1
|
Fang J, Tian W, Quintanilla MA, Beach JR, Lerit DA. The PCM scaffold enables RNA localization to centrosomes. Mol Biol Cell 2025; 36:ar75. [PMID: 40305119 DOI: 10.1091/mbc.e25-03-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
As microtubule-organizing centers, centrosomes direct assembly of the bipolar mitotic spindle required for chromosome segregation and genome stability. Centrosome activity requires the dynamic assembly of pericentriolar material (PCM), the composition and organization of which changes throughout the cell cycle. Recent studies highlight the conserved localization of several mRNAs encoded from centrosome-associated genes enriched at centrosomes, including Pericentrin-like protein (Plp) mRNA. However, relatively little is known about how RNAs localize to centrosomes and influence centrosome function. Here, we examine mechanisms underlying the subcellular localization of Plp mRNA. We find that Plp mRNA localization is puromycin-sensitive, and the Plp-coding sequence (CDS) is both necessary and sufficient for RNA localization, consistent with a cotranslational transport mechanism. We identify regions within the Plp CDS that regulate Plp mRNA localization. Finally, we show that protein-protein interactions critical for elaboration of the PCM scaffold permit RNA localization to centrosomes. Taken together, these findings inform the mechanistic basis of Plp mRNA localization and lend insight into the oscillatory enrichment of RNA at centrosomes.
Collapse
Affiliation(s)
- Junnan Fang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
| | - Weiyi Tian
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322
| | - Melissa A Quintanilla
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Jordan R Beach
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322
- Cell and Molecular Biology Research Program, Winship Cancer Institute, Atlanta, GA 30322
| |
Collapse
|
2
|
Feng X, Dhandore S, Liu Y, Singh K, Ortu F, Suntharalingam K. Osteosarcoma Cell and Osteosarcoma Stem Cell Potent Immunogenic Bi-Nuclear Gallium(III) Complexes. Chemistry 2025; 31:e202500747. [PMID: 40202773 PMCID: PMC12099189 DOI: 10.1002/chem.202500747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
We report the synthesis, characterization, anti-osteosarcoma and anti-osteosarcoma stem cells (OSC) properties (cytotoxic and immunogenic) of a series of bi-nuclear gallium(III) complexes with tridentate Schiff base ligands and 8-hydroxyquinoline (1-4). According to monolayer cytotoxicity studies, 1-4 display micromolar potency toward bulk osteosarcoma cells and OSCs. The most effective complex in series 2 is up to 13-fold more potent toward OSCs than cisplatin and carboplatin (the only metallodrugs used in the clinic to treat osteosarcoma). Remarkably, the bi-nuclear gallium(III) complexes 1-4 are significantly more potent toward 3D-cultured sarcospheres than OSCs cultured in monolayers indicating effective penetration of the sarcosphere multicellular architecture. The bi-nuclear gallium(III) complexes 1-4 are up to 53-fold more potent toward sarcospheres than cisplatin and carboplatin. Mechanistic studies show that gallium(III) complex 2 kills osteosarcoma cells by caspase-dependent apoptosis and paraptosis, leading to the release of danger-associated molecular patterns associated with immunogenic cell death. Osteosarcoma cells and OSCs treated with gallium(III) complex 2 are effectively phagocytosed by immune cells, highlighting its immunogenic potential. As far as it is known, gallium(III) complex 2 is the first metal complex to evoke an immunogenic response toward both bulk osteosarcoma cells and OSCs.
Collapse
Affiliation(s)
- Xiao Feng
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Shruti Dhandore
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Yu Liu
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Kuldip Singh
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | - Fabrizio Ortu
- School of ChemistryUniversity of LeicesterLeicesterLE1 7RHUK
| | | |
Collapse
|
3
|
El-Naggar AM, Li Y, Turgu B, Ding Y, Wei L, Chen SY, Trigo-Gonzalez G, Kalantari F, Vallejos R, Lynch B, Senz J, Lum A, Douglas JM, Salamanca C, Thornton S, Qin Y, Parmar K, Spencer SE, Leung S, Woo MM, Yong PJ, Zhang HF, Hughes CS, Negri GL, Wang Y, Morin GB, Sorensen PH, Huntsman DG. Cystathionine gamma-lyase-mediated hypoxia inducible factor 1-alpha expression drives clear cell ovarian cancer progression. J Pathol 2025. [PMID: 40371821 DOI: 10.1002/path.6433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/07/2025] [Accepted: 03/26/2025] [Indexed: 05/16/2025]
Abstract
Clear cell ovarian cancer (CCOC) is the second most common ovarian cancer subtype, accounting for 5%-11% of ovarian cancers in North America. Late-stage CCOC is associated with a worse prognosis compared to other ovarian cancer histotypes, a challenge that has seen limited progress in recent decades. CCOC typically originates within the toxic microenvironment of endometriotic ovarian cysts and is characterized by its intrinsic chemoresistance, a strong hypoxic signature, and abundant expression of cystathionine gamma-lyase (CTH). CTH is a key enzyme in the transsulfuration pathway and serves as a marker of ciliated cells derived from the Müllerian tract. CTH plays a pivotal role in de novo cysteine synthesis, which is essential for glutathione (GSH) production and redox homeostasis. Using an array of molecular tools and cancer models, including in vivo studies, we demonstrated that CTH expression was induced under various stress conditions, such as exposure to endometriotic cyst content and hypoxia. This induction enables cell survival and creates a differentiation state manifested by CCOC that potentiates tumor progression and metastasis. In addition to regulating redox homeostasis, CTH enhances hypoxia inducible factor 1-alpha (HIF1α) expression, independently of hydrogen sulfide (H2S) production. Re-expression of HIF1α in CTH KO cells fully restored metastatic capacity in in vivo models. Co-expression of CTH and HIF1α proteins was also observed in human CCOC samples. Importantly, targeting CTH in CCOC significantly reduced its metastatic potential in in vivo models and enhanced sensitivity to chemotherapy. These findings underscore that CTH is both a defining feature of CCOC and a promising therapeutic target, not only for CCOC patients but also for those with other CTH-expressing cancers. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amal M El-Naggar
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Yuqin Li
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yuchen Ding
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Longyijie Wei
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shary Yuting Chen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Genny Trigo-Gonzalez
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Forouh Kalantari
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Rodrigo Vallejos
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Branden Lynch
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Janine Senz
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Amy Lum
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - J Maxwell Douglas
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Clara Salamanca
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Shelby Thornton
- Molecular and Advanced Pathology Core (MAPCore), University of British Columbia, Vancouver, BC, Canada
| | - Yimei Qin
- Molecular and Advanced Pathology Core (MAPCore), University of British Columbia, Vancouver, BC, Canada
| | - Kiran Parmar
- BC Centre for Pelvic Pain and Endometriosis, BC Women's Hospital, Vancouver, BC, Canada
| | - Sandra E Spencer
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Samuel Leung
- Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
| | - Michelle Mm Woo
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- BC's Gynecologic Cancer Research Program, OVCARE, Vancouver, BC, Canada
| | - Paul J Yong
- BC Centre for Pelvic Pain and Endometriosis, BC Women's Hospital, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Hai-Feng Zhang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Gian Luca Negri
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Yemin Wang
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gregg B Morin
- Michael Smith Genome Sciences Centre, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Poul H Sorensen
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - David G Huntsman
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Molecular and Advanced Pathology Core (MAPCore), University of British Columbia, Vancouver, BC, Canada
- Genetic Pathology Evaluation Centre, Vancouver, BC, Canada
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
- BC's Gynecologic Cancer Research Program, OVCARE, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Corda PO, Silva JV, Almeida CR, Pierre P, Fardilha M. De Novo Protein Synthesis Occurs Through the Cytoplasmic Translation Machinery in Mammalian Spermatozoa. J Cell Physiol 2025; 240:e70038. [PMID: 40373039 DOI: 10.1002/jcp.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 05/17/2025]
Abstract
The current hypothesis suggests that translation occurs in capacitated spermatozoa through mitochondrial ribosomes. Mitochondrial translation has several particularities, which rise some questions about how mitochondrial ribosomes can ensure sperm translation activity. Here, we aimed to elucidate if cytoplasmic translation occurs in mammalian spermatozoa. A bioinformatic workflow was performed to identify translation-related proteins in human spermatozoa and their association with cytoplasmic translation. The surface sensing of translation (SUnSET) method was used to measure translation activity in capacitated human and bovine spermatozoa. Two translation inhibitors, cycloheximide (CHX, cytoplasmic) and D-chloramphenicol (D-CP, mitochondrial) were used to identify which ribosomes were active in sperm. To spot newly synthesized proteins, puromycin-peptides were immunoprecipitated and analysed by mass spectrometry. A second approach was performed using translation inhibitors and analysing the sperm proteome by mass spectrometry. Bioinformatic analysis revealed that human spermatozoa possess 510 translation proteins, which were enriched for cytoplasmic mRNA translation. CHX decreased translation activity in mammalian sperm, whereas no effect was observed after D-CP treatment. Nine proteins were immunoprecipitated and identified as newly synthesized in capacitated bovine spermatozoa. CHX and D-CP decreased the level of 22 proteins that were replaced, or de novo translated during capacitation. New proteins were associated with relevant processes for sperm physiology. Both translation inhibitors decreased sperm rapid progressive motility and increased sperm immotility. Our results proved sperm translation occurs through cytoplasmic translation machinery in capacitated bovine and human spermatozoa. These results also support that sperm translation is required during capacitation to produce relevant proteins for sperm functions.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Aveiro, Portugal
| | - Joana Vieira Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Aveiro, Portugal
| | - Catarina R Almeida
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Aveiro, Portugal
| | - Philippe Pierre
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Aveiro, Portugal
- Aix Marseille Université, CNRS, INSERM, CIML, Marseille, Bouches-du-Rhône, France
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Aveiro, Portugal
| |
Collapse
|
5
|
Han L, Gao C, Jin X, Li Y, Chen L, Li D, Deng Q, Bian X. Bioactive natural alkaloid 6-Methoxydihydrosanguinarine exerts anti-tumor effects in hepatocellular carcinoma cells via ferroptosis. Front Pharmacol 2025; 16:1500461. [PMID: 40343005 PMCID: PMC12058669 DOI: 10.3389/fphar.2025.1500461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Ferroptosis is a form of regulated cell death driven by the accumulation of iron-dependent lipid peroxides, and ferroptosis-mediated cancer therapy has gained considerable attention. Despite emerging evidence that ferroptosis induction effectively suppresses hepatocellular carcinoma (HCC) progression and enhances chemosensitivity, the development of resistance to ferroptosis-targeting therapies remains a critical challenge. Natural active compounds have great potential in cancer treatment. Methods The impact of 6-ME on the cell viability of HCC cells was assessed using the Cell Counting Kit-8 (CCK-8) assay and colony formation assay. Furthermore, cellular morphology of HCC cells was visualized under inverted fluorescence microscopy. Intracellular reactive oxygen species (ROS) and lipid peroxidation levels were quantified using fluorescence probes and determined by flow cytometry analysis. The expression of ferroptosis-related proteins and genes was determined via Western blot and quantitative real-time PCR analyses. Results Here, we demonstrate that 6-Methoxydihydrosanguinarine (6-ME), an alkaloid from Macleaya cordata, exerts anti-tumor functions in HCC cells via ferroptosis. Stimulation with 6-ME induces intracellular ROS production, cell growth inhibition, and cell death in HCC cells, and these effects can be weakened by the ROS scavenger GSH or NAC and ferroptosis inhibitors deferoxamine mesylate (DFO) or ferrostatin-1 (Fer-1). Mechanistically, 6-ME downregulates the expression of the key ferroptosis defense enzyme GPX4 at the transcriptional level, leading to excessive lipid peroxidation and ferroptosis in HCC cells. Importantly, low concentrations of 6-ME also enhanced the ferroptosis sensitivity induced by RSL3 and IKE in HCC cells. Conclusion These findings reveal that the natural product 6-ME exerts anti-tumor functions in HCC cells via ferroptosis and underscore the potential of 6-ME administered alone or in combination with canonical ferroptosis inducers for the treatment of HCC patients.
Collapse
Affiliation(s)
- Linfen Han
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Department of Nutrition, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chengchang Gao
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaorui Jin
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yingping Li
- Shanxi Academy of Advanced Research and Innovation, Taiyuan, China
| | - Liangjie Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Donglin Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qinqin Deng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xueli Bian
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Department of Nutrition, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Das S, Zea MP, Russon MP, Xing Z, Torregrosa-Allen S, Cervantes HE, Harper HA, Elzey BD, Tran EJ. Supinoxin blocks small cell lung cancer progression by inhibiting mitochondrial respiration through DDX5. iScience 2025; 28:112219. [PMID: 40224004 PMCID: PMC11987007 DOI: 10.1016/j.isci.2025.112219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/26/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
DDX5 is a DEAD-box RNA helicase that is overexpressed and implicated in the progression of several cancers, including small cell lung cancer (SCLC). Our laboratory has demonstrated that DDX5 is essential for the invasive growth of SCLC and mitochondrial respiration. SCLC is an extremely lethal, recalcitrant tumor, and currently lacking effective treatments. Supinoxin (RX 5902), a compound having anti-cancer activity, is a known target of phosphor-DDX5. We now report that Supinoxin inhibits the proliferation of chemo-sensitive and chemo-resistant SCLC lines, H69 and H69AR, respectively. Additionally, Supinoxin mitigates both the growth of H69AR xenograft tumors and SCLC PDX tumors in vivo. Finally, we find that Supinoxin inhibits expression of mitochondrial genes and effectively blocks respiration. These studies suggest that Supinoxin functions in anti-tumor progression by reducing cellular energy levels through DDX5.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| | - Maria P. Zea
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Matthew P. Russon
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Zheng Xing
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
| | - Sandra Torregrosa-Allen
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| | - Heidi E. Cervantes
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| | - Haley Anne Harper
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| | - Bennett D. Elzey
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907-2064, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Elizabeth J. Tran
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907-2063, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907-2064, USA
| |
Collapse
|
7
|
Liang Y, Zhang J, Wang J, Yang Y, Tan X, Li S, Guo Z, Zhang Z, Liu J, Shi J, Zhang K. Restoring Tumor Cell Immunogenicity Through Ion-Assisted p53 mRNA Domestication for Enhanced In Situ Cancer Vaccination Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500825. [PMID: 39965083 PMCID: PMC11984859 DOI: 10.1002/advs.202500825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 01/28/2025] [Indexed: 02/20/2025]
Abstract
The efficacy of in situ cancer vaccines (ISCVs) is hindered by the poor immunogenicity of tumor cells. Here, PRIZE, a P53-repair nanosystem based on a virus-mimicking nanostructure to deliver p53 mRNA and Zn (II) into tumor cells, domesticating tumor cells by restoring intracellular P53 levels to bolster their immunogenicity, is designed. PRIZE ensures precise delivery to tumor sites, stabilizes p53 mRNA with its biomineralized structure, and extends the half-life of P53. This research highlights that PRIZE can efficiently repair P53 abnormalities in 4T1 (P53-deficient) and MC38 (P53-mutant) cells, subsequently upregulating the expression of major histocompatibility complex (MHC) class I molecules and the surface co-stimulatory molecule CD80 on tumor cells, enhancing antigen presentation and transforming tumor cells into in situ antigen reservoirs. The co-delivered photothermal agent (ICG) can trigger immunogenic cell death under laser irradiation, effectively releasing tumor-associated antigens, and inducing the formation of ISCVs. Importantly, in P53 abnormal tumor mouse models, the induced ISCVs initiate the cancer immune cycle (CIC), demonstrating outstanding tumoricidal immunity and effectively thwarting tumor metastasis and postoperative recurrence, which provides valuable insights for advancing personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Jingge Zhang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Wang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Yuhe Yang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Xinyu Tan
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Shuguang Li
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhenzhen Guo
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Junjie Liu
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Jinjin Shi
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
| | - Kaixiang Zhang
- School of Pharmaceutical SciencesTianjian Laboratory of Advanced Biomedical SciencesZhengzhou UniversityZhengzhou450001P. R. China
- Beijing Life Science AcademyBeijing102209P. R. China
| |
Collapse
|
8
|
Wang G, Li M, Zou P. Enzyme-mediated proximity labeling reveals the co-translational targeting of DLGAP5 mRNA to the centrosome during mitosis. RSC Chem Biol 2025:d4cb00155a. [PMID: 40248433 PMCID: PMC12002336 DOI: 10.1039/d4cb00155a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Subcellular RNA localization is a conserved mechanism in eukaryotic cells and plays critical roles in diverse physiological processes including cell proliferation, differentiation, and embryo development. Nevertheless, the characterization of centrosome-localized mRNAs remains underexplored due to technical difficulties. In this study, we utilize APEX2-mediated proximity labeling to map the centrosome-proximal transcriptome, identifying DLGAP5 mRNA as a novel centrosome-localized transcript during mitosis. Using a combination of drug perturbation, truncation, deletion, and mutagenesis, we demonstrate that microtubule binding of nascent MBD1 polypeptides is required for centrosomal transport of DLGAP5 mRNA. Our data also reveal that mRNA targeting efficiency is tightly linked to the coding sequence (CDS) length. Thus, our study provides a transcriptomic resource for future investigation of centrosome-localized RNAs and sheds light on mechanisms underlying mRNA centrosomal localization.
Collapse
Affiliation(s)
- Gang Wang
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University Beijing 100871 China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital Beijing 100191 China
| | - Peng Zou
- Academy for Advanced Interdisciplinary Studies, PKU-Tsinghua Center for Life Science, Peking University Beijing 100871 China
- College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University Beijing 100871 China
- Chinese Institute for Brain Research (CIBR) Beijing 102206 China
| |
Collapse
|
9
|
Li Q, Yang X, Li T. Natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in central nervous system diseases: current preclinical evidence and future perspectives. Front Pharmacol 2025; 16:1570069. [PMID: 40196367 PMCID: PMC11973303 DOI: 10.3389/fphar.2025.1570069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
Flavonoids are a class of important polyphenolic compounds, renowned for their antioxidant properties. However, recent studies have uncovered an additional function of these natural flavonoids: their ability to inhibit ferroptosis. Ferroptosis is a key mechanism driving cell death in central nervous system (CNS) diseases, including both acute injuries and chronic neurodegenerative disorders, characterized by iron overload-induced lipid peroxidation and dysfunction of the antioxidant defense system. This review discusses the therapeutic potential of natural flavonoids from herbs and nutraceuticals as ferroptosis inhibitors in CNS diseases, focusing on their molecular mechanisms, summarizing findings from preclinical animal models, and providing insights for clinical translation. We specifically highlight natural flavonoids such as Baicalin, Baicalein, Chrysin, Vitexin, Galangin, Quercetin, Isoquercetin, Eriodictyol, Proanthocyanidin, (-)-epigallocatechin-3-gallate, Dihydromyricetin, Soybean Isoflavones, Calycosin, Icariside II, and Safflower Yellow, which have shown promising results in animal models of acute CNS injuries, including ischemic stroke, cerebral ischemia-reperfusion injury, intracerebral hemorrhage, subarachnoid hemorrhage, traumatic brain injury, and spinal cord injury. Among these, Baicalin and its precursor Baicalein stand out due to extensive research and favorable outcomes in acute injury models. Mechanistically, these flavonoids not only regulate the Nrf2/ARE pathway and activate GPX4/GSH-related antioxidant pathways but also modulate iron metabolism proteins, thereby alleviating iron overload and inhibiting ferroptosis. While flavonoids show promise as ferroptosis inhibitors for CNS diseases, especially in acute injury settings, further studies are needed to evaluate their efficacy, safety, pharmacokinetics, and blood-brain barrier penetration for clinical application.
Collapse
Affiliation(s)
- Qiuhe Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaohang Yang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
10
|
Wang K, Lee SXY, Jaladanki CK, Ho WS, Chu JJH, Fan H, Chai CLL. Identification of Small-Molecule Inhibitors for Enterovirus A71 IRES by Structure-Based Virtual Screening. J Chem Inf Model 2025; 65:3010-3021. [PMID: 40022654 DOI: 10.1021/acs.jcim.4c01903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
Structured RNAs play a crucial role in regulating gene expression, which includes both protein synthesis and RNA processing. Dysregulation of these processes is associated with various conditions, including viral and bacterial infections, as well as cancer. The unique tertiary structures of structured RNAs provide an opportunity for small molecules to directly modulate such processes, making them promising targets for drug discovery. Although small-molecule inhibitors targeting RNA have shown early success, in silico strategies like structure-based virtual screening remain underutilized for RNA-targeted drug discovery. In this study, we developed a virtual screening scheme targeting the structural ensemble of EV-A71 IRES SL II, a noncoding viral RNA element essential for viral replication. We subsequently optimized the experimentally validated hit compound IRE-03 from virtual screening through an "analog-by-catalog" search. This led to the identification of a more potent IRES inhibitor, IRE-03-3, validated through biochemical and functional assays with an EC50 value of 11.96 μM against viral proliferation. Our findings demonstrate that structure-based virtual screening can be effectively applied to RNA targets, providing exciting new opportunities for future antiviral drug discovery.
Collapse
Affiliation(s)
- Kaichen Wang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, 117543 Singapore, Singapore
| | - Sean Xian Yu Lee
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, 117543 Singapore, Singapore
| | - Chaitanya K Jaladanki
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
| | - Wei Shen Ho
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, 117543 Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, 117545 Singapore, Singapore
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Singapore
- Synthetic Biology Translational Research Program and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore
- Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
| | - Christina Li Lin Chai
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, 117543 Singapore, Singapore
| |
Collapse
|
11
|
Wang J, Niu S, Hu X, Li T, Liu S, Tu Y, Shang Z, Zhao L, Xu P, Lin J, Chen L, Billadeau DD, Jia D. Trans-Golgi network tethering factors regulate TBK1 trafficking and promote the STING-IFN-I pathway. Cell Discov 2025; 11:23. [PMID: 40097395 PMCID: PMC11914254 DOI: 10.1038/s41421-024-00763-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/22/2024] [Indexed: 03/19/2025] Open
Abstract
The cGAS-STING pathway mediates the innate immune response to cytosolic DNA, contributing to surveillance against microbial invasion or cellular damage. Once activated, STING recruits TBK1 at the trans-Golgi network (TGN), which in turn phosphorylates IRF3 to induce type I interferon (IFN-I) expression. In contrast to STING, little is known about how TBK1 is transported to the TGN for activation. Here, we show that multiple TGN tethering factors, a group of proteins involved in vesicle capturing, are indispensable for STING-IFN-I signaling. Deletion of TBC1D23, a recently reported tethering factor, in mice impairs the STING-IFN-I signaling, but with insignificant effect on STING-NF-κB signaling. Mechanistically, TBC1D23 interacts with TBK1 via the WASH complex subunit FAM21 and promotes its endosome-to-TGN translocation. Furthermore, multiple TGN tethering factors were reduced in aged mice and senescent fibroblasts. In summary, our study uncovers that TGN tethering factors are key regulators of the STING-IFN-I signaling and suggests that their reduction in senescence may produce aberrant STING signaling.
Collapse
Affiliation(s)
- Jinrui Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shenghui Niu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Shengduo Liu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Tu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Zehua Shang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Pinglong Xu
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingwen Lin
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Lu Chen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Daniel D Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan, China.
- Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
Rivera-Cardona J, Mahajan T, Kakuturu NR, Teo QW, Lederer J, Thayer EA, Rowland EF, Heimburger K, Sun J, McDonald CA, Mickelson CK, Langlois RA, Wu NC, Milenkovic O, Maslov S, Brooke CB. Intrinsic OASL expression licenses interferon induction during influenza A virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643375. [PMID: 40166309 PMCID: PMC11956916 DOI: 10.1101/2025.03.14.643375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Effective control of viral infection requires rapid induction of the innate immune response, especially the type I and type III interferon (IFN) systems. Despite the critical role of IFN induction in host defense, numerous studies have established that most cells fail to produce IFNs in response to viral stimuli. The specific factors that govern cellular heterogeneity in IFN induction potential during infection are not understood. To identify specific host factors that license some cells but not others to mount an IFN response to viral infection, we developed an approach for analyzing temporal scRNA-seq data of influenza A virus (IAV)-infected cells. This approach identified the expression of several interferon stimulated genes (ISGs) within pre-infection cells as correlates of IFN induction potential of those cells, post-infection. Validation experiments confirmed that intrinsic expression of the ISG OASL is essential for robust IFNL induction during IAV infection. Altogether, our findings reveal an important role for IFN-independent, intrinsic expression of ISGs in promoting IFN induction and provide new insights into the mechanisms that regulate cell-to-cell heterogeneity in innate immune activation.
Collapse
Affiliation(s)
- Joel Rivera-Cardona
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Tarun Mahajan
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Neeharika R. Kakuturu
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Qi Wen Teo
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
| | - Joseph Lederer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth A. Thayer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Elizabeth F. Rowland
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kyle Heimburger
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jiayi Sun
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cera A. McDonald
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Clayton K. Mickelson
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ryan A. Langlois
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas C. Wu
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, Urbana, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Olgica Milenkovic
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Center for Artificial Intelligence and Modeling, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Physics, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
13
|
Jiao P, Yang N, Jia Q, Fan B, Feng K, Yu J, Zhao S. A dual-reporter LDLR system integrating fluorescence and luminescence for understanding LDLR regulation and facilitating drug discovery. Front Mol Biosci 2025; 12:1552085. [PMID: 40182619 PMCID: PMC11966430 DOI: 10.3389/fmolb.2025.1552085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction The low-density lipoprotein receptor (LDLR) is integral to cholesterol metabolism and cardiovascular health. Enhancing LDLR expression is a promising strategy for treating hyperlipidemia and reducing the risk of atherosclerosis. However, current LDLR reporter systems have limitations in detecting both transcriptional and translational regulation. To address this, we developed a novel dual-reporter LDLR system incorporating Enhanced Green Fluorescent Protein (EGFP) and Gaussia luciferase (Gluc) to enable precise monitoring of LDLR expression and function. Methods A CRISPR/Cas9-mediated knock-in strategy was used to integrate EGFP and Gluc upstream of the stop codon located in exon 18 of the LDLR gene in HEK293 cells. The dual-reporter system allows real-time visualization of LDLR expression via EGFP fluorescence and quantitative assessment through secreted Gluc activity. The system was validated using western blotting, immunofluorescence, and functional assays, including DiI-LDL uptake and drug response analyses with statins and PCSK9 inhibitors. Results The established LDLR-EGFP-Gluc knock-in cell line faithfully recapitulates endogenous LDLR expression and function. EGFP fluorescence accurately reflects LDLR expression dynamics, while Gluc activity provides a highly sensitive and quantitative readout. Functional assays confirmed that LDLR expression responds appropriately to statins and PCSK9 inhibitors. Additionally, screening for transcriptional regulators identified FOXP3 and CREB as novel modulators of LDLR expression, with CREB-mediated regulation involving the sterol regulatory element-binding protein 2 (SREBP2) pathway. Discussion This dual-reporter system enables complementary monitoring of LDLR dynamics, providing enhanced sensitivity, accuracy, and versatility for studying LDLR regulation and function, as well as facilitating drug discovery targeting hyperlipidemia and cardiovascular diseases.
Collapse
Affiliation(s)
- Peng Jiao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Na Yang
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Qianfeng Jia
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Baozhen Fan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China
| | - Ke Feng
- Shandong Engineering Research Center of Molecular Medicine for Renal Diseases, Yantai, Shandong, China
- Department of Physiology, Binzhou Medical University, Yantai, Shandong, China
| | - Jian Yu
- Department of Basic Medical Education, Yantai Nursing School, Yantai, Shandong, China
| | - Shengtian Zhao
- Department of Urology, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Shandong Provincial Engineering Laboratory of Urologic Tissue Reconstruction, Jinan, Shandong, China
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Zhang Z, Xu A, Bai Y, Chen Y, Cates K, Kerr C, Bermudez A, Susanto TT, Wysong K, García Marqués FJ, Nolan GP, Pitteri S, Barna M. A subcellular map of translational machinery composition and regulation at the single-molecule level. Science 2025; 387:eadn2623. [PMID: 40048539 DOI: 10.1126/science.adn2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 04/23/2025]
Abstract
Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Adele Xu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kitra Cates
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Craig Kerr
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Kelsie Wysong
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
15
|
Ali RH, Orellana EA, Lee SH, Chae YC, Chen Y, Clauwaert J, Kennedy AL, Gutierrez AE, Papke DJ, Valenzuela M, Silverman B, Falzetta A, Ficarro SB, Marto JA, Fletcher CDM, Perez-Atayde A, Alcindor T, Shimamura A, Prensner JR, Gregory RI, Gutierrez A. A methyltransferase-independent role for METTL1 in tRNA aminoacylation and oncogenic transformation. Mol Cell 2025; 85:948-961.e11. [PMID: 39892392 PMCID: PMC11925124 DOI: 10.1016/j.molcel.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/04/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Amplification of chromosomal material derived from 12q13-15 is common in human cancer and believed to result in overexpression of multiple collaborating oncogenes. To define the oncogenes involved, we overexpressed genes recurrently amplified in human liposarcoma using a zebrafish model of the disease. We found several genes whose overexpression collaborated with AKT in sarcomagenesis, including the tRNA methyltransferase METTL1. This was surprising, because AKT phosphorylates METTL1 to inactivate its enzymatic activity. Indeed, phosphomimetic S27D or catalytically dead alleles phenocopied the oncogenic activity of wild-type METTL1. We found that METTL1 binds the multi-tRNA synthetase complex, which contains many of the cellular aminoacyl-tRNA synthetases and promotes tRNA aminoacylation, polysome formation, and protein synthesis independent of its methyltransferase activity. METTL1-amplified liposarcomas were hypersensitive to actinomycin D, a clinical inhibitor of ribosome biogenesis. We propose that METTL1 overexpression promotes sarcomagenesis by stimulating tRNA aminoacylation, protein synthesis, and tumor cell growth independent of its methyltransferase activity.
Collapse
Affiliation(s)
- Raja H Ali
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Esteban A Orellana
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Molecular and Systems Biology, The Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Su Hyun Lee
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yun-Cheol Chae
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yantao Chen
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jim Clauwaert
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Alyssa L Kennedy
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley E Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mateo Valenzuela
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Brianna Silverman
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Amanda Falzetta
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott B Ficarro
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jarrod A Marto
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Linde Program in Cancer Chemical Biology, Center for Emerging Drug Targets and Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Christopher D M Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Thierry Alcindor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Akiko Shimamura
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John R Prensner
- Department of Pediatrics, Division of Pediatric Hematology/Oncology and Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard I Gregory
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Harvard Initiative for RNA Medicine, Boston, MA, USA; Department of Molecular, Cell & Cancer Biology, UMass Chan Medical School, Worcester, MA, USA
| | - Alejandro Gutierrez
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
16
|
Welfer GA, Brady RA, Natchiar SK, Watson ZL, Rundlet EJ, Alejo JL, Singh AP, Mishra NK, Altman RB, Blanchard SC. Impacts of ribosomal RNA sequence variation on gene expression and phenotype. Philos Trans R Soc Lond B Biol Sci 2025; 380:20230379. [PMID: 40045785 PMCID: PMC11883441 DOI: 10.1098/rstb.2023.0379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/19/2024] [Accepted: 01/06/2025] [Indexed: 03/09/2025] Open
Abstract
Since the framing of the Central Dogma, it has been speculated that physically distinct ribosomes within cells may influence gene expression and cellular physiology. While heterogeneity in ribosome composition has been reported in bacteria, protozoans, fungi, zebrafish, mice and humans, its functional implications remain actively debated. Here, we review recent evidence demonstrating that expression of conserved variant ribosomal DNA (rDNA) alleles in bacteria, mice and humans renders their actively translating ribosome pool intrinsically heterogeneous at the level of ribosomal RNA (rRNA). In this context, we discuss reports that nutrient limitation-induced stress in Escherichia coli leads to changes in variant rRNA allele expression, programmatically altering transcription and cellular phenotype. We highlight that cells expressing ribosomes from distinct operons exhibit distinct drug sensitivities, which can be recapitulated in vitro and potentially rationalized by subtle perturbations in ribosome structure or in their dynamic properties. Finally, we discuss evidence that differential expression of variant rDNA alleles results in different populations of ribosome subtypes within mammalian tissues. These findings motivate further research into the impacts of rRNA heterogeneities on ribosomal function and predict that strategies targeting distinct ribosome subtypes may hold therapeutic potential.This article is part of the discussion meeting issue 'Ribosome diversity and its impact on protein synthesis, development and disease'.
Collapse
Affiliation(s)
- Griffin A. Welfer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Ryan A. Brady
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Zoe L. Watson
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Emily J. Rundlet
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX78712, USA
| | - Jose L. Alejo
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Anand P. Singh
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Roger B. Altman
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN38105, USA
| |
Collapse
|
17
|
Shi H, Inankur B, Yin J. Serum starvation impacts rhinovirus spread from cell to cell. Virology 2025; 604:110408. [PMID: 39881468 DOI: 10.1016/j.virol.2025.110408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
Single-cell studies of virus infection have found significant heterogeneity in virus and host gene expression as well as the kinetics of progeny particle release. However, such studies have yet to examine how the resulting virus descendants spread and infect nearby cells. We monitored reporter-gene expression from a recombinant rhinovirus in cell monolayers infected at low multiplicity of infection; we found that the second round of infection consistently exhibited a shorter delay in fluorescence signal appearance relative to the first round, indicating an acceleration in infection spread. We examined how the efficiency and timing of infection spread from initial to subsequent single infected cells depended on serum starvation, inhibition of protein synthesis, cell cycle arrest, and receptor expression. The sensitivity of this method to external factors and its ability to track viral protein expression in individual cells emphasize its potential in studying the role of host cell factors in infection spread.
Collapse
Affiliation(s)
- Huicheng Shi
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| | - Bahar Inankur
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| | - John Yin
- Wisconsin Institute for Discovery, Chemical and Biological Engineering, University of Wisconsin-Madison, 330 N. Orchard Street, Madison, WI, 53715, USA.
| |
Collapse
|
18
|
Zhou Y, Wang M, Qian Y, Yu D, Zhang J, Fu M, Zhang X, Qin R, Ji R, Zhang X, Gu J. PRDX2 promotes gastric cancer progression by forming a feedback loop with PKM2/STAT3 axis. Cell Signal 2025; 127:111586. [PMID: 39761843 DOI: 10.1016/j.cellsig.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Peroxiredoxin 2 (PRDX2) is an antioxidant enzyme that has been reported to be overexpressed in various cancers. However, the role of PRDX2 in gastric cancer progression and its underlying mechanism remains unclear. Herein, we revealed the function of PRDX2 in gastric cancer progression and explored its molecule mechanism. We identified that PRDX2 was upregulated and associated with poor prognosis in gastric cancer. The knockdown of PRDX2 inhibited the proliferation, migration and invasion of gastric cancer cells in vitro and suppressed tumor growth in vivo. Mechanistically, PRDX2 interacted with PKM2 (pyruvate kinase isozyme type M2) and protected PKM2 from ubiquitination and degradation, which enhanced glycolysis in gastric cancer cells. The interaction between PRDX2 and PKM2 also enhanced the binding affinity between PKM2 and importin α5, which induced PKM2 nuclear translocation and activated STAT3 signaling pathway. In addition, STAT3 (signal transducer and activator of transcription 3) was identified to bind to PRDX2 gene promoter and upregulate PRDX2 expression, which forms a positive regulatory feedback loop in gastric cancer cells. The present study unravels the biological role of PRDX2 in cancer progression and illustrates the underlying molecular mechanism, which may provide a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China
| | - Maoye Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yu Qian
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Dan Yu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Jiahui Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Min Fu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xiaoxin Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Rong Qin
- Department of Oncology, Affiliated People's Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Runbi Ji
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Xu Zhang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China; Kunshan Biomedical Big Data Innovation Application Laboratory, Kunshan Hospital Affiliated to Jiangsu University /Kunshan First People's Hospital, Kunshan 215300, China.
| | - Jianmei Gu
- Department of Clinical Laboratory Medicine, Nantong Tumor Hospital/Affiliated Tumor Hospital of Nantong University, Nantong 226300, China.
| |
Collapse
|
19
|
Zheng B, Wang Y, Zhou B, Qian F, Liu D, Ye D, Zhou X, Fang L. Urolithin A inhibits breast cancer progression via activating TFEB-mediated mitophagy in tumor macrophages. J Adv Res 2025; 69:125-138. [PMID: 38615740 PMCID: PMC11954813 DOI: 10.1016/j.jare.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Urolithin A (UA) is a naturally occurring compound that is converted from ellagitannin-like precursors in pomegranates and nuts by intestinal flora. Previous studies have found that UA exerts tumor-suppressive effects through antitumor cell proliferation and promotion of memory T-cell expansion, but its role in tumor-associated macrophages remains unknown. OBJECTIVES Our study aims to reveal how UA affects tumor macrophages and tumor cells to inhibit breast cancer progression. METHODS Observe the effect of UA treatment on breast cancer progression though in vivo and in vitro experiments. Western blot and PCR assays were performed to discover that UA affects tumor macrophage autophagy and inflammation. Co-ip and Molecular docking were used to explore specific molecular mechanisms. RESULTS We observed that UA treatment could simultaneously inhibit harmful inflammatory factors, especially for InterleuKin-6 (IL-6) and tumor necrosis factor α (TNF-α), in both breast cancer cells and tumor-associated macrophages, thereby improving the tumor microenvironment and delaying tumor progression. Mechanistically, UA induced the key regulator of autophagy, transcription factor EB (TFEB), into the nucleus in a partially mTOR-dependent manner and inhibited the ubiquitination degradation of TFEB, which facilitated the clearance of damaged mitochondria via the mitophagy-lysosomal pathway in macrophages under tumor supernatant stress, and reduced the deleterious inflammatory factors induced by the release of nucleic acid from damaged mitochondria. Molecular docking and experimental studies suggest that UA block the recognition of TFEB by 1433 and induce TFEB nuclear localization. Notably, UA treatment demonstrated inhibitory effects on tumor progression in multiple breast cancer models. CONCLUSION Our study elucidated the anti-breast cancer effect of UA from the perspective of tumor-associated macrophages. Specifically, TFEB is a crucial downstream target in macrophages.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Yuying Wang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Baian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Fengyuan Qian
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Diya Liu
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Danrong Ye
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China; Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Xiqian Zhou
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Lin Fang
- Department of Breast and Thyroid Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, China.
| |
Collapse
|
20
|
Gu L, Wang S, Zhou L, Wang W, Bao Y, He Y, Yang T, Sun J, Jiang Q, Shan T, Du C, Wang Z, Wang H, Xie L, Gu A, Zhao Y, Ji Y, Wang Q, Wang L. Targeting NLRC5 in cardiomyocytes protects postinfarction cardiac injury by enhancing autophagy flux through the CAVIN1/CAV1 axis. Commun Biol 2025; 8:292. [PMID: 39988583 PMCID: PMC11847941 DOI: 10.1038/s42003-025-07755-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 02/17/2025] [Indexed: 02/25/2025] Open
Abstract
NOD-like receptor (NLR) family proteins are implicated in various cardiovascular diseases. However, the precise role of NLRC5, the largest member of this family, in myocardial infarction (MI) remains poorly understood. This study reveals that NLRC5 is upregulated in the hearts of both patients with MI and MI mice. Silencing NLRC5 in cardiomyocytes impairs cardiac repair and functional recovery, while its overexpression enhances these processes. Furthermore, NLRC5 promotes autophagy in cardiomyocytes, and its protective effects are diminished upon autophagy inhibition. Mechanistically, NLRC5 interacts with CAVIN1, facilitating its degradation and subsequent downregulation of CAV1, which in turn increases the expression of the ATG12-ATG5 complex to stimulate autophagy. Conversely, CAV1 overexpression partially suppresses autophagy and attenuates the improvements in cardiac function observed in NLRC5-overexpressing MI hearts. This study highlights the critical regulatory role of NLRC5 in modulating cardiomyocyte autophagy flux, suggesting that NLRC5 activation may represent a promising therapeutic strategy for MI.
Collapse
Affiliation(s)
- Lingfeng Gu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Liuhua Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wenjing Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yulin Bao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Ye He
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Tongtong Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jiateng Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
- Department of Cardiology, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan Road, Nanjing, 210008, China
| | - Qiqi Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Tiankai Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chong Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zemu Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, China
| | - Qiming Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
21
|
Ma K, Zhang P, Zhao J, Qin Y. Discovery of a novel translation-machinery-associated protein that positively correlates with cellulase production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:20. [PMID: 39987148 PMCID: PMC11847360 DOI: 10.1186/s13068-025-02624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
BACKGROUND The production of cellulases by filamentous fungi is a crucial aspect of sustainable bioproduction from renewable lignocellulosic biomass. Following the transcription of cellulase genes in the nucleus, a complex pathway involving translation, folding, and secretion is required to produce extracellular cellulases. Most studies about cellulase production have focused on examining transcriptional regulatory mechanisms and enhancement of enzyme gene levels; comparatively, little is known about protein translation and secretion for cellulase production. RESULTS A translation-machinery-associated (TMA) protein PoTma15 was identified in cellulosic Penicillium oxalicum. The PoTma15 is conserved in various filamentous fungi, but not in yeast, plants, or animals. All homologous proteins of PoTma15 have previously been uncharacterized. PoTma15 was initially thought to be one of the putative interactors of transcription factor PoXlnR, as it was preyed by tandem affinity purification (TAP) coupled with the mass spectrometry (TAP-MS) technique using PoXlnR as the bait. Subsequent research revealed that PoTma15 is associated with the translation machinery. The top three proteins associated with PoTma15 are orthologs of Saccharomyces cerevisiae translation-machinery-associated protein (Tma19), translation elongation factor eIF5A, and ribosomal protein S28, respectively. PoTma15 is widely distributed in fungal hyphae and positively correlates with the production of cellulases and extracellular proteins. Deleting the Potma15 gene (Δtma15) decreased cellulase production, while overexpressing the Potma15 gene (OEtma15) increased cellulase production. However, the Δtma15 mutant was not observed to have downregulated transcript levels of major (hemi)cellulase and amylase genes, compared to the P. oxalicum wild type (WT). The production of extracellular cellulases and extracellular proteins of the Δtma15 mutant was less affected by cycloheximide, an inhibitor of eukaryotic translation elongation, compared to the WT strain and OEtma15 mutant, suggesting a stronger resistance to the translation-inhibiting effects of cycloheximide in the Δtma15 mutant. The results demonstrate that PoTma15 is a translation-machinery-associated protein that affects translation elongation and, consequently, the production of enzyme proteins. CONCLUSIONS PoTma15 is the first TMA protein characterized in cellulosic filamentous fungi and the first TMA protein used in fungi to increase cellulase production. PoTma15's role in the production of cellulases and total extracellular proteins suggests that not only can it be used to widen the cellulase production pathway, but can even be engineered as a target to improve the production of other heterologous protein or bioproducts using filamentous fungi as cell factories in the future.
Collapse
Affiliation(s)
- Kexuan Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Panpan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Yuqi Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- National Glycoengineering Research Center, Shandong University, Qingdao, China.
| |
Collapse
|
22
|
Yan J, Bhanshali F, Shuzenji C, Mendenhall TT, Taylor SKB, Ermakova G, Cheng X, Bai P, Diwan G, Seraj D, Meyer JN, Sorensen PH, Hartman JH, Taubert S. Eukaryotic Elongation Factor 2 Kinase EFK-1/eEF2K promotes starvation resistance by preventing oxidative damage in C. elegans. Nat Commun 2025; 16:1752. [PMID: 39966347 PMCID: PMC11836464 DOI: 10.1038/s41467-025-56766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025] Open
Abstract
Cells and organisms frequently experience starvation. To survive, they mount an evolutionarily conserved stress response. A vital component in the mammalian starvation response is eukaryotic elongation factor 2 (eEF2) kinase (eEF2K), which suppresses translation in starvation by phosphorylating and inactivating the translation elongation driver eEF2. C. elegans EFK-1/eEF2K phosphorylates EEF-2/eEF2 on a conserved residue and is required for starvation survival, but how it promotes survival remains unclear. Surprisingly, we found that eEF2 phosphorylation is unchanged in starved C. elegans and EFK-1's kinase activity is dispensable for starvation survival, suggesting that efk-1 promotes survival via a noncanonical pathway. We show that efk-1 upregulates transcription of DNA repair pathways, nucleotide excision repair (NER) and base excision repair (BER), to promote starvation survival. Furthermore, efk-1 suppresses oxygen consumption and ROS production in starvation to prevent oxidative stress. Thus, efk-1 enables starvation survival by protecting animals from starvation-induced oxidative damage through an EEF-2-independent pathway.
Collapse
Affiliation(s)
- Junran Yan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Forum Bhanshali
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Catalera BioSolutions, 199 W 6th Ave, Vancouver, BC, V5Y 1K3, Canada
| | - Chiaki Shuzenji
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Tsultrim T Mendenhall
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Shane K B Taylor
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Glafira Ermakova
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Xuanjin Cheng
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Canada's Michael Smith Genome Sciences Centre, 570 W 7th Ave, Vancouver, BC, V5Z 4S6, Canada
| | - Pamela Bai
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Gahan Diwan
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Donna Seraj
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, 27708-0328, USA
| | - Poul H Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, 675 W 10th Ave, Vancouver, BC, V6T 1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Institute, 675 W 10th Ave, Vancouver, BC, V5Z 1L3, Canada
| | - Jessica H Hartman
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Stefan Taubert
- Centre for Molecular Medicine and Therapeutics, The University of British Columbia, 950 W 28 th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Edwin S.H. Leong Centre for Healthy Aging, The University of British Columbia, 117-2194 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- British Columbia Children's Hospital Research Institute, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Graduate Program in Cell & Developmental Biology, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
- Department of Medical Genetics, The University of British Columbia, 950 W 28th Ave, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
23
|
Wu HYL, Kaufman ID, Hsu PY. ggRibo: a ggplot-based single-gene viewer for visualizing Ribo-seq and related omics datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635743. [PMID: 39975054 PMCID: PMC11838514 DOI: 10.1101/2025.01.30.635743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Visualizing periodic Ribo-seq data within genes of interest is a powerful approach to studying mRNA translation, but its application is limited by a lack of robust tools. Here, we introduce ggRibo, a user-friendly R package for visualizing individual gene expression, integrating Ribo-seq, RNA-seq, and other genome-wide datasets with flexible scaling options. ggRibo presents the 3-nucleotide periodicity, a hallmark of translating ribosomes, within a gene-structure context, including introns and untranslated regions, enabling the study of novel ORFs, isoform translation, and mechanisms of translational regulation. ggRibo can plot multiple Ribo-seq/RNA-seq datasets from different conditions for comparison. Additionally, it supports the visualization of other omics datasets that could also be presented with single-nucleotide resolution, such as RNA degradome, transcription start sites, and translation initiation sites. Through its intuitive and flexible platform, ggRibo enables parallel comparisons of multi-omic datasets, facilitating a comprehensive understanding of gene expression regulation and promoting hypothesis generation. We demonstrate its utility with examples of upstream ORFs, downstream ORFs, isoform translation, and multi-omic comparison in humans and Arabidopsis. In summary, ggRibo is an advanced single-gene viewer that enhances the interpretation of translatome and related genome-wide datasets, offering a valuable resource for studying gene expression regulation. ggRibo is available on GitHub (https://github.com/hsinyenwu/ggRibo).
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Isaiah D. Kaufman
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Polly Yingshan Hsu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
24
|
Zhang P, Wang T, Chen K, Sun R, Cao X, Du M, Peng F, Yin R, He X, Yin L. CircINADL promotes nasopharyngeal carcinoma metastasis by inhibiting HuR ubiquitin degradation and disrupting the hippo signaling pathway. Cell Signal 2025; 126:111526. [PMID: 39586520 DOI: 10.1016/j.cellsig.2024.111526] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/27/2024]
Abstract
Distant metastasis is a primary factor contributing to the low survival rate of patients with nasopharyngeal carcinoma (NPC). Circular RNAs (circRNAs) are increasingly recognized for their roles in cancer initiation and progression. However, the mechanisms underlying the abnormal expression and biological function of circRNA in NPC remain unclear. In this study, we identified a new circRNA, circINADL, which was upregulated in NPC tissues and positively correlated with the clinical stage of NPC. We found that the FUS RNA binding protein (FUS) promoted the transcription of circINADL in NPC cells. Elevated circINADL levels were shown to enhance NPC cells metastasis. Mechanistically, circINADL attenuated the interaction between human antigen R (HuR) and the E3 ubiquitin ligase β-TrCP, thereby inhibited the ubiquitination and degradation of HuR. Consequently, CircINADL enhanced the stability of the HuR target gene Yes1-associated transcriptional regulator (YAP1), leading to the dysregulation of the Hippo signaling pathway. In conclusion, our study reveals the function of circINADL in promoting NPC metastasis and highlights its potential as a biomarker and therapeutic target for NPC treatment.
Collapse
Affiliation(s)
- Pingchuan Zhang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Tianxiang Wang
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Kun Chen
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Ruozhou Sun
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Xiang Cao
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China
| | - Mingyu Du
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Fanyu Peng
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Rong Yin
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China
| | - Xia He
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China.
| | - Li Yin
- The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210009, China; The Fourth Clinical College, Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211116, China.
| |
Collapse
|
25
|
Oo A, Borge A, Lee RCH, Salim CK, Wang W, Ricca M, Fong DY, Alonso S, Brown LE, Porco JA, Chu JJH. In Vitro Discovery of a Therapeutic Lead for HFMD From a Library Screen of Rocaglates/Aglains. J Med Virol 2025; 97:e70228. [PMID: 39921602 PMCID: PMC11806654 DOI: 10.1002/jmv.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/23/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025]
Abstract
The lack of effective antiviral treatments for enteroviruses, including human enterovirus A71 (EV-A71), have resulted in an immense global healthcare burden associated with hand-foot-and-mouth disease (HFMD). Rocaglates and aglains belong to a family of compounds produced by Aglaia genus plants. Since the initial discovery of rocaglates in 1982, various rocaglates and aglains have been synthesized and extensively studied mainly as anticancer agents. Here, we report the discovery of a novel aglain derivative as a potential EV-A71 inhibitor. From an immunofluorescence-based phenotypic screen of a library of 296 rocaglate and aglain derivatives, we identified a lead aglain which effectively suppressed EV-A71 replication by 2.3 log fold at a non-cytotoxic concentration, with a host cell CC50 of 21.78 µM, an EV-A71 infection EC50 of 3.57 µM, and a selectivity index of 6.1. Further validation revealed inhibition of EV-A71 across multiple human cell types and a pan-enterovirus inhibitory spectrum against other enteroviruses. Subsequent mechanistic investigation revealed interference with EV-A71 intracellular post-entry events including viral RNA transcription and translation. Findings from this study have established a strong foundation for development of aglain scaffolds as much needed antiviral agents for HFMD, paving the way for future medicinal chemistry optimization and in vivo studies.
Collapse
Affiliation(s)
- Adrian Oo
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Angel Borge
- Department of Chemistry and Center for Molecular Discovery (BU‐CMD)Boston UniversityBostonMassachusettsUSA
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Cyrill Kafi Salim
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Wenyu Wang
- Department of Chemistry and Center for Molecular Discovery (BU‐CMD)Boston UniversityBostonMassachusettsUSA
| | - Michael Ricca
- Department of Chemistry and Center for Molecular Discovery (BU‐CMD)Boston UniversityBostonMassachusettsUSA
| | - Deborah Yuhui Fong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Sylvie Alonso
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Immunology Programme, Life Sciences InstituteNational University of SingaporeSingaporeSingapore
| | - Lauren E. Brown
- Department of Chemistry and Center for Molecular Discovery (BU‐CMD)Boston UniversityBostonMassachusettsUSA
| | - John A. Porco
- Department of Chemistry and Center for Molecular Discovery (BU‐CMD)Boston UniversityBostonMassachusettsUSA
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- NUSMed Biosafety Level 3 Core Facility, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| |
Collapse
|
26
|
Macias-Díaz A, Nieto-Felipe J, Jardín I, Camello PJ, Martinez-Quintana EM, Salido GM, Smani T, Lopez JJ, Rosado JA. Filamin A C-terminal fragment modulates Orai1 expression by inhibition of protein degradation. Am J Physiol Cell Physiol 2025; 328:C657-C669. [PMID: 39764579 DOI: 10.1152/ajpcell.00745.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/30/2024] [Indexed: 02/05/2025]
Abstract
Filamin A (FLNA) is an actin-binding protein that has been reported to interact with STIM1 modulating the activation of Orai1 channels. Cleaving of FLNA by calpain leads to a C-terminal fragment that is involved in a variety of functional and pathological events, including pro-oncogenic activity in different types of cancer. Here, we show that full-length FLNA is downregulated in samples from patients with colon cancer as well as in the adenocarcinoma cell line HT-29. This is consistent with an increased calpain-dependent FLNA cleaving with enhanced expression of the C-terminal FLNA fragment accompanied by enhanced expression of Orai1 and STIM1, as well as store-operated Ca2+ entry (SOCE). To further explore the mechanism underlying the enhancement of SOCE by the C-terminal FLNA fragment, we expressed in HEK-293 cells the C-terminal FLNA region encompassing repeats 16-24 (FLNA16-24 fragment), which enhanced both Orai1 and STIM1 as well as SOCE. Transfection of the FLNA16-24 fragment attenuates Orai1 and STIM1 protein degradation, and, specifically, abrogates Orai1α lysosomal degradation and retains this channel in the plasma membrane. However, the C-terminal FLNA fragment did not induce a detectable modification in Orai1β degradation. Due to the relevance of SOCE in cell physiology, our results provide evidence of a novel mechanism for the regulation of Ca2+ influx with relevant pathophysiological implications.NOTE & NOTEWORTHY FLNA cleaving by calpain has been observed in a variety of tumoral, including prostate and colorectal cancer cells, as well as in nontumoral cells, leading to a C-terminal fragment encompassing repeats 16-24. Expression of the FLNA16-24 fragment in HEK-293 cells enhances Orai1 and STIM1 expression, as well as SOCE, a mechanism mediated by attenuation of Orai1α and STIM1 degradation, providing evidence for a novel mechanism for the regulation of SOCE in normal and malignant cells.
Collapse
Affiliation(s)
- Alvaro Macias-Díaz
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Joel Nieto-Felipe
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Isaac Jardín
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Pedro J Camello
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | | | - Gines M Salido
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Tarik Smani
- Group of Cardiovascular Pathophysiology, Institute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSIC, Seville, Spain
- Department of Medical Physiology and Biophysics, Faculty of Medicine, University of Seville, Seville, Spain
| | - Jose J Lopez
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| | - Juan A Rosado
- Department of Physiology (Cellular Physiology Research Group), Institute of Molecular Pathology Biomarkers (IMPB), University of Extremadura, Caceres, Spain
| |
Collapse
|
27
|
Gu Y, Sheng L, Wei X, Chen Y, Lin Y, Li Z, Li X, Yang H, Wang Y, Yang H, Shen Y. Upregulation of circGDI2 inhibits tumorigenesis by stabilizing the expression of RNA m6A demethylase FTO in oral squamous cell carcinoma. Noncoding RNA Res 2025; 10:140-152. [PMID: 39399378 PMCID: PMC11467567 DOI: 10.1016/j.ncrna.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 10/15/2024] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a malignant tumour that is difficult to identify and prone to metastasis and invasion. Circular RNAs (circRNAs) are important cancer regulators and can be used as potential biomarkers. However, OSCC-related circRNAs need to be further explored. We investigated the role of circGDI2 in OSCC and explored its downstream regulatory mechanisms. Methods Quantitative real-time PCR was used to detect the expression levels of circGDI2 and fat mass and obesity-associated protein (FTO) in cells. Lentiviral transfection was used to construct stable circGDI2 overexpressing cells for subsequent cell function tests. RNA pull-down, RNA Immunoprecipitation (RIP), western blotting, and protein stability assays were conducted to detect circGDI2 binding proteins and their functions. CCK8, Transwell, and wound healing assays were used to verify cell functions after overexpressing circGDI2 or suppressing FTO expression. Animal experiments were performed to verify the results in vivo. Results The expression of circGDI2 was markedly decreased in both OSCC cell lines and patient tissues. Overexpression of circGDI2 in OSCC cell lines led to decreased proliferation, migration, and invasion abilities. Knockdown of circGDI2 showed the opposite trend. CircGDI2 has been validated to interact with the FTO protein within cells, as evidenced by mass spectrometry and RIP assays. This interaction was found to prevent the degradation of the FTO protein. Dot blot analysis showed a reduction in N6-methyladenosine (m6A) modification after circGDI2 overexpression. Reduced FTO levels reversed the inhibitory effects of circGDI2 overexpression on cell proliferation, migration, and invasion in vitro and on tumorigenesis in vivo. Conclusions CircGDI2 functions as a tumour suppressor by binding to the FTO protein to reduce RNA m6A modification levels and ultimately inhibit proliferation and migration in OSCC cells. This study indicates the potential use of circGDI2 as a new target for the prevention and treatment of OSCC.
Collapse
Affiliation(s)
- Yuwei Gu
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Ling Sheng
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Xiaoxiao Wei
- Peking University Shenzhen Hospital Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Zhangfu Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Xiaolian Li
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Huijun Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Yufan Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Peking University Shenzhen Hospital Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Guangdong Provincial High-level Clinical Key Specialty, Guangdong Province Engineering Research Center of Oral Disease Diagnosis and Treatment, The Institute of Stomatology, Shenzhen Peking University the Hong Kong University of Science and Technology Medical Center, Guangdong, 518036, China
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
- Peking University Shenzhen Hospital Clinical College, the Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
28
|
Dykstra MM, Weskamp K, Gómez NB, Waksmacki J, Tank E, Glineburg MR, Snyder A, Pinarbasi E, Bekier M, Li X, Miller MR, Bai J, Shahzad S, Nedumaran N, Wieland C, Stewart C, Willey S, Grotewold N, McBride J, Moran JJ, Suryakumar AV, Lucas M, Tessier PM, Ward M, Todd PK, Barmada SJ. TDP43 autoregulation gives rise to dominant negative isoforms that are tightly controlled by transcriptional and post-translational mechanisms. Cell Rep 2025; 44:115113. [PMID: 39792557 PMCID: PMC11848802 DOI: 10.1016/j.celrep.2024.115113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/06/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025] Open
Abstract
The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a by-product of TDP43 autoregulation and cleared by nonsense-mediated RNA decay (NMD). sTDP43-encoding transcripts that escape NMD are rapidly degraded post-translationally via the proteasome and macroautophagy. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA-binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and underscore the consequences of aberrant sTDP43 accumulation in disease.
Collapse
Affiliation(s)
- Megan M Dykstra
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin Weskamp
- Chemistry Department, Nebraska Wesleyan University, Lincoln, NE, USA
| | - Nicolás B Gómez
- Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Jacob Waksmacki
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Elizabeth Tank
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - M Rebecca Glineburg
- Biological Sciences, Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | | | - Emile Pinarbasi
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Neuropathology, Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Michael Bekier
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Xingli Li
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Morgan R Miller
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Jen Bai
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Shameena Shahzad
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Neha Nedumaran
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Clare Wieland
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Corey Stewart
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Willey
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Nikolas Grotewold
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Jonathon McBride
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - John J Moran
- Atlanta Pediatric Research Alliance, Emory University, Atlanta, GA, USA
| | | | - Michael Lucas
- Departments of Chemical Engineering and Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Peter M Tessier
- Departments of Chemical Engineering and Pharmaceutical Sciences, Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Michael Ward
- Neurogenetics Branch, NINDS, NIH, Bethesda, MD, USA
| | - Peter K Todd
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Medical Center, Ann Arbor, MI, USA
| | - Sami J Barmada
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Graduate Program in Cell and Molecular Biology, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
29
|
Scazzari M, Zhang Y, Moddemann A, Rospert S. Stalled disomes marked by Hel2-dependent ubiquitin chains undergo Ubp2/Ubp3-mediated deubiquitination upon translational run-off. Commun Biol 2025; 8:132. [PMID: 39875504 PMCID: PMC11775340 DOI: 10.1038/s42003-025-07569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 01/30/2025] Open
Abstract
Stalled ribosomes cause collisions, impair protein synthesis, and generate potentially harmful truncated polypeptides. Eukaryotic cells utilize the ribosome-associated quality control (RQC) and no-go mRNA decay (NGD) pathways to resolve these problems. In yeast, the E3 ubiquitin ligase Hel2 recognizes and polyubiquitinates disomes and trisomes at the 40S ribosomal protein Rps20/uS10, thereby priming ribosomes for further steps in the RQC/NGD pathways. Recent studies have revealed high concentrations of disomes and trisomes in unstressed cells, raising the question of whether and how Hel2 selects long-term stalled disomes and trisomes. This study presents quantitative analysis of in vivo-formed Hel2•ribosome complexes and the dynamics of Hel2-dependent Rps20 ubiquitination and Ubp2/Ubp3-dependent deubiquitination. Our findings show that Hel2 occupancy progressively increases from translating monosomes to disomes and trisomes. We demonstrate that disomes and trisomes with mono- or di-ubiquitinated Rps20 resolve independently of the RQC component Slh1, while those with tri- and tetra-ubiquitinated Rps20 do not. Based on the results, we propose a model in which Hel2 translates the duration of ribosome stalling into polyubiquitin chain length. This mechanism allows for the distinction between transient and long-term stalling, providing the RQC machinery with a means to select fatally stalled ribosomes over transiently stalled ones.
Collapse
Affiliation(s)
- Mario Scazzari
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna Moddemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
30
|
Wang L, Liu Z, Zhao S, Xu K, Aceves V, Qiu C, Feng HC, Bian F, He J, Song CJ, Troutwine B, Liu L, Ma S, Niu Y, Wang S, Yuan S, Li X, Zhao L, Liu X, Qiu G, Wu Z, Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study group, Zhang TJ, Gray RS, Wu N. Variants in the SOX9 transactivation middle domain induce axial skeleton dysplasia and scoliosis. Proc Natl Acad Sci U S A 2025; 122:e2313978121. [PMID: 39854231 PMCID: PMC11789016 DOI: 10.1073/pnas.2313978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/30/2024] [Indexed: 01/30/2025] Open
Abstract
SOX9 is a crucial transcriptional regulator of cartilage development and homeostasis. Dysregulation of SOX9 is associated with a wide spectrum of skeletal disorders, including campomelic dysplasia, acampomelic campomelic dysplasia, and scoliosis. Yet how SOX9 variants contribute to the spectrum of axial skeletal disorders is not well understood. Here, we report four pathogenic variants of SOX9 identified in a cohort of patients with congenital vertebral malformations. We report a pathogenic missense variant in the transactivation middle (TAM) domain of SOX9 associated with mild skeletal dysplasia and scoliosis. We isolated a Sox9 mutant mouse with an in-frame microdeletion in the TAM domain (Sox9Asp272del), which exhibits skeletal dysplasia including kinked tails, rib cage anomalies, and scoliosis in homozygous mutants. We find that both the human missense and the mouse microdeletion mutations resulted in reduced SOX9 protein stability in cell culture, while Sox9Asp272del mutant mice show decreased SOX9 expression in the growth plate and annulus fibrosus tissues of the spine. This reduction in SOX9 expression was correlated with the reduction of extracellular matrix components, such as tenascin-X and the Adhesion G-protein coupled receptor ADGRG6. In summary, our work identified and modeled a pathologic variant of SOX9 within the TAM domain and demonstrated its importance for SOX9 protein stability. Our work demonstrates that SOX9 stability is important for the regulation of ADGRG6 expression, which is a known regulator of postnatal spine homeostasis, underscoring the essential role of SOX9 dosage in a spectrum of axial skeleton dysplasia in humans.
Collapse
Affiliation(s)
- Lianlei Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Zhaoyang Liu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Kexin Xu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Valeria Aceves
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Cheng Qiu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Hong Colleen Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Fangzhou Bian
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Jingyu He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
| | - Christina J. Song
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Benjamin Troutwine
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Lian Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
| | - Samuel Ma
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Yuchen Niu
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Suomao Yuan
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Xiaoxin Li
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Lina Zhao
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Xinyu Liu
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Zhihong Wu
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Deciphering disorders Involving Scoliosis and COmorbidities (DISCO) study group
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan250012, Shandong, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA90033
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA90033
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, and Chinese Academy of Medical Sciences, Beijing100730, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Ryan S. Gray
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, Dell Medical School, Austin, TX78723
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing100730, China
- Beijing Key Laboratory of Big Data Innovation and Application for Skeletal Health Medical Care, Beijing100730, China
- Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing100730, China
| |
Collapse
|
31
|
Zhang C, Yang T, Chen H, Ding X, Chen H, Liang Z, Zhao Y, Ma S, Liu X. METTL3 inhibition promotes radiosensitivity in hepatocellular carcinoma through regulation of SLC7A11 expression. Cell Death Dis 2025; 16:9. [PMID: 39799112 PMCID: PMC11724875 DOI: 10.1038/s41419-024-07317-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 12/07/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025]
Abstract
Radiotherapy is one of the main treatment modalities for advanced hepatocellular carcinoma (HCC). Ferroptosis has been shown to promote the radiosensitivity of HCC cells, but it remains unclear whether epigenetic regulations function in this process. In this study, we found that the overexpression of METTL3 was associated with poor prognosis. Knockdown of METTL3 promoted radiosensitivity of HCC by inducing ferroptosis. Mechanistically, METTL3 targeted adenine (+1795) on the SLC7A11 mRNA, and the m6A reader IGF2BP2 promoted SLC7A11 mRNA stability by recognizing and binding to the m6A site. Additionally, METTL3 decreased the ubiquitination of SLC7A11 protein through the m6A/YTHDF2/SOCS2 axis. Furthermore, in vivo studies showed that HCC models with low METTL3/IGF2BP2 expression have higher radiosensitivity. In conclusion, our study suggests that METTL3 regulates the stability of SLC7A11 mRNA in an m6A/IGF2BP2-dependent manner and the ubiquitination of SLC7A11 protein through the m6A/YTHDF2/SOCS2 pathway, both of which require the m6A methyltransferase activity of METTL3. METTL3 or IGF2BP2 may be promising targets for radiotherapy of HCC.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/radiotherapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/radiotherapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Methyltransferases/antagonists & inhibitors
- Radiation Tolerance/genetics
- Gene Expression Regulation, Neoplastic
- Amino Acid Transport System y+/genetics
- Amino Acid Transport System y+/metabolism
- Cell Line, Tumor
- Animals
- Mice
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Ubiquitination
- Mice, Nude
- Mice, Inbred BALB C
- Ferroptosis/genetics
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Female
- Male
Collapse
Affiliation(s)
- Chen Zhang
- School of Public Health, Wenzhou Medical University, the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Tianpeng Yang
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hanbin Chen
- the first affiliated hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaofeng Ding
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huajian Chen
- School of Public Health, Wenzhou Medical University, Wenzhou, 325035, China
| | - Zhenzhen Liang
- School of Public Health, Wenzhou Medical University, School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Yinlong Zhao
- Department of Nuclear Medicine, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, China
| | - Shumei Ma
- School of Public Health, Wenzhou Medical University; South Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou, 325035, China.
| | - Xiaodong Liu
- School of Public Health, Wenzhou Medical University; Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
32
|
Schneider-Poetsch T, Dang Y, Iwasaki W, Arata M, Shichino Y, Al Mourabit A, Moriou C, Romo D, Liu JO, Ito T, Iwasaki S, Yoshida M. Girolline is a sequence context-selective modulator of eIF5A activity. Nat Commun 2025; 16:223. [PMID: 39794322 PMCID: PMC11724050 DOI: 10.1038/s41467-024-54838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/21/2024] [Indexed: 01/13/2025] Open
Abstract
Natural products have a long history of providing probes into protein biosynthesis, with many of these compounds serving as therapeutics. The marine natural product girolline has been described as an inhibitor of protein synthesis. Its precise mechanism of action, however, has remained unknown. The data we present here suggests that girolline is a sequence-selective modulator of translation factor eIF5A. Girolline interferes with ribosome-eIF5A interaction and induces ribosome stalling where translational progress is impeded, including on AAA-encoded lysine. Our data furthermore indicate that eIF5A plays a physiological role in ribosome-associated quality control and in maintaining the efficiency of translational progress. Girolline helped to deepen our understanding of the interplay between protein production and quality control in a physiological setting and offers a potent chemical tool to selectively modulate gene expression.
Collapse
Affiliation(s)
- Tilman Schneider-Poetsch
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
| | - Yongjun Dang
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Ministry of Education, The Second Affiliated Hospital of Chongqing Medical University, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wakana Iwasaki
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Mayumi Arata
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
| | - Ali Al Mourabit
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Celine Moriou
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, Waco, USA
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Yokohama, Kanagawa, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Drug Discovery Seed Compounds Exploratory Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan.
- Office of University Professors, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
33
|
García-Blay Ó, Hu X, Wassermann CL, van Bokhoven T, Struijs FMB, Hansen MMK. Multimodal screen identifies noise-regulatory proteins. Dev Cell 2025; 60:133-151.e12. [PMID: 39406240 DOI: 10.1016/j.devcel.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/11/2024] [Accepted: 09/12/2024] [Indexed: 01/11/2025]
Abstract
Gene-expression noise can influence cell-fate choices across pathology and physiology. However, a crucial question persists: do regulatory proteins or pathways exist that control noise independently of mean expression levels? Our integrative approach, combining single-cell RNA sequencing with proteomics and regulator enrichment analysis, identifies 32 putative noise regulators. SON, a nuclear speckle-associated protein, alters transcriptional noise without changing mean expression levels. Furthermore, SON's noise control can propagate to the protein level. Long-read and total RNA sequencing shows that SON's noise control does not significantly change isoform usage or splicing efficiency. Moreover, SON depletion reduces state switching in pluripotent mouse embryonic stem cells and impacts their fate choice during differentiation. Collectively, we demonstrate a class of proteins that control noise orthogonally to mean expression levels. This work serves as a proof of concept that can identify other functional noise regulators throughout development and disease progression.
Collapse
Affiliation(s)
- Óscar García-Blay
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands
| | - Christin L Wassermann
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Tom van Bokhoven
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Fréderique M B Struijs
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, the Netherlands.
| |
Collapse
|
34
|
Nieto‐Felipe J, Macias‐Díaz A, Jimenez‐Velarde V, Lopez JJ, Salido GM, Smani T, Jardin I, Rosado JA. Feedback modulation of Orai1α and Orai1β protein content mediated by STIM proteins. J Cell Physiol 2025; 240:e31450. [PMID: 39359018 PMCID: PMC11730744 DOI: 10.1002/jcp.31450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/03/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
Store-operated Ca2+ entry is a mechanism controlled by the filling state of the intracellular Ca2+ stores, predominantly the endoplasmic reticulum (ER), where ER-resident proteins STIM1 and STIM2 orchestrate the activation of Orai channels in the plasma membrane, and Orai1 playing a predominant role. Two forms of Orai1, Orai1α and Orai1β, have been identified, which arises the question whether they are equally regulated by STIM proteins. We demonstrate that STIM1 preferentially activates Orai1α over STIM2, yet both STIM proteins similarly activate Orai1β. Under resting conditions, there is a pronounced association between STIM2 and Orai1α. STIM1 and STIM2 are also shown to influence the protein levels of the Orai1 variants, independently of Ca2+ influx, via lysosomal degradation. Interestingly, Orai1α and Orai1β appear to selectively regulate the protein level of STIM1, but not STIM2. These observations offer crucial insights into the regulatory dynamics between STIM proteins and Orai1 variants, enhancing our understanding of the intricate processes that fine-tune intracellular Ca2+ signaling.
Collapse
Affiliation(s)
- Joel Nieto‐Felipe
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Alvaro Macias‐Díaz
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Vanesa Jimenez‐Velarde
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Jose J. Lopez
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Gines M. Salido
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Tarik Smani
- Group of Cardiovascular PathophysiologyInstitute of Biomedicine of Seville, University Hospital of Virgen del Rocío/University of Seville/CSICSevilleSpain
- Department of Medical Physiology and BiophysicsFaculty of Medicine, University of SevilleSevilleSpain
| | - Isaac Jardin
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| | - Juan A. Rosado
- Department of Physiology (Cellular Physiology Research Group)Institute of Molecular Pathology Biomarkers (IMPB), University of ExtremaduraCaceresSpain
| |
Collapse
|
35
|
Chi ST, Wei PC, Chiu YJ, Lin TH, Lin CH, Chen CM, Yao CF, Lin W, Lee-Chen GJ, Chang KH. Indole and Coumarin Derivatives Targeting EEF2K in Aβ Folding Reporter Cells. J Neurochem 2025; 169:e16300. [PMID: 39754378 DOI: 10.1111/jnc.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025]
Abstract
Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production. Additionally, these compounds decreased acetylcholinesterase and caspase-3/-6 activities while promoting neurite outgrowth. NC009-1 increased active phosphorylation of extracellular-signal regulated kinase (ERK) (T202/Y204), leading to an increase in inactive eukaryotic elongation factor 2 kinase (EEF2K) phosphorylation (S366). LM-021 decreased the active phosphorylation of AMP-activated protein kinase (AMPK) (T172) and EEF2K (S398), while LM-036 exhibited dual effects, increasing inactive phosphorylation and decreasing active phosphorylation of EEF2K. These changes in EEF2K phosphorylation led to decreased EEF2K activity and a subsequent reduction in inactive phosphorylation of EEF2 (T56). This cascade further promoted the phosphorylation of transcription factor cAMP-response-element binding protein (CREB) (S133) and the expression of brain-derived neurotrophic factor (BDNF), and reduced BCL-2 associated X-protein (BAX)/B-cell lymphoma 2 (BCL2) ratio. Knockdown of EEF2 abolished the effects of NC009-1, LM-021, and LM-036 on CREB phosphorylation, BDNF expression, caspase-3 activity, and neurite outgrowth. These findings demonstrate that NC009-1, LM-021, and LM-036 exert their neuroprotective effects through modulation of EEF2K signaling, highlighting their potentials as therapeutic candidates for AD.
Collapse
Affiliation(s)
- Shun-Tzu Chi
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Pei-Cih Wei
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Jen Chiu
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Te-Hsien Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Hsin Lin
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Wenwei Lin
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan
| | - Guey-Jen Lee-Chen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
36
|
Bu H, Pei C, Ouyang M, Chen Y, Yu L, Huang X, Tan Y. The antitumor peptide M1-20 induced the degradation of CDK1 through CUL4-DDB1-DCAF1-involved ubiquitination. Cancer Gene Ther 2025; 32:61-70. [PMID: 39562696 DOI: 10.1038/s41417-024-00855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/21/2024]
Abstract
CDK1 is an oncogenic serine/threonine kinase known to play an important role in the regulation of the cell cycle. FOXM1, as one of the CDK1 substrates, requires binding of CDK1/CCNB1 complex for phosphorylation-dependent recruitment of p300/CBP coactivators to mediate transcriptional activity. Previous studies from our laboratory found that a novel peptide (M1-20) derived from the C-terminus of FOXM1 exhibited potent inhibitory effects for cancer cells. Based on these proofs and to explore the inhibitory mechanism of M1-20, we designed experiments and found that CDK1 served as an important target of M1-20. M1-20 enhanced the ubiquitination and degradation of CDK1 by CUL4-DDB1-DCAF1 complexes through the proteasome pathway. M1-20 could also affect the formation of CDK1/CCNB1 complexes. In addition, compared to RO3306, a CDK1 inhibitor, M1-20 exhibited excellent inhibitory effects in FVB/N MMTV-PyVT murine model of spontaneous breast cancer. These results suggested that M1-20 was a potential CDK1 inhibitor for the treatment of cancer.
Collapse
Affiliation(s)
- Huitong Bu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chaozhu Pei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Min Ouyang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yan Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Li Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Xiaoqin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China
| | - Yongjun Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Engineering Research Center for Anticancer Targeted Protein Pharmaceuticals, Hunan University, Changsha, Hunan, China.
| |
Collapse
|
37
|
You W, Luu H, Li M, Chen Z, Li F, Zhang Y, Cai M, He TC, Li J. Nuclear transmembrane protein 199 promotes immune escapes by up-regulating programmed death ligand 1. iScience 2024; 27:111485. [PMID: 39758995 PMCID: PMC11699465 DOI: 10.1016/j.isci.2024.111485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/05/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
The function of transmembrane protein 199 (TMEM199) in cancer development has rarely been studied thus far. We report the nuclear localization of the TMEM199 protein and further analyzed the truncated fractions that mediate its nuclear localization. Cut&Tag assay globally explores the nuclear-located TMEM199 functions and tests its influence on the immune checkpoint PD-L1 in vitro and in vivo. Nuclear-located TMEM199 regulates PD-L1 mRNA levels by binding to transcription factors such as IFNGR1, IRF1, MTMR9, and Trim28, which all promote PD-L1 mRNA expression. Our study demonstrates the nuclear localization of TMEM199 and its immune regulation functions in cancer development. We uncovered the nuclear localization of TMEM199. TMEM199 is involved in CD274 mRNA gene expression by the transcriptional regulation of the upstream transcription factors or cofactors of CD274, such as IFNGR1, IRF1, MTMR9, KAT8, and Trim28. The nuclear-located TMEM199 is reported to address the tumor immune microenvironment commanding function.
Collapse
Affiliation(s)
- Wulin You
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Meili Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Zhiyu Chen
- Department of Orthopedics, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
- Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province, China
| | - Fangchao Li
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
| | - Yanfei Zhang
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
| | - Mingsheng Cai
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tong-chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jingjing Li
- Affiliated Hospital, School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
- Jinming Yu Academician Workstation of Oncology, Shandong Second Medical University, Weifang, Shandong, China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
38
|
Peter L, Walotka L, Ptok J, Meyer C, Schüller D, Schaal H, Müller L. Bioinformatics-driven refinement of the commonly used TPI nonsense-mediated decay reporter system. RNA (NEW YORK, N.Y.) 2024; 31:32-42. [PMID: 39414360 DOI: 10.1261/rna.080134.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/21/2024] [Indexed: 10/18/2024]
Abstract
The cellular nonsense-mediated decay (NMD) pathway recognizes and degrades mRNAs with unusual structural features, such as long 3' UTRs or overlapping reading frames, and therefore serves as a transcript quality control mechanism. A broad spectrum of today's knowledge about the nonsense-mediated mRNA decay pathway has been discovered using NMD reporter systems, mostly consisting of multiple exons, with a wild-type and a premature termination codon-containing variant. In a preliminary NMD study, we used the seven-exon triose phosphate isomerase (TPI) reporter and observed that in this well-known NMD reporter, surprisingly, not all splice sites are used constitutively, but additional cryptic splice sites are used. As this is more frequently observed in the construction of minigenes, especially when unknown splicing regulatory elements (SREs) are removed, for example, by shortening introns, this may affect the reliability of such reporters. To demonstrate how such minigenes can be improved in general with respect to constitutive splice site recognition, we restored an intron length in the TPI reporter or made bioinformatic adjustments to SREs or intrinsic strength of the splice sites themselves. As a result, this NMD reporter could be made more robust and specific for the evaluation of NMD sensitivity within a single transcript. The modifications of the TPI reporter shown here as examples can generally be used for the transfer of cellular multiexon transcripts to minigenes.
Collapse
Affiliation(s)
- Laura Peter
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lara Walotka
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Caroline Meyer
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Dominik Schüller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
39
|
Costa ALO, dos Santos M, Dantas-Vieira GC, Lopes REN, Vommaro RC, Martins-Duarte ÉS. Antiproliferative and Morphological Analysis Triggered by Drugs Contained in the Medicines for Malaria Venture COVID-Box Against Toxoplasma gondii Tachyzoites. Microorganisms 2024; 12:2602. [PMID: 39770804 PMCID: PMC11676817 DOI: 10.3390/microorganisms12122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Toxoplasma gondii is a protozoan, and the etiologic agent of toxoplasmosis, a disease that causes high mortality in immunocompromised individuals and newborns. Despite the medical importance of toxoplasmosis, few drugs, which are associated with side effects and parasite resistance, are available for its treatment. Here, we show a screening of molecules present in COVID-Box to discover new hits with anti-T. gondii activity. COVID-Box contains 160 molecules with known or predicted activity against SARS-CoV-2. Our analysis selected 23 COVID-Box molecules that can inhibit the tachyzoite forms of the RH strain of T. gondii in vitro by more than 70% at 1 µM after seven days of treatment. The inhibitory curves showed that most of these molecules inhibited the proliferation of tachyzoites with IC50 values below 0.80 µM; Cycloheximide and (-)-anisomycin were the most active drugs, with IC50 values of 0.02 μM. Cell viability assays showed that the compounds are not toxic at active concentrations, and most are highly selective for parasites. Overall, all 23 compounds were selective, and for two of them (apilimod and midostaurin), this is the first report of activity against T. gondii. To better understand the effect of the drugs, we analyzed the effect of nine of them on the ultrastructure of T. gondii using transmission electron microscopy. After treatment with the selected drugs, the main changes observed in parasite morphology were the arrestment of cell division and organelle alterations.
Collapse
Affiliation(s)
- Andréia Luiza Oliveira Costa
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Mike dos Santos
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Giulia Caroline Dantas-Vieira
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Rosálida Estevam Nazar Lopes
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| | - Rossiane Claudia Vommaro
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Centro de Pesquisa em Medicina de Precisão, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Érica S. Martins-Duarte
- Laboratório de Quimioterapia de Protozoários Egler Chiari, Departamento de Parasitologia—ICB, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.O.C.); (M.d.S.); (G.C.D.-V.); (R.E.N.L.)
| |
Collapse
|
40
|
Wang R, Chen Y, Han J, Ye H, Yang H, Li Q, He Y, Ma B, Zhang J, Ge Y, Wang Z, Sun B, Liu H, Cheng L, Wang Z, Lin G. Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure. Nat Commun 2024; 15:10690. [PMID: 39681560 PMCID: PMC11649909 DOI: 10.1038/s41467-024-55295-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 12/08/2024] [Indexed: 12/18/2024] Open
Abstract
Acute liver failure (ALF) is a hepatology emergency with rapid hepatic destruction, multiple organ failures, and high mortality. Despite decades of research, established ALF has minimal therapeutic options. Here, we report that the small bioactive compound SCM-198 increases the survival of male ALF mice to 100%, even administered 24 hours after ALF establishment. We identify adiponectin receptor 2 (AdipoR2) as a selective target of SCM-198, with the AdipoR2 R335 residue being critical for the binding and signaling of SCM-198-AdipoR2 and AdipoR2 Y274 residue serving as a molecular switch for Ca2+ influx. SCM-198-AdipoR2 binding causes Ca2+ influx and elevates the phosphorylation levels of CaMKII and NOS3 in the AdipoR2-CaM-CaMKII-NOS3 complex identified in this study, rapidly inducing nitric oxide production for liver protection in murine ALF. SCM-198 also protects human ESC-derived liver organoids from APAP/TAA injuries. Thus, selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 is a rapid-acting therapeutic strategy for advanced ALF.
Collapse
Affiliation(s)
- Rui Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Youwei Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
- School of Medicine, Tongji University, Shanghai, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huikang Ye
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Huiran Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qianyan Li
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yizhen He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Boyu Ma
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Zhang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Yanli Ge
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Bo Sun
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China
| | - Huahua Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China.
| | - Zhirong Wang
- Department of Gastroenterology, Tongji Hospital affiliated to Tongji University, School of Medicine, Tongji University, Shanghai, China.
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedic, Tongji Hospital affiliated to Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
41
|
Li D, Al-Dahleh K, Murphy DA, Georgieva S, Matthews N, Shovlin CL. Endogenous plasma resuspension of peripheral blood mononuclear cells prevents preparative-associated stress that modifies polyA-enriched RNA responses to subsequent acute stressors. Cell Stress 2024; 11:112-124. [PMID: 39628848 PMCID: PMC11613960 DOI: 10.15698/cst2024.11.301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 09/12/2024] [Accepted: 10/03/2024] [Indexed: 12/06/2024] Open
Abstract
Human peripheral blood mononuclear cells (PBMCs) are used to examine biological processes and disease, when basal variability in cellular activation and splicing is described and unexplained. Using isolation systems that maintained buffy coat cells (PBMCs, platelets) in their own plasma, poly-A enriched RNA-sequencing (RNASeq) detected 42,720 Ensembl gene IDs, including >95% of the top 100 Genotype Tissue Expression Project (GTEx)-expressed genes in lung, colon, heart, skeletal muscle and liver, and 10/17 clinically-actionable genes listed by the Pharmacogenomics Knowledgebase. Transcriptome changes were defined after 1h treatment with 32°C hypothermia (hsp70 family member change), 10 μmol/L ferric citrate that had no discernible effect, and 100 μg/mL cycloheximide leading to induction of primary response (immediate early) genes including IL1B and TNF. Same-donor PBMCs prepared conventionally using washes then resuspension in serum-supplemented media demonstrated basal upregulation of stress signalling pathway genes that masked and overlapped differential gene expression profiles after 100 µg/L cycloheximide. Plasma-resuspended PBMCs demonstrated minor transcriptome changes after 40 μmol/L ferric citrate, whereas consistent and greater magnitude changes were observed for washed/media-resuspended PBMCs. We conclude that endogenous plasma-maintained PBMCs provide a more robust platform to interrogate acute cellular perturbations triggering innate immunity, and that varying susceptibility of PBMCs to preparative stresses is an important component of experimental variability.
Collapse
Affiliation(s)
- Dongyang Li
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
| | - Karina Al-Dahleh
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
| | - Daniel A Murphy
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
- Pharmacy, Imperial College Healthcare NHS TrustLondon, W12 OHSUK
| | - Sonya Georgieva
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
| | - Nik Matthews
- NIHR Imperial BRC Genomic Facility, Faculty of Medicine, Imperial College London
| | - Claire L Shovlin
- National Heart and Lung Institute, Imperial College LondonLondon, W12 ONNUK
- National Institute for Health Research (NIHR) Imperial Biomedical Research CentreLondon, W2 1NYUK
- Specialist Medicine , Imperial College Healthcare NHS TrustLondon, W12 OHSUK
| |
Collapse
|
42
|
Kim YJ, Kim WY, Somers DE. HOS15-mediated turnover of PRR7 enhances freezing tolerance. THE NEW PHYTOLOGIST 2024; 244:798-810. [PMID: 39155726 PMCID: PMC11449641 DOI: 10.1111/nph.20062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Arabidopsis PSEUDORESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 abundance is unknown. We used mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions at low temperatures. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR1 (CBF1) and COLD-REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. HOS15 mediates PRR7 turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoters of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated degradation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways that lead to increased freezing tolerance.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 52828, Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
43
|
Palos-Fernández R, Aguilar-Pontes MV, Puebla-Planas G, Berger H, Studt-Reinhold L, Strauss J, Di Pietro A, López-Berges MS. Copper acquisition is essential for plant colonization and virulence in a root-infecting vascular wilt fungus. PLoS Pathog 2024; 20:e1012671. [PMID: 39495784 PMCID: PMC11563359 DOI: 10.1371/journal.ppat.1012671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 10/15/2024] [Indexed: 11/06/2024] Open
Abstract
Plant pathogenic fungi provoke devastating agricultural losses and are difficult to control. How these organisms acquire micronutrients during growth in the host environment remains poorly understood. Here we show that efficient regulation of copper acquisition mechanisms is crucial for plant colonization and virulence in the soilborne ascomycete Fusarium oxysporum, the causal agent of vascular wilt disease in more than 150 different crops. Using a combination of RNA-seq and ChIP-seq, we establish a direct role of the transcriptional regulator Mac1 in activation of copper deficiency response genes, many of which are induced during plant infection. Loss of Mac1 impaired growth of F. oxysporum under low copper conditions and abolishes pathogenicity on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, overexpression of two Mac1 target genes encoding a copper reductase and a copper transporter was sufficient to restore virulence in the mac1 mutant background. Our results establish a previously unrecognized role of copper reduction and uptake in fungal infection of plants and reveal new ways to protect crops from phytopathogens.
Collapse
Affiliation(s)
- Rafael Palos-Fernández
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - María Victoria Aguilar-Pontes
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Gema Puebla-Planas
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, BOKU University, Vienna, Austria
| | - Antonio Di Pietro
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| | - Manuel Sánchez López-Berges
- Departamento de Genética, Campus de Excelencia Internacional Agroalimentario ceiA3, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
44
|
Liu L, Li Z, Wu W. Harnessing natural inhibitors of protein synthesis for cancer therapy: A comprehensive review. Pharmacol Res 2024; 209:107449. [PMID: 39368568 DOI: 10.1016/j.phrs.2024.107449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Cancer treatment remains a formidable challenge in modern medicine, necessitating a nuanced understanding of its molecular underpinnings and the identification of novel therapeutic modalities. Among the intricate web of cellular pathways implicated in oncogenesis, protein synthesis has emerged as a fundamental process warranting meticulous investigation. This review elucidates the multifaceted role of protein synthesis pathways in tumor initiation and progression, highlighting the potential of targeting key nodes within these pathways as viable therapeutic strategies. Natural products have long served as a source of bioactive compounds with therapeutic potential owing to their structural diversity and evolutionary honing. Within this framework, we provide a thorough examination of natural inhibitors of protein synthesis as promising candidates for cancer therapy, drawing upon recent advancements and mechanistic insights. By synthesizing current evidence and elucidating key challenges and opportunities, this review aims to galvanize further research into the development of natural product-based anticancer therapeutics, thereby advancing the clinical armamentarium against malignancies.
Collapse
Affiliation(s)
- Liqin Liu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhihui Li
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
45
|
Oh S, Koh J, Kim TM, Kim S, Youk J, Kim M, Keam B, Jeon YK, Ku JL, Kim DW, Chung DH, Heo DS. Transcriptomic Heterogeneity of EGFR-Mutant Non-Small Cell Lung Cancer Evolution Toward Small-Cell Lung Cancer. Clin Cancer Res 2024; 30:4729-4742. [PMID: 39150541 DOI: 10.1158/1078-0432.ccr-24-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/25/2024] [Accepted: 08/14/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Histologic transformation from EGFR-mutant non-small cell lung cancer (NSCLC) to small-cell lung cancer (SCLC) is a key mechanism of resistance to EGFR tyrosine kinase inhibitors (TKI). However, transcriptomic changes between NSCLC and transformed SCLC (t-SCLC) remain unexplored. EXPERIMENTAL DESIGN We conducted whole-transcriptome analysis of 59 regions of interest through the spatial profiling of formalin-fixed, paraffin-embedded tissues obtained from 10 patients (lung adenocarcinoma, 22; combined SCLC/NSCLC, 7; and t-SCLC, 30 regions of interests). Transcriptomic profiles and differentially expressed genes were compared between pre- and post-transformed tumors. RESULTS Following EGFR-TKI treatment, 93.7% (15/16) of t-SCLC components evolved into neuroendocrine-high subtypes (SCLC-A or SCLC-N). The transition to t-SCLC occurred regardless of EGFR-TKI treatment and EGFR mutational status, with a notable decrease in EGFR expression (P < 0.001) at both mRNA and protein levels. Pathway analysis revealed that gene overexpression was related to epigenetic alterations in t-SCLC. Interestingly, histone deacetylase inhibitors restored EGFR expression in SNU-2962A cells and their organoid model. The synergistic effects of third-generation EGFR-TKI osimertinib and the histone deacetylase inhibitor fimepinostat were validated in both in vitro and in vivo models. CONCLUSIONS Our study demonstrated that most t-SCLC cases showed neuronal subtypes with low EGFR expression. Differentially expressed gene analysis and t-SCLC preclinical models identified an epigenetic modifier as a promising treatment strategy for t-SCLC.
Collapse
Affiliation(s)
- Songji Oh
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Jaemoon Koh
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae Min Kim
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Soyeon Kim
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeonghwan Youk
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Miso Kim
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Bhumsuk Keam
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon Kyung Jeon
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ja-Lok Ku
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Wan Kim
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Doo Hyun Chung
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Dae Seog Heo
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
46
|
Kling L, Eulenberg-Gustavus C, Jerke U, Rousselle A, Eckardt KU, Schreiber A, Kettritz R. β 2-integrins control HIF1α activation in human neutrophils. Front Immunol 2024; 15:1406967. [PMID: 39469705 PMCID: PMC11513320 DOI: 10.3389/fimmu.2024.1406967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/12/2024] [Indexed: 10/30/2024] Open
Abstract
During inflammation, human neutrophils engage β2-integrins to migrate from the blood circulation to inflammatory sites with high cytokine but low oxygen concentrations. We tested the hypothesis that the inhibition of prolyl hydroxylase domain-containing enzymes (PHDs), cytokines, and β2-integrins cooperates in HIF pathway activation in neutrophils. Using either the PHD inhibitor roxadustat (ROX) (pseudohypoxia) or normobaric hypoxia to stabilize HIF, we observed HIF1α protein accumulation in adherent neutrophils. Several inflammatory mediators did not induce HIF1α protein but provided additive or even synergistic signals (e.g., GM-CSF) under pseudohypoxic and hypoxic conditions. Importantly, and in contrast to adherent neutrophils, HIF1α protein expression was not detected in strictly suspended neutrophils despite PHD enzyme inhibition and the presence of inflammatory mediators. Blocking β2-integrins in adherent and activating β2-integrins in suspension neutrophils established the indispensability of β2-integrins for increasing HIF1α protein. Using GM-CSF as an example, increased HIF1α mRNA transcription via JAK2-STAT3 was necessary but not sufficient for HIF1α protein upregulation. Importantly, we found that β2-integrins led to HIF1α mRNA translation through the phosphorylation of the essential translation initiation factors eIF4E and 4EBP1. Finally, pseudohypoxic and hypoxic conditions inducing HIF1α consistently delayed apoptosis in adherent neutrophils on fibronectin under low serum concentrations. Pharmacological HIF1α inhibition reversed delayed apoptosis, supporting the importance of this pathway for neutrophil survival under conditions mimicking extravascular sites. We describe a novel β2-integrin-controlled mechanism of HIF1α stabilization in human neutrophils. Conceivably, this mechanism restricts HIF1α activation in response to hypoxia and pharmacological PHD enzyme inhibitors to neutrophils migrating toward inflammatory sites.
Collapse
Affiliation(s)
- Lovis Kling
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Eulenberg-Gustavus
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Jerke
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anthony Rousselle
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adrian Schreiber
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ralph Kettritz
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Lou J, Deng Q, Zhang X, Bell C, Das A, Bediaga N, Zlatic C, Johanson T, Allan R, Griffin MW, Paradkar P, Harvey K, Dawson M, Hinde E. Heterochromatin protein 1 alpha (HP1α) undergoes a monomer to dimer transition that opens and compacts live cell genome architecture. Nucleic Acids Res 2024; 52:10918-10933. [PMID: 39193905 PMCID: PMC11472067 DOI: 10.1093/nar/gkae720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Our understanding of heterochromatin nanostructure and its capacity to mediate gene silencing in a living cell has been prevented by the diffraction limit of optical microscopy. Thus, here to overcome this technical hurdle, and directly measure the nucleosome arrangement that underpins this dense chromatin state, we coupled fluorescence lifetime imaging microscopy (FLIM) of Förster resonance energy transfer (FRET) between histones core to the nucleosome, with molecular editing of heterochromatin protein 1 alpha (HP1α). Intriguingly, this super-resolved readout of nanoscale chromatin structure, alongside fluorescence fluctuation spectroscopy (FFS) and FLIM-FRET analysis of HP1α protein-protein interaction, revealed nucleosome arrangement to be differentially regulated by HP1α oligomeric state. Specifically, we found HP1α monomers to impart a previously undescribed global nucleosome spacing throughout genome architecture that is mediated by trimethylation on lysine 9 of histone H3 (H3K9me3) and locally reduced upon HP1α dimerisation. Collectively, these results demonstrate HP1α to impart a dual action on chromatin that increases the dynamic range of nucleosome proximity. We anticipate that this finding will have important implications for our understanding of how live cell heterochromatin structure regulates genome function.
Collapse
Affiliation(s)
- Jieqiong Lou
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Qiji Deng
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Xiaomeng Zhang
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Charles C Bell
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Andrew B Das
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Naiara G Bediaga
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Timothy M Johanson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - PrasadN Paradkar
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, 5 Portarlington Road, Geelong3220, Australia
| | - Kieran F Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology and Biomedicine Discovery Institute, Monash University, Clayton, VIC 3168, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia
- Centre for Cancer Research, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elizabeth Hinde
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
48
|
McLellan JL, Morales-Hernandez B, Saeger S, Hanson KK. A high content imaging assay for identification of specific inhibitors of native Plasmodium liver stage protein synthesis. Antimicrob Agents Chemother 2024; 68:e0079324. [PMID: 39254294 PMCID: PMC11459927 DOI: 10.1128/aac.00793-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/11/2024] Open
Abstract
Plasmodium parasite resistance to antimalarial drugs is a serious threat to public health in malaria-endemic areas. Compounds that target core cellular processes like translation are highly desirable, as they should be capable of killing parasites in their liver and blood stage forms, regardless of molecular target or mechanism. Assays that can identify these compounds are thus needed. Recently, specific quantification of native Plasmodium berghei liver stage protein synthesis, as well as that of the hepatoma cells supporting parasite growth, was achieved via automated confocal feedback microscopy of the o-propargyl puromycin (OPP)-labeled nascent proteome, but this imaging modality is limited in throughput. Here, we developed and validated a miniaturized high content imaging (HCI) version of the OPP assay that increases throughput, before deploying this approach to screen the Pathogen Box. We identified only two hits; both of which are parasite-specific quinoline-4-carboxamides, and analogs of the clinical candidate and known inhibitor of blood and liver stage protein synthesis, DDD107498/cabamiquine. We further show that these compounds have strikingly distinct relationships between their antiplasmodial and translation inhibition efficacies. These results demonstrate the utility and reliability of the P. berghei liver stage OPP HCI assay for the specific, single-well quantification of Plasmodium and human protein synthesis in the native cellular context, allowing the identification of selective Plasmodium translation inhibitors with the highest potential for multistage activity.
Collapse
Affiliation(s)
- James L. McLellan
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Beatriz Morales-Hernandez
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sarah Saeger
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Kirsten K. Hanson
- Department of Molecular Microbiology and Immunology, and the South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
49
|
Bugacov H, Der B, Briantseva BM, Guo Q, Kim S, Lindström NO, McMahon AP. Dose-dependent responses to canonical Wnt transcriptional complexes in the regulation of mammalian nephron progenitors. Development 2024; 151:dev202279. [PMID: 39250420 PMCID: PMC11463962 DOI: 10.1242/dev.202279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
In vivo and in vitro studies argue that concentration-dependent Wnt signaling regulates mammalian nephron progenitor cell (NPC) programs. Canonical Wnt signaling is regulated through the stabilization of β-catenin, a transcriptional co-activator when complexed with Lef/Tcf DNA-binding partners. Using the GSK3β inhibitor CHIR99021 (CHIR) to block GSK3β-dependent destruction of β-catenin, we examined dose-dependent responses to β-catenin in mouse NPCs, using mRNA transduction to modify gene expression. Low CHIR-dependent proliferation of NPCs was blocked on β-catenin removal, with evidence of NPCs arresting at the G2-M transition. While NPC identity was maintained following β-catenin removal, mRNA-seq identified low CHIR and β-catenin dependent genes. High CHIR activated nephrogenesis. Nephrogenic programming was dependent on Lef/Tcf factors and β-catenin transcriptional activity. Molecular and cellular features of early nephrogenesis were driven in the absence of CHIR by a mutated stabilized form of β-catenin. Chromatin association studies indicate low and high CHIR response genes are likely direct targets of canonical Wnt transcriptional complexes. Together, these studies provide evidence for concentration-dependent Wnt signaling in the regulation of NPCs and provide new insight into Wnt targets initiating mammalian nephrogenesis.
Collapse
Affiliation(s)
- Helena Bugacov
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
- Department of Urology, Faculty of Medicine, Semmelweis University, Budapest 1082, Hungary
- Institute of Translational Medicine, Faculty of Medicine, Semmelweis University, Budapest 1094, Hungary
| | - Bohdana-Myroslava Briantseva
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Discovery Biomarkers, Amgen Research, 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O. Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
50
|
Chaumont L, Peruzzi M, Huetz F, Raffy C, Le Hir J, Minke J, Boudinot P, Collet B. Salmonid Double-stranded RNA-Dependent Protein Kinase Activates Apoptosis and Inhibits Protein Synthesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:700-717. [PMID: 39058317 DOI: 10.4049/jimmunol.2400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024]
Abstract
dsRNA-dependent protein kinase R (PKR) is a key factor of innate immunity. It is involved in translation inhibition, apoptosis, and enhancement of the proinflammatory and IFN responses. However, how these antiviral functions are conserved during evolution remains largely unknown. Overexpression and knockout studies in a Chinook salmon (Oncorhynchus tshawytscha) cell line were conducted to assess the role of salmonid PKR in the antiviral response. Three distinct mRNA isoforms from a unique pkr gene, named pkr-fl (full length), pkr-ml (medium length) and pkr-sl (short length), were cloned and a pkr-/- clonal fish cell line was developed using CRISPR/Cas9 genome editing. PKR-FL includes an N-terminal dsRNA-binding domain and a C-terminal kinase domain, whereas PKR-ML and PKR-SL display a truncated or absent kinase domain, respectively. PKR-FL is induced during IFNA2 stimulation but not during viral hemorrhagic septicemia virus (VHSV) infection. Overexpression experiments showed that only PKR-FL possesses antiviral functions, including activation of apoptosis and inhibition of de novo protein synthesis. Knockout experiments confirmed that PKR is involved in apoptosis activation during the late stage of VHSV infection. Endogenous PKR also plays a critical role in translation inhibition upon poly(I:C) transfection after IFNA2 treatment. It is, however, not involved in translational arrest during VHSV infection. Extra- and intracellular titrations showed that endogenous PKR does not directly inhibit viral replication but apparently favors virion release into the supernatant, likely by triggering late apoptosis. Altogether, our data confirm that salmonid PKR has conserved molecular functions that VHSV appears to bypass with subversion strategies.
Collapse
Affiliation(s)
- Lise Chaumont
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Mathilde Peruzzi
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, UMR 1222 INSERM, Institut Pasteur, Paris, France
| | | | | | | | - Pierre Boudinot
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Bertrand Collet
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|