1
|
Cai Z, Wang D, Li Z, Gu M, You Q, Wang L. The value of coimmunoprecipitation (Co-IP) assays in drug discovery. Expert Opin Drug Discov 2025:1-14. [PMID: 40289752 DOI: 10.1080/17460441.2025.2497913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Co-IP assays are well-established technologies widely applicated for investigating the mechanisms underlying protein-protein interactions and identifying protein-protein interaction modulators. These assays play an important role in elucidating the complex networks of protein interactions critical for cellular functions. AREAS COVERED This review covers a technical protocol of standard Co-IP. The research contents and conclusions of Co-IP in protein-protein interactions and protein-protein interaction modulators are summarized. Finally, three derivations of Co-IP assays are introduced. Literature was surveyed from original publications, standard sources, PubMed and clinical trials through 14 April 2025. EXPERT OPINION To perform Co-IP successfully, researchers must consider the selection of specific antibody, remission of nonspecific binding and detection limitations for transient or weak interactions. Co-IP assays offer several advantages over tandem affinity purification and pull-down methods, particularly in their applicability to primary cells. This allows for the study of PPIs in a natural cellular environment. Conventional Co-IP assays often struggle to detect weak or transient interactions and can suffer from nonspecific binding contamination. However, advancements in Co-IP techniques address these challenges, enhancing sensitivity and specificity, and enabling the detection of subtle interactions while distinguishing specific binding events. This makes Co-IP a powerful tool for exploring the dynamics of protein interactions in living systems.
Collapse
Affiliation(s)
- Zhongtian Cai
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zekun Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mingxiao Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Yang J, Yue G, Fan Z, Zhang N, Nie S, Li J, Ji Y. FOXA1 Targets NEK2 to Mediate Cisplatin Resistance in Lung Adenocarcinoma Cells by Activating DNA Damage Repair. Drug Dev Res 2025; 86:e70087. [PMID: 40233258 DOI: 10.1002/ddr.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/17/2025]
Abstract
Lung adenocarcinoma (LUAD) is one of the main causes of death in cancer patients, as its hidden course is difficult to uncover, resulting in many patients being diagnosed as advanced. Late-stage LUAD patients are prone to develop resistance to cisplatin. This study aims to explore the potential molecular regulatory mechanism of NEK2 on cisplatin resistance in LUAD cells. The expression levels of NEK2 and FOXA1 in LUAD tissues were analyzed based on bioinformatics methods. qRT-PCR analysis was carried out to measure the mRNA expression levels of NEK2 and FOXA1 in LUAD cells. CCK8 detected and calculated cell viability and IC50 values for each group of cells. Gene set enrichment analysis (GSEA) analyzed signaling pathways enriched by the NEK2 gene in LUAD. Dual luciferase and CHIP experiments were conducted to verify the binding relationship between NEK2 and FOXA1. Comet assay was utilized to analyze the level of DNA damage in LUAD cells. Western blot (WB) measured the expression levels of DNA damage-related proteins (γ-H2AX, p-ATM). The experimental results showed that FOXA1 and NEK2 were highly expressed in LUAD tissues and cells. GSEA analysis showed that NEK2 was enriched in DNA damage-related pathways, and silencing NEK2 could reduce the vitality of LUAD cisplatin-resistant cells, lower the IC50 value of cells to cisplatin, and increase their DNA damage levels. FOXA1 can target the promoter region that binds to NEK2, and it can activate NEK2 through transcription to promote DNA damage repair and cisplatin resistance in cisplatin-resistant LUAD cells. This study confirms that FOXA1 can target NEK2 to promote DNA damage repair and cisplatin resistance in LUAD cells, providing a new valuable therapeutic target for the treatment of LUAD and the control of chemotherapy drug resistance.
Collapse
Affiliation(s)
- Junhong Yang
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Guangcheng Yue
- Department of Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Zhiguo Fan
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Ning Zhang
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Shiwei Nie
- Department of Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Jing Li
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| | - Yuanyuan Ji
- Department of Medical Oncology, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, 455000, China
| |
Collapse
|
3
|
Qiao X, Li X, Zhang M, Liu N, Wu Y, Lu S, Chen T. Targeting cryptic allosteric sites of G protein-coupled receptors as a novel strategy for biased drug discovery. Pharmacol Res 2025; 212:107574. [PMID: 39755133 DOI: 10.1016/j.phrs.2024.107574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/31/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
G protein-coupled receptors (GPCRs) represent the largest family of membrane receptors and are highly effective targets for therapeutic drugs. GPCRs couple different downstream effectors, including G proteins (such as Gi/o, Gs, G12, and Gq) and β-arrestins (such as β-arrestin 1 and β-arrestin 2) to mediate diverse cellular and physiological responses. Biased signaling allows for the specific activation of certain pathways from the full range of receptors' signaling capabilities. Targeting more variable allosteric sites, which are spatially different from the highly conserved orthosteric sites, represents a novel approach in biased GPCR drug discovery, leading to innovative strategies for targeting GPCRs. Notably, the emergence of cryptic allosteric sites on GPCRs has expanded the repertoire of available drug targets and improved receptor subtype selectivity. Here, we conduct a summary of recent progress in the structural determination of cryptic allosteric sites on GPCRs and elucidate the biased signaling mechanisms induced by allosteric modulators. Additionally, we discuss means to identify cryptic allosteric sites and design biased allosteric modulators based on cryptic allosteric sites through structure-based drug design, which is an advanced pharmacotherapeutic approach for treating GPCR-associated diseases.
Collapse
Affiliation(s)
- Xin Qiao
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaolong Li
- Department of Orthopedics, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Mingyang Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yanmei Wu
- Department of General Surgery, Changhai Hospital, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China.
| | - Shaoyong Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, The Second Affiliated Hospital of Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
4
|
Bai W, Xu J, Gu W, Wang D, Cui Y, Rong W, Du X, Li X, Xia C, Gan Q, He G, Guo H, Deng J, Wu Y, Yen RWC, Yegnasubramanian S, Rothbart SB, Luo C, Wu L, Liu J, Baylin SB, Kong X. Defining ortholog-specific UHRF1 inhibition by STELLA for cancer therapy. Nat Commun 2025; 16:474. [PMID: 39774694 PMCID: PMC11707192 DOI: 10.1038/s41467-024-55481-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
UHRF1 maintains DNA methylation by recruiting DNA methyltransferases to chromatin. In mouse, these dynamics are potently antagonized by a natural UHRF1 inhibitory protein STELLA, while the comparable effects of its human ortholog are insufficiently characterized, especially in cancer cells. Herein, we demonstrate that human STELLA (hSTELLA) is inadequate, while mouse STELLA (mSTELLA) is fully proficient in inhibiting the abnormal DNA methylation and oncogenic functions of UHRF1 in human cancer cells. Structural studies reveal a region of low sequence homology between these STELLA orthologs that allows mSTELLA but not hSTELLA to bind tightly and cooperatively to the essential histone-binding, linked tandem Tudor domain and plant homeodomain (TTD-PHD) of UHRF1, thus mediating ortholog-specific UHRF1 inhibition. For translating these findings to cancer therapy, we use a lipid nanoparticle (LNP)-mediated mRNA delivery approach in which the short mSTELLA, but not hSTELLA regions are required to reverse cancer-specific DNA hypermethylation and impair colorectal cancer tumorigenicity.
Collapse
Affiliation(s)
- Wenjing Bai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinxin Xu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wenbin Gu
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Danyang Wang
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ying Cui
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Weidong Rong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiaoan Du
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxia Li
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cuicui Xia
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingqing Gan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guantao He
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huahui Guo
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfeng Deng
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yuqiong Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ray-Whay Chiu Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Srinivasan Yegnasubramanian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Linping Wu
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Stephen B Baylin
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49503, USA.
| | - Xiangqian Kong
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Wang J, Zheng P, Yu J, Yang X, Zhang J. Rational design of small-sized peptidomimetic inhibitors disrupting protein-protein interaction. RSC Med Chem 2024; 15:2212-2225. [PMID: 39026653 PMCID: PMC11253864 DOI: 10.1039/d4md00202d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/04/2024] [Indexed: 07/20/2024] Open
Abstract
Protein-protein interactions are fundamental to nearly all biological processes. Due to their structural flexibility, peptides have emerged as promising candidates for developing inhibitors targeting large and planar PPI interfaces. However, their limited drug-like properties pose challenges. Hence, rational modifications based on peptide structures are anticipated to expedite the innovation of peptide-based therapeutics. This review comprehensively examines the design strategies for developing small-sized peptidomimetic inhibitors targeting PPI interfaces, which predominantly encompass two primary categories: peptidomimetics with abbreviated sequences and low molecular weights and peptidomimetics mimicking secondary structural conformations. We have also meticulously detailed several instances of designing and optimizing small-sized peptidomimetics targeting PPIs, including MLL1-WDR5, PD-1/PD-L1, and Bak/Bcl-xL, among others, to elucidate the potential application prospects of these design strategies. Hopefully, this review will provide valuable insights and inspiration for the future development of PPI small-sized peptidomimetic inhibitors in pharmaceutical research endeavors.
Collapse
Affiliation(s)
- Junyuan Wang
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| | - Xiuyan Yang
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University Shanghai 200025 China
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University Yinchuan 750004 China
| |
Collapse
|
6
|
Duan M, Mahal A, Alkouri A, Wang C, Zhang Z, Ren J, Obaidullah AJ. Synthesis, Anticancer Activity, and Molecular Docking of New 1,2,3-Triazole Linked Tetrahydrocurcumin Derivatives. Molecules 2024; 29:3010. [PMID: 38998962 PMCID: PMC11243220 DOI: 10.3390/molecules29133010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer is one of the deadliest diseases to humanity. There is significant progress in treating this disease, but developing some drugs that can fight this disease remains a challenge in the field of medical research. Thirteen new 1,2,3-triazole linked tetrahydrocurcumin derivatives were synthesized by click reaction, including a 1,3-dipolar cycloaddition reaction of tetrahydrocurcumin baring mono-alkyne with azides in good yields, and their in vitro anticancer activity against four cancer cell lines, including human cervical carcinoma (HeLa), human lung adenocarcinoma (A549), human hepatoma carcinoma (HepG2), and human colon carcinoma (HCT-116) were investigated using MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetraz-olium bromide) assay. The newly synthesized compounds had their structures identified using NMR HRMS and IR techniques. Some of prepared compounds, including compounds 4g and 4k, showed potent cytotoxic activity against four cancer cell lines compared to the positive control of cisplatin and tetrahydrocurcumin. Compound 4g exhibited anticancer activity with a IC50 value of 1.09 ± 0.17 μM against human colon carcinoma HCT-116 and 45.16 ± 0.92 μM against A549 cell lines compared to the positive controls of tetrahydrocurcumin and cisplatin. Moreover, further biological examination in HCT-116 cells showed that compound 4g can arrest the cell cycle at the G1 phase. A docking study revealed that the potential mechanism by which 4g exerts its anti-colon cancer effect may be through inhabiting the binding of APC-Asef. Compound 4g can be used as a promising lead for further exploration of potential anticancer agents.
Collapse
Affiliation(s)
- Meitao Duan
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Ahmed Mahal
- Department of Medical Biochemical Analysis, College of Health Technology, Cihan University-Erbil, Erbil 44001, Kurdisan Region, Iraq
| | - Anas Alkouri
- College of Pharmacy, Cihan University-Erbil, Erbil 44001, Kurdisan Region, Iraq;
| | - Chen Wang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
| | - Zhiqiang Zhang
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
| | - Jungang Ren
- School of Pharmacy, Xiamen Medical College, Xiamen 361023, China; (M.D.); (C.W.); (Z.Z.); (J.R.)
- Xiamen Medical College Research Center for Sustained and Controlled Release Formulations, Xiamen Medical College, Xiamen 361023, China
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
7
|
Wang X, Du Z, Guo Y, Zhong J, Song K, Wang J, Yu J, Yang X, Liu CY, Shi T, Zhang J. Computer-aided molecular design and optimization of potent inhibitors disrupting APC‒Asef interaction. Acta Pharm Sin B 2024; 14:2631-2645. [PMID: 38828145 PMCID: PMC11143523 DOI: 10.1016/j.apsb.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/04/2024] [Accepted: 03/14/2024] [Indexed: 06/05/2024] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer mortality worldwide. At initial diagnosis, approximately 20% of patients are diagnosed with metastatic CRC (mCRC). Although the APC‒Asef interaction is a well-established target for mCRC therapy, the discovery and development of effective and safe drugs for mCRC patients remains an urgent and challenging endeavor. In this study, we identified a novel structural scaffold based on MAI inhibitors, the first-in-class APC‒Asef inhibitors we reported previously. ONIOM model-driven optimizations of the N-terminal cap and experimental evaluations of inhibitory activity were performed, and 24-fold greater potency was obtained with the best inhibitor compared to the parental compound. In addition, the cocrystal structure validated that the two-layer π‒π stacking interactions were essential for inhibitor stabilization in the bound state. Furthermore, in vitro and in vivo studies have demonstrated that novel inhibitors suppressed lung metastasis in CRC by disrupting the APC‒Asef interaction. These results provide an intrinsic structural basis to further explore drug-like molecules for APC‒Asef-mediated CRC therapy.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zeqian Du
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuegui Guo
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jie Zhong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Junyuan Wang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jianqiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Basic Science Research Center Base (Pharmaceutical Science), Yantai University, Yantai 264005, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ting Shi
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Pal S, Openy J, Krzyzanowski A, Noisier A, ‘t Hart P. On-Resin Photochemical Decarboxylative Arylation of Peptides. Org Lett 2024; 26:2795-2799. [PMID: 37819674 PMCID: PMC11019635 DOI: 10.1021/acs.orglett.3c03070] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 10/13/2023]
Abstract
Here we describe the application of photochemical decarboxylative arylation as a late-stage functionalization reaction for peptides. The reaction uses redox-active esters of aspartic acid and glutamic acid on the solid phase to provide analogues of aromatic amino acids. By using aryl bromides as arylation reagents, a wide variety of amino acids can be accessed without having to synthesize them individually in solution. The reaction is compatible with proteinogenic amino acids and was used to perform a structure-activity relationship study of a PRMT5 binding peptide.
Collapse
Affiliation(s)
- Sunit Pal
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, 44227 Dortmund, Germany
| | - Joseph Openy
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, 44227 Dortmund, Germany
| | - Adrian Krzyzanowski
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, 44227 Dortmund, Germany
| | - Anaïs Noisier
- Medicinal
Chemistry, Research and Early Development Cardiovascular, Renal and
Metabolism BioPharmaceutical R&D, AstraZeneca, 431 83 Gothenburg, Sweden
| | - Peter ‘t Hart
- Chemical
Genomics Centre, Max Planck Institute of
Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
9
|
Goettig P, Chen X, Harris JM. Correlation of Experimental and Calculated Inhibition Constants of Protease Inhibitor Complexes. Int J Mol Sci 2024; 25:2429. [PMID: 38397107 PMCID: PMC10889394 DOI: 10.3390/ijms25042429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Predicting the potency of inhibitors is key to in silico screening of promising synthetic or natural compounds. Here we describe a predictive workflow that provides calculated inhibitory values, which concord well with empirical data. Calculations of the free interaction energy ΔG with the YASARA plugin FoldX were used to derive inhibition constants Ki from PDB coordinates of protease-inhibitor complexes. At the same time, corresponding KD values were obtained from the PRODIGY server. These results correlated well with the experimental values, particularly for serine proteases. In addition, analyses were performed for inhibitory complexes of cysteine and aspartic proteases, as well as of metalloproteases, whereby the PRODIGY data appeared to be more consistent. Based on our analyses, we calculated theoretical Ki values for trypsin with sunflower trypsin inhibitor (SFTI-1) variants, which yielded the more rigid Pro14 variant, with probably higher potency than the wild-type inhibitor. Moreover, a hirudin variant with an Arg1 and Trp3 is a promising basis for novel thrombin inhibitors with high potency. Further examples from antibody interaction and a cancer-related effector-receptor system demonstrate that our approach is applicable to protein interaction studies beyond the protease field.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia or (X.C.); (J.M.H.)
| | - Xingchen Chen
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia or (X.C.); (J.M.H.)
| | - Jonathan M. Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia or (X.C.); (J.M.H.)
| |
Collapse
|
10
|
Zha J, He J, Wu C, Zhang M, Liu X, Zhang J. Designing drugs and chemical probes with the dualsteric approach. Chem Soc Rev 2023; 52:8651-8677. [PMID: 37990599 DOI: 10.1039/d3cs00650f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Traditionally, drugs are monovalent, targeting only one site on the protein surface. This includes orthosteric and allosteric drugs, which bind the protein at orthosteric and allosteric sites, respectively. Orthosteric drugs are good in potency, whereas allosteric drugs have better selectivity and are solutions to classically undruggable targets. However, it would be difficult to simultaneously reach high potency and selectivity when targeting only one site. Also, both kinds of monovalent drugs suffer from mutation-caused drug resistance. To overcome these obstacles, dualsteric modulators have been proposed in the past twenty years. Compared to orthosteric or allosteric drugs, dualsteric modulators are bivalent (or bitopic) with two pharmacophores. Each of the two pharmacophores bind the protein at the orthosteric and an allosteric site, which could bring the modulator with special properties beyond monovalent drugs. In this study, we comprehensively review the current development of dualsteric modulators. Our main effort reason and illustrate the aims to apply the dualsteric approach, including a "double win" of potency and selectivity, overcoming mutation-caused drug resistance, developments of function-biased modulators, and design of partial agonists. Moreover, the strengths of the dualsteric technique also led to its application outside pharmacy, including the design of highly sensitive fluorescent tracers and usage as molecular rulers. Besides, we also introduced drug targets, designing strategies, and validation methods of dualsteric modulators. Finally, we detail the conclusions and perspectives.
Collapse
Affiliation(s)
- Jinyin Zha
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jixiao He
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengwei Wu
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyang Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Liu
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China.
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Cui Y, Wang K, Jiang D, Jiang Y, Shi D, DeGregori J, Waxman S, Ren R. Promoting longevity with less cancer: The 2022 International Conference on Aging and Cancer. AGING AND CANCER 2023; 4:111-120. [DOI: 10.1002/aac2.12068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2024]
Abstract
AbstractAging and cancer are increasingly becoming big challenges for public health worldwide due to increased human life expectancy. Meanwhile, aging is one of the major risk factors for cancer. In December 2019, the first International Conference on Aging and Cancer was held in Haikou, Hainan province (island), China, preluding the establishment of the International Center for Aging and Cancer (ICAC) at Hainan, an institute dedicated to the research at the intersection of aging and cancer. Since then, the ICAC has hosted the annual conference each December in Hainan. The 2022 ICAC conference, with the theme of “promoting longevity with less cancer,” invited 17 internationally renowned scientists to share their new research and insights. Topics included DNA methylation in rejuvenation, development, and cellular senescence; lifespan regulation and longevity manipulation; metabolism and aging; cellular senescence and diseases; and novel therapeutics for cancer and antiaging/anticancer drug discovery. The forum highlighted the interconnectedness of aging and senescence with cancer evolution and risk. Although there is hope for preventing diseases like cancer by modulating systems that also control lifespan, attention has to be paid to the conflicting needs and competing demands in human biology.
Collapse
Affiliation(s)
- Yan Cui
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Kai Wang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Danli Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Yizhou Jiang
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - Dawei Shi
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics University of Colorado Anschutz Medical Campus Aurora Colorado USA
| | - Samuel Waxman
- Department of Hematology/Oncology Icahn School of Medicine at Mount Sinai New York City New York USA
| | - Ruibao Ren
- International Center for Aging and Cancer Hainan Medical University Haikou Hainan China
| |
Collapse
|
12
|
Hua L, Wang D, Wang K, Wang Y, Gu J, Zhang Q, You Q, Wang L. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery. J Med Chem 2023; 66:10934-10958. [PMID: 37561645 DOI: 10.1021/acs.jmedchem.3c00881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Development of fluorescence polarization (FP) assays, especially in a competitive manner, is a potent and mature tool for measuring the binding affinities of small molecules. This approach is suitable for high-throughput screening (HTS) for initial ligands and is also applicable for further study of the structure-activity relationships (SARs) of candidate compounds for drug discovery. Buffer and tracer, especially rational design of the tracer, play a vital role in an FP assay system. In this perspective, we provided different kinds of approaches for tracer design based on successful cases in recent years. We classified these tracers by different types of ligands in tracers, including peptide, nucleic acid, natural product, and small molecule. To make this technology accessible for more targets, we briefly described the basic theory and workflow, followed by highlighting the design and application of typical FP tracers from a perspective of medicinal chemistry.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Danni Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Keran Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxuan Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jinying Gu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
13
|
Hladyshau S, Stoop JP, Kamada K, Nie S, Tsygankov D. Spatiotemporal Coordination of Rac1 and Cdc42 at the Whole Cell Level during Cell Ruffling. Cells 2023; 12:1638. [PMID: 37371108 DOI: 10.3390/cells12121638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Rho-GTPases are central regulators within a complex signaling network that controls cytoskeletal organization and cell movement. The network includes multiple GTPases, such as the most studied Rac1, Cdc42, and RhoA, along with their numerous effectors that provide mutual regulation through feedback loops. Here we investigate the temporal and spatial relationship between Rac1 and Cdc42 during membrane ruffling, using a simulation model that couples GTPase signaling with cell morphodynamics and captures the GTPase behavior observed with FRET-based biosensors. We show that membrane velocity is regulated by the kinetic rate of GTPase activation rather than the concentration of active GTPase. Our model captures both uniform and polarized ruffling. We also show that cell-type specific time delays between Rac1 and Cdc42 activation can be reproduced with a single signaling motif, in which the delay is controlled by feedback from Cdc42 to Rac1. The resolution of our simulation output matches those of time-lapsed recordings of cell dynamics and GTPase activity. Our data-driven modeling approach allows us to validate simulation results with quantitative precision using the same pipeline for the analysis of simulated and experimental data.
Collapse
Affiliation(s)
- Siarhei Hladyshau
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jorik P Stoop
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Kosei Kamada
- Faculty of Medicine, The University of Tokyo, Tokyo 113-8654, Japan
| | - Shuyi Nie
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Denis Tsygankov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
14
|
Bardwell AJ, Paul M, Yoneda KC, Andrade-Ludeña MD, Nguyen OT, Fruman DA, Bardwell L. The WW domain of IQGAP1 binds directly to the p110α catalytic subunit of PI 3-kinase. Biochem J 2023; 480:BCJ20220493. [PMID: 37145016 PMCID: PMC10625650 DOI: 10.1042/bcj20220493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/06/2023]
Abstract
IQGAP1 is a multi-domain cancer-associated protein that serves as a scaffold protein for multiple signaling pathways. Numerous binding partners have been found for the calponin homology, IQ and GAP-related domains in IQGAP1. Identification of a binding partner for its WW domain has proven elusive, however, even though a cell-penetrating peptide derived from this domain has marked anti-tumor activity. Here, using in vitro binding assays with human proteins and co-precipitation from human cells, we show that the WW domain of human IQGAP1 binds directly to the p110α catalytic subunit of phosphoinositide 3-kinase (PI3K). In contrast, the WW domain does not bind to ERK1/2, MEK1/2, or the p85α regulatory subunit of PI3K when p85α is expressed alone. However, the WW domain is able to bind to the p110α/p85α heterodimer when both subunits are co-expressed, as well as to the mutationally activated p110α/p65α heterodimer. We present a model of the structure of the IQGAP1 WW domain, and experimentally identify key residues in the hydrophobic core and beta strands of the WW domain that are required for binding to p110α. These findings contribute to a more precise understanding of IQGAP1-mediated scaffolding, and of how IQGAP1-derived therapeutic peptides might inhibit tumorigenesis.
Collapse
Affiliation(s)
- A. Jane Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - Madhuri Paul
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Kiku C. Yoneda
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | | | - Oanh T. Nguyen
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| | - David A. Fruman
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, U.S.A
| | - Lee Bardwell
- Department of Developmental and Cell Biology, University of California, Irvine, CA, U.S.A
| |
Collapse
|
15
|
Monti A, Vitagliano L, Caporale A, Ruvo M, Doti N. Targeting Protein-Protein Interfaces with Peptides: The Contribution of Chemical Combinatorial Peptide Library Approaches. Int J Mol Sci 2023; 24:7842. [PMID: 37175549 PMCID: PMC10178479 DOI: 10.3390/ijms24097842] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Protein-protein interfaces play fundamental roles in the molecular mechanisms underlying pathophysiological pathways and are important targets for the design of compounds of therapeutic interest. However, the identification of binding sites on protein surfaces and the development of modulators of protein-protein interactions still represent a major challenge due to their highly dynamic and extensive interfacial areas. Over the years, multiple strategies including structural, computational, and combinatorial approaches have been developed to characterize PPI and to date, several successful examples of small molecules, antibodies, peptides, and aptamers able to modulate these interfaces have been determined. Notably, peptides are a particularly useful tool for inhibiting PPIs due to their exquisite potency, specificity, and selectivity. Here, after an overview of PPIs and of the commonly used approaches to identify and characterize them, we describe and evaluate the impact of chemical peptide libraries in medicinal chemistry with a special focus on the results achieved through recent applications of this methodology. Finally, we also discuss the role that this methodology can have in the framework of the opportunities, and challenges that the application of new predictive approaches based on artificial intelligence is generating in structural biology.
Collapse
Affiliation(s)
- Alessandra Monti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Luigi Vitagliano
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Andrea Caporale
- Institute of Crystallography (IC), National Research Council (CNR), Strada Statale 14 km 163.5, Basovizza, 34149 Triese, Italy;
| | - Menotti Ruvo
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| | - Nunzianna Doti
- Institute of Biostructures and Bioimaging (IBB), National Research Council (CNR), 80131 Napoli, Italy; (A.M.); (L.V.); (M.R.)
| |
Collapse
|
16
|
Hladyshau S, Stoop JP, Kamada K, Nie S, Tsygankov DV. Spatiotemporal coordination of Rac1 and Cdc42 at the whole cell level during cell ruffling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535147. [PMID: 37034645 PMCID: PMC10081307 DOI: 10.1101/2023.03.31.535147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rho-GTPases are central regulators within a complex signaling network that controls the cytoskeletal organization and cell movement. This network includes multiple GTPases, such as the most studied Rac1, Cdc42, and RhoA, and their numerous effectors that provide mutual regulation and feedback loops. Here we investigate the temporal and spatial relationship between Rac1 and Cdc42 during membrane ruffling using a simulation model which couples GTPase signaling with cell morphodynamics to capture the GTPase behavior observed with FRET-based biosensors. We show that membrane velocity is regulated by the kinetic rate of GTPase activation rather than the concentration of active GTPase. Our model captures both uniform and polarized ruffling. We also show that cell-type specific time delays between Rac1 and Cdc42 activation can be reproduced with a single signaling motif, in which the delay is controlled by feedback from Cdc42 to Rac1. The resolution of our simulation output matches those of the time-lapsed recordings of cell dynamics and GTPase activity. This approach allows us to validate simulation results with quantitative precision using the same pipeline for the analysis of simulated and experimental data.
Collapse
|
17
|
Bressler SG, Mitrany A, Wenger A, Näthke I, Friedler A. The Oligomerization Domains of the APC Protein Mediate Liquid-Liquid Phase Separation That Is Phosphorylation Controlled. Int J Mol Sci 2023; 24:ijms24076478. [PMID: 37047451 PMCID: PMC10095272 DOI: 10.3390/ijms24076478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
One of the most important properties of intrinsically disordered proteins is their ability to undergo liquid-liquid phase separation and form droplets. The Adenomatous Polyposis Coli (APC) protein is an IDP that plays a key role in Wnt signaling and mutations in Apc initiate cancer. APC forms droplets via its 20R domains and self-association domain (ASAD) and in the context of Axin. However, the mechanism involved is unknown. Here, we used peptides to study the molecular mechanism and regulation of APC droplet formation. We found that a peptide derived from the ASAD of APC-formed droplets. Peptide array screening showed that the ASAD bound other APC peptides corresponding to the 20R3 and 20R5 domains. We discovered that the 20R3/5 peptides also formed droplets by themselves and mapped specific residues within 20R3/5 that are necessary for droplet formation. When incubated together, the ASAD and 20R3/5 did not form droplets. Thus, the interaction of the ASAD with 20R3 and 20R5 may regulate the droplet formation as a means of regulating different cellular functions. Phosphorylation of 20R3 or 20R5 at specific residues prevented droplet formation of 20R3/5. Our results reveal that phosphorylation and the ability to undergo liquid-liquid phase separation, which are both important properties of intrinsically disordered proteins, are related to each other in APC. Phosphorylation inhibited the liquid-liquid phase separation of APC, acting as an ‘on-off’ switch for droplet formation. Phosphorylation may thus be a common mechanism regulating LLPS in intrinsically disordered proteins.
Collapse
Affiliation(s)
- Shachar G. Bressler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Amit Mitrany
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Alon Wenger
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Inke Näthke
- Division of Molecular Cell and Developmental Biology, University of Dundee, Dundee DD1 5AA, Scotland, UK
- Correspondence: (I.N.); (A.F.)
| | - Assaf Friedler
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Correspondence: (I.N.); (A.F.)
| |
Collapse
|
18
|
Bhattacharjee T, Adhikari S, Bhattacharjee S, Debnath S, Das A, Gabriel Daniliuc C, Thirumoorthy K, Malayaperumal S, Banerjee A, Pathak S, Frontera A. Exploring dithiolate-amine binary ligand systems for the supramolecular assemblies of Ni(II) coordination compounds: Crystal structures, theoretical studies, cytotoxicity studies, and molecular docking studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Bandaru CM, Poojith N, Jadav SS, Basaveswara Rao MV, Babu KS, Sreenivasulu R, Alluri R. Design, Synthesis, Anticancer Evaluation, and Molecular Docking Studies of Thiazole–Pyrimidine Linked Amide Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1939067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chandra Mohan Bandaru
- Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
| | - Nuthalapati Poojith
- Department of General Medicine, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamilnadu, India
| | - Surender Singh Jadav
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| | | | - K. Surendra Babu
- Department of Chemistry, Shree Velagapudi Ramakrishna Memorial College, Nagaram, Andhra Pradesh, India
| | - Reddymasu Sreenivasulu
- Department of Chemistry, University College of Engineering (Autonomous), Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| | - Ramesh Alluri
- Centre for Molecular Cancer Research (CMCR), Department of Pharmaceutical Chemistry, Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Telangana, India
| |
Collapse
|
20
|
Zhong J, Guo Y, Lu S, Song K, Wang Y, Feng L, Zheng Z, Zhang Q, Wei J, Sang P, Shi Y, Cai J, Chen G, Liu CY, Yang X, Zhang J. Rational design of a sensitivity-enhanced tracer for discovering efficient APC-Asef inhibitors. Nat Commun 2022; 13:4961. [PMID: 36002443 PMCID: PMC9402538 DOI: 10.1038/s41467-022-32612-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
The adenomatous polyposis coli (APC)–Rho guanine nucleotide exchange factor 4 (Asef) protein–protein interaction (PPI) is essential for colorectal cancer metastasis, making it a promising drug target. Herein, we obtain a sensitivity-enhanced tracer (tracer 7) with a high binding affinity (Kd = 0.078 μM) and wide signal dynamic range (span = 251 mp). By using tracer 7 in fluorescence-polarization assays for APC–Asef inhibitor screening, we discover a best-in-class inhibitor, MAI-516, with an IC50 of 0.041 ± 0.004 μM and a conjugated transcriptional transactivating sequence for generating cell-permeable MAIT-516. MAIT-516 inhibits CRC cell migration by specifically hindering the APC–Asef PPI. Furthermore, MAIT-516 exhibits no cytotoxic effects on normal intestinal epithelial cell and colorectal cancer cell growth. Overall, we develop a sensitivity-enhanced tracer for fluorescence polarization assays, which is used for the precise quantification of high-activity APC–Asef inhibitors, thereby providing insight into PPI drug development. The adenomatous polyposis coli (APC)–Asef protein interaction is essential for colorectal cancer metastasis. Here, the authors present the rational design of a sensitivity-enhanced tracer for fluorescence polarization assays, enabling them to discover more efficient APC–Asef interaction inhibitors.
Collapse
Affiliation(s)
- Jie Zhong
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuegui Guo
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Song
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Feng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiufen Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiacheng Wei
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Sang
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Yan Shi
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, USA
| | - Guoqiang Chen
- Research Unit of Stress and Cancer, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Jian Zhang
- State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Fang X, Svitkina TM. Adenomatous polyposis coli (APC) in cell migration. Eur J Cell Biol 2022; 101:151228. [DOI: 10.1016/j.ejcb.2022.151228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
|
22
|
Zhang Q, Chen Y, Ni D, Huang Z, Wei J, Feng L, Su JC, Wei Y, Ning S, Yang X, Zhao M, Qiu Y, Song K, Yu Z, Xu J, Li X, Lin H, Lu S, Zhang J. Targeting a cryptic allosteric site of SIRT6 with small-molecule inhibitors that inhibit the migration of pancreatic cancer cells. Acta Pharm Sin B 2022; 12:876-889. [PMID: 35256952 PMCID: PMC8897208 DOI: 10.1016/j.apsb.2021.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
SIRT6 belongs to the conserved NAD+-dependent deacetylase superfamily and mediates multiple biological and pathological processes. Targeting SIRT6 by allosteric modulators represents a novel direction for therapeutics, which can overcome the selectivity problem caused by the structural similarity of orthosteric sites among deacetylases. Here, developing a reversed allosteric strategy AlloReverse, we identified a cryptic allosteric site, Pocket Z, which was only induced by the bi-directional allosteric signal triggered upon orthosteric binding of NAD+. Based on Pocket Z, we discovered an SIRT6 allosteric inhibitor named JYQ-42. JYQ-42 selectively targets SIRT6 among other histone deacetylases and effectively inhibits SIRT6 deacetylation, with an IC50 of 2.33 μmol/L. JYQ-42 significantly suppresses SIRT6-mediated cancer cell migration and pro-inflammatory cytokine production. JYQ-42, to our knowledge, is the most potent and selective allosteric SIRT6 inhibitor. This study provides a novel strategy for allosteric drug design and will help in the challenging development of therapeutic agents that can selectively bind SIRT6.
Collapse
Key Words
- ADPr, ADP-ribose
- Allosteric inhibitor
- BSA, bull serum albumin
- CCK-8, Cell Counting Kit-8
- Cell migration
- Cytokine production
- DMSO, dimethyl sulfoxide
- FBS, fetal bovine serum
- FDL, Fluor de Lys
- H3K18, histone 3 lysine 18
- H3K56, histone 3 lysine 56
- H3K9, histone 3 lysine 9
- HDAC, histone deacetylase
- HPLC, high-performance liquid chromatography
- IC50, half-maximum inhibitory concentration
- IPTG, isopropyl-β-d-thiogalactoside
- MD, molecular dynamics
- Molecular dynamics simulations
- NAD+, nicotinamide adenine dinucleotide
- NAM, nicotinamide
- PBS, phosphate buffer saline
- PMA, phorbol 12-myristate 13-acetate
- PMSF, phenylmethanesulfonyl fluoride
- Pancreatic cancer
- RMSD, root-mean-square deviation
- RT-qPCR, real-time quantitative PCR
- Reversed allostery
- SDS-PAGE, SDS-polyacrylamide gel electrophoresis
- SIRT6
- SIRT6, sirtuin 6
Collapse
|
23
|
Zha J, Li M, Kong R, Lu S, Zhang J. Explaining and Predicting Allostery with Allosteric Database and Modern Analytical Techniques. J Mol Biol 2022; 434:167481. [DOI: 10.1016/j.jmb.2022.167481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/25/2022] [Accepted: 01/31/2022] [Indexed: 12/17/2022]
|
24
|
Rehman AU, Lu S, Khan AA, Khurshid B, Rasheed S, Wadood A, Zhang J. Hidden allosteric sites and De-Novo drug design. Expert Opin Drug Discov 2021; 17:283-295. [PMID: 34933653 DOI: 10.1080/17460441.2022.2017876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Hidden allosteric sites are not visible in apo-crystal structures, but they may be visible in holo-structures when a certain ligand binds and maintains the ligand intended conformation. Several computational and experimental techniques have been used to investigate these hidden sites but identifying them remains a challenge. AREAS COVERED This review provides a summary of the many theoretical approaches for predicting hidden allosteric sites in disease-related proteins. Furthermore, promising cases have been thoroughly examined to reveal the hidden allosteric site and its modulator. EXPERT OPINION In the recent past, with the development in scientific techniques and bioinformatics tools, the number of drug targets for complex human diseases has significantly increased but unfortunately most of these targets are undruggable due to several reasons. Alternative strategies such as finding cryptic (hidden) allosteric sites are an attractive approach for exploitation of the discovery of new targets. These hidden sites are difficult to recognize compared to allosteric sites, mainly due to a lack of visibility in the crystal structure. In our opinion, after many years of development, MD simulations are finally becoming successful for obtaining a detailed molecular description of drug-target interaction.
Collapse
Affiliation(s)
- Ashfaq Ur Rehman
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Abdul Aziz Khan
- Bio-X Institutes, Key Laboratory for the Genetics of Development and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Institute of Psychology and Behavioral Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Beenish Khurshid
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Salman Rasheed
- National Center for Bioinformatics, Quaid-e-Azam University, Islamabad, Pakistan
| | - Abdul Wadood
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
25
|
Wan T, Pan Q, Liu C, Guo J, Li B, Yan X, Cheng Y, Ping Y. A Duplex CRISPR-Cas9 Ribonucleoprotein Nanomedicine for Colorectal Cancer Gene Therapy. NANO LETTERS 2021; 21:9761-9771. [PMID: 34767372 DOI: 10.1021/acs.nanolett.1c03708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Based on the high frequency of concurrent adenomatous polyposis coli (APC) and KRAS mutations and their strong cooperative interaction in human colorectal cancer (CRC) promotion, we herein develop a CRISPR-Cas9-based genome-editing nanomedicine to target both APC and KRAS mutations for the treatment of CRC. To this end, a hyaluronic acid (HA)-decorated phenylboronic dendrimer (HAPD) was designed for the targeted delivery of Cas9 ribonucleoprotein (RNP), by which both APC and KRAS genetic mutations harboring in CRC cells can be synergistically disrupted. Systemic administration of Cas9 RNP targeting APC and KRAS enabled by HAPD significantly inhibits tumor growth on xenografted and orthotopic CRC mouse models and also greatly prevents CRC-induced liver metastasis and lung metastasis. Thus, this duplex genome-editing system provides a promising gene therapy strategy for the treatment of human CRC and can be extended to other types of cancers with activated Wnt/β-catenin and RAS/extracellular signal-regulated kinase (ERK) pathways.
Collapse
Affiliation(s)
- Tao Wan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| | - Qi Pan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chongyi Liu
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Jiajing Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaojie Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, East China Normal University, Shanghai 200241, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, China
| |
Collapse
|
26
|
Yufeng Z, Ming Q, Dandan W. MiR-320d Inhibits Progression of EGFR-Positive Colorectal Cancer by Targeting TUSC3. Front Genet 2021; 12:738559. [PMID: 34733314 PMCID: PMC8558375 DOI: 10.3389/fgene.2021.738559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/24/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The mechanism of miR-320d in EGFR-positive colorectal cancer (CRC) has not been fully elucidated. The aim of the present study was to explore the molecular mechanism of miR-320d in CRC. Methods: The miRNA microarray analysis was conducted to identify differential expressed miRNAs. The expression of miR-320d was validated using quantitative real-time PCR. EGFR-positive CRC cells were transfected with miR-320d mimic and inhibitor, after which cell proliferation, migration, and invasion were assayed. The relationship between miR-320d and TUSC3 was confirmed using bioinformatics and dual-luciferase reporter gene assays. Proteins involved in signaling pathways and the epithelial–mesenchymal transition were detected with Western blot. Results: We found that the miR-320d expression is associated with tumor size and distant metastasis in colorectal cancer. Overexpression of miR-320d in EGFR-positive HCT-116 and SW480 cells decreased not only the proliferation ability but also the invasion and migration ability. In addition, miR-320d had the ability to inhibit epithelial-to-mesenchymal transition. Luciferase assays revealed that miR-320d directly targets the 3′-UTR of TUSC3. TUSC3 was downregulated by miR-320d at both the protein and mRNA levels in EGFR-positive CRC cell lines. Conclusion: Generally, our results demonstrated that miR-320d could inhibit the malignant phenotype of EGFR-positive CRC through targeting TUSC3. The miR-320d might be a potential therapeutic target for EGFR-positive CRC.
Collapse
Affiliation(s)
- Zhu Yufeng
- Department of General Surgery, The First Affiliated Hospital of JinZhou Medical University, JinZhou, China
| | - Qi Ming
- Department of Ultrasound, The First Affiliated Hospital of JinZhou Medical University, JinZhou, China
| | - Wu Dandan
- Department of Gastroenterology, The First Affiliated Hospital of JinZhou Medical University, JinZhou, China
| |
Collapse
|
27
|
Qin X, Chen H, Tu L, Ma Y, Liu N, Zhang H, Li D, Riedl B, Bierer D, Yin F, Li Z. Potent Inhibition of HIF1α and p300 Interaction by a Constrained Peptide Derived from CITED2. J Med Chem 2021; 64:13693-13703. [PMID: 34472840 DOI: 10.1021/acs.jmedchem.1c01043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disrupting the interaction between HIF1α and p300 is a promising strategy to modulate the hypoxia response of tumor cells. Herein, we designed a constrained peptide inhibitor derived from the CITED2/p300 complex to disturb the HIF1α/p300 interaction. Through truncation/mutation screening and a terminal aspartic acid-stabilized strategy, a constrained peptide was constructed with outstanding biochemical/biophysical properties, especially in binding affinity, cell penetration, and serum stability. To date, our study was the first one to showcase that stabilized peptides derived from CITED2 using helix-stabilizing methods acted as a promising candidate for modulating hypoxia-inducible signaling.
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hailing Chen
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Licheng Tu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yue Ma
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Na Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Haowei Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Shenzhen Graduate School of Tsinghua University, Shenzhen 518055, China
| | - Di Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bernd Riedl
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Donald Bierer
- Department of Medicinal Chemistry, Bayer AG, Aprather Weg 18A, Wuppertal 42096, Germany
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.,Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
28
|
Ai L, Luo X, Yan X, Jiang S. MicroRNA-506-3p inhibits colorectal cancer cell proliferation through targeting enhancer of zeste homologue 2. Bioengineered 2021; 12:4044-4053. [PMID: 34288823 PMCID: PMC8806550 DOI: 10.1080/21655979.2021.1951930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A large number of studies have shown that microRNA (miRNA) has an important relationship with the occurrence and development of colorectal cancer (CRC), but its specific molecular mechanism has not been fully elucidated. This study is to explore the influence of miR-506-3p on the malignant behavior of CRC and its underlying molecular mechanism. Our results show that miR-506-3p was lowly expressed and enhancer of zeste homologue 2 (EZH2) was highly expressed in CRC. Overexpressing miR-506-3p or silencing EZH2 inhibited CRC cell proliferation, migration and invasion and promoted apoptosis. Inhibiting miR-506-3p promoted CRC cell proliferation, migration and invasion but inhibited apoptosis. These impacts were reversed after co-transfecting si-EZH2. Further mechanism studies have shown that miR-506-3p can reduce EZH2 expression in CRC cells by binding to the 3ʹUTR end of EZH2. In summary, the results of this study show that miR-506-3p inhibited CRC progression through targeting EZH2 expression. This provides a new molecular target for the clinical treatment of CRC in the future.
Collapse
Affiliation(s)
- Liang Ai
- Department of Oncology, Chongqing Hospital of Traditional Chinese Medicine Chongqing City, China
| | - Xiaojun Luo
- Department of Hepatobiliary and Pancreatic Tumor Center, Chongqing University Cancer Hospital, Chongqing City, China
| | - Xiong Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Shan Jiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
29
|
The structural biology of canonical Wnt signalling. Biochem Soc Trans 2021; 48:1765-1780. [PMID: 32725184 PMCID: PMC7458405 DOI: 10.1042/bst20200243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/17/2022]
Abstract
The Wnt signalling pathways are of great importance in embryonic development and oncogenesis. Canonical and non-canonical Wnt signalling pathways are known, with the canonical (or β-catenin dependent) pathway being perhaps the best studied of these. While structural knowledge of proteins and interactions involved in canonical Wnt signalling has accumulated over the past 20 years, the pace of discovery has increased in recent years, with the structures of several key proteins and assemblies in the pathway being released. In this review, we provide a brief overview of canonical Wnt signalling, followed by a comprehensive overview of currently available X-ray, NMR and cryoEM data elaborating the structures of proteins and interactions involved in canonical Wnt signalling. While the volume of structures available is considerable, numerous gaps in knowledge remain, particularly a comprehensive understanding of the assembly of large multiprotein complexes mediating key aspects of pathway, as well as understanding the structure and activation of membrane receptors in the pathway. Nonetheless, the presently available data affords considerable opportunities for structure-based drug design efforts targeting canonical Wnt signalling.
Collapse
|
30
|
Lee K, Yoo KS, Park YS, Kim HK. Activity of Arhgef4 is modulated through Staufen1 in neurons. Neurosci Lett 2021; 756:135962. [PMID: 34022264 DOI: 10.1016/j.neulet.2021.135962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/10/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022]
Abstract
The role of Arhgef4, also known as adenomatous polyposis coli (APC)-stimulated guanine nucleotide exchange factor 1 (Asef1), has been identified in colorectal cancers. Interestingly, Arhgef4 is more highly expressed in brain regions than intestinal regions, suggesting a role in neurons. In our previous study, we reported that Arhgef4 negatively regulates the level of PSD-95 in excitatory post-synaptic regions by binding with Staufen1. However, modulation of Arhgef4 guanine nucleotide exchange factor (GEF) activity in neurons has not been reported. We examined the configuration of protein interactions when Arhgef4 binds to APC and/or Staufen1. Arhgef4 simultaneously binds to Staufen1 with APC. Staufen1 overexpression blocked the GEF activity of Arhgef4. Consistent with this, Staufen1 overexpression blocked the Arhgef4-induced increase in dendritic protrusions in cultured neurons. Taken together, our data suggest that the GEF activity of Arhgef4 could be negatively modulated by Staufen1 binding.
Collapse
Affiliation(s)
- Kina Lee
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Ki-Seo Yoo
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Young-Seok Park
- Department of Neurosurgery, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyong Kyu Kim
- Department of Medicine and Microbiology, Graduate Program in Neuroscience, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
31
|
Wang X, Ni D, Liu Y, Lu S. Rational Design of Peptide-Based Inhibitors Disrupting Protein-Protein Interactions. Front Chem 2021; 9:682675. [PMID: 34017824 PMCID: PMC8128998 DOI: 10.3389/fchem.2021.682675] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Protein-protein interactions (PPIs) are well-established as a class of promising drug targets for their implications in a wide range of biological processes. However, drug development toward PPIs is inevitably hampered by their flat and wide interfaces, which generally lack suitable pockets for ligand binding, rendering most PPI systems "undruggable." Here, we summarized drug design strategies for developing peptide-based PPI inhibitors. Importantly, several quintessential examples toward well-established PPI targets such as Bcl-2 family members, p53-MDM2, as well as APC-Asef are presented to illustrate the detailed schemes for peptide-based PPI inhibitor development and optimizations. This review supplies a comprehensive overview of recent progresses in drug discovery targeting PPIs through peptides or peptidomimetics, and will shed light on future therapeutic agent development toward the historically "intractable" PPI systems.
Collapse
Affiliation(s)
- Xuefei Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Duan Ni
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yaqin Liu
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Novel STAT3 small-molecule inhibitors identified by structure-based virtual ligand screening incorporating SH2 domain flexibility. Pharmacol Res 2021; 169:105637. [PMID: 33932608 DOI: 10.1016/j.phrs.2021.105637] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/05/2023]
Abstract
Efforts to develop STAT3 inhibitors have focused on its SH2 domain starting with short phosphotyrosylated peptides based on STAT3 binding motifs, e.g. pY905LPQTV within gp130. Despite binding to STAT3 with high affinity, issues regarding stability, bioavailability, and membrane permeability of these peptides, as well as peptidomimetics such as CJ-887, have limited their further clinical development and led to interest in small-molecule inhibitors. Some small molecule STAT3 inhibitors, identified using structure-based virtual ligand screening (SB-VLS); while having favorable drug-like properties, suffer from weak binding affinities, possibly due to the high flexibility of the target domain. We conducted molecular dynamic (MD) simulations of the SH2 domain in complex with CJ-887, and used an averaged structure from this MD trajectory as an "induced-active site" receptor model for SB-VLS of 110,000 compounds within the SPEC database. Screening was followed by re-docking and re-scoring of the top 30% of hits, selection for hit compounds that directly interact with pY + 0 binding pocket residues R609 and S613, and testing for STAT3 targeting in vitro, which identified two lead hits with good activity and favorable drug-like properties. Unlike most small-molecule STAT3 inhibitors previously identified, which contain negatively-charged moieties that mediate binding to the pY + 0 binding pocket, these compounds are uncharged and likely will serve as better candidates for anti-STAT3 drug development. IMPLICATIONS: SB-VLS, using an averaged structure from molecular dynamics (MD) simulations of STAT3 SH2 domain in a complex with CJ-887, a known peptidomimetic binder, identify two highly potent, neutral, low-molecular weight STAT3-inhibitors with favorable drug-like properties.
Collapse
|
33
|
Yang X, Zhong J, Zhang Q, Feng L, Zheng Z, Zhang J, Lu S. Advances and Insights of APC-Asef Inhibitors for Metastatic Colorectal Cancer Therapy. Front Mol Biosci 2021; 8:662579. [PMID: 33968990 PMCID: PMC8100458 DOI: 10.3389/fmolb.2021.662579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022] Open
Abstract
In Colorectal cancer (CRC), adenomatous polyposis coli (APC) directly interacts with the Rho guanine nucleotide exchange factor 4 (Asef) and releases its GEF activity. Activated Asef promotes the aberrant migration and invasion of CRC cell through a CDC42-mediated pathway. Knockdown of either APC or Asef significantly decreases the migration of CRC cells. Therefore, disrupting the APC-Asef interaction is a promising strategy for the treatment of invasive CRC. With the growth of structural information, APC-Asef inhibitors have been designed, providing hope for CRC therapy. Here, we will review the APC-Asef interaction in cancer biology, the structural complex of APC-Asef, two generations of peptide inhibitors of APC-Asef, and small molecule inhibitors of APC-Asef, focusing on research articles over the past 30 years. We posit that these advances in the discovery of APC-Asef inhibitors establish the protein-protein interaction (PPI) as targetable and provide a framework for other PPI programs.
Collapse
Affiliation(s)
- Xiuyan Yang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhong
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiufen Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Feng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Zheng
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
34
|
Wu Y, Lu D, Jiang Y, Jin J, Liu S, Chen L, Zhang H, Zhou Y, Chen H, Nagle DG, Luan X, Zhang W. Stapled Wasp Venom-Derived Oncolytic Peptides with Side Chains Induce Rapid Membrane Lysis and Prolonged Immune Responses in Melanoma. J Med Chem 2021; 64:5802-5815. [PMID: 33844923 DOI: 10.1021/acs.jmedchem.0c02237] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peptide stapling chemistry represents an attractive strategy to promote the clinical translation of protein epitope mimetics, but its use has not been applied to natural cytotoxic peptides (NCPs) to produce new oncolytic peptides. Based on a wasp venom peptide, a series of stapled anoplin peptides (StAnos) were prepared. The optimized stapled Ano-3/3s were shown to be protease-resistant and exerted superior tumor cell-selective cytotoxicity by rapid membrane disruption. In addition, Ano-3/3s induced tumor ablation in mice through the direct oncolytic effect and subsequent stimulation of immunogenic cell death. This synergistic oncolytic-immunotherapy effect is more remarkable on melanoma than on triple-negative breast cancer in vivo. The efficacies exerted by Ano-3/3s on melanoma were further characterized by CD8+ T cell infiltration, and the addition of anti-CD8 antibodies diminished the long-term antitumor effects. In summary, these results support stapled peptide chemistry as an advantageous method to enhance the NCP potency for oncolytic therapy.
Collapse
Affiliation(s)
- Ye Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yixin Jiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinmei Jin
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yudong Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Hongzhuan Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dale G Nagle
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Department of Biomolecular Sciences and Research of Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, Mississippi 38677-1848, United States
| | - Xin Luan
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,School of Pharmacy, Second Military Medical University, Shanghai 201203, China
| |
Collapse
|
35
|
Li L, Yang W, Shen Y, Xu X, Li J. The evolutionary analysis of complement component C5 and the gene co-expression network and putative interaction between C5a and C5a anaphylatoxin receptor (C5AR/CD88) in human and two Cyprinid fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103958. [PMID: 33290783 DOI: 10.1016/j.dci.2020.103958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The complement system is a complex network of soluble and membrane-associated serum proteins that regulate immune response. Activation of the complement C5 generates C5a and C5b which generate chemoattractive effect on myeloid cells and initiate the membrane attack complex (MAC) assembly. However, the study of evolutionary process and systematic function of C5 are still limited. In this study, we performed an evolutionary analysis of C5. Phylogeny analysis indicated that C5 sequences underwent complete divergence in fish and non-fish vertebrate. It was found that codon usage bias improved and provided evolution evidence of C5 in species. Notably, the codon usage bias of grass carp was evolutionarily closer to the zebrafish genome compared with humans and stickleback. This suggested that the zebrafish cell line may provide an alternative environment for heterologous protein expression of grass carp. Sequence comparison showed a higher similarity between human and mouse, grass carp, and zebrafish. Moreover, selective pressure analysis revealed that the C5 genes in fish and non-fish vertebrates exhibited different evolutionary patterns. To study the function of C5, gene co-expression networks of human and zebrafish were built which revealed the complexity of C5 function networks in different species. The protein structure simulation of C5 indicated that grass carp and zebrafish are more similar than to human, however, differences between species in C5a proteins are extremely smaller. Spatial conformations of C5a-C5AR (CD88) protein complex were constructed, which showed that possible interaction may exist between C5a and CD88 proteins. Furthermore, the protein docking sites/residues were measured and calculated according to the minimum distance for all atoms from C5a and CD88 proteins. In summary, this study provides insights into the evolutionary history, function and potential regulatory mechanism of C5 in fish immune responses.
Collapse
Affiliation(s)
- Lisen Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Weining Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
36
|
Tian X, Xu WH, Anwaier A, Wang HK, Wan FN, Cao DL, Luo WJ, Shi GH, Qu YY, Zhang HL, Ye DW. Construction of a robust prognostic model for adult adrenocortical carcinoma: Results from bioinformatics and real-world data. J Cell Mol Med 2021; 25:3898-3911. [PMID: 33626208 PMCID: PMC8051734 DOI: 10.1111/jcmm.16323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/24/2020] [Accepted: 01/09/2021] [Indexed: 12/27/2022] Open
Abstract
This study aims to construct a robust prognostic model for adult adrenocortical carcinoma (ACC) by large‐scale multiomics analysis and real‐world data. The RPPA data, gene expression profiles and clinical information of adult ACC patients were obtained from The Cancer Proteome Atlas (TCPA), Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Integrated prognosis‐related proteins (IPRPs) model was constructed. Immunohistochemistry was used to validate the prognostic value of the IPRPs model in Fudan University Shanghai Cancer Center (FUSCC) cohort. 76 ACC cases from TCGA and 22 ACC cases from GSE10927 in NCBI’s GEO database with full data for clinical information and gene expression were utilized to validate the effectiveness of the IPRPs model. Higher FASN (P = .039), FIBRONECTIN (P < .001), TFRC (P < .001), TSC1 (P < .001) expression indicated significantly worse overall survival for adult ACC patients. Risk assessment suggested significantly a strong predictive capacity of IPRPs model for poor overall survival (P < .05). IPRPs model showed a little stronger ability for predicting prognosis than Ki‐67 protein in FUSCC cohort (P = .003, HR = 3.947; P = .005, HR = 3.787). In external validation of IPRPs model using gene expression data, IPRPs model showed strong ability for predicting prognosis in TCGA cohort (P = .005, HR = 3.061) and it exhibited best ability for predicting prognosis in GSE10927 cohort (P = .0898, HR = 2.318). This research constructed IPRPs model for predicting adult ACC patients’ prognosis using proteomic data, gene expression data and real‐world data and this prognostic model showed stronger predictive value than other biomarkers (Ki‐67, Beta‐catenin, etc) in multi‐cohorts.
Collapse
Affiliation(s)
- Xi Tian
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Hao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Aihetaimujiang Anwaier
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hong-Kai Wang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang-Ning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Long Cao
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jie Luo
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guo-Hai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuan-Yuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hai-Liang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ding-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
37
|
He X, Huang N, Qiu Y, Zhang J, Liu Y, Yin XL, Lu S. Conformational Selection Mechanism Provides Structural Insights into the Optimization of APC-Asef Inhibitors. Molecules 2021; 26:962. [PMID: 33670371 PMCID: PMC7918825 DOI: 10.3390/molecules26040962] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/31/2022] Open
Abstract
Metastasis is the major cause of death in colorectal cancer and it has been proven that inhibiting an interaction between adenomatous polyposis coli (APC) and Rho guanine nucleotide exchange factor 4 (Asef) efficaciously restrain metastasis. However, current inhibitors cannot achieve a satisfying effect in vivo and need to be optimized. In the present study, we applied molecular dynamics (MD) simulations and extensive analyses to apo and holo APC systems in order to reveal the inhibitor mechanism in detail and provide insights into optimization. MD simulations suggested that apo APC takes on a broad array of conformations and inhibitors stabilize conformation selectively. Representative structures in trajectories show specific APC-ligand interactions, explaining the different binding process. The stability and dynamic properties of systems elucidate the inherent factors of the conformation selection mechanism. Binding free energy analysis quantitatively confirms key interface residues and guide optimization. This study elucidates the conformation selection mechanism in APC-Asef inhibition and provides insights into peptide-based drug design.
Collapse
Affiliation(s)
- Xinheng He
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Huang
- Northern Huashan Hospital, Fudan University, Shanghai 201907, China;
| | - Yuran Qiu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
| | - Yaqin Liu
- Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiao-Lan Yin
- Department of Radiotherapy, Changhai Hospital (Hongkou District) Affiliated to Naval Medical University, Shanghai 200081, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (X.H.); (Y.Q.); (J.Z.)
| |
Collapse
|
38
|
Sireesha R, Sreenivasulu R, Chandrasekhar C, Jadav SS, Pavani Y, Rao MVB, Subbarao M. Design, synthesis, anti-cancer evaluation and binding mode studies of benzimidazole/benzoxazole linked β-carboline derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
39
|
Pickering KA, Gilroy K, Cassidy JW, Fey SK, Najumudeen AK, Zeiger LB, Vincent DF, Gay DM, Johansson J, Fordham RP, Miller B, Clark W, Hedley A, Unal EB, Kiel C, McGhee E, Machesky LM, Nixon C, Johnsson AE, Bain M, Strathdee D, van Hoof SR, Medema JP, Anderson KI, Brachmann SM, Stucke VM, Malliri A, Drysdale M, Turner M, Serrano L, Myant K, Campbell AD, Sansom OJ. A RAC-GEF network critical for early intestinal tumourigenesis. Nat Commun 2021; 12:56. [PMID: 33397922 PMCID: PMC7782582 DOI: 10.1038/s41467-020-20255-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2-/- Vav3-/- Tiam1-/-), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease.
Collapse
Affiliation(s)
- K A Pickering
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - K Gilroy
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - J W Cassidy
- CRUK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 ORE, UK
| | - S K Fey
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - A K Najumudeen
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - L B Zeiger
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - D F Vincent
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - D M Gay
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - J Johansson
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - R P Fordham
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - B Miller
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - W Clark
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - A Hedley
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - E B Unal
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - C Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
| | - E McGhee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - L M Machesky
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - C Nixon
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - A E Johnsson
- The Babraham Institute, Babraham Hall, Babraham, Cambridge, CB22 3AT, UK
| | - M Bain
- IBAHCM and School of Veterinary Medicine, 464 Bearsden Road, Bearsden, Glasgow, G61 1QH, UK
| | - D Strathdee
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - S R van Hoof
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - J P Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM) and Cancer Center Amsterdam, Academic Medical Center, Amsterdam, The Netherlands
- Oncode Institute, Academic Medical Center, Amsterdam, The Netherlands
| | - K I Anderson
- The Francis Crick Institute, Mill Hill Laboratory, London, NW7 1AA, UK
| | - S M Brachmann
- Novartis Institutes for BioMedical Research, Klybeckstrasse, 141, 4002, Basel, Switzerland
| | - V M Stucke
- Novartis Institutes for BioMedical Research, Klybeckstrasse, 141, 4002, Basel, Switzerland
| | - A Malliri
- CRUK Manchester Institute, 553 Wilmslow Road, Manchester, M20 4BX, UK
| | - M Drysdale
- Broad Institute, 415 Main St, Cambridge, MA, 02142, United States
| | - M Turner
- The Babraham Institute, Babraham Hall, Babraham, Cambridge, CB22 3AT, UK
| | - L Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRC), Barcelona, Spain
| | - K Myant
- Edinburgh Research Centre, The Institute of Genetics and Molecular Medicine, Crewe Road South, Edinburgh, EH4 2XR, UK.
| | - A D Campbell
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
| | - O J Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK.
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK.
| |
Collapse
|
40
|
Phull MS, Jadav SS, Gundla R, Mainkar PS. A perspective on medicinal chemistry approaches towards adenomatous polyposis coli and Wnt signal based colorectal cancer inhibitors. Eur J Med Chem 2021; 212:113149. [PMID: 33445154 DOI: 10.1016/j.ejmech.2020.113149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the major causes of carcinogenic mortality in numbers only after lung and breast cancers. The mutations in adenomatous polyposis coli (APC) gene leads to formation of colorectal polyps in the colonic region and which develop as a malignant tumour upon coalition with patient related risk factors. The protein-protein interaction (PPI) of APC with Asef (A Rac specific guanine nucleotide exchange factor) overwhelms the patient's conditions by rapidly spreading in the entire colorectal region. Most mutations in APC gene occur in mutated cluster region (MCR), where it specifically binds with the cytosolic β-catenin to regulate the Wnt signalling pathway required for CRC cell adhesion, invasion, progression, differentiation and stemness in initial cell cycle phages. The current broad spectrum perspective is attempted to elaborate the sources of identification, development of selective APC inhibitors by targeting emopamil-binding protein (EBP) & dehydrocholesterol reductase-7 & 24 (DHCR-7 & 24); APC-Asef, β-catenin/APC, Wnt/β-catenin, β-catenin/TCF4 PPI inhibitors with other vital Wnt signal cellular proteins and APC/Pol-β interface of colorectal cancer. In this context, this perspective would serve as a platform for design of new medicinal agents by targeting cellular essential components which could accelerate anti-colorectal potential candidates.
Collapse
Affiliation(s)
- Manjinder Singh Phull
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Surender Singh Jadav
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Rambabu Gundla
- Department of Chemistry, School of Science, GITAM (Deemed to Be University), Hyderabad, 502329, Telangana, India
| | - Prathama S Mainkar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Utter Pradesh, India.
| |
Collapse
|
41
|
Lian F, Ye Q, Feng B, Cheng H, Niu S, Fan N, Wang D, Wang Z. rAAV9-UPII-TK-EGFP can precisely transduce a suicide gene and inhibit the growth of bladder tumors. Cancer Biol Ther 2020; 21:1171-1178. [PMID: 33218277 DOI: 10.1080/15384047.2020.1844115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bladder cancer is a common and widespread cancer of the human urinary system, and its incidence is increasing. Gene therapy is a promising treatment of bladder cancer. In our study, a recombinant adeno-associated virus (rAAV9-UPII-TK-EGFP) driven by a UPII promoter was constructed. The efficacy and safety of infection of bladder cells was tested in vivo and in vitro. The ability of rAAV9-UPII-TK-EGFP to penetrate the glycosaminoglycan (GAG) layer on the surface of bladder cells and to transduce the bladder cells in vivo was very high. Additionally, we confirmed that the TK/GCV system has a powerful cytotoxic effect on bladder tumor cells in vitro and in vivo. Thus, our data indicate that rAAV9-UPII-TK-EGFP is a precise gene drug delivery system for the treatment of bladder cancer, and the TK/GCV therapeutic strategy has a powerful antitumor effect. These findings can be widely used in clinical and scientific studies.
Collapse
Affiliation(s)
- Foyan Lian
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Qiang Ye
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Bing Feng
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Hui Cheng
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Shaomin Niu
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Ning Fan
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University , Lanzhou, China
| | - Zhiping Wang
- Key Laboratory of Urological Diseases in Gansu Province, Department of Urology, Institute of Urology, The Second Hospital of Lanzhou University , Lanzhou, China
| |
Collapse
|
42
|
Wu J, Hu B, Sun X, Wang H, Huang Y, Zhang Y, Liu M, Liu Y, Zhao Y, Wang J, Yu Z. In silico study reveals existing drugs as α-glucosidase inhibitors: Structure-based virtual screening validated by experimental investigation. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Computational methods-guided design of modulators targeting protein-protein interactions (PPIs). Eur J Med Chem 2020; 207:112764. [PMID: 32871340 DOI: 10.1016/j.ejmech.2020.112764] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022]
Abstract
Protein-protein interactions (PPIs) play a pivotal role in extensive biological processes and are thus crucial to human health and the development of disease states. Due to their critical implications, PPIs have been spotlighted as promising drug targets of broad-spectrum therapeutic interests. However, owing to the general properties of PPIs, such as flat surfaces, featureless conformations, difficult topologies, and shallow pockets, previous attempts were faced with serious obstacles when targeting PPIs and almost portrayed them as "intractable" for decades. To date, rapid progress in computational chemistry and structural biology methods has promoted the exploitation of PPIs in drug discovery. These techniques boost their cost-effective and high-throughput traits, and enable the study of dynamic PPI interfaces. Thus, computational methods represent an alternative strategy to target "undruggable" PPI interfaces and have attracted intense pharmaceutical interest in recent years, as exemplified by the accumulating number of successful cases. In this review, we first introduce a diverse set of computational methods used to design PPI modulators. Herein, we focus on the recent progress in computational strategies and provide a comprehensive overview covering various methodologies. Importantly, a list of recently-reported successful examples is highlighted to verify the feasibility of these computational approaches. Finally, we conclude the general role of computational methods in targeting PPIs, and also discuss future perspectives on the development of such aids.
Collapse
|
44
|
Wen D, Wang Y, Zhu Z, Huang Z, Cui L, Wu T, Liu CY. Bromodomain and Extraterminal (BET) protein inhibition suppresses tumor progression and inhibits HGF-MET signaling through targeting cancer-associated fibroblasts in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165923. [PMID: 32800944 DOI: 10.1016/j.bbadis.2020.165923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Colorectal cancer (CRC) is one of the leading causes of cancer-related mortality. The bromodomain and extra-terminal domain (BET) inhibitors suppresses the gene expressions of various oncogenes and shows a good efficacy in the preclinical CRC models. We investigate the mechanism of action of BET inhibitors in CRC. METHODS The effect of BET inhibitor (JQ1) on the HGF-MET signaling was assessed by qPCR, western blot and immunohistochemical staining in CRC and cancer-associated fibroblasts (CAFs). The effect of JQ1 on the CAFs was investigated using the primary CAFs derived from CRC tissues and induced-CAFs derived from isolating foreskin fibroblasts. The effect of JQ1 on the gene expression profile of CAFs was explored by RNA-sequence, qPCR and bioinformatic analysis. RESULTS JQ1 decreased the mRNA and protein levels of MET in CRC cells and downregulated the mRNA and protein levels of HGF in both CRC cells and CAFs. JQ1 attenuated the pro-migratory activity of CAFs through downregulation of HGF expression in CAFs. Meanwhile, JQ1 also reduced the ability of contracting collagen gels, decreased the cell proliferation, induced G1 arrest and repressed the pro-inflammatory gene expressions in CAFs. MYC expression was suppressed by JQ1 in CAFs. Knockdown of MYC induced G1 arrest in CAFs. CONCLUSION Our results demonstrate the inhibitory effect of BET inhibition on the HGF-MET signaling and the pro-tumor activity of CAFs, revealing a new mechanism by which BET inhibition suppresses CRC progression.
Collapse
Affiliation(s)
- Dongpeng Wen
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Department of Gastrointestinal Surgery, Henan Provincial People' s Hospital, People' s Hospital of Zhengzhou University, People' s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Yuhan Wang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Zhehui Zhu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Zhenyu Huang
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Long Cui
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China
| | - Tingyu Wu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; Shanghai Colorectal Cancer Research Center, Shanghai 200092, China.
| |
Collapse
|
45
|
Jadav SS, Macalino SJY, Alluri R. Structure-based discovery of small molecule APC-Asef interaction inhibitors: In silico approaches and molecular dynamics simulations. J Mol Model 2020; 26:207. [PMID: 32676810 DOI: 10.1007/s00894-020-04467-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 07/08/2020] [Indexed: 01/11/2023]
Abstract
Colorectal cancer, which is considered one of the leading causes of mortality worldwide, develops through the formation of benign polyps on the inner colon or rectum wall. Truncations in adenomatous polyposis coli (APC) gene lead to the spread of the disease in the entire colon region when combined with the guanine nucleotide exchange factor (GEF) Asef. A series of peptidomimetic agents were previously discovered as protein-protein interaction inhibitors that can target the APC-Asef interface. Structure-based virtual screening (SBVS), using a set of docking methods combined with molecular dynamics simulations, was carried out to identify new small drug-like agents. After the initial screening process, compounds with diverse chemical scaffolds and direct interaction with Arg549 and other active site residues were chosen and subjected to induce fit. The amide functional group found in the ligand hit structures showed strong interactions with Arg549, leading to observable conformational changes that allow suitable positioning within the peptide binding site. Furthermore, the pH-specific MD simulations of the top hit 838 within the APC-Asef binding site depicted significant interactions required for biochemical recognition in changing microenvironment. Predicted inhibitory constant (Ki) values and binding free energies of hits further described the significance of the amide group over the other chemical scaffolds. This combination of in silico approaches provides key insights for colorectal drug discovery programs targeting the APC-Asef interaction. Graphical abstract The common active site residues involved in interaction with ligands.
Collapse
Affiliation(s)
- Surender Singh Jadav
- CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad, 500007, India.
- Center for Molecular Cancer Research (CMCR), Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak, 502313, India.
| | | | - Ramesh Alluri
- Center for Molecular Cancer Research (CMCR), Vishnu Institute of Pharmaceutical Education and Research (VIPER), Narsapur, Medak, 502313, India
| |
Collapse
|
46
|
Zhu X, Luo C, Lin K, Bu F, Ye F, Huang C, Luo H, Huang J, Zhu Z. Overexpression of DJ-1 enhances colorectal cancer cell proliferation through the cyclin-D1/MDM2-p53 signaling pathway. Biosci Trends 2020; 14:83-95. [PMID: 32132307 DOI: 10.5582/bst.2019.01272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Emerging evidence indicates that DJ-1 is highly expressed in different cancers. It modulates cancer progression, including cell proliferation, cell apoptosis, invasion, and metastasis. However, its role in colorectal cancer (CRC) remains poorly defined. The current study noted increased DJ-1 expression in CRC tumor tissue and found that its expression was closely related to clinical-pathological features. Similarly, DJ-1 increased in CRC cells (SW480, HT-29, Caco-2, LoVo, HCT116, and SW620), and especially in SW480 and HCT116 cells. Functional analyses indicated that overexpression of DJ-1 promoted CRC cell invasion, migration, and proliferation in vitro and in vivo. Mechanistic studies indicated that DJ-1 increased in CRC cell lines, activated specific protein cyclin-D1, and modulated the MDM2/p53 signaling pathway by regulating the levels of the downstream factors Bax, Caspase-3, and Bcl-2, which are related to the cell cycle and apoptosis. Conversely, knockdown of DJ-1 upregulated p53 expression by disrupting the interaction between p53 and MDM2 and inhibiting CRC cell proliferation, revealing the pro-oncogenic mechanism of DJ-1 in CRC. In conclusion, the current findings provide compelling evidence that DJ-1 might be a promoter of CRC cell invasion, proliferation, and migration via the cyclin-D1/MDM2-p53 signaling pathway. Findings also suggest its potential role as a postoperative adjuvant therapy for patients with CRC.
Collapse
Affiliation(s)
- Xiaojian Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chen Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Kang Lin
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fanqin Bu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Fan Ye
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Chao Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Hongliang Luo
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Jun Huang
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| | - Zhengming Zhu
- The Second Affiliated Hospital Nanchang University, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
47
|
Zhu C, Li X, Zhao B, Peng W, Li W, Fu W. Discovery of aryl-piperidine derivatives as potential antipsychotic agents using molecular hybridization strategy. Eur J Med Chem 2020; 193:112214. [DOI: 10.1016/j.ejmech.2020.112214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
|
48
|
Waseem NH, Low S, Shah AZ, Avisetti D, Ostergaard P, Simpson M, Niemiec KA, Martin-Martin B, Aldehlawi H, Usman S, Lee PS, Khawaja AP, Ruddle JB, Shah A, Sackey E, Day A, Jiang Y, Swinfield G, Viswanathan A, Alfano G, Chakarova C, Cordell HJ, Garway-Heath DF, Khaw PT, Bhattacharya SS, Waseem A, Foster PJ. Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma. PLoS Genet 2020; 16:e1008721. [PMID: 32339198 PMCID: PMC7233598 DOI: 10.1371/journal.pgen.1008721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/18/2020] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.
Collapse
Affiliation(s)
- Naushin H. Waseem
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | - Sancy Low
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
- Department of Ophthalmology, St. Thomas’ Hospital, Westminster Bridge Road, London, United Kingdom
| | - Amna Z. Shah
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Deepa Avisetti
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Pia Ostergaard
- Medical Genetics Unit, St. George’s University of London, Cranmer Terrace, London, United Kingdom
| | - Michael Simpson
- Genetics and Molecular Medicine, King’s College London, Great Maze Pond, London, United Kingdom
| | - Katarzyna A. Niemiec
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Belen Martin-Martin
- Blizard Advanced Light Microscopy, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Hebah Aldehlawi
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Pak Sang Lee
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Jonathan B. Ruddle
- Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Ameet Shah
- Department of Ophthalmology, Royal Free Hospital NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Ege Sackey
- Medical Genetics Unit, St. George’s University of London, Cranmer Terrace, London, United Kingdom
| | - Alexander Day
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
| | - Yuzhen Jiang
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
| | - Geoff Swinfield
- Society of Genealogists, Goswell Road, London, United Kingdom
| | - Ananth Viswanathan
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Giovanna Alfano
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | | | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - David F. Garway-Heath
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Peng T. Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Shomi S. Bhattacharya
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul J. Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Qi PF, Fang L, Li H, Li SK, Yang YS, Qi JL, Xu C, Zhu HL. Discovery of novel pyrazoline derivatives containing methyl-1H-indole moiety as potential inhibitors for blocking APC-Asef interactions. Bioorg Chem 2020; 99:103838. [PMID: 32334194 DOI: 10.1016/j.bioorg.2020.103838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 03/01/2020] [Accepted: 04/06/2020] [Indexed: 11/17/2022]
Abstract
A series of novel pyrazoline derivatives containing methyl-1H-indole moiety were discovered as potential inhibitors for blocking APC-Asef interactions. The top hit Q19 suggested potency of inhibiting APC-Asef interactions and attractive preference for human-sourced colorectal cells. It was already comparable with the previous representative and the positive control Regorafenib before further pharmacokinetic optimization. The introduction of methyl-1H-indole moiety realized the Mitochondrial affection thus might connect the impact on the protein-interaction level with the apoptosis events. The molecular docking simulation inferred that bringing trifluoromethyl groups seemed a promising approach for causing more key interactions such as H-bonds. This work raised referable information for further discovery of inhibitors for blocking APC-Asef interactions.
Collapse
Affiliation(s)
- Peng-Fei Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Li Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Hua Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Shu-Kai Li
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yu-Shun Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Chen Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
50
|
Wu H, Gu X, Li J, Wang M, Li Y, Yuan L, Wang J, Ma E. Identification of potential platelet-derived growth factor receptor α inhibitors by computational screening and binding simulations. J Mol Graph Model 2019; 96:107527. [PMID: 31918319 DOI: 10.1016/j.jmgm.2019.107527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 11/15/2022]
Abstract
Platelet-derived growth factor receptor α (PDGFRα) is considered as a promising target for the treatment of fibrotic diseases. In this study, two types of pharmacophore model, which generated by ligand-based and receptor-based method, were put forward to identify novel chemical entities as PDGFRα inhibitors. It was found that some pharmacophore characteristics established by the two approaches overlap each other. In order to elucidate detailed interactions, representative molecules were selected to predict the conformations and binding modes of the molecules by molecular docking method. The calculation results of binding free energy illustrated that the van der Waals energy and nonpolar solvation were the most prominent contribution to the interactions between the inhibitors and PDGFRα. To further verify the accuracy of the docking results and the stability of the complexes system, the binding modes of two potent PDGFRα inhibitors were examined by 100 ns molecular dynamics simulations. Herein, we reported the basic structural requirements of PDGFRα inhibitors for the first time through molecular docking and molecular dynamics simulations. Subsequently, the two pharmacophore models were used for virtual screening to query potential active molecules from Food and Drug Administration approved database. The hit molecules here might provide additional scaffolds for further optimization of PDGFRα inhibitors.
Collapse
Affiliation(s)
- Hairui Wu
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Xi Gu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Jinling Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Mingxing Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yanchun Li
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Lei Yuan
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Enlong Ma
- School of Life Sciences and Biopharmaceutical Science, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|