1
|
Ruiz-Gómez G, Uvizl A, Bakos G, Leung JK, Pisabarro MT, Mansfeld J. De Novo-Designed APC/C Inhibitors Provide a Rationale for Targeting RING-Type E3 Ubiquitin Ligases. J Med Chem 2025. [PMID: 40397069 DOI: 10.1021/acs.jmedchem.5c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The ubiquitin system represents an attractive pharmacological target for numerous pathological processes, including cancer and neurodegeneration. RING domain-containing E3 ubiquitin ligases constitute the largest class of ubiquitin enzymes, providing a scaffold for substrate recognition and catalysis. Their shallow groove recognition interfaces involving discontinuous epitopes and a lack of defined binding pockets have largely rendered them undruggable. Inspired by natural RING inhibitors, we have developed a pharmacophore-based strategy for the rational design of peptidomimetics targeting RING domains, and we demonstrate its feasibility by using the macromolecular APC/C complex (anaphase-promoting complex/cyclosome). We designed scaffolds binding to the APC/C RING domain and efficiently inhibiting its activity in vitro. Iterative structure-based design and experimental studies to optimize their chemical stability, permeability, and specificity lead to new hydrocarbon-stapled-based molecules inhibiting APC/C in vitro and in cancer cells. Our results provide a robust rationale for targeting RING-containing enzymes of therapeutic value and promising leads for clinical APC/C inhibition.
Collapse
Affiliation(s)
- Gloria Ruiz-Gómez
- Structural Bioinformatics, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Alena Uvizl
- Cell Cycle, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Gabor Bakos
- Cell Cycle, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Jacky K Leung
- Division of Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, SW3 6JB London, U.K
| | - M Teresa Pisabarro
- Structural Bioinformatics, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center (BIOTEC), TU Dresden, 01307 Dresden, Germany
- Division of Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, SW3 6JB London, U.K
| |
Collapse
|
2
|
Jiang M, Liu Y, Aweya JJ, Liang S, Zhou J, Tayyab M, Zhao Y, Liu Q, Zhang Y, Zheng Z. Fucosylation of hemocyanin is critical for antibacterial immunity in Penaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110406. [PMID: 40350103 DOI: 10.1016/j.fsi.2025.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 04/28/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Posttranslational modifications (PTMs) play a pivotal role in expanding the function of immune related proteins, especially during pathogen infections. However, the precise impact of PTMs on the functional diversity of proteins such as respiratory glycoproteins and hemocyanins remains incompletely understood. In this study, we investigated the fucosylation modification of Penaeus vannamei hemocyanin (PvHMC) and its impact on antibacterial immunity. Our findings reveal that PvHMC underwent fucosylation, mediated by Penaeus vannamei fucosyltransferase 8/10 (PvFUT8/10), which enhances its antibacterial immunity and binding ability against Gram-negative bacteria. Conversely, defucosylation of PvHMC, catalyzed by Penaeus vannamei fucosidase (PvAFU) weakens its antibacterial activity in vitro. These results highlight the regulatory role of fucosylation in modulating the antibacterial function of PvHMC in shrimp.
Collapse
Affiliation(s)
- Mingming Jiang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yiqi Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China; Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada; The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Shuaiqi Liang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Junyang Zhou
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Muhammad Tayyab
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Qingyun Liu
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, 530021, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Zhihong Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
3
|
Wang Q, Wang Q, Zhu G, Sun L. Capillary Electrophoresis-Mass Spectrometry for Top-Down Proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2025; 18:125-147. [PMID: 39847747 PMCID: PMC12081194 DOI: 10.1146/annurev-anchem-071124-092242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Mass spectrometry (MS)-based top-down proteomics (TDP) characterizes proteoforms in cells, tissues, and biological fluids (e.g., human plasma) to better our understanding of protein function and to discover new protein biomarkers for disease diagnosis and therapeutic development. Separations of proteoforms with high peak capacity are needed due to the high complexity of biological samples. Capillary electrophoresis (CE)-MS has been recognized as a powerful analytical tool for protein analysis since the 1980s owing to its high separation efficiency and sensitivity of CE-MS for proteoforms. Here, we review benefits of CE-MS for advancing TDP, challenges and solutions of the method, and the main research areas in which CE-MS-based TDP can make significant contributions. We provide a brief perspective of CE-MS-based TDP moving forward.
Collapse
Affiliation(s)
- Qianjie Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| | - Guijie Zhu
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA;
| |
Collapse
|
4
|
Kanao E, Ishihama Y. StageTip: a little giant unveiling the potential of mass spectrometry-based proteomics. ANAL SCI 2025; 41:667-675. [PMID: 40138149 PMCID: PMC12064472 DOI: 10.1007/s44211-025-00749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
This review highlights the growing impact of StageTips (Stop and Go Extraction Tips), a pipette tip-based LC column in MS-based proteomics. By packing standard pipette tips with reversed-phase, ion-exchange, or metal oxide materials, StageTips enable efficient peptide desalting, fractionation, selective enrichment, and in-tip reactions with minimal sample loss. Recent improvements, including new resin designs and integrated workflows, have further expanded the applications to phosphoproteomics, protein terminomics, and single-cell proteomics. With their simplicity, high reproducibility, and low cost, StageTips offer a versatile platform that can be seamlessly integrated into automated pipelines, increasing the throughput and the depth of proteome analysis. As materials and protocols continue to evolve, StageTips will continue to develop as an essential keystone for robust sample preparation in next-generation proteomics research.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
- Laboratory of Proteomics for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan.
| |
Collapse
|
5
|
Kaulich PT, Tholey A. Top-Down Proteomics: Why and When? Proteomics 2025:e202400338. [PMID: 40289405 DOI: 10.1002/pmic.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/15/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025]
Abstract
Manifold biological processes at all levels of transcription and translation can lead to the formation of a high number of different protein species (i.e., proteoforms), which outnumber the sequences encoded in the genome by far. Due to the large number of protein molecules formed in this way, which span an enormous range of different physicochemical properties, proteoforms are the functional drivers of all biological processes, creating the need for powerful analytical approaches to decipher this language of life. While bottom-up proteomics has become the most widely used approach, providing features such as high sensitivity, depth of analysis, and throughput, it has its limitations when it comes to identifying, quantifying, and characterizing proteoforms. In particular, the major bottleneck is to assign peptide-level information to the original proteoforms. In contrast, top-down proteomics (TDP) targets the direct analysis of intact proteoforms. Despite being characterized by a number of technological challenges, the TDP community has established numerous protocols that allow easy implementation in any proteomics laboratory. In this viewpoint, we compare both approaches, argue that it is worth embedding TDP experiments, and show fields of research in which TDP can be successfully implemented to perform integrative multi-level proteoformics.
Collapse
Affiliation(s)
- Philipp T Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
6
|
Leung K, Schaefer K, Lin Z, Yao Z, Wells JA. Engineered Proteins and Chemical Tools to Probe the Cell Surface Proteome. Chem Rev 2025; 125:4069-4110. [PMID: 40178992 PMCID: PMC12022999 DOI: 10.1021/acs.chemrev.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Abstract
The cell surface proteome, or surfaceome, is the hub for cells to interact and communicate with the outside world. Many disease-associated changes are hard-wired within the surfaceome, yet approved drugs target less than 50 cell surface proteins. In the past decade, the proteomics community has made significant strides in developing new technologies tailored for studying the surfaceome in all its complexity. In this review, we first dive into the unique characteristics and functions of the surfaceome, emphasizing the necessity for specialized labeling, enrichment, and proteomic approaches. An overview of surfaceomics methods is provided, detailing techniques to measure changes in protein expression and how this leads to novel target discovery. Next, we highlight advances in proximity labeling proteomics (PLP), showcasing how various enzymatic and photoaffinity proximity labeling techniques can map protein-protein interactions and membrane protein complexes on the cell surface. We then review the role of extracellular post-translational modifications, focusing on cell surface glycosylation, proteolytic remodeling, and the secretome. Finally, we discuss methods for identifying tumor-specific peptide MHC complexes and how they have shaped therapeutic development. This emerging field of neo-protein epitopes is constantly evolving, where targets are identified at the proteome level and encompass defined disease-associated PTMs, complexes, and dysregulated cellular and tissue locations. Given the functional importance of the surfaceome for biology and therapy, we view surfaceomics as a critical piece of this quest for neo-epitope target discovery.
Collapse
Affiliation(s)
- Kevin
K. Leung
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Kaitlin Schaefer
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zhi Lin
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - Zi Yao
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
| | - James A. Wells
- Department
of Pharmaceutical Chemistry, University
of California San Francisco, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94158, United States
| |
Collapse
|
7
|
Röntgen A, Toprakcioglu Z, Dada ST, Morris OM, Knowles TPJ, Vendruscolo M. Aggregation of α-synuclein splice isoforms through a phase separation pathway. SCIENCE ADVANCES 2025; 11:eadq5396. [PMID: 40238878 PMCID: PMC12002138 DOI: 10.1126/sciadv.adq5396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 03/09/2025] [Indexed: 04/18/2025]
Abstract
The aggregation of α-synuclein (αSyn) is associated with Parkinson's disease and other related synucleinopathies. Considerable efforts have thus been directed at understanding this process. However, the recently discovered condensation pathway, which involves the formation of phase-separated liquid intermediate states, has added further complexity. In parallel, it has been reported that different αSyn splice isoforms may be implicated in aggregate formation in disease. In this study, we compare the phase behavior of four αSyn isoforms (αSyn-140, αSyn-126, αSyn-112, and αSyn-98). Using different biophysical tools including confocal microscopy, kinetic assays and microfluidic-based approaches, we find stark differences between the four systems in their propensities to undergo phase separation and aggregation. Furthermore, we show that even small amounts of αSyn-112, one of the predominant isoforms after αSyn-140, can affect the phase separation of αSyn-140. These results highlight the importance of conducting further investigations to elucidate the role of alternative splicing in synucleinopathies.
Collapse
Affiliation(s)
- Alexander Röntgen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Samuel T. Dada
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Owen M. Morris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tuomas P. J. Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
8
|
Chen W, Cheng Q, Li N, Gu K, Zhao H, Na H. The role of glycan-lectin interactions in the tumor microenvironment: immunosuppression regulators of colorectal cancer. Am J Cancer Res 2025; 15:1347-1383. [PMID: 40371166 PMCID: PMC12070101 DOI: 10.62347/wbjl4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/17/2025] [Indexed: 05/16/2025] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumour and a serious global health issue. Glycosylation, a type of posttranslational modification, has been extensively studied in relation to cancer growth and metastasis. Aberrant glycosylation alters how the immune system in the microenvironment perceives the tumour and drives immune suppression through glycan-binding receptors. Interestingly, specific glycan signatures can be regarded as a new pattern of immune checkpoints. Lectins are a group of proteins that exhibit high affinity for glycosylation structures. Lectins and their ligands are found on endothelial cells (ECs), immune cells and tumour cells and play important roles in the tumour microenvironment (TME). In CRC, glycan-lectin interactions can accelerate immune evasion promoting the differentiation of tumour-associated M2 macrophages, altering T cell, dendritic cell (DC), natural killer (NK) cell, and regulatory T (Treg) cell activity to modify the functions of antigen-presenting cells functions. Here, we review our current knowledge on how glycan-lectin interactions affect immune-suppressive circuits in the TME and discuss their roles in the development of more effective immunotherapies for CRC.
Collapse
Affiliation(s)
- Wenbin Chen
- Department of General Surgery, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Quanzhi Cheng
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Na Li
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Kaiming Gu
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Hongmei Zhao
- Department of Infection Management, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| | - Heya Na
- Department of Laboratory Medicine, The People’s Hospital of China Medical University and The People’s Hospital of Liaoning ProvinceShenyang 110016, Liaoning, China
| |
Collapse
|
9
|
Yang Z, Xiao Y, Shi Y, Liu L. Advances in the chemical synthesis of human proteoforms. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2860-5. [PMID: 40210795 DOI: 10.1007/s11427-024-2860-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/03/2025] [Indexed: 04/12/2025]
Abstract
Access to structurally-defined human proteoforms is essential to the biochemical studies on human health and medicine. Chemical protein synthesis provides a bottom-up and atomic-resolution approach for the preparation of homogeneous proteoforms bearing any number of post-translational modifications of any structure, at any position, and in any combination. In this review, we summarize the development of chemical protein synthesis, focusing on the recent advances in synthetic methods, product characterizations, and biomedical applications. By analyzing the chemical protein synthesis studies on human proteoforms reported to date, this review demonstrates the significant methodological improvements that have taken place in the field of human proteoform synthesis, especially in the last decade. Our analysis shows that although further method development is needed, all the human proteoforms could be within reach in a cost-effective manner through a divide-and-conquer chemical protein synthesis strategy. The synthetic proteoforms have been increasingly used to support biomedical research, including spatial-temporal studies and interaction network analysis, activity quantification and mechanism elucidation, and the development and evaluation of diagnostics and therapeutics.
Collapse
Affiliation(s)
- Ziyi Yang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yudi Xiao
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Su T, Fellers RT, Greer JB, LeDuc RD, Thomas PM, Kelleher NL. Proteoform-predictor: Increasing the Phylogenetic Reach of Top-Down Proteomics. J Proteome Res 2025; 24:1861-1870. [PMID: 40062899 DOI: 10.1021/acs.jproteome.4c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Proteoforms are distinct molecular forms of proteins that act as building blocks of organisms, with post-translational modifications (PTMs) being one of the key changes that generate these variations. Mass spectrometry (MS)-based top-down proteomics (TDP) is the leading technology for proteoform identification due to its preservation of intact proteoforms for analysis, making it well-suited for comprehensive PTM characterization. A crucial step in TDP is searching MS data against a database of candidate proteoforms. To extend the reach of TDP to organisms with limited PTM annotations, we developed Proteoform-predictor, an open-source tool that integrates homology-based PTM site prediction into proteoform database creation. The new tool creates databases of proteoform candidates after registration of homologous sequences, transferring PTM sites from well-characterized species to those with less comprehensive proteomic data. Our tool features a user-friendly interface and intuitive workflow, making it accessible to a wide range of researchers. We demonstrate that Proteoform-predictor expands proteoform databases with tens of thousands of proteoforms for three bacterial strains by comparing them to the reference proteome of Escherichia coli (E. coli) K12. Subsequent TDP analysis for Serratia marcescens (S. marcescens) and Salmonella typhimurium (S. typhimurium) demonstrated significant improvement in protein and proteoform identification, even for proteins with variant sequences. As TDP technology advances, Proteoform-predictor will become an important tool for expanding the applicability of proteoform identification and PTM biology to more diverse species across the phylogenetic tree of life.
Collapse
Affiliation(s)
- Taojunfeng Su
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, 4605 Silverman Hall, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Joseph B Greer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard D LeDuc
- Children's Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, Manitoba R3E 3P4, Canada
| | - Paul M Thomas
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States
- Proteomics Center of Excellence, Chemistry of Life Processes Institute, Northwestern University, 4605 Silverman Hall, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Poncha KF, Paparella AT, Young NL. Normalized and Directional Interplay Scoring for the Interrogation of Proteoform Data. J Proteome Res 2025; 24:1765-1777. [PMID: 40020221 DOI: 10.1021/acs.jproteome.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Histone proteoforms, often presenting multiple co-occurring post-translational modifications (PTMs), are central to chromatin regulation and gene expression. A proteoform is a specific form of a protein that includes variations arising from genetic changes, alternative RNA splicing, proteolytic processing, and PTMs. Genome-indexed histone proteoforms define the histone code, influencing cellular phenotype by dictating DNA interacting partners. Understanding the dynamics of histone proteoforms is essential for elucidating chromatin-based regulatory mechanisms. Advances in middle-down and top-down proteomics enable accurate identification and quantitation of thousands of proteoforms in a single run. However, the resulting data complexity presents significant challenges for analysis and visualization. Here, we introduce two new computational methods to analyze the dynamics of histone PTMs and demonstrate their use in mouse organs during aging. The score that we term "normalized interplay" addresses limitations of the original crosstalk score "interplay" providing a more complete and accurate measure of PTM crosstalk. The second score, ΔI or "directional interplay" is an asymmetric measure quantifying the magnitude and directionality of crosstalk between PTMs. Applying our two-stage scoring approach to data from CrosstalkDB reveals the dynamics of histone H3 modifications during aging.
Collapse
Affiliation(s)
- Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Alyssa T Paparella
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas 77030, United States
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, United States
| |
Collapse
|
12
|
Lambourne L, Mattioli K, Santoso C, Sheynkman G, Inukai S, Kaundal B, Berenson A, Spirohn-Fitzgerald K, Bhattacharjee A, Rothman E, Shrestha S, Laval F, Carroll BS, Plassmeyer SP, Emenecker RJ, Yang Z, Bisht D, Sewell JA, Li G, Prasad A, Phanor S, Lane R, Moyer DC, Hunt T, Balcha D, Gebbia M, Twizere JC, Hao T, Holehouse AS, Frankish A, Riback JA, Salomonis N, Calderwood MA, Hill DE, Sahni N, Vidal M, Bulyk ML, Fuxman Bass JI. Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms. Mol Cell 2025; 85:1445-1466.e13. [PMID: 40147441 PMCID: PMC12121496 DOI: 10.1016/j.molcel.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Most human transcription factor (TF) genes encode multiple protein isoforms differing in DNA-binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators," both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
Collapse
Affiliation(s)
- Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna Berenson
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anukana Bhattacharjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Brent S Carroll
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen P Plassmeyer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhipeng Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Guangyuan Li
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anisa Prasad
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Cambridge, MA 02138, USA
| | - Sabrina Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Devlin C Moyer
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Josh A Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Martha L Bulyk
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Juan I Fuxman Bass
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
13
|
Cobley JN, Chatzinikolaou PN, Schmidt CA. The nonlinear cysteine redox dynamics in the i-space: A proteoform-centric theory of redox regulation. Redox Biol 2025; 81:103523. [PMID: 39929052 PMCID: PMC11849597 DOI: 10.1016/j.redox.2025.103523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
The post-translational redox regulation of protein function by cysteine oxidation controls diverse biological processes, from cell division to death. However, most current site-centric paradigms fail to capture the nonlinear and emergent nature of redox regulation in proteins with multiple cysteines. Here, we present a proteoform-centric theory of redox regulation grounded in the i-space. The i-space encapsulates the theoretical landscape of all possible cysteine proteoforms. Using computational approaches, we quantify the vast size of the abstract i-space, revealing its scale-free architecture-elucidating the disproportionate influence of cysteine-rich proteins. We define mathematical rules governing cysteine proteoform dynamics. Their dynamics are inherently nonlinear, context-dependent, and fundamentally constrained by protein copy numbers. Monte Carlo simulations of the human protein PTP1B reveal extensive i-space sampling beyond site-centric models, supporting the "oxiform conjecture". This conjecture posits that highly oxidised proteoforms, molecules bearing multiple oxidised cysteines, are central to redox regulation. In support, even 90%-reduced proteomes can house vast numbers of unique, potentially functioanlly diverse, oxiforms. This framework offers a transformative lens for understanding the redox biology of proteoforms.
Collapse
|
14
|
Blöchl C, Stork EM, Scherer HU, Toes REM, Wuhrer M, Domínguez‐Vega E. Fc Proteoforms of ACPA IgG Discriminate Autoimmune Responses in Plasma and Synovial Fluid of Rheumatoid Arthritis Patients and Associate with Disease Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408769. [PMID: 39985219 PMCID: PMC12005756 DOI: 10.1002/advs.202408769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/26/2024] [Indexed: 02/24/2025]
Abstract
Autoantibodies and their post-translational modifications (PTMs) are insightful markers of autoimmune diseases providing diagnostic and prognostic clues, thereby informing clinical decisions. However, current autoantibody analyses focus mostly on IgG1 glycosylation representing only a subpopulation of the actual IgG proteome. Here, by taking rheumatoid arthritis (RA) as prototypic autoimmune disease, we sought to circumvent these shortcomings and illuminate the importance of (auto)antibody proteoforms employing a novel comprehensive mass spectrometry (MS)-based analytical workflow. Profiling of anti-citrullinated protein antibodies (ACPA) IgG and total IgG in paired samples of plasma and synovial fluid revealed a clear distinction of autoantibodies from total IgG and between biofluids. This discrimination relied on comprehensive subclass-specific PTM profiles including previously neglected features such as IgG3 CH3 domain glycosylation, allotype ratios, and non-glycosylated IgG. Intriguingly, specific proteoforms were found to correlate with markers of inflammation and disease accentuating the need of such approaches in clinical investigations and calling for further mechanistic studies to comprehend the role of autoantibody proteoforms in defining autoimmune responses.
Collapse
Affiliation(s)
- Constantin Blöchl
- Center for Proteomics and MetabolomicsLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Eva Maria Stork
- Department of RheumatologyLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Hans Ulrich Scherer
- Department of RheumatologyLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Rene E. M. Toes
- Department of RheumatologyLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and MetabolomicsLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| | - Elena Domínguez‐Vega
- Center for Proteomics and MetabolomicsLeiden University Medical CenterAlbinusdreef 2Leiden2333 ZAThe Netherlands
| |
Collapse
|
15
|
Tejada-Lapuerta A, Bertin P, Bauer S, Aliee H, Bengio Y, Theis FJ. Causal machine learning for single-cell genomics. Nat Genet 2025; 57:797-808. [PMID: 40164735 DOI: 10.1038/s41588-025-02124-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/10/2025] [Indexed: 04/02/2025]
Abstract
Advances in single-cell '-omics' allow unprecedented insights into the transcriptional profiles of individual cells and, when combined with large-scale perturbation screens, enable measuring of the effect of targeted perturbations on the whole transcriptome. These advances provide an opportunity to better understand the causative role of genes in complex biological processes. In this Perspective, we delineate the application of causal machine learning to single-cell genomics and its associated challenges. We first present the causal model that is most commonly applied to single-cell biology and then identify and discuss potential approaches to three open problems: the lack of generalization of models to novel experimental conditions, the complexity of interpreting learned models, and the difficulty of learning cell dynamics.
Collapse
Affiliation(s)
- Alejandro Tejada-Lapuerta
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany
- School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
| | - Paul Bertin
- Mila, the Quebec AI Institute, Montreal, Quebec, Canada
- Université de Montréal, Montreal, Quebec, Canada
| | - Stefan Bauer
- School of Computing, Information and Technology, Technical University of Munich, Munich, Germany
- Helmholtz Munich, Munich, Germany
- Munich Center for Machine Learning (MCML), Munich, Germany
| | | | - Yoshua Bengio
- Mila, the Quebec AI Institute, Montreal, Quebec, Canada.
- Université de Montréal, Montreal, Quebec, Canada.
- Learning in Machines and Brains Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada.
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Munich, Munich, Germany.
- School of Computing, Information and Technology, Technical University of Munich, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| |
Collapse
|
16
|
Zhao T, Hock DH, Pitt J, Thorburn DR, Stroud DA, Christodoulou J. Review: Utility of mass spectrometry in rare disease research and diagnosis. NPJ Genom Med 2025; 10:29. [PMID: 40164634 PMCID: PMC11958806 DOI: 10.1038/s41525-025-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/02/2025] Open
Abstract
Individuals affected by a rare disease often experience a long and arduous diagnostic odyssey. Delivery of genetic answers in a timely manner is critical to affected individuals and their families. Multi-omics, a term which usually encompasses genomics, transcriptomics, proteomics, metabolomics and lipidomics, has gained increasing popularity in rare disease research and diagnosis over the past decade. Mass spectrometry (MS) is a technique allowing the study of proteins, metabolites and lipids and their fragments at scale, enabling researchers to effectively determine the presence and abundance of thousands of molecules in a single test, accurately quantify their specific levels, identify potential therapeutic biomarkers, detect differentially expressed proteins in patients with rare diseases, and monitor disease progression and treatment response. In this review, we focus on mass spectrometry (MS)-based omics and survey the literature describing the utility of different MS-based omics and how they have transformed rare disease research and diagnosis.
Collapse
Affiliation(s)
- Teresa Zhao
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Daniella H Hock
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - James Pitt
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia
| | - David A Stroud
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Biochemistry & Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia.
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
17
|
Wei X, Wen J, Wu H, Qu Z, Huang G. Obtaining Narrow Distributions of Single-Molecule Peptide Signals Enables Sensitive Peptide Discrimination with α-Hemolysin Nanopores. J Am Chem Soc 2025; 147:9304-9315. [PMID: 40063886 DOI: 10.1021/jacs.4c15469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biological nanopore technology has emerged as a promising tool for analyzing peptides and post-translational modifications at the single-molecule level. However, a broader application is currently limited by the partial separation of peptides and low-throughput, mainly due to the nonuniform peptide signals detected by nanopores. Narrowing the peptide signal distribution is crucial for improving the nanopore's sensing ability but remains a bottleneck. Here, we demonstrate that capturing peptides with electrophoretic force against electroosmotic flow can provoke more uniform blockades in α-hemolysin nanopores. By using buffers with 2 M KCl at pH 3.8, we obtain the most uniform peptide signals, which may be correlated to the shape, linearization, and actual dwelling position of peptides. Five peptides with acetylation and phosphorylation, including isomeric peptides, can be readily separated from each other. The citrullination replacement of arginine and the β-hydroxybutyrylation modification in another peptide sequence are also discriminated in a mixture. A series of peptides with different compositions induced uniform peptide blockades when they were analyzed with our method. Our work presents an efficient approach to optimize nanopore signals for peptide analysis using α-hemolysin nanopores.
Collapse
Affiliation(s)
- Xing Wei
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Jiaqi Wen
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| | - Hao Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhibei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Gang Huang
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201203, China
| |
Collapse
|
18
|
Strzałka P, Krawiec K, Wiśnik A, Jarych D, Czemerska M, Zawlik I, Pluta A, Wierzbowska A. The Role of the Sirtuin Family Histone Deacetylases in Acute Myeloid Leukemia-A Promising Road Ahead. Cancers (Basel) 2025; 17:1009. [PMID: 40149343 PMCID: PMC11940623 DOI: 10.3390/cancers17061009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Acute myeloid leukemia (AML) corresponds to a heterogeneous group of clonal hematopoietic diseases, which are characterized by uncontrolled proliferation of malignant transformed myeloid precursors and their inability to differentiate into mature blood cells. The prognosis of AML depends on many variables, including the genetic features of the disease. Treatment outcomes, despite the introduction of new targeted therapies, are still unsatisfactory. Recently, there have been an increasing number of reports on enzymatic proteins of the sirtuin family and their potential importance in cancer in general. Sirtuins are a group of 7 (SIRT1-7) NAD+-dependent histone deacetylases with pleiotropic effects on metabolism, aging processes, and cell survival. They are not only responsible for post-translational modification of histones but also play various biochemical functions and interact with other proteins regulating cell survival, such as p53. Thus, their role in key mechanisms of tumorigenesis makes them a worthwhile topic in AML. Different sirtuins have been shown to act oppositely depending on the biological context, the mechanism of which requires further exploration. This review provides a comprehensive description of the significance and role of sirtuins in AML in light of the current state of knowledge. It focuses in particular on molecular mechanisms regulated by sirtuins and signaling pathways involved in leukemogenesis, as well as clinical aspects and potential therapeutic targets in AML.
Collapse
Affiliation(s)
- Piotr Strzałka
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Kinga Krawiec
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Aneta Wiśnik
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Dariusz Jarych
- Laboratory of Virology, Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland;
| | - Magdalena Czemerska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Izabela Zawlik
- Institute of Medical Sciences, College of Medical Sciences, University of Rzeszow, 35-310 Rzeszow, Poland
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, College of Medical Sciences, University of Rzeszow, 35-959 Rzeszow, Poland
| | - Agnieszka Pluta
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, 93-510 Lodz, Poland; (K.K.)
- Copernicus Memorial Multi-Specialist Oncology and Trauma Center, 93-510 Lodz, Poland
| |
Collapse
|
19
|
Viennet T. NMR and semi-synthesis in synergy to study protein regulation. J Struct Biol 2025; 217:108192. [PMID: 40089044 DOI: 10.1016/j.jsb.2025.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/19/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Structural biology as a field has advanced immensely in the last few years, but the mechanistic roles of protein disordered regions and their associated post-translational modifications on the molecular level are still poorly understood. Nuclear magnetic resonance offers the possibility to investigate these regions with atomic resolution and understand the effect of protein modification, and thus protein regulation. However, obtaining suitable and well-defined samples is not straightforward. Here, I review some approaches to protein semi-synthesis for nuclear magnetic resonance purposes, and their applications. I hope to demonstrate that these chemical and structural biology techniques create a powerful synergy that enables structural studies of protein regulation.
Collapse
Affiliation(s)
- Thibault Viennet
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Iqbal Z, Asim M, Khan UA, Sultan N, Ali I. Computational electrostatic engineering of nanobodies for enhanced SARS-CoV-2 receptor binding domain recognition. Front Mol Biosci 2025; 12:1512788. [PMID: 40129869 PMCID: PMC11931142 DOI: 10.3389/fmolb.2025.1512788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/11/2025] [Indexed: 03/26/2025] Open
Abstract
This study presents a novel computational approach for engineering nanobodies (Nbs) for improved interaction with receptor-binding domain (RBD) of the SARS-CoV-2 spike protein. Using Protein Structure Reliability reports, RBD (7VYR_R) was selected and refined for subsequent Nb-RBD interactions. By leveraging electrostatic complementarity (EC) analysis, we engineered and characterized five Electrostatically Complementary Nbs (ECSb1-ECSb5) based on the CeVICA library's SR6c3 Nb. Through targeted modifications in the complementarity-determining regions (CDR) and framework regions (FR), we optimized electrostatic interactions to improve binding affinity and specificity. The engineered Nbs (ECSb3, ECSb4, and ECSb5) demonstrated high binding specificity for AS3, CA1, and CA2 epitopes. Interestingly, ECSb1 and ECSb2 selectively engaged with AS3 and CA1 instead of AS1 and AS2, respectively, due to a preference for residues that conferred superior binding complementarities. Furthermore, ECSbs significantly outperformed SR6c3 Nb in MM/GBSA results, notably, ECSb4 and ECSb3 exhibited superior binding free energies of -182.58 kcal.mol-1 and -119.07 kcal.mol-1, respectively, compared to SR6c3 (-105.50 kcal.mol-1). ECSbs exhibited significantly higher thermostability (100.4-148.3 kcal·mol⁻1) compared to SR6c3 (62.6 kcal·mol⁻1). Similarly, enhanced electrostatic complementarity was also observed for ECSb4-RBD and ECSb3-RBD (0.305 and 0.390, respectively) relative to SR6c3-RBD (0.233). Surface analyses confirmed optimized electrostatic patches and reduced aggregation propensity in the engineered Nb. This integrated EC and structural engineering approach successfully developed engineered Nbs with enhanced binding specificity, increased thermostability, and reduced aggregation, laying the groundwork for novel therapeutic applications targeting the SARS-CoV-2 spike protein.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al Hofuf, Saudi Arabia
| | - Muhammad Asim
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Umair Ahmad Khan
- Medical and Allied Department, Faisalabad Medical University, Faisalabad, Pakistan
| | - Neelam Sultan
- Department of Biochemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irfan Ali
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
21
|
Zemaitis KJ, Fulcher JM, Kumar R, Degnan DJ, Lewis LA, Liao YC, Veličković M, Williams SM, Moore RJ, Bramer LM, Veličković D, Zhu Y, Zhou M, Paša-Tolić L. Spatial top-down proteomics for the functional characterization of human kidney. Clin Proteomics 2025; 22:9. [PMID: 40045235 PMCID: PMC11881370 DOI: 10.1186/s12014-025-09531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 09/04/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND The Human Proteome Project has credibly detected nearly 93% of the roughly 20,000 proteins which are predicted by the human genome. However, the proteome is enigmatic, where alterations in amino acid sequences from polymorphisms and alternative splicing, errors in translation, and post-translational modifications result in a proteome depth estimated at several million unique proteoforms. Recently mass spectrometry has been demonstrated in several landmark efforts mapping the human proteoform landscape in bulk analyses. Herein, we developed an integrated workflow for characterizing proteoforms from human tissue in a spatially resolved manner by coupling laser capture microdissection, nanoliter-scale sample preparation, and mass spectrometry imaging. RESULTS Using healthy human kidney sections as the case study, we focused our analyses on the major functional tissue units including glomeruli, tubules, and medullary rays. After laser capture microdissection, these isolated functional tissue units were processed with microPOTS (microdroplet processing in one-pot for trace samples) for sensitive top-down proteomics measurement. This provided a quantitative database of 616 proteoforms that was further leveraged as a library for mass spectrometry imaging with near-cellular spatial resolution over the entire section. Notably, several mitochondrial proteoforms were found to be differentially abundant between glomeruli and convoluted tubules, and further spatial contextualization was provided by mass spectrometry imaging confirming unique differences identified by microPOTS, and further expanding the field-of-view for unique distributions such as enhanced abundance of a truncated form (1-74) of ubiquitin within cortical regions. CONCLUSIONS We developed an integrated workflow to directly identify proteoforms and reveal their spatial distributions. Of the 20 differentially abundant proteoforms identified as discriminate between tubules and glomeruli by microPOTS, the vast majority of tubular proteoforms were of mitochondrial origin (8 of 10) while discriminate proteoforms in glomeruli were primarily hemoglobin subunits (9 of 10). These trends were also identified within ion images demonstrating spatially resolved characterization of proteoforms that has the potential to reshape discovery-based proteomics because the proteoforms are the ultimate effector of cellular functions. Applications of this technology have the potential to unravel etiology and pathophysiology of disease states, informing on biologically active proteoforms, which remodel the proteomic landscape in chronic and acute disorders.
Collapse
Affiliation(s)
- Kevin J Zemaitis
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - James M Fulcher
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Rashmi Kumar
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - David J Degnan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Logan A Lewis
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Yen-Chen Liao
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Marija Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Sarah M Williams
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Dušan Veličković
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Ying Zhu
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Proteomic and Genomic Technologies, San Francisco, CA, 94080, USA
| | - Mowei Zhou
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| |
Collapse
|
22
|
Shang D, Song Y, Cui Y, Chen C, Xu F, Zhu C, Dong X, Chen Y, Wang S, Li X, Liang X. Superhydrophilic Nanostructured Microparticles for Enhanced Phosphoprotein Enrichment from Alzheimer's Disease Brain. ACS NANO 2025; 19:8118-8130. [PMID: 39992002 DOI: 10.1021/acsnano.4c16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Alzheimer's disease (AD) is an incurable neurodegenerative disorder and closely related to abnormal phosphoproteoforms. The analysis of low-abundance phosphoproteoforms relies heavily on the enrichment of phosphoproteins. However, existing phosphoprotein enrichment materials suffer from either low selectivity or low coverage due to the unavoidable unspecific adsorption of background proteins. Here, we propose a strategy of nanostructure-enabled superhydrophilic surfaces and synthesize Ti4+-functionalized superhydrophilic nanostructured microparticles (SNMs-Ti4+) via an emulsion interfacial polymerization process. In this process, hydrophilic and hydrophobic monomers assemble into a stable oil-in-water emulsion, producing microparticles with abundant hydrophilic phosphate nanoprotrusions on the surface. The microparticles are subsequently functionalized with Ti4+. SNMs-Ti4+ exhibit enormous nanoprotrusions and abundant Ti4+ modifications, which allow SNMs-Ti4+ to effectively adsorb the phosphoproteins and suppress the unspecific adsorption of background proteins. Using these SNMs-Ti4+, we identified 2256 phosphoproteins from HeLa cells, twice the number of those enriched with commercial kits. From AD mouse brains, 2603 phosphoproteins were successfully enriched, and 10 times of AD-related differentially regulated phosphoproteins were discovered than those without enrichment. These microparticles show great prospects for biomarker detection, disease diagnosis, and downstream biological process disclosure.
Collapse
Affiliation(s)
- Danyi Shang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yun Cui
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Cheng Chen
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Feifei Xu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Congcong Zhu
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xuefang Dong
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Yifan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiuling Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| | - Xinmiao Liang
- State Key Laboratory of Phytochemistry and Natural Medicines, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
- Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, PR China
| |
Collapse
|
23
|
Keele GR, Dzieciatkowska M, Hay AM, Vincent M, O'Connor C, Stephenson D, Reisz JA, Nemkov T, Hansen KC, Page GP, Zimring JC, Churchill GA, D'Alessandro A. Genetic architecture of the red blood cell proteome in genetically diverse mice reveals central role of hemoglobin beta cysteine redox status in maintaining circulating glutathione pools. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.27.640676. [PMID: 40093052 PMCID: PMC11908137 DOI: 10.1101/2025.02.27.640676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Red blood cells (RBCs) transport oxygen but accumulate oxidative damage over time, reducing function in vivo and during storage-critical for transfusions. To explore genetic influences on RBC resilience, we profiled proteins, metabolites, and lipids from fresh and stored RBCs obtained from 350 genetically diverse mice. Our analysis identified over 6,000 quantitative trait loci (QTL). Compared to other tissues, prevalence of trans genetic effects over cis reflects the absence of de novo protein synthesis in anucleated RBCs. QTL hotspots at Hbb, Hba, Mon1a, and storage-specific Steap3 linked ferroptosis to hemolysis. Proteasome components clustered at multiple loci, underscoring the importance of degrading oxidized proteins. Post-translational modifications (PTMs) mapped predominantly to hemoglobins, particularly cysteine residues. Loss of reactive C93 in humanized mice (HBB C93A) disrupted redox balance, affecting glutathione pools, protein glutathionylation, and redox PTMs. These findings highlight genetic regulation of RBC oxidation, with implications for transfusion biology and oxidative stress-dependent hemolytic disorders.
Collapse
|
24
|
De la Fuente IM, Cortes JM, Malaina I, Pérez-Yarza G, Martinez L, López JI, Fedetz M, Carrasco-Pujante J. The main sources of molecular organization in the cell. Atlas of self-organized and self-regulated dynamic biostructures. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:167-191. [PMID: 39805422 DOI: 10.1016/j.pbiomolbio.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
One of the most important goals of contemporary biology is to understand the principles of the molecular order underlying the complex dynamic architecture of cells. Here, we present an overview of the main driving forces involved in the cellular molecular complexity and in the emergent functional dynamic structures, spanning from the most basic molecular organization levels to the complex emergent integrative systemic behaviors. First, we address the molecular information processing which is essential in many complex fundamental mechanisms such as the epigenetic memory, alternative splicing, regulation of transcriptional system, and the adequate self-regulatory adaptation to the extracellular environment. Next, we approach the biochemical self-organization, which is central to understand the emergency of metabolic rhythms, circadian oscillations, and spatial traveling waves. Such a complex behavior is also fundamental to understand the temporal compartmentalization of the cellular metabolism and the dynamic regulation of many physiological activities. Numerous examples of biochemical self-organization are considered here, which show that practically all the main physiological processes in the cell exhibit this type of dynamic molecular organization. Finally, we focus on the biochemical self-assembly which, at a primary level of organization, is a basic but important mechanism for the order in the cell allowing biomolecules in a disorganized state to form complex aggregates necessary for a plethora of essential structures and physiological functions. In total, more than 500 references have been compiled in this review. Due to these main sources of order, systemic functional structures emerge in the cell, driving the metabolic functionality towards the biological complexity.
Collapse
Affiliation(s)
- Ildefonso M De la Fuente
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain.
| | - Jesus M Cortes
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain; Biobizkaia Health Research Institute, Barakaldo, 48903, Spain; IKERBASQUE: The Basque Foundation for Science, Bilbao, Spain
| | - Iker Malaina
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Gorka Pérez-Yarza
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - Luis Martinez
- Department of Mathematics, Faculty of Science and Technology, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| | - José I López
- Biobizkaia Health Research Institute, Barakaldo, 48903, Spain
| | - Maria Fedetz
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra", CSIC, Granada, 18016, Spain
| | - Jose Carrasco-Pujante
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country, UPV/EHU, Leioa, 48940, Spain
| |
Collapse
|
25
|
Norman M, Shami‐shah A, D'Amaddio SC, Travis BG, Ter‐Ovanesyan D, Dougan TJ, Walt DR. Toward Identification of Markers for Brain-Derived Extracellular Vesicles in Cerebrospinal Fluid: A Large-Scale, Unbiased Analysis Using Proximity Extension Assays. J Extracell Vesicles 2025; 14:e70052. [PMID: 40098346 PMCID: PMC11913887 DOI: 10.1002/jev2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 12/27/2024] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
Extracellular vesicles (EVs) captured in biofluids have opened a new frontier for liquid biopsies. To enrich for vesicles coming from a particular cell type or tumour, scientists utilize antibodies to transmembrane proteins that are relatively unique to the cell type of interest. However, recent evidence has called into question the basic assumption that all transmembrane proteins measured in biofluids are, in fact, EV-associated. To identify both candidate markers for brain-derived EV immunocapture and cargo proteins to validate the EVs' cell of origin, we conducted an unbiased Olink screen, measuring 5416 unique proteins in cerebrospinal fluid after size exclusion chromatography. We identified proteins that demonstrated a clear EV fractionation pattern and created a searchable dataset of candidate EV-associated markers-both proteins that are cell type-specific within the brain, and proteins found across multiple cell types for use as general EV markers. We further implemented the DeepTMHMM deep learning model to differentiate predicted cytosolic, transmembrane, and external proteins and found that intriguingly, only 10% of the predicted transmembrane proteins have a clear EV fractionation pattern based on our stringent criteria. This dataset further bolsters the critical importance of verifying EV association of candidate proteins using methods such as size exclusion chromatography before downstream use of the targets for EV analysis.
Collapse
Affiliation(s)
- Maia Norman
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Department of Pathology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryMassachusetts General HospitalBostonMassachusettsUSA
| | - Adnan Shami‐shah
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Department of Pathology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Sydney C. D'Amaddio
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Department of Pathology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Benjamin G. Travis
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Department of Pathology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Tyler J. Dougan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Department of Pathology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Program in Health Sciences and TechnologyCambridgeMassachusettsUSA
| | - David R. Walt
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
- Department of Pathology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
26
|
Leo IR, Kunold E, Audrey A, Tampere M, Eirich J, Lehtiö J, Jafari R. Functional proteoform group deconvolution reveals a broader spectrum of ibrutinib off-targets. Nat Commun 2025; 16:1948. [PMID: 40000607 PMCID: PMC11862126 DOI: 10.1038/s41467-024-54654-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/13/2024] [Indexed: 02/27/2025] Open
Abstract
Proteome-wide profiling has revealed that targeted drugs can have complex protein interaction landscapes. However, it's a challenge to profile drug targets while systematically accounting for the dynamic protein variations that produce populations of multiple proteoforms. We address this problem by combining thermal proteome profiling (TPP) with functional proteoform group detection to refine the target landscape of ibrutinib. In addition to known targets, we implicate additional specific functional proteoform groups linking ibrutinib to mechanisms in immunomodulation and cellular processes like Golgi trafficking, endosomal trafficking, and glycosylation. Further, we identify variability in functional proteoform group profiles in a CLL cohort, linked to treatment status and ex vivo response and resistance. This offers deeper insights into the impacts of functional proteoform groups in a clinical treatment setting and suggests complex biological effects linked to off-target engagement. These results provide a framework for interpreting clinically observed off-target processes and adverse events, highlighting the importance of functional proteoform group-level deconvolution in understanding drug interactions and their functional impacts with potential applications in precision medicine.
Collapse
Affiliation(s)
- Isabelle Rose Leo
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Elena Kunold
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
- Evotec International GmbH, München, Germany
| | - Anastasia Audrey
- Department of Medical Oncology, University Medical Center Groningen, Groningen, the Netherlands
| | - Marianna Tampere
- Precision Cancer Medicine, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Jürgen Eirich
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Janne Lehtiö
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Rozbeh Jafari
- Clinical Proteomics Mass Spectrometry, Department of Oncology-Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden.
| |
Collapse
|
27
|
Edwards AN, Hsu KL. Emerging opportunities for intact and native protein analysis using chemical proteomics. Anal Chim Acta 2025; 1338:343551. [PMID: 39832869 DOI: 10.1016/j.aca.2024.343551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Chemical proteomics has advanced small molecule ligand discovery by providing insights into protein-ligand binding mechanism and enabling medicinal chemistry optimization of protein selectivity on a global scale. Mass spectrometry is the predominant analytical method for chemoproteomics, and various approaches have been deployed to investigate and target a rapidly growing number of protein classes and biological systems. Two methods, intact mass analysis (IMA) and top-down proteomics (TDMS), have gained interest in recent years due to advancements in high resolution mass spectrometry instrumentation. Both methods apply mass spectrometry analysis at the proteoform level, as opposed to the peptide level of bottom-up proteomics (BUMS), thus addressing some of the challenges of protein inference and incomplete information on modification stoichiometry. This Review covers recent research progress utilizing MS-based proteomics methods, discussing in detail the capabilities and opportunities for improvement of each method. Further, heightened attention is given to IMA and TDMS, highlighting these methods' strengths and considerations when utilized in chemoproteomic studies. Finally, we discuss the capabilities of native mass spectrometry (nMS) and ion mobility mass spectrometry (IM-MS) and how these methods can be used in chemoproteomics research to complement existing approaches to further advance the field of functional proteomics.
Collapse
Affiliation(s)
- Alexis N Edwards
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, United States.
| |
Collapse
|
28
|
Takemori A, Sugiyama N, Kline JT, Fornelli L, Takemori N. Gel-Based Sample Fractionation with SP3-Purification for Top-Down Proteomics. J Proteome Res 2025; 24:850-860. [PMID: 39841590 PMCID: PMC11841991 DOI: 10.1021/acs.jproteome.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Precise prefractionation of proteome samples is a potent method for realizing in-depth analysis in top-down proteomics. PEPPI-MS (Passively Eluting Proteins from Polyacrylamide gels as Intact species for MS), a gel-based sample fractionation method, enables high-resolution proteome fractionation based on molecular weight by highly efficient extraction of proteins from polyacrylamide gels after SDS-PAGE separation. Thereafter it is essential to effectively remove contaminants such as CBB and SDS from the PEPPI fraction prior to mass spectrometry. In this study, we developed a complete, robust, and simple sample preparation workflow named PEPPI-SP3 for top-down proteomics by combining PEPPI-MS with the magnetic bead-based protein purification approach used in SP3 (single-pot, solid-phase-enhanced sample preparation), now one of the standard sample preparation methods in bottom-up proteomics. In PEPPI-SP3, proteins extracted from the gel are collected on the surface of SP3 beads, washed with organic solvents, and recovered intact with 100 mM ammonium bicarbonate containing 0.05% (w/v) SDS. The recovered proteins are subjected to mass spectrometry after additional purification using an anion-exchange StageTip. Performance validation using human cell lysates showed a significant improvement in low-molecular-weight protein recovery with a lower coefficient of variation compared to conventional PEPPI workflows using organic solvent precipitation or ultrafiltration.
Collapse
Affiliation(s)
- Ayako Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| | - Naoyuki Sugiyama
- Omics Research Center, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Jake T Kline
- School of Biological Sciences, University of Oklahoma, Oklahoma, United States
| | - Luca Fornelli
- School of Biological Sciences, University of Oklahoma, Oklahoma, United States
- Department of Chemistry and Biochemistry, University of Oklahoma, Oklahoma, United States
| | - Nobuaki Takemori
- Advanced Research Support Center, Ehime University, Ehime, Japan
| |
Collapse
|
29
|
Lutomski CA, Bennett JL, El-Baba TJ, Wu D, Hinkle JD, Burnap SA, Liko I, Mullen C, Syka JEP, Struwe WB, Robinson CV. Defining proteoform-specific interactions for drug targeting in a native cell signalling environment. Nat Chem 2025; 17:204-214. [PMID: 39806141 PMCID: PMC11794133 DOI: 10.1038/s41557-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Understanding the dynamics of membrane protein-ligand interactions within a native lipid bilayer is a major goal for drug discovery. Typically, cell-based assays are used, however, they are often blind to the effects of protein modifications. In this study, using the archetypal G protein-coupled receptor rhodopsin, we found that the receptor and its effectors can be released directly from retina rod disc membranes using infrared irradiation in a mass spectrometer. Subsequent isolation and dissociation by infrared multiphoton dissociation enabled the sequencing of individual retina proteoforms. Specifically, we categorized distinct proteoforms of rhodopsin, localized labile palmitoylations, discovered a Gβγ proteoform that abolishes membrane association and defined lipid modifications on G proteins that influence their assembly. Given reports of undesirable side-effects involving vision, we characterized the off-target drug binding of two phosphodiesterase 5 inhibitors, vardenafil and sildenafil, to the retina rod phosphodiesterase 6 (PDE6). The results demonstrate differential off-target reactivity with PDE6 and an interaction preference for lipidated proteoforms of G proteins. In summary, this study highlights the opportunities for probing proteoform-ligand interactions within natural membrane environments.
Collapse
Affiliation(s)
- Corinne A Lutomski
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jack L Bennett
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Tarick J El-Baba
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Di Wu
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | | | - Sean A Burnap
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | | | | | | | - Weston B Struwe
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
30
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
31
|
Fang G. Innovative Low-cost Probe Generation Empowers Targeted Long-read RNA Sequencing. GENOMICS, PROTEOMICS & BIOINFORMATICS 2025; 22:qzae027. [PMID: 39436220 PMCID: PMC12016554 DOI: 10.1093/gpbjnl/qzae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/11/2024] [Accepted: 03/19/2024] [Indexed: 10/23/2024]
Affiliation(s)
- Gang Fang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
32
|
Burk K, Legg K, Danielson P, Parker G. Proteomic Analysis of Biological Fluids. Methods Mol Biol 2025; 2884:143-155. [PMID: 39716002 DOI: 10.1007/978-1-0716-4298-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Biological fluids are proteinaceous liquids or suspensions released through different body orifices or through penetration of the skin. These fluids are the result of multiple tissues and cell types and contain extensive, highly complex, and dynamic protein populations that reflect both the transcriptional program of the originating cells and a record of the individual's health status. Body fluids are readily accessible to clinicians and researchers, and as such proteomic analyses are an important component of clinical studies, fertility studies, oral health studies, and forensic investigations. Current mass spectrometry (MS) datasets have a dynamic range of up to six orders of magnitude and are as diverse as the originating tissue types. Mass spectrometry has the potential to provide information across a wide range of applications, including basic research into human biology and pathology, biochemical analysis of protein function, biomarker discovery and detection, as well as forensic investigations wherein investigators interpret a protein profile to identify the body site origin of a biological fluid. The method below describes a specimen processing workflow that is flexible in terms of biological fluid type, sample state (e.g., a dried sample extracted from evidence or neat fluid), and level of degradation. The method described here is compatible with both high sensitivity shotgun liquid chromatography-mass spectrometry LC/MS analysis and targeted (qualitative or quantitative) MS-based analysis of biomarker candidates.
Collapse
Affiliation(s)
- Kyle Burk
- Department of Environmental Toxicology, The University of California, Davis, Davis, CA, USA
| | | | - Phillip Danielson
- The University of Denver, Department of Biological Sciences, Denver, CO, USA
| | - Glendon Parker
- Department of Environmental Toxicology, The University of California, Davis, Davis, CA, USA.
| |
Collapse
|
33
|
Chong SW, Shen Y, Palomba S, Vigolo D. Nanofluidic Lab-On-A-Chip Systems for Biosensing in Healthcare. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407478. [PMID: 39491535 DOI: 10.1002/smll.202407478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/21/2024] [Indexed: 11/05/2024]
Abstract
Biosensing plays a vital role in healthcare monitoring, disease detection, and treatment planning. In recent years, nanofluidic technology has been increasingly explored to be developed into lab-on-a-chip biosensing systems. Given now the possibility of fabricating geometrically defined nanometric channels that are commensurate with the size of many biomolecules, nanofluidic-based devices are likely to become a key technology for the analysis of various clinical biomarkers, including DNA (deoxyribonucleic acid) and proteins in liquid biopsies. This review summarizes the fundamentals and technological advances of nanofluidics from the purview of single-molecule analysis, detection of low-abundance molecules, and single-cell analysis at the subcellular level. The extreme confinement and dominant surface charge effects in nanochannels provide unique advantages to nanofluidic devices for the manipulation and transport of target biomarkers. When coupled to a microfluidic network to facilitate sample introduction, integrated micro-nanofluidic biosensing devices are proving to be more sensitive and specific in molecular analysis compared to conventional assays in many cases. Based on recent progress in nanofluidics and current clinical trends, the review concludes with a discussion of near-term challenges and future directions for the development of nanofluidic-based biosensing systems toward enabling a new wave of lab-on-a-chip technology for personalized and preventive medicine.
Collapse
Affiliation(s)
- Shin Wei Chong
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yi Shen
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Stefano Palomba
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Daniele Vigolo
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
34
|
Harris RA, Kazdağlı H. Using TECHnology to predict the future of biomedical education. FEBS Open Bio 2025; 15:48-55. [PMID: 39666874 PMCID: PMC11705505 DOI: 10.1002/2211-5463.13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024] Open
Abstract
Biomedical research is currently benefiting from a technological revolution in which multiple forms of omics are permitting unprecedented characterization of molecular pathways. Likewise, medical device and Ai-assisted technologies now make diagnoses and medical imaging more accurate. The field of education is also starting to embrace how technology can promote pedagogical development and student learning. But how will this landscape look like in 2050? With the premise that collaboration will be central to teaching and learning practices, that Together, Everything Can Happen (TECH), we examine the emerging trends and innovations in biomedical education, exploring how they will influence the field's evolution and shape future teaching practices in the coming years.
Collapse
Affiliation(s)
- Robert A. Harris
- Department of Clinical NeuroscienceKarolinska Institutet, Centre for Molecular Medicine, Karolinska HospitalStockholmSweden
| | - Hasan Kazdağlı
- Vocational School of Health Servicesİzmir University of EconomicsİzmirTürkiye
| |
Collapse
|
35
|
Gu J, Lao L, Chen Y, Lin S. Investigation of protein post-translational modifications with site-specifically incorporated non-canonical amino acids. Bioorg Med Chem 2025; 117:118013. [PMID: 39602864 DOI: 10.1016/j.bmc.2024.118013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Despite the important functions of protein post-translational modifications (PTMs) in numerous cellular processes, understanding the biological roles of PTMs remains quite challenging. Here, we summarize our efforts in recent years to incorporate a variety of non-canonical amino acids (ncAAs) to study the biological functions of protein PTMs in mammalian cells, with a focus on the use of ncAA tools to probe the biological functions of various protein PTMs. We design length-tunable lipidation mimics for studying lipidation function and designing protein drugs. We highlight the use of genetically encoded lysine aminoacylations as chemical baits to identify aminoacylated lysine ubiquitination. Finally, we discuss the use of genetically encoded electron-rich Trp derivatives to design binding affinity-enhancing histone methylations readers.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lihui Lao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yulin Chen
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Shixian Lin
- Department of Medical Oncology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Shaoxing Institute, Zhejiang University, Shaoxing 312099, China.
| |
Collapse
|
36
|
Steinbach MK, Leipert J, Matzanke T, Tholey A. Digital Microfluidics for Sample Preparation in Low-Input Proteomics. SMALL METHODS 2025; 9:e2400495. [PMID: 39205538 PMCID: PMC11740955 DOI: 10.1002/smtd.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Low-input proteomics, also referred to as micro- or nanoproteomics, has become increasingly popular as it allows one to elucidate molecular processes in rare biological materials. A major prerequisite for the analytics of minute protein amounts, e.g., derived from low cell numbers, down to single cells, is the availability of efficient sample preparation methods. Digital microfluidics (DMF), a technology allowing the handling and manipulation of low liquid volumes, has recently been shown to be a powerful and versatile tool to address the challenges in low-input proteomics. Here, an overview is provided on recent advances in proteomics sample preparation using DMF. In particular, the capability of DMF to isolate proteomes from cells and small model organisms, and to perform all necessary chemical sample preparation steps, such as protein denaturation and proteolytic digestion on-chip, are highlighted. Additionally, major prerequisites to making these steps compatible with follow-up analytical methods such as liquid chromatography-mass spectrometry will be discussed.
Collapse
Affiliation(s)
- Max K. Steinbach
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Jan Leipert
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Theo Matzanke
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| | - Andreas Tholey
- Systematic Proteome Research & BioanalyticsInstitute for Experimental MedicineChristian‐Albrechts‐Universität zu Kiel24105KielGermany
| |
Collapse
|
37
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter TR, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: Diversity-oriented synthesis-based photoreactive stereoprobes. Cell Chem Biol 2024; 31:2138-2155.e32. [PMID: 39547236 PMCID: PMC11837778 DOI: 10.1016/j.chembiol.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Chemical proteomics enables the global analysis of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, remained limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these "photo-stereoprobes" interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible NanoBRET assays. Integrated phenotypic screening and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of DOS-inspired photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and facilitating the discovery and characterization of bioactive compounds in phenotypic screens.
Collapse
Affiliation(s)
- Daisuke Ogasawara
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - David B Konrad
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Zher Yin Tan
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kimberly L Carey
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Luo
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Haoxin Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Trever R Carter
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Kristen E DeMeester
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
38
|
Bunne C, Roohani Y, Rosen Y, Gupta A, Zhang X, Roed M, Alexandrov T, AlQuraishi M, Brennan P, Burkhardt DB, Califano A, Cool J, Dernburg AF, Ewing K, Fox EB, Haury M, Herr AE, Horvitz E, Hsu PD, Jain V, Johnson GR, Kalil T, Kelley DR, Kelley SO, Kreshuk A, Mitchison T, Otte S, Shendure J, Sofroniew NJ, Theis F, Theodoris CV, Upadhyayula S, Valer M, Wang B, Xing E, Yeung-Levy S, Zitnik M, Karaletsos T, Regev A, Lundberg E, Leskovec J, Quake SR. How to build the virtual cell with artificial intelligence: Priorities and opportunities. Cell 2024; 187:7045-7063. [PMID: 39672099 DOI: 10.1016/j.cell.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/02/2024] [Accepted: 11/12/2024] [Indexed: 12/15/2024]
Abstract
Cells are essential to understanding health and disease, yet traditional models fall short of modeling and simulating their function and behavior. Advances in AI and omics offer groundbreaking opportunities to create an AI virtual cell (AIVC), a multi-scale, multi-modal large-neural-network-based model that can represent and simulate the behavior of molecules, cells, and tissues across diverse states. This Perspective provides a vision on their design and how collaborative efforts to build AIVCs will transform biological research by allowing high-fidelity simulations, accelerating discoveries, and guiding experimental studies, offering new opportunities for understanding cellular functions and fostering interdisciplinary collaborations in open science.
Collapse
Affiliation(s)
- Charlotte Bunne
- Department of Computer Science, Stanford University, Stanford, CA, USA; Genentech, South San Francisco, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA; School of Computer and Communication Sciences and School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Yusuf Roohani
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA; Arc Institute, Palo Alto, CA, USA
| | - Yanay Rosen
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Ankit Gupta
- Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Xikun Zhang
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Marcel Roed
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Theo Alexandrov
- Department of Pharmacology, University of California, San Diego, San Diego, CA, USA; Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | - Mohammed AlQuraishi
- Department of Bioengineering, University of California, San Diego, San Diego, CA, USA
| | | | | | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Chan Zuckerberg Biohub, New York, NY, USA
| | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Abby F Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Kirsty Ewing
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Emily B Fox
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Statistics, Stanford University, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Matthias Haury
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
| | - Amy E Herr
- Chan Zuckerberg Biohub, San Francisco, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | | | - Patrick D Hsu
- Arc Institute, Palo Alto, CA, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA; Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | | | | | | | - Shana O Kelley
- Chan Zuckerberg Biohub, Chicago, IL, USA; Northwestern University, Evanston, IL, USA
| | - Anna Kreshuk
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tim Mitchison
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Stephani Otte
- Chan Zuckerberg Institute for Advanced Biological Imaging, Redwood City, CA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Seattle Hub for Synthetic Biology, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| | | | - Fabian Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany; School of Computing, Information and Technology, Technical University of Munich, Munich, Germany; TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Christina V Theodoris
- Gladstone Institute of Cardiovascular Disease, Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Srigokul Upadhyayula
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Marc Valer
- Chan Zuckerberg Initiative, Redwood City, CA, USA
| | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada; Vector Institute, Toronto, ON, Canada
| | - Eric Xing
- Carnegie Mellon University, School of Computer Science, Pittsburgh, PA, USA; Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| | - Serena Yeung-Levy
- Department of Computer Science, Stanford University, Stanford, CA, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Aviv Regev
- Genentech, South San Francisco, CA, USA.
| | - Emma Lundberg
- Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Jure Leskovec
- Department of Computer Science, Stanford University, Stanford, CA, USA; Chan Zuckerberg Initiative, Redwood City, CA, USA.
| | - Stephen R Quake
- Chan Zuckerberg Initiative, Redwood City, CA, USA; Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Applied Physics, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Zou Y, Huang CF, Sturrock GR, Kelleher NL, Fitzgerald MC. Top-Down Stability of Proteins from Rates of Oxidation (TD-SPROX) Approach for Measuring Proteoform-Specific Folding Stability. Anal Chem 2024; 96:19597-19604. [PMID: 39602376 PMCID: PMC11809260 DOI: 10.1021/acs.analchem.4c04469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The crucial roles of proteoforms in biological processes and disease mechanisms have been increasingly recognized. However, the rate at which new proteoforms are being discovered using top-down proteomics has far outpaced the rate at which the functional significance of different proteoforms can be determined. Because of the close connection between protein folding and protein function, protein folding stability measurements on proteoforms have the potential to identify functionally significant proteoforms of a given protein. While a number of mass spectrometry-based proteomics methods for making protein folding stability measurements on the proteomic scale have been reported over the past decade, none have been interfaced with top-down proteomics. Described here is a top-down (TD) stability of proteins from the rates of oxidation (SPROX) approach for making proteoform specific folding stability measurements. This approach is validated using a mixture of three model proteins with well-characterized protein folding behavior by conventional SPROX as well as other more conventional biophysical techniques. The method is also used to evaluate the relative folding stabilities of the <30 kDa protein fraction isolated from an MCF-7 cell lysate. The relative folding stabilities of 150 proteoforms from 83 proteins were successfully characterized in the cell lysate analysis using the TD-SPROX approach.
Collapse
Affiliation(s)
- You Zou
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Che-Fan Huang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Grace R. Sturrock
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Molecular Biosciences and Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
40
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
41
|
Chen K, Shoulders MD. Protein Glycosylation Patterns Shaped By the IRE1-XBP1s Arm of the Unfolded Protein Response. Isr J Chem 2024; 64:e202300162. [PMID: 40083477 PMCID: PMC11906193 DOI: 10.1002/ijch.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Indexed: 03/16/2025]
Abstract
The unfolded protein response (UPR) is a sensing and signaling pathway that surveys the endoplasmic reticulum (ER) for protein folding challenges and responds whenever issues are detected. UPR activation leads to upregulation of secretory pathway chaperones and quality control factors, as well as reduces the nascent protein load on the ER, thereby restoring and maintaining proteostasis. This paradigm-defining view of the role of the UPR is accurate, but it elides additional key functions of the UPR in cell biology. In particular, recent work has revealed that the UPR can shape the structure and function of N- and O-glycans installed on ER client proteins. This crosstalk between the UPR's response to protein misfolding and the regulation of glycosylation remains insufficiently understood. Still, emerging evidence makes it clear that the UPR, and particularly the IRE1-XBP1s arm of the UPR, may be a central regulator of protein glycosylation with important biological consequences. In this review, we discuss the crosstalk between proteostasis, the UPR, and glycosylation, present progress towards understanding biological functions of this crosstalk, and examine potential roles in diseases such as cancer.
Collapse
Affiliation(s)
- Kenny Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
42
|
Forte E, Sanders JM, Pla I, Kanchustambham VL, Hollas MAR, Huang CF, Sanchez A, Peterson KN, Melani RD, Huang A, Polineni P, Doll JM, Dietch Z, Kelleher NL, Ladner DP. Top-Down Proteomics Identifies Plasma Proteoform Signatures of Liver Cirrhosis Progression. Mol Cell Proteomics 2024; 23:100876. [PMID: 39521382 DOI: 10.1016/j.mcpro.2024.100876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/16/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Cirrhosis, advanced liver disease, affects 2 to 5 million Americans. While most patients have compensated cirrhosis and may be fairly asymptomatic, many decompensate and experience life-threatening complications such as gastrointestinal bleeding, confusion (hepatic encephalopathy), and ascites, reducing life expectancy from 12 to less than 2 years. Among patients with compensated cirrhosis, identifying patients at high risk of decompensation is critical to optimize care and reduce morbidity and mortality. Therefore, it is important to preferentially direct them towards specialty care which cannot be provided to all patients with cirrhosis. We used discovery top-down proteomics to identify differentially expressed proteoforms (DEPs) in the plasma of patients with progressive stages of liver cirrhosis with the ultimate goal to identify candidate biomarkers of disease progression. In this pilot study, we identified 209 DEPs across three stages of cirrhosis (compensated, compensated with portal hypertension, and decompensated), of which 115 derived from proteins enriched in the liver at a transcriptional level and discriminated the three stages of cirrhosis. Enrichment analyses demonstrated DEPs are involved in several metabolic and immunological processes known to be impacted by cirrhosis progression. We have preliminarily defined the plasma proteoform signatures of cirrhosis patients, setting the stage for ongoing discovery and validation of biomarkers for early diagnosis, risk stratification, and disease monitoring.
Collapse
Affiliation(s)
- Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA; Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jes M Sanders
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Indira Pla
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | | | - Michael A R Hollas
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Che-Fan Huang
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Katrina N Peterson
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Alexander Huang
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Praneet Polineni
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Julianna M Doll
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Zachary Dietch
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | - Daniela P Ladner
- Northwestern University Transplant Outcomes Research Collaborative (NUTORC), Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
43
|
Habeck T, Brown KA, Des Soye B, Lantz C, Zhou M, Alam N, Hossain MA, Jung W, Keener JE, Volny M, Wilson JW, Ying Y, Agar JN, Danis PO, Ge Y, Kelleher NL, Li H, Loo JA, Marty MT, Paša-Tolić L, Sandoval W, Lermyte F. Top-down mass spectrometry of native proteoforms and their complexes: a community study. Nat Methods 2024; 21:2388-2396. [PMID: 38744918 PMCID: PMC11561160 DOI: 10.1038/s41592-024-02279-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024]
Abstract
The combination of native electrospray ionization with top-down fragmentation in mass spectrometry (MS) allows simultaneous determination of the stoichiometry of noncovalent complexes and identification of their component proteoforms and cofactors. Although this approach is powerful, both native MS and top-down MS are not yet well standardized, and only a limited number of laboratories regularly carry out this type of research. To address this challenge, the Consortium for Top-Down Proteomics initiated a study to develop and test protocols for native MS combined with top-down fragmentation of proteins and protein complexes across 11 instruments in nine laboratories. Here we report the summary of the outcomes to provide robust benchmarks and a valuable entry point for the scientific community.
Collapse
Affiliation(s)
- Tanja Habeck
- Technische Universität Darmstadt, Darmstadt, Germany
| | - Kyle A Brown
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Mowei Zhou
- Pacific Northwest National Laboratory, Richland, WA, USA
- Zhejiang University, Zhejiang, China
| | | | | | | | | | | | - Jesse W Wilson
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yujia Ying
- Sun Yat-sen University, Guangzhou, China
| | - Jeffrey N Agar
- Northeastern University, Boston, MA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Paul O Danis
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Ying Ge
- University of Wisconsin-Madison, Madison, WI, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Neil L Kelleher
- Northwestern University, Evanston, IL, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | - Huilin Li
- Sun Yat-sen University, Guangzhou, China
| | - Joseph A Loo
- University of California, Los Angeles, CA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | - Ljiljana Paša-Tolić
- Pacific Northwest National Laboratory, Richland, WA, USA
- Consortium for Top-Down Proteomics, Cambridge, MA, USA
| | | | | |
Collapse
|
44
|
Sen N, Krüger S, Binder WH. Lipid-polymer hybrid-vesicles interrupt nucleation of amyloid fibrillation. RSC Chem Biol 2024; 5:1248-1258. [PMID: 39569389 PMCID: PMC11575630 DOI: 10.1039/d4cb00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Solubility and aggregation of proteins are crucial factors for their functional and further biological roles. Aggregation of proteins in vivo, such as the amyloid beta (Aβ1-40) peptide into fibrils, is significantly modulated by membrane lipids, abundantly present in cells. We developed a model membrane system, composed of lipid hybrid-vesicles bearing embedded hydrophilic polymers to in vitro study the aggregation of the Aβ1-40 peptide. Focus is to understand and inhibit the primordial, nucleation stages of their fibrillation by added hybrid-vesicles, composed of a natural lipid and amphiphilic polymers. These designed hybrid-vesicles are based on 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC), displaying embedded hydrophilic (EO) m P n A_EG polymers (m = 2 or 3; P n = 10 to 52 with M n = 2800-9950 gmol-1) in amounts ranging from 5-20 mol%, anchored to the POPC vesicles via hydrophobic hexadecyl-, glyceryl- and cholesteryl-moieties, affixed to the polymers as end-groups. All investigated hybrid-vesicles significantly delay fibrillation of the Aβ1-40 peptide as determined by thioflavin T (ThT) assays. We observed that the hybrid-vesicles interacted with early aggregating species of Aβ1-40 peptide, irrespective of their composition or size. A substantial perturbation of both primary (k + k n ) and secondary (k + k 2) nucleation rates of Aβ1-40 by the POPC-polymer vesicles compared to POPC vesicles was observed, particularly for the cholesteryl-anchored polymers, interfering with the fragmentation and elongation steps of Aβ1-40. Furthermore, morphological differences of the aggregates were revealed by transmission electron microscopy (TEM) images supported the inhibitory kinetic signatures.
Collapse
Affiliation(s)
- Newton Sen
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 Halle D-06120 Germany
| | - Stephanie Krüger
- Biocenter, Martin-Luther University Halle-Wittenberg Weinbergweg 22 Halle (Saale) D-06120 Germany
| | - Wolfgang H Binder
- Macromolecular Chemistry, Institute of Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg von-Danckelmann-Platz 4 Halle D-06120 Germany
| |
Collapse
|
45
|
Petrovskiy DV, Butkova TV, Nikolsky KS, Kopylov AT, Nakhod VI, Kulikova LI, Malsagova KA, Kibrik ND, Rudnev VR, Izotov AA, Kaysheva AL. Extended range proteomic analysis of blood plasma from schizophrenia patients. Front Mol Biosci 2024; 11:1483933. [PMID: 39640846 PMCID: PMC11617367 DOI: 10.3389/fmolb.2024.1483933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The high prevalence of schizophrenia worldwide makes it necessary to proceed from subjective assessment of patient's clinical symptoms in diagnosis making to searching for circulating blood biomarkers. On the one hand, searching for molecular markers and targets for therapeutics will make it possible to refine and detail the molecular mechanisms of pathology development, while on the other hand, it will offer new opportunities for elaborating novel approaches to disease diagnosis and enhance efficacy and timeliness of drug therapy. Methods In this study, we performed an extended-range proteomic analysis of plasma samples collected from 48 study subjects with confirmed diagnosis of schizophrenia and 50 healthy volunteers. The high-resolution tandem mass spectra recorded in the data-dependent acquisition mode were analyzed using the MaxQuant algorithm for the library of known protein sequences and the PowerNovo algorithm for de novo protein sequencing. Results It was demonstrated that both strategies show similar results for high-abundance proteins (≥1 μg/mL). For mid-abundance (10 ng/mL - 1 μg/mL) and low-abundance (<10 ng/mL) proteins, the results obtained by the two search strategies complement each other. Discussion Group-specific proteins for the samples of schizophrenia patients were identified, presumably being involved in synaptic plasticity, angiogenesis, transcriptional regulation, protein stabilization and degradation.
Collapse
Affiliation(s)
- Denis V. Petrovskiy
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Tatiana V. Butkova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Kirill S. Nikolsky
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Arthur T. Kopylov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Valeriya I. Nakhod
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Liudmila I. Kulikova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Kristina A. Malsagova
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Nikolai D. Kibrik
- Moscow Research Institute of Psychiatry – Branch of the V. Serbsky National Medical Research Centre of Psy-chiatry and Narcology of the Ministry of Health of the Russian Federation, Department of Sexology, Moscow, Russia
| | - Vladimir R. Rudnev
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Alexander A. Izotov
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| | - Anna L. Kaysheva
- Laboratory of Structural Proteomics, Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
46
|
Poncha KF, Paparella AT, Young NL. Normalized and Directional Interplay Scoring for the Interrogation of Proteoform Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.18.624157. [PMID: 39605462 PMCID: PMC11601473 DOI: 10.1101/2024.11.18.624157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Histone proteoforms, often presenting multiple co-occurring post-translational modifications (PTMs), are central to chromatin regulation and gene expression. A proteoform is a specific form of a protein that includes variations arising from genetic changes, alternative RNA splicing, proteolytic processing, and PTMs. Genomic context-dependent histone proteoforms define the histone code, influencing cellular phenotype by dictating interactions with DNA and chromatin-associated proteins. Understanding the dynamics of histone proteoforms is essential for elucidating chromatin-based regulatory mechanisms. Advances in middle-down and top-down proteomics methods enable accurate identification and quantitation of hundreds to thousands of proteoforms in a single run. However, the resulting data complexity presents significant challenges for analysis and visualization. Here, we introduce new computational methods to analyze the dynamics of histone PTMs and demonstrate their use in mouse organs during aging. We have developed and benchmarked two novel PTM crosstalk scores. The score that we term 'Normalized Interplay' addresses limitations of the original crosstalk score 'Interplay' providing a more complete and accurate measure of PTM crosstalk. The second score, 'delta I' or Directional Interplay is an asymmetric measure quantifying the magnitude and directionality of crosstalk between PTMs. Applying our two-stage scoring approach to data from CrosstalkDB, a community resource that curates proteoform-level data, reveals the dynamics of histone H3 modifications during aging. The source code is available under an Apache license at https://github.com/k-p4/ptm_interplay_scoring.
Collapse
Affiliation(s)
- Karl F Poncha
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
| | - Alyssa T. Paparella
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
| | - Nicolas L. Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
47
|
Ashkarran AA, Gharibi H, Sadeghi SA, Modaresi SM, Wang Q, Lin TJ, Yerima G, Tamadon A, Sayadi M, Jafari M, Lin Z, Ritz D, Kakhniashvili D, Guha A, Mofrad MRK, Sun L, Landry MP, Saei AA, Mahmoudi M. Small molecule modulation of protein corona for deep plasma proteome profiling. Nat Commun 2024; 15:9638. [PMID: 39511193 PMCID: PMC11544298 DOI: 10.1038/s41467-024-53966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
The protein corona formed on nanoparticles (NPs) has potential as a valuable diagnostic tool for improving plasma proteome coverage. Here, we show that spiking small molecules, including metabolites, lipids, vitamins, and nutrients into plasma can induce diverse protein corona patterns on otherwise identical NPs, significantly enhancing the depth of plasma proteome profiling. The protein coronas on polystyrene NPs when exposed to plasma treated with an array of small molecules allows for the detection of 1793 proteins marking an 8.25-fold increase in the number of quantified proteins compared to plasma alone (218 proteins) and a 2.63-fold increase relative to the untreated protein corona (681 proteins). Furthermore, we discovered that adding 1000 µg/ml phosphatidylcholine could singularly enable the detection of 897 proteins. At this specific concentration, phosphatidylcholine selectively depletes the four most abundant plasma proteins, including albumin, thus reducing the dynamic range of plasma proteome and enabling the detection of proteins with lower abundance. Employing an optimized data-independent acquisition approach, the inclusion of phosphatidylcholine leads to the detection of 1436 proteins in a single plasma sample. Our molecular dynamics results reveal that phosphatidylcholine interacts with albumin via hydrophobic interactions, H-bonds, and water bridges. The addition of phosphatidylcholine also enables the detection of 337 additional proteoforms compared to untreated protein corona using a top-down proteomics approach. Given the critical role of plasma proteomics in biomarker discovery and disease monitoring, we anticipate the widespread adoption of this methodology for the identification and clinical translation of biomarkers.
Collapse
Affiliation(s)
- Ali Akbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, USA
- Depatment of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Hassan Gharibi
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Qianyi Wang
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Teng-Jui Lin
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Ghafar Yerima
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Ali Tamadon
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Maryam Sayadi
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Maryam Jafari
- Division of ENT Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Zijin Lin
- Precision Health Program, Michigan State University, East Lansing, MI, USA
| | - Danilo Ritz
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - David Kakhniashvili
- Proteomics and Metabolomics Core Facility, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Avirup Guha
- Cardio-Oncology Program, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, CA, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Amir Ata Saei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, USA.
- Depatment of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
48
|
Fierro-Monti I, Fröhlich K, Schori C, Schmidt A. Assessment of Data-Independent Acquisition Mass Spectrometry (DIA-MS) for the Identification of Single Amino Acid Variants. Proteomes 2024; 12:33. [PMID: 39585120 PMCID: PMC11587465 DOI: 10.3390/proteomes12040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Proteogenomics integrates genomic and proteomic data to elucidate cellular processes by identifying variant peptides, including single amino acid variants (SAAVs). In this study, we assessed the capability of data-independent acquisition mass spectrometry (DIA-MS) to identify SAAV peptides in HeLa cells using various search engine pipelines. We developed a customised sequence database (DB) incorporating SAAV sequences from the HeLa genome and conducted searches using DIA-NN, Spectronaut, and Fragpipe-MSFragger. Our evaluation focused on identifying true positive SAAV peptides and false positives through entrapment DBs. This study revealed that DIA-MS provides reproducible and comprehensive coverage of the proteome, identifying a substantial proportion of SAAV peptides. Notably, the DIA-MS searches maintained consistent identification of SAAV peptides despite varying sizes of the entrapment DB. A comparative analysis showed that Fragpipe-MSFragger (FP-DIA) demonstrated the most conservative and effective performance, exhibiting the lowest false discovery match ratio (FDMR). Additionally, integrating DIA and data-dependent acquisition (DDA) MS data search outputs enhanced SAAV peptide identification, with a lower false discovery rate (FDR) observed in DDA searches. The validation using stable isotope dilution and parallel reaction monitoring (SID-PRM) confirmed the SAAV peptides identified by DIA-MS and DDA-MS searches, highlighting the reliability of our approach. Our findings underscore the effectiveness of DIA-MS in proteogenomic workflows for identifying SAAV peptides, offering insights into optimising search engine pipelines and DB construction for accurate proteomics analysis. These methodologies advance the understanding of proteome variability, contributing to cancer research and the identification of novel proteoform therapeutic targets.
Collapse
Affiliation(s)
- Ivo Fierro-Monti
- European Molecular Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI), Hinxton CB10 1SD, Cambridgeshire, UK
- Faculty of Science, Department Biozentrum, University of Basel, 4056 Basel, Switzerland; (K.F.); (C.S.)
| | - Klemens Fröhlich
- Faculty of Science, Department Biozentrum, University of Basel, 4056 Basel, Switzerland; (K.F.); (C.S.)
| | - Christian Schori
- Faculty of Science, Department Biozentrum, University of Basel, 4056 Basel, Switzerland; (K.F.); (C.S.)
| | - Alexander Schmidt
- Faculty of Science, Department Biozentrum, University of Basel, 4056 Basel, Switzerland; (K.F.); (C.S.)
| |
Collapse
|
49
|
Martyn GD, Kalagiri R, Veggiani G, Stanfield RL, Choudhuri I, Sala M, Meisenhelder J, Chen C, Biswas A, Levy RM, Lyumkis D, Wilson IA, Hunter T, Sidhu SS. Using phage display for rational engineering of a higher affinity humanized 3'phosphohistidine-specific antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621849. [PMID: 39574610 PMCID: PMC11580931 DOI: 10.1101/2024.11.04.621849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Histidine phosphorylation (pHis) is a non-canonical post-translational modification (PTM) that is historically understudied due to a lack of robust reagents that are required for its investigation, such as high affinity pHis-specific antibodies. Engineering pHis-specific antibodies is very challenging due to the labile nature of the phosphoramidate (P-N) bond and the stringent requirements for selective recognition of the two isoforms, 1-phosphohistidine (1-pHis) and 3-phosphohistidine (3-pHis). Here, we present a strategy for in vitro engineering of antibodies for detection of native 3-pHis targets. Specifically, we humanized the rabbit SC44-8 anti-3-pTza (a stable 3-pHis mimetic) mAb into a scaffold (herein referred to as hSC44) that was suitable for phage display. We then constructed six unique Fab phage-displayed libraries using the hSC44 scaffold and selected high affinity 3-pHis binders. Our selection strategy was carefully designed to enrich antibodies that bound 3-pHis with high affinity and had specificity for 3-pHis versus 3-pTza. hSC44.20N32F L , the best engineered antibody, has an ∼10-fold higher affinity for 3-pHis than the parental hSC44. Eleven new Fab structures, including the first reported antibody-pHis peptide structures were solved by X-ray crystallography. Structural and quantum mechanical calculations provided molecular insights into 3-pHis and 3-pTza discrimination by different hSC44 variants and their affinity increase obtained through in vitro engineering. Furthermore, we demonstrate the utility of these newly developed high-affinity 3-pHis-specific antibodies for recognition of pHis proteins in mammalian cells by immunoblotting and immunofluorescence staining. Overall, our work describes a general method for engineering PTM-specific antibodies and provides a set of novel antibodies for further investigations of the role of 3-pHis in cell biology. Significance Statement Histidine phosphorylation is an elusive PTM whose role in mammalian cell biology is largely unknown due to the lack of robust tools and methods for its analysis. Here we report the development of antibodies with unprecedented affinity and specificity towards 3-pHis and present the first crystal structures of a pHis peptide in complex with an antibody. Finally, we show how these antibodies can be used in standard molecular biology workflows to investigate pHis-dependent biology.
Collapse
Affiliation(s)
- Gregory D. Martyn
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| | - Rajasree Kalagiri
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Gianluca Veggiani
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
- Division of Biotechnology and Molecular Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Robyn L. Stanfield
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
| | - Indrani Choudhuri
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Margaux Sala
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Jill Meisenhelder
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Chao Chen
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| | - Avik Biswas
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
- Department of Physics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, and Department of Chemistry, Temple University, Philadelphia, PA, 19122, USA
| | - Dmitry Lyumkis
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, Scripps Research, La Jolla, California, 92037, USA
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Sachdev S. Sidhu
- School of Pharmacy, University of Waterloo, 10 Victoria St A, Kitchener, ON, N2G 1C5, Canada
| |
Collapse
|
50
|
Naba A. Mechanisms of assembly and remodelling of the extracellular matrix. Nat Rev Mol Cell Biol 2024; 25:865-885. [PMID: 39223427 PMCID: PMC11931590 DOI: 10.1038/s41580-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/04/2024]
Abstract
The extracellular matrix (ECM) is the complex meshwork of proteins and glycans that forms the scaffold that surrounds and supports cells. It exerts key roles in all aspects of metazoan physiology, from conferring physical and mechanical properties on tissues and organs to modulating cellular processes such as proliferation, differentiation and migration. Understanding the mechanisms that orchestrate the assembly of the ECM scaffold is thus crucial to understand ECM functions in health and disease. This Review discusses novel insights into the compositional diversity of matrisome components and the mechanisms that lead to tissue-specific assemblies and architectures tailored to support specific functions. The Review then highlights recently discovered mechanisms, including post-translational modifications and metabolic pathways such as amino acid availability and the circadian clock, that modulate ECM secretion, assembly and remodelling in homeostasis and human diseases. Last, the Review explores the potential of 'matritherapies', that is, strategies to normalize ECM composition and architecture to achieve a therapeutic benefit.
Collapse
Affiliation(s)
- Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL, USA.
- University of Illinois Cancer Center, Chicago, IL, USA.
| |
Collapse
|