1
|
Lee J, Park H, Lee W, Park K, Kwon K, Jung HT. Density Multiplication of Highly Periodic Sub-5 nm Supramolecular Dendrimer Cylinders on Block Copolymer Lamellar-Assisted High-Resolution Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18229-18237. [PMID: 38048135 DOI: 10.1021/acs.langmuir.3c01988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Density multiplication in nanopatterning is one of the most efficient techniques for increasing the resolution of the inherent patterns. Thus far, most of the density multiplication techniques integrate bottom-up (or top-down) patterning onto guide patterns prepared by the top-down approach. Although the bottom-up approach exhibits several advantages of cost-effectiveness and high resolution, very few studies have reported bottom-up patterning within a bottom-up template. In this study, the density multiplication of supramolecular cylinders into a block copolymer (BCP)-based guide lamellar pattern is demonstrated by the directed self-assembly (DSA) of a dendrimer and BCPs for the first time. Supramolecular cylinders of sub-5 nm scale are confined into trenches based on 50 and 100 nm scales of a lamellar polystyrene (PS)-poly(methyl methacrylate) (PMMA) BCP, which led to 10×-level to 20×-level density multiplication. Moreover, the orientation of the dendrimer is dependent on the dendrimer film thickness, and the corresponding mechanism is revealed. Notably, the strong guiding effect from the high-resolution guide patterns improved the ordering behavior in the highly curved pattern. Graphoepitaxy via the confinement of an ultrahigh-resolution dendrimer into the guide pattern based on BCP demonstrates promise as a density multiplication method for generating highly ordered nanostructures and complex structures.
Collapse
Affiliation(s)
- Juhwan Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon 34141, Korea
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Heejin Park
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon 34141, Korea
| | - Wonmoo Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon 34141, Korea
| | - Kangho Park
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon 34141, Korea
- Semiconductor R&D Center, Samsung Electronics Inc, 1, Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, Korea
| | - Kiok Kwon
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
- Korea Advanced Institute of Science and Technology (KAIST) Institute for Nanocentury, Yuseong-gu, Daejeon 34141, Korea
- Green Chemistry and Materials Group, Research Institute of Sustainable Manufacturing System, Korea Institute of Industrial Technology, Cheonan 31056, Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
2
|
Sun Z, Liu R, Su T, Huang H, Kawamoto K, Liang R, Liu B, Zhong M, Alexander-Katz A, Ross CA, Johnson JA. Emergence of layered nanoscale mesh networks through intrinsic molecular confinement self-assembly. NATURE NANOTECHNOLOGY 2023; 18:273-280. [PMID: 36624206 DOI: 10.1038/s41565-022-01293-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Block copolymer self-assembly is a powerful tool for two-dimensional nanofabrication; however, the extension of this self-assembly concept to complex three-dimensional network structures is limited. Here we report a simple method to experimentally generate three-dimensional layered mesh morphologies through intrinsic molecular confinement self-assembly. We designed triblock bottlebrush polymers with two Janus domains: one perpendicular and one parallel to the polymer backbone. The former enforces a lamellar superstructure that intrinsically confines the intralayer self-assembly of the latter, giving rise to a mesh-like monoclinic (54°) M15 network substructure with excellent long-range order, as well as a tetragonal (90°) T131 mesh. Numerical simulations show that the spatial constraints exerted on the polymer backbone drive the assembly of M15 and yield T131 in the strong segregation regime. This work demonstrates that intrinsic molecular confinement is a viable path to bottom-up assembly of new geometrical phases of soft matter, extending the capabilities of block copolymer nanofabrication.
Collapse
Affiliation(s)
- Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tingyu Su
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ken Kawamoto
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ruiqi Liang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Bin Liu
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jeremiah A Johnson
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
3
|
Non-Bulk Morphologies of Extremely Thin Block Copolymer Films Cast on Topographically Defined Substrates Featuring Deep Trenches: The Importance of Lateral Confinement. Polymers (Basel) 2023; 15:polym15041035. [PMID: 36850318 PMCID: PMC9958675 DOI: 10.3390/polym15041035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Directed self-assembly of block copolymers is evolving toward applications that are more defect-tolerant but still require high morphological control and could benefit from simple, inexpensive fabrication processes. Previously, we demonstrated that simply casting ultra-thin block copolymer films on topographically defined substrates leads to hierarchical structures with dual patterns in a controlled manner and unraveled the dependence of the local morphology on the topographic feature dimensions. In this article, we discuss the extreme of the ultraconfined thickness regime at the border of film dewetting. Additional non-bulk morphologies are observed at this extreme, which further elaborate the arsenal of dual patterns that could be obtained in coexistence with full placement control. It is shown that as the thickness confinement approaches its limit, lateral confinement imposed by the width of the plateaus becomes a critical factor influencing the local morphology.
Collapse
|
4
|
Demazy N, Argudo PG, Fleury G. Competitive Registration Fields for The Development of Complex Block Copolymer Structures by A Layer-by-Layer Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205254. [PMID: 36504447 DOI: 10.1002/smll.202205254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Block copolymer (BCP) self-assembly in thin films is an elegant method to generate nanometric features with tunable geometrical configurations. By combining directed assembly and hybridization methods, advances in nano-manufacturing have been attested over the past decades with flagship applications in lithography and optics. Nevertheless, the range of geometrical configurations is limited by the accessible morphologies inherent to the energy minimization process involved in BCP self-assembly. Layering of nanostructured BCP thin films has been recently proposed in order to enrich the span of nanostructures derived from BCP self-assembly with the formation of non-native heterostructures such as double-layered arrays of nanowires or dots-on-line and dots-in-hole hierarchical structures. In this work, the layer-by-layer method is further exploited for the generation of nano-mesh arrays using nanostructured BCP thin films. In particular, a subtle combination of chemical and topographical fields is leveraged in order to demonstrate design rules for the controlled registration of a BCP layer on top of an underneath immobilized one by the precise tuning of the interfacial chemical field between the two BCP layers.
Collapse
Affiliation(s)
- Nils Demazy
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Pablo G Argudo
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, Pessac, F-33600, France
| |
Collapse
|
5
|
Tian B, Li J, Samad A, Schwingenschlögl U, Lanza M, Zhang X. Production of Large-Area Nucleus-Free Single-Crystal Graphene-Mesh Metamaterials with Zigzag Edges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201253. [PMID: 35307871 DOI: 10.1002/adma.202201253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In addition to conventional monolayer or bilayer graphene films, graphene-mesh metamaterials have attracted considerable research attention within the scientific community owing to their unique physical and optical properties. Currently, most graphene-mesh metamaterials are fabricated using common lithography techniques on exfoliated graphene flakes, which require the deposition and removal of chemicals during fabrication. This process may introduce contamination or doping, thereby limiting their production size and application in nanodevices. Herein, the controlled production of wafer-scale high-quality single-crystal nucleus-free graphene-mesh metamaterial films with zigzag edges is demonstrated. The 13 C-isotopic labeling graphene-growth approach, large-area Raman mapping techniques, and a uniquely designed high-voltage localized-space air-ionization etching method are utilized to directly remove the graphene nuclei. Subsequently, a hydrogen-assisted anisotropic etching process is employed for transforming irregular edges into zigzag edges within the hexagonal-shaped holes, producing a large-scale single-crystal high-quality graphene-mesh metamaterial film on a Cu(111) substrate. The carrier mobilities of the fabricated field-effect transistors on the as-produced films are measured. The findings of this study enable the large-scale production of high-quality low-dimensional graphene-mesh metamaterials and provide insights for the application of integrated circuits based on graphene and other 2D metamaterials.
Collapse
Affiliation(s)
- Bo Tian
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Eleven-Dimensional Nanomaterial Research Institute, Xiamen, 361000, China
| | - Junzhu Li
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Eleven-Dimensional Nanomaterial Research Institute, Xiamen, 361000, China
| | - Abdus Samad
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Udo Schwingenschlögl
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mario Lanza
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Priming self-assembly pathways by stacking block copolymers. Nat Commun 2022; 13:6947. [PMID: 36376380 PMCID: PMC9663688 DOI: 10.1038/s41467-022-34729-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022] Open
Abstract
Block copolymers spontaneously self-assemble into well-defined nanoscale morphologies. Yet equilibrium assembly gives rise to a limited set of structures. Non-equilibrium strategies can, in principle, expand diversity by exploiting self-assembly's responsive nature. In this vein, we developed a pathway priming strategy combining control of thin film initial configurations and ordering history. We sequentially coat distinct materials to form prescribed initial states, and use thermal annealing to evolve these manifestly non-equilibrium states through the assembly landscape, traversing normally inaccessible transient structures. We explore the enormous associated hyperspace, spanning processing (annealing temperature and time), material (composition and molecular weight), and layering (thickness and order) dimensions. We demonstrate a library of exotic non-native morphologies, including vertically-oriented perforated lamellae, aqueduct structures (vertical lamellar walls with substrate-pinned perforations), parapets (crenellated lamellae), and networks of crisscrossing lamellae. This enhanced structural control can be used to modify functional properties, including accessing regimes that surpass their equilibrium analogs.
Collapse
|
7
|
Ren Y, Xie W, Li Y, Cui Y, Zeng C, Yuan K, Wu L, Deng Y. Dynamic Coassembly of Amphiphilic Block Copolymer and Polyoxometalates in Dual Solvent Systems: An Efficient Approach to Heteroatom-Doped Semiconductor Metal Oxides with Controllable Nanostructures. ACS CENTRAL SCIENCE 2022; 8:1196-1208. [PMID: 36032768 PMCID: PMC9413427 DOI: 10.1021/acscentsci.2c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 05/15/2023]
Abstract
Dynamic coassembly of block copolymers (BCPs) with Keggin-type polyoxometalates (POMs) is developed to synthesize heteroatom-doped tungsten oxide with controllable nanostructures, including hollow hemispheres, nanoparticles, and nanowires. The versatile coassembly in dual n-hexane/THF solvent solution enables the fomation of poly(ethylene oxide)-b-polystyrene (PEO-b-PS)/POMs (e.g., silicotungstic acid, H4SiW12O40) nanocomposites with different morphologies such as spherical vesicles, inverse spherical micelles, and inverse cylindrical micelles, which can be readily converted into diverse nanostructured metal oxides with high surface area and unique properties via in situ thermal-induced structural evolution. For example, uniform silicon-doped WO3 (Si-WO3) hollow hemispheres derived from coassembly of PEO-b-PS with H4SiW12O40 were utilized to fabricate gas sensing devices which exhibit superior gas sensing performance toward acetone, thanks to the selective gas-solid interface catalytic reaction that induces resistance changes of the devices due to the high specific surface areas, abundant oxygen vacancies, and the Si-doping induced metastable ε-phase of WO3. Furthermore, density functional theory (DFT) calculation reveals the mechanism about the high sensitivity and selectivity of the gas sensors. On the basis of the as-fabricated devices, an integrated gas sensor module was constructed, which is capable of real-time monitoring the environmental acetone concentration and displaying relevant sensing results on a smart phone via Bluetooth communication.
Collapse
Affiliation(s)
- Yuan Ren
- Department
of Chemistry, Department of Gastroenterology, Zhongshan Hospital of
Fudan University, State Key Laboratory of Molecular Engineering of
Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wenhe Xie
- Department
of Chemistry, Department of Gastroenterology, Zhongshan Hospital of
Fudan University, State Key Laboratory of Molecular Engineering of
Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yanyan Li
- Department
of Chemistry, Department of Gastroenterology, Zhongshan Hospital of
Fudan University, State Key Laboratory of Molecular Engineering of
Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, P. R. China
| | - Yuanyuan Cui
- Shimazu
China Co LTD, Shanghai 200233, P. R. China
| | - Chao Zeng
- School
of Microelectronics, Fudan University, Shanghai 200433, P. R. China
| | - Kaiping Yuan
- Frontier
Institute of Chip and System, State Key Laboratory of ASIC and System, Fudan University, Shanghai 200433, P. R. China
| | - Limin Wu
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology, Zhongshan Hospital of
Fudan University, State Key Laboratory of Molecular Engineering of
Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, P. R. China
- Institute
of Energy and Materials Chemistry, Inner
Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| |
Collapse
|
8
|
Michman E, Oded M, Shenhar R. Dual Block Copolymer Morphologies in Ultrathin Films on Topographic Substrates: The Effect of Film Curvature. Polymers (Basel) 2022; 14:polym14122377. [PMID: 35745955 PMCID: PMC9231016 DOI: 10.3390/polym14122377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The ability to create mixed morphologies using easily controlled parameters is crucial for the integration of block copolymers in advanced technologies. We have previously shown that casting an ultrathin block copolymer film on a topographically patterned substrate results in different deposited thicknesses on the plateaus and in the trenches, which leads to the co-existence of two patterns. In this work, we highlight the dependence of the dual patterns on the film profile. We suggest that the steepness of the film profile formed across the plateau edge affects the nucleation of microphase-separated domains near the plateau edges, which influences the morphology that develops on the plateau regions. An analysis of the local film thicknesses in multiple samples exhibiting various combinations of plateau and trench widths for different trench depths enabled the construction of phase diagrams, which unraveled the intricate dependence of the formed patterns not only on the curvature of the film profile but also on the fraction of the film that resides in the trenches. Our analysis facilitates the prediction of the patterns that would develop in the trenches and on the plateaus for a given block copolymer film of known thickness from the dimensions of the topographic features.
Collapse
|
9
|
Zhang Z, Han Y, Chen WR, Do C. Diffusion characteristics of water molecules in a lamellar structure formed by triblock copolymers. Phys Chem Chem Phys 2022; 24:8015-8021. [PMID: 35315475 DOI: 10.1039/d2cp00207h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The distribution and diffusion of water molecules are playing important roles in determining self-assembly and transport properties of polymeric systems. Small-angle neutron scattering (SANS) experiments and molecular dynamics (MD) simulation have been applied to understand the distribution of water molecules and their dynamics in the lamellar membrane formed by Pluronic L62 block copolymers. Penetration of water molecules into the polyethylene oxide (PEO) layers of the membranes has been estimated using scattering length density (SLD) profiles obtained from SANS measurements, which agree well with the molecular distribution observed from MD simulations. The water diffusion coefficient at different regions of the lamellar membrane was further investigated using MD simulation. The diffusion characteristic shows a transition from normal to anomalous diffusion as the position of the water molecule changes from the bulk to PEO and to the polypropylene oxide (PPO) layer. We find that water molecules within the PEO or PPO layers follow subdiffusive dynamics, which can be interpreted by the model of fractional Brownian motion.
Collapse
Affiliation(s)
- Zhe Zhang
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. .,Forschungszentrum Jülich, Jülich Center for Neutron Science, Outstation at the Spallation Neutron Source (SNS), Oak Ridge National Laboratory, Oak Ridge Tennessee, 37831, USA
| | - Youngkyu Han
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
10
|
Zheng CY, Yao Y, Deng J, Seifert S, Wong AM, Lee B, Mirkin CA. Confined Growth of DNA-Assembled Superlattice Films. ACS NANO 2022; 16:4813-4822. [PMID: 35213130 DOI: 10.1021/acsnano.2c00161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We study the assembly of DNA-functionalized nanocubes under lateral confinement in microscale square trenches on a DNA-functionalized substrate. Microfocus small-angle X-ray scattering (SAXS) and scanning electron microscopy (SEM) are used to characterize the superlattices (SLs). The results indicate that nanocubes form simple-cubic SLs with square-prism morphology and a (100) out-of-plane orientation to maximize DNA bonding. In-plane, SLs align with the template, exposing their {100} side facets, and the degree of alignment depends on trench size. Interestingly, the distribution of in-plane orientations determined from SAXS and SEM do not agree, indicating that the internal and external structures of the SLs differ. To understand this discrepancy, X-ray ptychography is employed to image the internal structures of the SLs, revealing that SLs which appear to be single-crystalline in SEM may have subsurface grain boundaries, depending on trench size. SEM reveals that the SLs grow via nucleation and growth of randomly oriented domains, which then coalesce; this mechanism explains the observed dependence of alignment and defect structure on size. Interestingly, crystallization occurs via an unusual growth mode, whereby continuous SL layers grow on top of several misoriented islands. Overall, this work elucidates the effect of lateral confinement on the crystallization of DNA-functionalized nanoparticles and shows how X-ray ptychography can be used to gain insight into nanoparticle crystallization.
Collapse
Affiliation(s)
| | - Yudong Yao
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Junjing Deng
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Soenke Seifert
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | - Byeongdu Lee
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | |
Collapse
|
11
|
Zhou Y, Dong J, Zhou C, Wang Q. Finite Assembly of Three-Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angew Chem Int Ed Engl 2022; 61:e202116416. [PMID: 35147275 DOI: 10.1002/anie.202116416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/01/2023]
Abstract
Reliable orthogonal bonding with precise and flexible orientation control would be ideal for building finite complex nanostructures via self-assembly. Employing a three-dimensional (3D) DNA origami, hexagonal prism DNA origami (HDO), as building block, we demonstrate it is practical to construct finite hierarchical nanoarchitectures with complicated conformations through orthogonal and directional bonding. The as-designed HDO building block has twelve prescribed directional valences in 3D space and each of them supports two opposite orientations, yielding the capability to generate abundant directional bonding. Meanwhile, we minimize the thorny non-specific interactions among HDOs and enable the orthogonal bonding between any two valences based on self-similar designing. Consequently, various hierarchical nanostructures are prepared at will simply by the combination of HDOs with appropriate valences. We believe this route towards hierarchically assembly is inspiring and hope it will facilitate the fabrication of functional superstructures.
Collapse
Affiliation(s)
- Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China.,School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, China.,College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, China
| |
Collapse
|
12
|
Zhou Y, Dong J, Zhou C, Wang Q. Finite Assembly of Three‐Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yihao Zhou
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
| | - Jinyi Dong
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
| | - Chao Zhou
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface Suzhou Key Laboratory of Functional Molecular Imaging Technology Division of Nanobiomedicine and i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences China
- School of Nano-Tech and Nano-Bionics University of Science and Technology of China China
- College of Materials Sciences and Opto-Electronic Technology University of Chinese Academy of Sciences China
| |
Collapse
|
13
|
Hara M, Oguri R, Shingo S, Nagano S, Seki T. Crystallization-Induced Uniform Nanodots Formation of Titanium Dioxide Films. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20210391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mitsuo Hara
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Ryota Oguri
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Sarkar Shingo
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| | - Shusaku Nagano
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501
| | - Takahiro Seki
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603
| |
Collapse
|
14
|
Ren Y, Xie W, Li Y, Ma J, Li J, Liu Y, Zou Y, Deng Y. Noble Metal Nanoparticles Decorated Metal Oxide Semiconducting Nanowire Arrays Interwoven into 3D Mesoporous Superstructures for Low-Temperature Gas Sensing. ACS CENTRAL SCIENCE 2021; 7:1885-1897. [PMID: 34841059 PMCID: PMC8614104 DOI: 10.1021/acscentsci.1c00912] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Indexed: 05/07/2023]
Abstract
Mesoporous materials have been extensively studied for various applications due to their high specific surface areas and well-interconnected uniform nanopores. Great attention has been paid to synthesizing stable functional mesoporous metal oxides for catalysis, energy storage and conversion, chemical sensing, and so forth. Heteroatom doping and surface modification of metal oxides are typical routes to improve their performance. However, it still remains challenging to directly and conveniently synthesize mesoporous metal oxides with both a specific functionalized surface and heteroatom-doped framework. Here, we report a one-step multicomponent coassembly to synthesize Pt nanoparticle-decorated Si-doped WO3 nanowires interwoven into 3D mesoporous superstructures (Pt/Si-WO3 NWIMSs) by using amphiphilic poly(ethylene oxide)-block-polystyrene (PEO-b-PS), Keggin polyoxometalates (H4SiW12O40) and hydrophobic (1,5-cyclooctadiene)dimethylplatinum(II) as the as structure-directing agent, tungsten precursor and platinum source, respectively. The Pt/Si-WO3 NWIMSs exhibit a unique mesoporous structure consisting of 3D interwoven Si-doped WO3 nanowires with surfaces homogeneously decorated by Pt nanoparticles. Because of the highly porous structure, excellent transport of carriers in nanowires, and rich WO3/Pt active interfaces, the semiconductor gas sensors based on Pt/Si-WO3 NWIMSs show excellent sensing properties toward ethanol at low temperature (100 °C) with high sensitivity (S = 93 vs 50 ppm), low detection limit (0.5 ppm), fast response-recovery speed (17-7 s), excellent selectivity, and long-term stability.
Collapse
Affiliation(s)
- Yuan Ren
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Wenhe Xie
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yanyan Li
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Junhao Ma
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Jichun Li
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yan Liu
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yidong Zou
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| | - Yonghui Deng
- Department
of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan
Hospital, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
- State
Key Laboratory of Transducer Technology Shanghai Institute of Microsystem
and Information Technology, Chinese Academy
of Sciences, Shanghai 200050, China
| |
Collapse
|
15
|
Lee S, Lee W, Jung HT, Ross CA. Selective Deposition of Copper on Self-Assembled Block Copolymer Surfaces via Physical Vapor Deposition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52931-52937. [PMID: 34705438 DOI: 10.1021/acsami.1c15272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Block copolymer (BCP) self-assembly produces chemically and topographically patterned surfaces which are used to guide the formation of Cu nanostructures by exploiting differences in the mobility of vapor-deposited species on each microdomain. Cu metal films a few nm thick were deposited on three different BCP surfaces self-assembled from poly(styrene-b-methyl methacrylate) (PS-b-PMMA) and polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP). For PS-b-PMMA, the effects of chemical heterogeneity dominate over the effects of the 2 nm peak-to-valley topography, and sputtered Cu preferentially wets the PS block. PS-b-P2VP has greater chemical and topographical contrast and shows a wider process window for selective deposition. Cu grown by evaporation has less surface mobility, and shadowing effects are believed to dominate pattern formation. The hierarchical self-assembly process of thin metal films on BCP surfaces provides a route to fabricating heterogeneous metallic nanostructures.
Collapse
Affiliation(s)
- Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Wonmoo Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hee-Tae Jung
- Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
16
|
Liu R, Huang H, Sun Z, Alexander-Katz A, Ross CA. Metallic Nanomeshes Fabricated by Multimechanism Directed Self-Assembly. ACS NANO 2021; 15:16266-16276. [PMID: 34647737 DOI: 10.1021/acsnano.1c05315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The directed self-assembly of block copolymers (BCPs) is a powerful motif for the continued scaling of feature sizes for nanoscale devices. A multimechanism directed self-assembly (MMDSA) method is described that generates orthogonal meshes from a polystyrene-b-poly-2-vinylpyridine BCP that is subsequently metallized with Pt. The MMDSA process takes advantage of three different mechanisms, trench wall guidance, edge nucleation, and underlayer guidance, to align the mesh with respect to substrate features. The mechanisms and their interactions are investigated via both experiments and dissipative particle dynamics simulations. MMDSA is applied to produce well-aligned conductive nanomeshes and then is extended to fabricate multicomponent metallic structures with 2D/3D hybrid morphologies.
Collapse
Affiliation(s)
- Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Zehao Sun
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Park TW, Kang YL, Byun M, Hong SW, Ahn YS, Lee J, Park WI. Controlled self-assembly of block copolymers in printed sub-20 nm cross-bar structures. NANOSCALE ADVANCES 2021; 3:5083-5089. [PMID: 36132336 PMCID: PMC9418718 DOI: 10.1039/d1na00357g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/25/2021] [Indexed: 06/15/2023]
Abstract
Directed self-assembly (DSA) of block copolymers (BCPs) has garnered much attention due to its excellent pattern resolution, simple process, and good compatibility with many other lithography methods for useful nanodevice applications. Here, we present a BCP-based multiple nanopatterning process to achieve three-dimensional (3D) pattern formation of metal/oxide hybrid nanostructures. We employed a self-assembled sub-20 nm SiO x line pattern as a master mold for nanotransfer printing (nTP) to generate a cross-bar array. By using the transfer-printed cross-bar structures as BCP-guiding templates, we can obtain well-ordered BCP microdomains in the distinct spaces of the nanotemplates through a confined BCP self-assembly process. We also demonstrate the morphological evolution of a cylinder-forming BCP by controlling the BCP film thickness, showing a clear morphological transition from cylinders to spheres in the designated nanospaces. Furthermore, we demonstrate how to control the number of BCP spheres within the cross-bar 3D pattern by adjusting the printing angle of the multiple nTP process to provide a suitable area for spontaneous BCP accommodation. This multiple-patterning-based approach is applicable to useful 3D nanofabrication of various devices with complex hybrid nanostructures.
Collapse
Affiliation(s)
- Tae Wan Park
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET) 101 Soho-ro Jinju 52851 Republic of Korea
- Department of Materials Science and Engineering, Korea University Seoul 02841 Republic of Korea
| | - Young Lim Kang
- Department of Materials Science and Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Myunghwan Byun
- Department of Advanced Materials Engineering, Keimyung University 1095 Dalgubeol-daero Daegu 42601 Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University Busan 46241 Republic of Korea
| | - Yong-Sik Ahn
- Department of Materials Science and Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Junghoon Lee
- Department of Metallurgical Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| | - Woon Ik Park
- Department of Materials Science and Engineering, Pukyoung National University (PKNU) 45 Yongso-ro, Nam-gu Busan 48513 Republic of Korea
| |
Collapse
|
18
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
19
|
Kang W, Ji Y, Cheng Y. Van der Waals force-driven indomethacin-ss-paclitaxel nanodrugs for reversing multidrug resistance and enhancing NSCLC therapy. Int J Pharm 2021; 603:120691. [PMID: 33965541 DOI: 10.1016/j.ijpharm.2021.120691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
The high expression of multidrug resistance-associated protein 1 (MRP1) in cancer cells caused serious multidrug resistance (MDR), which limited the effectiveness of paclitaxel (PTX) in non-small cell lung cancer (NSCLC) chemotherapy. Indomethacin (IND), a kind of non-steroidal anti-inflammatory drugs (NSAIDs), which has been confirmed to be a potential MRP1 inhibitor. Taking into account the advantages of old drugs without extra controversial biosafety issue, in this manuscript, the disulfide bond (-S-S-) was employed for connecting IND and PTX to construct conjugate IND-S-S-PTX, which was further self-assembled and formed nanodrug (IND-S-S-PTX NPs). The particle size of IND-S-S-PTX NPs was ~160 nm with a narrow PDI value of 0.099, which distributed well in water and also exhibited a stable characteristic. Moreover, due to the existence of disulfide bond, the NPs were sensitive to the high level of glutathione (GSH) in tumor microenvironment. Molecular dynamics (MD) simulation presented the process of self-assembly in detail. Density functional theory (DFT) calculations revealed that the main driving force in self-assembly process was originated from the van der waals force. In addition, this carrier-free nano drug delivery systems (nDDs) could reverse the MDR by downregulating the expression of MRP1 protein in A549/taxol.
Collapse
Affiliation(s)
- Wenbo Kang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Yu Cheng
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
20
|
Kim DH, Suh A, Park G, Yoon DK, Kim SY. Nanoscratch-Directed Self-Assembly of Block Copolymer Thin Films. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5772-5781. [PMID: 33472362 DOI: 10.1021/acsami.0c19665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Directed self-assembly (DSA) of block copolymer (BCP) thin films is of particular interest in nanoscience and nanotechnology due to its superior ability to form various well-aligned nanopatterns. Herein, nanoscratch-DSA is introduced as a simple and scalable DSA strategy allowing highly aligned BCP nanopatterns over a large area. A gentle scratching on the target substrate with a commercial diamond lapping film can form uniaxially aligned nanoscratches. As applied in BCP thin films, the nanoscratch effectively guides the self-assembly of overlying BCPs and provides highly aligned nanopatterns along the direction of the nanoscratch. The nanoscratch-DSA is not material-specific, allowing more versatile nanofabrication for various functional nanomaterials. In addition, we demonstrate that the nanoscratch-DSA can be utilized as a direction-controllable and area-selective nanofabrication method.
Collapse
Affiliation(s)
- Dong Hyup Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ahram Suh
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Geonhyeong Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Department of Chemistry and KINC, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - So Youn Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
21
|
Tu TH, Sakurai T, Seki S, Ishida Y, Chan YT. Towards Macroscopically Anisotropic Functionality: Oriented Metallo-supramolecular Polymeric Materials Induced by Magnetic Fields. Angew Chem Int Ed Engl 2021; 60:1923-1928. [PMID: 33051951 DOI: 10.1002/anie.202012284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/18/2022]
Abstract
Based on the predesigned self-selective complexation, metallo-supramolecular P3HT-b-PEO diblock copolymers with varying block ratios were synthesized, and their oriented polymer films generated during solvent evaporation in a 9 T magnetic field were investigated. An anisotropic, ordered layer structure was achieved using [P3HT20 -Zn-PEO107 ] and carefully characterized by polarized optical microscopy (POM), AFM, polarized UV/Vis spectroscopy, and GI-SAXS/WAXS. The PEO-removed [P3HT20 -Zn-PEO107 ] film was obtained after decomplexation with TEA-EDTA under mild conditions, and the selective removal of PEO domains was evidenced by UV/Vis and ATR-FTIR spectroscopy. Anisotropic photoconductivity of the magnetically aligned film was evaluated by flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements. The results indicated that the presence of insulating crystalline PEO segments diminished the photoconductivity along the P3HT backbone direction.
Collapse
Affiliation(s)
- Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Tsuneaki Sakurai
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
22
|
Gadelrab KR, Alexander-Katz A. Effect of Molecular Architecture on the Self-Assembly of Bottlebrush Copolymers. J Phys Chem B 2020; 124:11519-11529. [PMID: 33267586 DOI: 10.1021/acs.jpcb.0c07941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The characteristics of a new architecture of bottlebrush copolymers (BBCPs) self-assembly were studied using self-consistent field theory. In this molecule, a series of AB linear diblock side chains were connected at the diblock junction using a C backbone. The control over the linker length and its chemical nature created an additional constraint on the intrinsic AB diblock microphase separation. Increasing side-chain crowding by increasing the grafting density and total degree of polymerization induced improved phase separation. This was reflected in the overall reduction in the effective interaction parameter between the diblocks as well as the abrupt increase in phase density when crossing the order-disorder transition. Side-chain crowding resulted in an increase in the equilibrium domain spacing compared to a linear diblock. On the other hand, the localization of block C at the AB interface generated a diffuse domain boundary and reduction in side-chain stretching. The unique behavior of BBCPs was observed in 1D confined systems where the molecule showed the natural tendency to orient domains parallel to neutral confinement in contrast to the behavior of confined diblocks. Such behavior largely depended on the degree of incompatibility between the AB blocks and BBCP structure. A ternary phase diagram was constructed for different proportions of each block. Rich morphologies of core-shell domains and tiling patterns were observed including octagonal and pentagonal polygons. The unique architecture of this bottlebrush molecule and its improved nanoscale properties make it an attractive candidate for various applications of nanotechnology.
Collapse
Affiliation(s)
- Karim R Gadelrab
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
23
|
Huang H, Liu R, Ross CA, Alexander-Katz A. Self-Directed Self-Assembly of 3D Tailored Block Copolymer Nanostructures. ACS NANO 2020; 14:15182-15192. [PMID: 33074654 DOI: 10.1021/acsnano.0c05417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Directed self-assembly (DSA) of block copolymers (BCPs) provides a powerful tool to fabricate various 2D nanostructures. However, it still remains a challenge to extend DSA to make uniform and complex 3D nanostructures through BCP self-assembly. In this paper, we introduce a method to fabricate various nanostructures in 3D and test it using simulations. In particular, we employ dissipative particle dynamics (DPD) simulation to demonstrate that uniform multilayer nanostructures can be achieved by alternating the stacking of two "orthogonal" BCPs films, AB copolymer film and AC copolymer film, without the need to cross-link or etch any of the components. The assembly of a new layer occurs on top of the previous bottom layer, and thus the structural information from the substrate is propagated upward in the film, a process we refer to as self-directed self-assembly (SDSA). If this process is repeated many times, one can have tailored multilayer nanostructures. Furthermore, the natural (bulk) phases of the block copolymers in each layer do not need to be the same, so one can achieve complex 3D assemblies that are not possible with a single-phase 3D system. This method in conjunction with grapho (or chemo) epitaxy is able to evolve a surface pattern into a 3D nanostructure. Here we show several examples of nanostructures fabricated by this process, which include aligned cylinders, spheres on top of cylinders, and orthogonal nanomeshes. Our work should be useful for creating complex 3D nanostructures using self-assembly.
Collapse
Affiliation(s)
- Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Runze Liu
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
24
|
Tu T, Sakurai T, Seki S, Ishida Y, Chan Y. Towards Macroscopically Anisotropic Functionality: Oriented Metallo‐supramolecular Polymeric Materials Induced by Magnetic Fields. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Tsung‐Han Tu
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan
| | - Tsuneaki Sakurai
- Department of Molecular Engineering Graduate School of Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular Engineering Graduate School of Engineering Kyoto University, Nishikyo-ku Kyoto 615-8510 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yi‐Tsu Chan
- Department of Chemistry National Taiwan University Taipei 10617 Taiwan
| |
Collapse
|
25
|
Alvarez-Fernandez A, Nallet F, Fontaine P, Cummins C, Hadziioannou G, Barois P, Fleury G, Ponsinet V. Large area Al 2O 3-Au raspberry-like nanoclusters from iterative block-copolymer self-assembly. RSC Adv 2020; 10:41088-41097. [PMID: 35519210 PMCID: PMC9057902 DOI: 10.1039/d0ra08730k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
In the field of functional nanomaterials, core-satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications.
Collapse
Affiliation(s)
- Alberto Alvarez-Fernandez
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
- CNRS, Univ. Bordeaux, Bordeaux INP, LCPO, UMR 5629 F-33600 Pessac France
- Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE UK
| | - Frédéric Nallet
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
| | - Philippe Fontaine
- Synchrotron SOLEIL L'Orme des Merisiers, Saint-Aubin-BP 48 F-91192 Gif-sur Yvette Cedex France
| | - Cian Cummins
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
- CNRS, Univ. Bordeaux, Bordeaux INP, LCPO, UMR 5629 F-33600 Pessac France
| | | | - Philippe Barois
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
| | - Guillaume Fleury
- CNRS, Univ. Bordeaux, Bordeaux INP, LCPO, UMR 5629 F-33600 Pessac France
| | - Virginie Ponsinet
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
| |
Collapse
|
26
|
|
27
|
Self-template-assisted micro-phase segregation in blended liquid-crystalline block copolymers films toward three-dimensional structures. Proc Natl Acad Sci U S A 2020; 117:21070-21078. [PMID: 32820076 DOI: 10.1073/pnas.2010284117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In-plane mesopatterns derived from block-copolymer (BCP) micro-phase segregation in thin films have attracted much interest in practical applications as well as fundamental research programs. However, phase segregation along the film-normal direction has been less studied. Here, we describe a strategy to concurrently, yet independently, control in-plane micro-phase and out-of-plane macro-phase segregation in multiblended films composed of liquid-crystalline BCPs (LCBCPs), affording spontaneously layered three-dimensional (3D) mesostructures. This strategy relies on sequential liquid crystallization during the cooling process in thermal annealing as follows. The constituent LCBCP with the highest isotropic-transition temperature (T iso) first liquid-crystallizes and segregates from the other LCBCP mixture remaining in isotropic states to form a noncontaminated layer at the top surface. This preformed LCBCP layer preserves its inherent in-plane pattern and acts as a template guiding the subsequent micro-phase segregations of the other low-T iso LCBCPs underneath. This self-template-assisted micro-phase segregation (STAMPS) readily provides 3D mesostructures, the potential toward rational material design of which is also demonstrated in water-separation applications.
Collapse
|
28
|
Leniart A, Pula P, Sitkiewicz A, Majewski PW. Macroscopic Alignment of Block Copolymers on Silicon Substrates by Laser Annealing. ACS NANO 2020; 14:4805-4815. [PMID: 32159943 PMCID: PMC7497666 DOI: 10.1021/acsnano.0c00696] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/11/2020] [Indexed: 05/07/2023]
Abstract
Laser annealing is a competitive alternative to conventional oven annealing of block copolymer (BCP) thin films enabling rapid acceleration and precise spatial control of the self-assembly process. Localized heating by a moving laser beam (zone annealing), taking advantage of steep temperature gradients, can additionally yield aligned morphologies. In its original implementation it was limited to specialized germanium-coated glass substrates, which absorb visible light and exhibit low-enough thermal conductivity to facilitate heating at relatively low irradiation power density. Here, we demonstrate a recent advance in laser zone annealing, which utilizes a powerful fiber-coupled near-IR laser source allowing rapid BCP annealing over a large area on conventional silicon wafers. The annealing coupled with photothermal shearing yields macroscopically aligned BCP films, which are used as templates for patterning metallic nanowires. We also report a facile method of transferring laser-annealed BCP films onto arbitrary surfaces. The transfer process allows patterning substrates with a highly corrugated surface and single-step rapid fabrication of multilayered nanomaterials with complex morphologies.
Collapse
Affiliation(s)
| | - Przemyslaw Pula
- Department
of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| | | | - Pawel W. Majewski
- Department
of Chemistry, University of Warsaw, Warsaw, 02089, Poland
| |
Collapse
|
29
|
Shi LY, Lan J, Lee S, Cheng LC, Yager KG, Ross CA. Vertical Lamellae Formed by Two-Step Annealing of a Rod-Coil Liquid Crystalline Block Copolymer Thin Film. ACS NANO 2020; 14:4289-4297. [PMID: 32182037 PMCID: PMC7309319 DOI: 10.1021/acsnano.9b09702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Silicon-containing block copolymer thin films with high interaction parameter and etch contrast are ideal candidates to generate robust nanotemplates for advanced nanofabrication, but they typically form in-plane oriented microdomains as a result of the dissimilar surface energies of the blocks. Here, we describe a two-step annealing method to produce vertically aligned lamellar structures in thin film of a silicon-containing rod-coil thermotropic liquid crystalline block copolymer. The rod-coil block copolymer with the volume fraction of the Si-containing block of 0.22 presents an asymmetrical lamellar structure in which the rod block forms a hexatic columnar nematic liquid crystalline phase. A solvent vapor annealing step first produces well-ordered in-plane cylinders of the Si-containing block, then a subsequent thermal annealing promotes the phase transition from in-plane cylinders to vertical lamellae. The pathways of the order-order transition were examined by microscopy and in situ using grazing incidence small-angle X-ray scattering and wide-angle X-ray scattering.
Collapse
Affiliation(s)
- Ling-Ying Shi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ji Lan
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Sangho Lee
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Li-Chen Cheng
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kevin G. Yager
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Caroline A. Ross
- Department
of Materials Science and Engineering, Massachusetts
Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
|
31
|
Valderrey V, Wiemann M, Jonkheijm P, Hecht S, Huskens J. Multivalency in Heteroternary Complexes on Cucurbit[8]uril-Functionalized Surfaces: Self-assembly, Patterning, and Exchange Processes. Chempluschem 2020; 84:1324-1330. [PMID: 31944037 DOI: 10.1002/cplu.201900181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Indexed: 01/01/2023]
Abstract
The spatial confinement of multivalent azopyridine guest molecules mediated by cucurbit[8]urils is described. Fluorescent dye-labelled multivalent azopyridine molecules were attached to preformed methyl viologen/cucurbit[8]uril inclusion complexes in solution and at surfaces. The formation of the resulting heteroternary host-guest complexes was verified in solution and on gold substrates. Surface binding constants of the multivalent ligands were two orders of magnitude higher than that of the monovalent one. Poly-l-lysine grafted with oligo(ethylene glycol) and maleimide moieties was deposited on cyclic olefin polymer surfaces and further modified with thiolated methyl viologen and cucurbit[8]uril. Defined micrometer-sized patterns were created by soft lithographic techniques. Supramolecular exchange experiments were performed on these surface-bound heterocomplexes, which allowed the creation of cross-patterns by taking advantage of the molecular valency, which led to the substitution of the monovalent guest by the multivalent guests but not vice versa.
Collapse
Affiliation(s)
- Virginia Valderrey
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Maike Wiemann
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Stefan Hecht
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Jurriaan Huskens
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| |
Collapse
|
32
|
Subramanian A, Tiwale N, Doerk G, Kisslinger K, Nam CY. Enhanced Hybridization and Nanopatterning via Heated Liquid-Phase Infiltration into Self-Assembled Block Copolymer Thin Films. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1444-1453. [PMID: 31786911 DOI: 10.1021/acsami.9b16148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organic-inorganic hybrids featuring tunable material properties can be readily generated by applying vapor- or liquid-phase infiltration (VPI or LPI) of inorganic materials into organic templates, with resulting properties controlled by type and quantity of infiltrated inorganics. While LPI offers more diverse choices of infiltratable elements, it tends to yield smaller infiltration amount than VPI, but the attempt to address the issue has been rarely reported. Here, we demonstrate a facile temperature-enhanced LPI method to control and drastically increase the quantity and kinetics of Pt infiltration into self-assembled polystyrene-block-poly(2-vinylpyridine) block copolymer (BCP) thin films. By applying LPI at mildly elevated temperatures (40-80 °C), we showcase controllable optical functionality of hybrid BCP films along with conductive three-dimensional (3D) inorganic nanostructures. Structural analysis reveals enhanced metal loading into the BCP matrix at higher LPI temperatures, suggesting multiple metal ion infiltration per monomer of P2VP. Combining temperature-enhanced LPI with hierarchical multilayer BCP self-assembly, we generate BCP-metal hybrid optical coatings featuring tunable antireflective properties as well as scalable conductive 3D Pt nanomesh structures. Enhanced material infiltration and control by temperature-enhanced LPI not only enables tunability of organic-inorganic hybrid nanostructures and properties but also expands the application of BCPs for generating uniquely functional inorganic nanostructures.
Collapse
Affiliation(s)
- Ashwanth Subramanian
- Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook, New York 11794 , United States
| | - Nikhil Tiwale
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton, New York 11973 , United States
| | - Gregory Doerk
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton, New York 11973 , United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton, New York 11973 , United States
| | - Chang-Yong Nam
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton, New York 11973 , United States
- Department of Materials Science and Chemical Engineering , Stony Brook University , Stony Brook, New York 11794 , United States
| |
Collapse
|
33
|
Cheng LC, Simonaitis JW, Gadelrab KR, Tahir M, Ding Y, Alexander-Katz A, Ross CA. Imparting Superhydrophobicity with a Hierarchical Block Copolymer Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905509. [PMID: 31808616 DOI: 10.1002/smll.201905509] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/10/2019] [Indexed: 06/10/2023]
Abstract
A robust and transparent silica-like coating that imparts superhydrophobicity to a surface through its hierarchical multilevel self-assembled structure is demonstrated. This approach involves iterative steps of spin-coating, annealing, and etching of polystyrene-block-polydimethylsiloxane block copolymer thin films to form a tailored multilayer nanoscale topographic pattern with a water contact angle up to 155°. A model based on the hierarchical topography is developed to calculate the wetting angle and optimize the superhydrophobicity, in agreement with the experimental trends, and explaining superhydrophobicity arising through the combination of roughness at different lengthscales. Additionally, the mechanical robustness and optically passive properties of the resulting hydrophobic surfaces are demonstrated.
Collapse
Affiliation(s)
- Li-Chen Cheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - John W Simonaitis
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Karim R Gadelrab
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mukarram Tahir
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yi Ding
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Caroline A Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
34
|
Huang H, Alexander-Katz A. Dissipative particle dynamics for directed self-assembly of block copolymers. J Chem Phys 2019; 151:154905. [DOI: 10.1063/1.5117839] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Alfredo Alexander-Katz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
35
|
Michman E, Langenberg M, Stenger R, Oded M, Schvartzman M, Müller M, Shenhar R. Controlled Spacing between Nanopatterned Regions in Block Copolymer Films Obtained by Utilizing Substrate Topography for Local Film Thickness Differentiation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35247-35254. [PMID: 31482698 DOI: 10.1021/acsami.9b12817] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Various types of devices require hierarchically nanopatterned substrates, where the spacing between patterned domains is controlled. Ultraconfined films exhibit extreme morphological sensitivity to slight variations in film thickness when the substrate is highly selective toward one of the blocks. Here, it is shown that using the substrate's topography as a thickness differentiating tool enables the creation of domains with different surface patterns in a fully controlled fashion from a single, unblended block copolymer. This approach is applicable to block copolymers of different compositions and to different topographical patterns and thus opens numerous possibilities for the hierarchical construction of multifunctional devices.
Collapse
Affiliation(s)
- Elisheva Michman
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Marcel Langenberg
- Institute for Theoretical Physics , Georg-August-University Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Roland Stenger
- Institute for Theoretical Physics , Georg-August-University Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Meirav Oded
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| | - Mark Schvartzman
- Department of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology , Ben Gurion University of the Negev , Beer Sheva 8410501 , Israel
| | - Marcus Müller
- Institute for Theoretical Physics , Georg-August-University Göttingen , Friedrich-Hund-Platz 1 , 37077 Göttingen , Germany
| | - Roy Shenhar
- The Institute of Chemistry and the Center for Nanoscience and Nanotechnology , The Hebrew University of Jerusalem , Jerusalem 9190401 , Israel
| |
Collapse
|
36
|
Cheng X, Böker A, Tsarkova L. Temperature-Controlled Solvent Vapor Annealing of Thin Block Copolymer Films. Polymers (Basel) 2019; 11:E1312. [PMID: 31390732 PMCID: PMC6722758 DOI: 10.3390/polym11081312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/01/2019] [Accepted: 08/03/2019] [Indexed: 12/05/2022] Open
Abstract
Solvent vapor annealing is as an effective and versatile alternative to thermal annealing to equilibrate and control the assembly of polymer chains in thin films. Here, we present scientific and practical aspects of the solvent vapor annealing method, including the discussion of such factors as non-equilibrium conformational states and chain dynamics in thin films in the presence of solvent. Homopolymer and block copolymer films have been used in model studies to evaluate the robustness and the reproducibility of the solvent vapor processing, as well as to assess polymer-solvent interactions under confinement. Advantages of utilizing a well-controlled solvent vapor environment, including practically interesting regimes of weakly saturated vapor leading to poorly swollen states, are discussed. Special focus is given to dual temperature control over the set-up instrumentation and to the potential of solvo-thermal annealing. The evaluated insights into annealing dynamics derived from the studies on block copolymer films can be applied to improve the processing of thin films of crystalline and conjugated polymers as well as polymer composite in confined geometries.
Collapse
Affiliation(s)
- Xiao Cheng
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476 Potsdam-Golm, Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Larisa Tsarkova
- Deutsches Textilforschungszentrum Nord-West (DNTW), Adlerstr. 1, 47798 Krefeld, Germany.
- Chair of Colloid Chemistry, Department of Chemistry, Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia.
| |
Collapse
|
37
|
Shi LY, Liao F, Cheng LC, Lee S, Ran R, Shen Z, Ross CA. Core-Shell and Zigzag Nanostructures from a Thin Film Silicon-Containing Conformationally Asymmetric Triblock Terpolymer. ACS Macro Lett 2019; 8:852-858. [PMID: 35619504 DOI: 10.1021/acsmacrolett.9b00283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-assembly of multiblock copolymers generates diverse hierarchical nanostructures and greatly extends the range of microdomain geometries beyond those produced by diblock copolymers. We report the synthesis of a conformationally asymmetric ABC triblock terpolymer in which the end blocks are a mesogen-jacketed liquid crystalline polymer and poly(dimethylsiloxane), respectively, and its self-assembly under mixed solvent vapor annealing forms a range of sphere, cylinder, and perforated lamellar core-shell morphologies, as well as stacked multilevel structures. Sub-7 nm diameter SiOx nanopatterns were generated by selective plasma etching of the small volume fraction Si-containing core block giving a line/space ratio of ∼1:4. Moreover, the conformational asymmetry of this terpolymer leads to zigzag cylinders on a flat substrate and stable cylinder alignment transverse to template sidewalls within lithographically patterned trenches.
Collapse
Affiliation(s)
- Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fen Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chen Cheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Caroline A. Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Cha SK, Yong D, Yang GG, Jin HM, Kim JH, Han KH, Kim JU, Jeong SJ, Kim SO. Nanopatterns with a Square Symmetry from an Orthogonal Lamellar Assembly of Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20265-20271. [PMID: 31081329 DOI: 10.1021/acsami.9b03632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A nanosquare array is an indispensable element for the integrated circuit design of electronic devices. Block copolymer (BCP) lithography, a promising bottom-up approach for sub-10 nm patterning, has revealed a generic difficulty in the production of square symmetry because of the thermodynamically favored hexagonal packing of self-assembled sphere or cylinder arrays in thin-film geometry. Here, we demonstrate a simple route to square arrays via the orthogonal self-assembly of two lamellar layers on topographically patterned substrates. While bottom lamellar layers within a topographic trench are aligned parallel to the sidewalls, top layers above the trench are perpendicularly oriented to relieve the interfacial energy between grain boundaries. The size and period of the square symmetry are readily controllable with the molecular weight of BCPs. Moreover, such an orthogonal self-assembly can be applied to the formation of complex nanopatterns for advanced applications, including metal nanodot square arrays.
Collapse
Affiliation(s)
- Seung Keun Cha
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Daeseong Yong
- Department of Physics, School of Natural Science , UNIST , Ulsan 44919 , Republic of Korea
| | - Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Hyeong Min Jin
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering , KAIST , Daejeon 34141 , Republic of Korea
| | - Jaeup U Kim
- Department of Physics, School of Natural Science , UNIST , Ulsan 44919 , Republic of Korea
| | - Seong-Jun Jeong
- Department of Organic Materials and Fiber Engineering , Soongsil University , Seoul 06978 , Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering , KAIST , Daejeon 34141 , Republic of Korea
| |
Collapse
|
39
|
Brassat K, Kool D, Lindner JKN. Modification of block copolymer lithography masks by O 2/Ar plasma treatment: insights from lift-off experiments, nanopore etching and free membranes. NANOTECHNOLOGY 2019; 30:225302. [PMID: 30759427 DOI: 10.1088/1361-6528/ab06dd] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Block copolymer lithography allows for the large-area patterning of surfaces with self-assembled nanoscale features. The created nanostructured polymer films can be applied as masks in common lithography processing steps, such as lift-off and etching for pattern replication and transfer. In this work, we discuss an approach to improve the pattern replication efficiency by modification of the polymer mask prior to lithographical use by means of an O2/Ar plasma treatment. We present a much better quality of pattern replication without loss of features, along with a precise tunability of feature sizes, that can be achieved by short mask treatment. We point out a correlation between nanopore position within the ordered arrays, expressed by its coordination number, the nanopore shape and the replication efficiency. Our experimental strategy to explain these correlations combines the indirect investigation of patterns replicated from the modified polymer masks and direct investigation of the mask top and bottom. Pattern replication is performed either in the form of gold nanodot arrays created via lift-off or nanopores transferred into a SiO2 substrate by reactive ion etching. The direct analysis of free polymer membranes released from the substrate reveals the nanopore shape at the mask top and bottom surfaces.
Collapse
Affiliation(s)
- Katharina Brassat
- 'Nanostructuring, Nanoanalysis and Photonic Materials' group, Department of Physics, Paderborn University, D-33098 Paderborn, Germany. Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn, Germany
| | | | | |
Collapse
|
40
|
Subramanian A, Doerk G, Kisslinger K, Yi DH, Grubbs RB, Nam CY. Three-dimensional electroactive ZnO nanomesh directly derived from hierarchically self-assembled block copolymer thin films. NANOSCALE 2019; 11:9533-9546. [PMID: 31049522 DOI: 10.1039/c9nr00206e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Three-dimensional (3D) nanoarchitectures can offer enhanced material properties, such as large surface areas that amplify the structures' interaction with environments making them useful for various sensing applications. Self-assembled block copolymers (BCPs) can readily generate various 3D nanomorphologies, but their conversion to useful inorganic materials remains one of the critical challenges against the practical application of self-assembled BCPs. This work reports the vapor-phase infiltration synthesis of optoelectrically active, 3D ZnO nanomesh architectures by combining hierarchical successive stacking of self-assembled, lamellar-phase polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) BCP thin films and a modified block-selective vapor-phase material infiltration protocol. The 3D ZnO nanomesh exhibits optoelectrical functionality, featuring stack-layer-number-dependent electrical conductance resembling the percolative transport originating from the intrinsic morphological network connectivity of the lamellar BCP pattern with symmetric block ratio. The results not only illustrate the first demonstration of electrical functionality based on the ZnO nanoarchitecture directly generated by the infiltration synthesis in self-assembled BCP thin films but also present a new, large-area scalable, metal oxide thin film nanoarchitecture fabrication method utilizing industry-compatible polymer solution coating and atomic layer deposition. Given the large surface area, three-dimensional porosity, and readily scalable fabrication procedures, the generated ZnO nanomesh promises potential applications as an efficient active medium in chemical and optical sensors.
Collapse
Affiliation(s)
- Ashwanth Subramanian
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA
| | | | | | | | | | | |
Collapse
|
41
|
Jung H, Shin WH, Park TW, Choi YJ, Yoon YJ, Park SH, Lim JH, Kwon JD, Lee JW, Kwon SH, Seong GH, Kim KH, Park WI. Hierarchical multi-level block copolymer patterns by multiple self-assembly. NANOSCALE 2019; 11:8433-8441. [PMID: 30985848 DOI: 10.1039/c9nr00774a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Uniform, well-ordered sub-20 nm patterns can be generated by the templated self-assembly of block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ). However, the self-assembled BCP monolayers remain limited in the possible structural geometries. Here, we introduce a multiple self-assembly method which uses di-BCPs to produce diverse morphologies, such as dot, dot-in-honeycomb, line-on-dot, double-dot, pondering, dot-in-pondering, and line-on-pondering patterns. To improve the diversity of BCP morphological structures, we employed sphere-forming and cylinder-forming poly(styrene-block-dimethylsiloxane) (PS-b-PDMS) BCPs with a high χ. The self-assembled mono-layer and double-layer SiOx dot patterns were modified at a high temperature (∼800 °C), showing hexagonally arranged (dot) and double-hexagonally arranged (pondering) SiOx patterns, respectively. We successfully obtained additional new nanostructures (big-dot, dot-in-honeycomb, line-on-dot, pondering, dot-in-pondering, and line-on-pondering types) through a second self-assembly of cylinder-forming BCPs using the dot and pondering patterns as guiding templates. This simple approach can likely be extended to the multiple self-assembly of many other BCPs with good functionality, significantly contributing to the development of various nanodevices.
Collapse
Affiliation(s)
- Hyunsung Jung
- Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering & Technology (KICET) 101 Soho-ro, Jinju 52851, Republic of Korea.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fei H, Yavitt BM, Kopanati G, Watkins JJ. Effect of side chain and backbone length on lamellar spacing in polystyrene‐block‐poly(dimethyl siloxane) brush block copolymers. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/polb.24824] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Huafeng Fei
- Department of Polymer Science and Engineering University of Massachusetts Amherst 120 Governors Drive, Amherst Massachusetts, 01003
| | - Benjamin M. Yavitt
- Department of Polymer Science and Engineering University of Massachusetts Amherst 120 Governors Drive, Amherst Massachusetts, 01003
| | - Gayathri Kopanati
- Department of Polymer Science and Engineering University of Massachusetts Amherst 120 Governors Drive, Amherst Massachusetts, 01003
| | - James J. Watkins
- Department of Polymer Science and Engineering University of Massachusetts Amherst 120 Governors Drive, Amherst Massachusetts, 01003
| |
Collapse
|
43
|
Zhu Y, Aissou K, Andelman D, Man X. Orienting Cylinder-Forming Block Copolymer Thin Films: The Combined Effect of Substrate Corrugation and Its Surface Energy. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Karim Aissou
- Institut Européen des Membranes, Université de Montpellier-CNRS-ENSCM, 300 Avenue du Professeur Emile Jeanbrau, F-34090 Montpellier, France
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | | |
Collapse
|
44
|
Shi LY, Lee S, Cheng LC, Huang H, Liao F, Ran R, Yager KG, Ross CA. Thin Film Self-Assembly of a Silicon-Containing Rod–Coil Liquid Crystalline Block Copolymer. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01938] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling-Ying Shi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Li-Chen Cheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hejin Huang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Fen Liao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Kevin G. Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Caroline A. Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Wei W, Xiong H. Orientation and Morphology Control of the Liquid Crystalline Block Copolymer Thin Film by Liquid Crystalline Solvent. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15455-15461. [PMID: 30422666 DOI: 10.1021/acs.langmuir.8b03318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The critical challenge to engineer the morphological structures in the strongly phase-segregated block copolymer thin film is to overcome the preferential wetting of the blocks at the interface and direct the self-assembly process. Herein, we utilize surface activity and selective solvation of a nematic (N) liquid crystalline (LC) solvent, 5CB, to facilely alter the LC anchoring and the orientation of the nanophase separated structures of the smectic-nematic (S-N) LC block copolymer thin film. For the neat S-N diblock copolymer thin film, the nanostructures are parallel aligned. In contrast, with continuous introduction of 5CB into the system, the orientations of the characteristic nanostructures and the morphologies of the LC thin film can be consequently changed, yielding the perpendicularly oriented lamellar or cylindrical structures with the feature size below 10 nm. The homeotropic alignment of the 5CB nematics near the air interface plays a critical role to induce this unique behavior in the S-N/5CB systems, which offers an opportunity to fine-tune the interfacial structures and the morphological patterning in the block copolymer thin film.
Collapse
|
46
|
Gunkel I. Directing Block Copolymer Self-Assembly on Patterned Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802872. [PMID: 30318828 DOI: 10.1002/smll.201802872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Self-assembling block copolymer films provide access to a variety of different nanostructured patterns in one, two, and three dimensions. However, in the absence of any templating, these nanostructures suffer from defects, often limiting utility. Directed block copolymer self-assembly uses patterned substrates that effectively suppress defect formation and allow the creation of desired patterns. The two main directed self-assembly techniques, chemoepitaxy and graphoepitaxy, employ chemically and topographically patterned substrates, respectively, to direct the block copolymer assembly in thin films. Their successful application in generating defect-free patterns in films of block copolymers exhibiting particular morphologies is summarized in this concept article. The possible role of directed self-assembly in extending nanostructured patterning from two to three dimensions is also discussed.
Collapse
Affiliation(s)
- Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|
47
|
Guliyeva A, Vayer M, Warmont F, Faugère AM, Andreazza P, Takano A, Matsushita Y, Sinturel C. Thin Films with Perpendicular Tetragonally Packed Rectangular Rods Obtained from Blends of Linear ABC Block Terpolymers. ACS Macro Lett 2018; 7:789-794. [PMID: 35650769 DOI: 10.1021/acsmacrolett.8b00272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A binary blend of poly(isoprene-block-styrene-block-(2-vinylpyridine)) (ISP) triblock terpolymers, having the same chain length but different compositions, was used to achieve an ordered lattice with 4-fold symmetry of rectangular-shaped rods of poly(isoprene) (I) and poly(2-vinylpyridine) (P). In given conditions, the I and P domains were oriented perpendicularly to the substrate, providing an appealing type of templates for nanopatterning. Thin films were prepared by spin coating, exposed to solvent vapor (providing morphological reorganization), and then characterized by atomic force microscopy, transmission electron microscopy, and grazing-incidence small-angle X-ray scattering. Selective I and P identifications were carried out by AFM and TEM on a model ISP, as well as development of a technique of electronic contrast enhancement to better assign the self-assembly structure in GISAXS.
Collapse
Affiliation(s)
- Aynur Guliyeva
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN) UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Marylène Vayer
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN) UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Fabienne Warmont
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN) UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Anne Marie Faugère
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN) UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Pascal Andreazza
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN) UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| | - Atsushi Takano
- Laboratory of Physical Chemistry of Polymers, Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yushu Matsushita
- Laboratory of Physical Chemistry of Polymers, Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Christophe Sinturel
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN) UMR 7374, CNRS-Université d’Orléans, CS 40059, F-45071 Orléans, France
| |
Collapse
|
48
|
Cheng LC, Gadelrab KR, Kawamoto K, Yager KG, Johnson JA, Alexander-Katz A, Ross CA. Templated Self-Assembly of a PS- Branch-PDMS Bottlebrush Copolymer. NANO LETTERS 2018; 18:4360-4369. [PMID: 29877712 DOI: 10.1021/acs.nanolett.8b01389] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The self-assembly of block copolymers (BCPs) with novel architectures offers tremendous opportunities in nanoscale patterning and fabrication. Here, the thin film morphology, annealing kinetics, and topographical templating of an unconventional Janus-type "PS- branch-PDMS" bottlebrush copolymer (BBCP) are described. In the Janus-type BBCP, each segment of the bottlebrush backbone connects two immiscible side chain blocks. Thin films of a Janus-type BBCP with Mn = 609 kg/mol exhibited 22 nm period cylindrical microdomains with long-range order under solvent vapor annealing, and the effects of as-cast film thickness, solvent vapor pressure, and composition of the binary mixture of solvent vapors are described. The dynamic self-assembly process was characterized using in situ grazing-incidence X-ray scattering. Templated self-assembly of the BBCP within lithographically patterned substrates was demonstrated, showing distinct pattern orientation and dimensions that differ from conventional BCPs. Self-consistent field theory is used to elucidate details of the templated self-assembly behavior within confinement.
Collapse
Affiliation(s)
| | | | | | - Kevin G Yager
- Center for Functional Nanomaterials , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | | | | | | |
Collapse
|
49
|
Brassat K, Kool D, Bürger J, Lindner JKN. Hierarchical nanopores formed by block copolymer lithography on the surfaces of different materials pre-patterned by nanosphere lithography. NANOSCALE 2018; 10:10005-10017. [PMID: 29774901 DOI: 10.1039/c8nr01397g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bottom-up patterning techniques allow for the creation of surfaces with ordered arrays of nanoscale features on large areas. Two bottom-up techniques suitable for the formation of regular nanopatterns on different length scales are nanosphere lithography (NSL) and block copolymer (BCP) lithography. In this paper it is shown that NSL and BCP lithography can be combined to easily design hierarchically nanopatterned surfaces of different materials. Nanosphere lithography is used for the pre-patterning of surfaces with antidots, i.e. hexagonally arranged cylindrical holes in thin films of Au, Pt and TiO2 on SiO2, providing a periodic chemical and topographical contrast on the surface suitable for templating in subsequent BCP lithography. PS-b-PMMA BCP is used in the second self-assembly step to form hexagonally arranged nanopores with sub-20 nm diameter within the antidots upon microphase separation. To achieve this the microphase separation of BCP on planar surfaces is studied, too, and it is demonstrated for the first time that vertical BCP nanopores can be formed on TiO2, Au and Pt films without using any neutralization layers. To explain this the influence of surface energy, polarity and roughness on the microphase separation is investigated and discussed along with the wetting state of BCP on NSL-pre-patterned surfaces. The presented novel route for the creation of advanced hierarchical nanopatterns is easily applicable on large-area surfaces of different materials. This flexibility makes it suitable for a broad range of applications, from the morphological design of biocompatible surfaces for life science to complex pre-patterns for nanoparticle placement in semiconductor technology.
Collapse
Affiliation(s)
- Katharina Brassat
- Dept. of Physics, Paderborn University, Warburgerstr. 100, 33098 Paderborn, Germany.
| | | | | | | |
Collapse
|
50
|
Qiang Z, Akolawala SA, Wang M. Simultaneous In-Film Polymer Synthesis and Self-Assembly for Hierarchical Nanopatterns. ACS Macro Lett 2018; 7:566-571. [PMID: 35632932 DOI: 10.1021/acsmacrolett.8b00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A key requirement for practical applications of nanostructured block copolymer (BCP) self-assembly is the ability to generate complex geometries including different shapes and diverse sizes across one substrate surface. This has been difficult because spatial control over the underlying chemistry of the BCP has been limited. Here, we demonstrate a photocontrolled in-film polymerization process in the presence of monomer vapor for synthesizing homopolymers in self-assembled BCP films. The homopolymers blend with BCPs and alter the nanopatterns by changing the underlying polymer chemistry and composition. We apply this technique to a variety of BCPs including polystyrene-b-polyisoprene-b-polystyrene, polystyrene-b-poly(methyl methacrylate), and polystyrene-b-poly(4-vinylpyridine). The region of in-film polymerization can be modulated by the location of irradiation using photomasks for obtaining distinct morphologies on one substrate, providing a new platform for hierarchically manipulating nanopatterns within the self-assembled BCP thin film as well as opening up a new area for radical polymerizations of monomers within such geometrically confined, swollen films.
Collapse
Affiliation(s)
- Zhe Qiang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sahil A. Akolawala
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|