 may modulate many TGF-β-regulated functions.
Collapse
|
48
|
Prael III FJ, Kim K, Du Y, Spitznagel BD, Sulikowski GA, Delpire E, Weaver CD. Discovery of Small Molecule KCC2 Potentiators Which Attenuate In Vitro Seizure-Like Activity in Cultured Neurons. Front Cell Dev Biol 2022; 10:912812. [PMID: 35813195 PMCID: PMC9263442 DOI: 10.3389/fcell.2022.912812] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/02/2022] [Indexed: 01/14/2023] Open
Abstract
KCC2 is a K+-Cl- cotransporter that is expressed in neurons throughout the central nervous system. Deficits in KCC2 activity have been implicated in a variety of neurological disorders, including epilepsy, chronic pain, autism spectrum disorders, and Rett syndrome. Therefore, it has been hypothesized that pharmacological potentiation of KCC2 activity could provide a treatment for these disorders. To evaluate the therapeutic potential of pharmacological KCC2 potentiation, drug-like, selective KCC2 potentiators are required. Unfortunately, the lack of such tools has greatly hampered the investigation of the KCC2 potentiation hypothesis. Herein, we describe the discovery and characterization of a new class of small-molecule KCC2 potentiator. This newly discovered class exhibits KCC2-dependent activity and a unique mechanistic profile relative to previously reported small molecules. Furthermore, we demonstrate that KCC2 potentiation by this new class of KCC2 potentiator attenuates seizure-like activity in neuronal-glial co-cultures. Together, our results provide evidence that pharmacological KCC2 potentiation, by itself, is sufficient to attenuate neuronal excitability in an in vitro model that is sensitive to anti-epileptic drugs. Our findings and chemical tools are important for evaluating the promise of KCC2 as a therapeutic target and could lay a foundation for the development of KCC2-directed therapeutics for multiple neurological disorders.
Collapse
Affiliation(s)
- Francis J. Prael III
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States
| | - Kwangho Kim
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Yu Du
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | | | - Gary A. Sulikowski
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - C. David Weaver
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States,Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, United States,Department of Chemistry, Vanderbilt University, Nashville, TN, United States,*Correspondence: C. David Weaver,
| |
Collapse
|
49
|
Jung JU, Jaykumar AB, Cobb MH. WNK1 in Malignant Behaviors: A Potential Target for Cancer? Front Cell Dev Biol 2022; 10:935318. [PMID: 35813203 PMCID: PMC9257110 DOI: 10.3389/fcell.2022.935318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is the major cause of mortality in cancer patients. Analyses of mouse models and patient data have implicated the protein kinase WNK1 as one of a handful of genes uniquely linked to a subset of invasive cancers. WNK1 signaling pathways are widely implicated in the regulation of ion co-transporters and in controlling cell responses to osmotic stress. In this review we will discuss its actions in tumor malignancy in human cancers and present evidence for its function in invasion, migration, angiogenesis and mesenchymal transition.
Collapse
Affiliation(s)
| | | | - Melanie H. Cobb
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
50
|
Castel P. Defective protein degradation in genetic disorders. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166366. [PMID: 35158019 PMCID: PMC8977116 DOI: 10.1016/j.bbadis.2022.166366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 01/15/2023]
Abstract
Understanding the molecular mechanisms that underlie different human pathologies is necessary to develop novel therapeutic strategies. An emerging mechanism of pathogenesis in many genetic disorders is the dysregulation of protein degradation, which leads to the accumulation of proteins that are responsible for the disease phenotype. Among the different cellular pathways that regulate active proteolysis, the Cullin RING E3 ligases represent an important group of sophisticated enzymatic complexes that mediate substrate ubiquitination through the interaction with specific adaptors. However, pathogenic variants in these adaptors affect the physiological ubiquitination of their substrates. This review discusses our current understanding of this emerging field.
Collapse
Affiliation(s)
- Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, NY, 10016, United States of America.
| |
Collapse
|