1
|
Shang T, Jia Z, Li J, Cao H, Xu H, Cong L, Ma D, Wang X, Liu J. Unraveling the triad of hypoxia, cancer cell stemness, and drug resistance. J Hematol Oncol 2025; 18:32. [PMID: 40102937 PMCID: PMC11921735 DOI: 10.1186/s13045-025-01684-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/05/2025] [Indexed: 03/20/2025] Open
Abstract
In the domain of addressing cancer resistance, challenges such as limited effectiveness and treatment resistance remain persistent. Hypoxia is a key feature of solid tumors and is strongly associated with poor prognosis in cancer patients. Another significant portion of the development of acquired drug resistance is attributed to tumor stemness. Cancer stem cells (CSCs), a small tumor cell subset with self-renewal and proliferative abilities, are crucial for tumor initiation, metastasis, and intra-tumoral heterogeneity. Studies have shown a significant association between hypoxia and CSCs in the context of tumor resistance. Recent studies reveal a strong link between hypoxia and tumor stemness, which together promote tumor survival and progression during treatment. This review elucidates the interplay between hypoxia and CSCs, as well as their correlation with resistance to therapeutic drugs. Targeting pivotal genes associated with hypoxia and stemness holds promise for the development of novel therapeutics to combat tumor resistance.
Collapse
Affiliation(s)
- Tongxuan Shang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiayi Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Heng Cao
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Cong
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Dongxu Ma
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiang Wang
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Chen W, Cha Z, Huang S, Liu R, Chen J, Kamau PM, Lu X, Li B, Liu D. Recombinant α-Toxin BmK-M9 Inhibits Breast Cancer Progression by Regulating β-Catenin In Vivo. Cell Biochem Biophys 2025:10.1007/s12013-025-01711-8. [PMID: 40080350 DOI: 10.1007/s12013-025-01711-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2025] [Indexed: 03/15/2025]
Abstract
Screening bioactive compounds from natural sources, including animals and plants, is a valuable strategy for identifying novel anti-tumor agents. α-Toxin BmK-M9, a key component of scorpion venom, has received limited attention regarding its potential anti-cancer effects and underlying mechanisms in breast cancer. This study investigates the effects and mechanisms of BmK-M9 in breast cancer using in vitro experiments and a nude mouse model. mRNA sequencing was performed to identify affected signaling pathways, while Western blotting and immunohistochemistry were utilized to analyze the Wnt/β-catenin signaling pathway. The results demonstrated that BmK-M9 significantly inhibited breast cancer cell invasion and migration in vitro and suppressed tumor growth in vivo. Transcriptomic analysis revealed that BmK-M9 influenced cellular processes related to proliferation, apoptosis, motility, and metabolism. Furthermore, BmK-M9 markedly downregulated β-catenin expression in the Wnt/β-catenin pathway. These findings suggest that BmK-M9 exerts anti-tumor effects in breast cancer by modulating Wnt/β-catenin signaling, highlighting its potential as a promising therapeutic candidate.
Collapse
Affiliation(s)
- Wenlin Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Zhuocen Cha
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
- Oncology department, Guizhou Hospital of the First Affiliated Hospital, Sun Yat-sen University, Guiyang, Guizhou, China
| | - Saijun Huang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
- Maternal and Child Health Hospital of Changsha County, Changsha, Hunan, China
| | - Ruimin Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Jiayi Chen
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Peter Muiruri Kamau
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Xingjia Lu
- Department of Breast Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bowen Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province/National & Local Joint Engineering Center of Natural Bioactive Peptides, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center/National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Yunnan Cancer Hospital, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Shi Y, An K, ShaoX zhou, Zhang X, Kan Q, Tian X. Integration of single-cell sequencing and bulk transcriptome data develops prognostic markers based on PCLAF + stem-like tumor cells using artificial neural network in gastric cancer. Heliyon 2024; 10:e38662. [PMID: 39524750 PMCID: PMC11547969 DOI: 10.1016/j.heliyon.2024.e38662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/10/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024] Open
Abstract
Background Gastric cancer stem cells (GCSCs) are important tumour cells involved in tumourigenesis and gastric cancer development. However, their clinical value remains unclear due to the limitations of the available technologies. This study aims to explore the clinical significance of GCSCs, their connection to the tumour microenvironment, and their underlying molecular mechanisms. Methods Stem-like tumour cells were identified by mining single-cell transcriptomic data from multiple samples. Integrated analysis of single-cell and bulk transcriptome data was performed to analyse the role of stem-like tumour cells in predicting clinical outcomes by introducing the intermediate variable mRNA stemness degree (SD). Consensus clustering analysis was performed to develop an SD-related molecular classification strategy to assess the clinical characteristics in gastric cancer. A prognostic model was constructed using a customized approach that comprehensively considered SD-related gene signatures based on an artificial neural network. Results By analysing single-cell data and validating immunofluorescence results, we identified a PCLAF+ stem-like tumour cell population in GC. By calculating SD, we observed that PCLAF+ stem-like tumour cells were associated with poor prognosis and certain clinical features. The SD was negatively correlated with the abundance of most immune cell types. Furthermore, we proposed an SD-related classification method and prognostic model. In addition, the customised prognostic model can be used to predict whether a patient respond to PD-1/PD-L1 immunotherapy. Conclusion We identified a cluster of stem-like cells and elucidated their clinical significance, highlighting the possibility of their use as immunotherapeutic targets.
Collapse
Affiliation(s)
- Yong Shi
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Ke An
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - ShaoX zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - XuR. Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - QuanC. Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xin Tian
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, China
| |
Collapse
|
4
|
Kim B, Huang Y, Ko KP, Zhang S, Zou G, Zhang J, Kim MJ, Little D, Ellis LV, Paschini M, Jun S, Park KS, Chen J, Kim C, Park JI. PCLAF-DREAM drives alveolar cell plasticity for lung regeneration. Nat Commun 2024; 15:9169. [PMID: 39448571 PMCID: PMC11502753 DOI: 10.1038/s41467-024-53330-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Cell plasticity, changes in cell fate, is crucial for tissue regeneration. In the lung, failure of regeneration leads to diseases, including fibrosis. However, the mechanisms governing alveolar cell plasticity during lung repair remain elusive. We previously showed that PCLAF remodels the DREAM complex, shifting the balance from cell quiescence towards cell proliferation. Here, we find that PCLAF expression is specific to proliferating lung progenitor cells, along with the DREAM target genes transactivated by lung injury. Genetic ablation of Pclaf impairs AT1 cell repopulation from AT2 cells, leading to lung fibrosis. Mechanistically, the PCLAF-DREAM complex transactivates CLIC4, triggering TGF-β signaling activation, which promotes AT1 cell generation from AT2 cells. Furthermore, phenelzine that mimics the PCLAF-DREAM transcriptional signature increases AT2 cell plasticity, preventing lung fibrosis in organoids and mice. Our study reveals the unexpected role of the PCLAF-DREAM axis in promoting alveolar cell plasticity, beyond cell proliferation control, proposing a potential therapeutic avenue for lung fibrosis prevention.
Collapse
Grants
- P30 CA016672 NCI NIH HHS
- CA193297, CA256207, CA278967, CA278971, CA279867, P50 CA83639, P30 CA016672, CA125123, RR024574 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- R03 CA256207 NCI NIH HHS
- R01 CA278967 NCI NIH HHS
- K99 CA286761 NCI NIH HHS
- RP200315, RP180672, RP200504 Cancer Prevention and Research Institute of Texas (Cancer Prevention Research Institute of Texas)
- R03 CA279867 NCI NIH HHS
- S10 RR024574 NCRR NIH HHS
- R01 CA278971 NCI NIH HHS
- K99CA286761 U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
- R01 CA193297 NCI NIH HHS
- P30 CA125123 NCI NIH HHS
- U.S. Department of Health & Human Services | NIH | National Cancer Institute (NCI)
Collapse
Affiliation(s)
- Bongjun Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Yuanjian Huang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kyung-Pil Ko
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Gengyi Zou
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Moon Jong Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Danielle Little
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lisandra Vila Ellis
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Margherita Paschini
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Kwon-Sik Park
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Carla Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
6
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Cordani M, Dando I, Ambrosini G, González-Menéndez P. Signaling, cancer cell plasticity, and intratumor heterogeneity. Cell Commun Signal 2024; 22:255. [PMID: 38702718 PMCID: PMC11067149 DOI: 10.1186/s12964-024-01643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2024] Open
Abstract
Cancer's complexity is in part due to the presence of intratumor heterogeneity and the dynamic nature of cancer cell plasticity, which create substantial obstacles in effective cancer management. Variability within a tumor arises from the existence of diverse populations of cancer cells, impacting the progression, spread, and resistance to treatments. At the core of this variability is the concept of cellular plasticity - the intrinsic ability of cancer cells to alter their molecular and cellular identity in reaction to environmental and genetic changes. This adaptability is a cornerstone of cancer's persistence and progression, making it a formidable target for treatments. Emerging studies have emphasized the critical role of such plasticity in fostering tumor diversity, which in turn influences the course of the disease and the effectiveness of therapeutic strategies. The transformative nature of cancer involves a network of signal transduction pathways, notably those that drive the epithelial-to-mesenchymal transition and metabolic remodeling, shaping the evolutionary path of cancer cells. Despite advancements, our understanding of the precise molecular machinations and signaling networks driving these changes is still evolving, underscoring the necessity for further research. This editorial presents a series entitled "Signaling Cancer Cell Plasticity and Intratumor Heterogeneity" in Cell Communication and Signaling, dedicated to unraveling these complex processes and proposing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, Madrid, 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, 28040, Spain.
| | - Ilaria Dando
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, 37134, Italy.
| | - Giulia Ambrosini
- Department of Neuroscience, Biomedicine and Movement Sciences, Biochemistry Section, University of Verona, Verona, 37134, Italy.
| | - Pedro González-Menéndez
- Departamento de Morfología y Biología Celular, School of Medicine, Julián Claveria 6, Oviedo, 33006, Spain.
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, 33006, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias (HUCA), Oviedo, 33011, Spain.
| |
Collapse
|
8
|
Lu X, Chandravanshi M, Sabbasani VR, Gaikwad S, Hughitt VK, Gyabaah-Kessie N, Scroggins BT, Das S, Myint W, Clapp ME, Schwieters CD, Dyba MA, Bolhuis DL, Koscielniak JW, Andresson T, Emanuele MJ, Brown NG, Matsuo H, Chari R, Citrin DE, Mock BA, Swenson RE, Walters KJ. A structure-based designed small molecule depletes hRpn13 Pru and a select group of KEN box proteins. Nat Commun 2024; 15:2485. [PMID: 38509117 PMCID: PMC10954691 DOI: 10.1038/s41467-024-46644-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 03/22/2024] Open
Abstract
Proteasome subunit hRpn13 is partially proteolyzed in certain cancer cell types to generate hRpn13Pru by degradation of its UCHL5/Uch37-binding DEUBAD domain and retention of an intact proteasome- and ubiquitin-binding Pru domain. By using structure-guided virtual screening, we identify an hRpn13 binder (XL44) and solve its structure ligated to hRpn13 Pru by integrated X-ray crystallography and NMR to reveal its targeting mechanism. Surprisingly, hRpn13Pru is depleted in myeloma cells following treatment with XL44. TMT-MS experiments reveal a select group of off-targets, including PCNA clamp-associated factor PCLAF and ribonucleoside-diphosphate reductase subunit M2 (RRM2), that are similarly depleted by XL44 treatment. XL44 induces hRpn13-dependent apoptosis and also restricts cell viability by a PCLAF-dependent mechanism. A KEN box, but not ubiquitination, is required for XL44-induced depletion of PCLAF. Here, we show that XL44 induces ubiquitin-dependent loss of hRpn13Pru and ubiquitin-independent loss of select KEN box containing proteins.
Collapse
Affiliation(s)
- Xiuxiu Lu
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Monika Chandravanshi
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Venkata R Sabbasani
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Snehal Gaikwad
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - V Keith Hughitt
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Nana Gyabaah-Kessie
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Bradley T Scroggins
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Wazo Myint
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michelle E Clapp
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Charles D Schwieters
- Computational Biomolecular Magnetic Resonance Core, Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Marzena A Dyba
- Biophysics Resource, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Derek L Bolhuis
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Janusz W Koscielniak
- Basic Science Program, Leidos Biomedical Research Inc., NMR Facility for Biological Research, Center for Structural Biology, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Michael J Emanuele
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Rolf E Swenson
- Chemistry and Synthesis Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kylie J Walters
- Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
9
|
Wei JB, Zeng XC, Ji KR, Zhang LY, Chen XM. Identification of Key Genes and Related Drugs of Adrenocortical Carcinoma by Integrated Bioinformatics Analysis. Horm Metab Res 2023. [PMID: 38109896 DOI: 10.1055/a-2209-0771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Adrenocortical carcinoma (ACC) is a malignant carcinoma with an extremely poor prognosis, and its pathogenesis remains to be understood to date, necessitating further investigation. This study aims to discover biomarkers and potential therapeutic agents for ACC through bioinformatics, enhancing clinical diagnosis and treatment strategies. Differentially expressed genes (DEGs) between ACC and normal adrenal cortex were screened out from the GSE19750 and GSE90713 datasets available in the GEO database. An online Venn diagram tool was utilized to identify the common DEGs between the two datasets. The identified DEGs were subjected to functional assessment, pathway enrichment, and identification of hub genes by performing the protein-protein interaction (PPI), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The differences in the expressions of hub genes between ACC and normal adrenal cortex were validated at the GEPIA2 website, and the association of these genes with the overall patient survival was also assessed. Finally, on the QuartataWeb website, drugs related to the identified hub genes were determined. A total of 114 DEGs, 10 hub genes, and 69 known drugs that could interact with these genes were identified. The GO and KEGG analyses revealed a close association of the identified DEGs with cellular signal transduction. The 10 hub genes identified were overexpressed in ACC, in addition to being significantly associated with adverse prognosis in ACC. Three genes and the associated known drugs were identified as potential targets for ACC treatment.
Collapse
Affiliation(s)
- Jian-Bin Wei
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Zeng
- The Third Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Kui-Rong Ji
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Ling-Yi Zhang
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Xiao-Min Chen
- Department of Endocrinology, Zhongshan Hospital Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Golmohammadi M, Motahari Rad H, Soleimanpour-Lichaei S, Olya ME, Soleimanpour-Lichaei HR. Stem Cell Protein PIWIL2 Promotes EMT Process and Stem Cell-Like Properties in MCF7 Breast Cancer Cell Line. Adv Biomed Res 2023; 12:250. [PMID: 38192888 PMCID: PMC10772788 DOI: 10.4103/abr.abr_115_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 01/10/2024] Open
Abstract
Background Piwi-like RNA-mediated gene silencing 2 (PIWIL2) is a member of AGO/PIWI gene family, which is enriched in cancer stem cells (CSCs). The purpose of this research was to investigate the overexpression of PIWIL2 and its role in the induction of EMT and CSC properties in MCF7 breast cancer cell line. Materials and Methods MCF7 cells were transfected with the human gene PIWIL2 (Hili) under the control of CMV promoter utilizing the neon electroporation method. Subsequently, the selection was conducted using G418, and doubling time was calculated in the transformed and control cells. RT and real-time PCR were also performed to analyze the expression of epithelial and mesenchymal genes and those related to CSCs. Results According to the observations from this study, transfecting MCF7 cells with PIWIL2 triggered the conversion of epithelial cells to mesenchymal cells and induced the genes specific for breast CSCs, which was coincident with 9-h reduction in the doubling time of the transfected cells. Furthermore, the molecular analyses revealed a significant reduction in the expression of epithelial markers, while a significant increase was detected in the expression of mesenchymal genes and many CSC biomarkers. Conclusion PIWIL2 protein acts as a master regulatory protein that is able to manipulate the transcription through specific signaling pathways, which allow the cells to gain stem cell-like properties.
Collapse
Affiliation(s)
- Maryam Golmohammadi
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hanieh Motahari Rad
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Samereh Soleimanpour-Lichaei
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammad Emad Olya
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Hamid Reza Soleimanpour-Lichaei
- Department of Stem Cells and Regenerative Medicine, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
11
|
Alshahrani SH, Rakhimov N, Rana A, Alsaab HO, Hjazi A, Adile M, Abosaooda M, Abdulhussien Alazbjee AA, Alsalamy A, Mahmoudi R. Dishevelled: An emerging therapeutic oncogene in human cancers. Pathol Res Pract 2023; 250:154793. [PMID: 37683388 DOI: 10.1016/j.prp.2023.154793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Cancer is a multifaceted and complex disorder characterized by uncontrolled rates of cell proliferation and its ability to spread and attack other organs. Emerging data indicated several pathways and molecular targets are engaged in cancer progression. Among them, the Wnt signaling pathway was shown to have a crucial role in cancer onset and progression. Dishevelled (DVL) acts in a branch point of canonical and non-canonical Wnt pathway. DVL not only acts in the cytoplasm to inactivate the destruction complex of β-catenin but is also transported into the nucleus to affect the transcription of target genes. Available data revealed that the expression levels of DVL increased in cell and clinical specimens of various cancers, proposing that it may have an oncogenic role. DVL promoted cell invasion, migration, cell cycle, survival, proliferation, 3D-spheroid formation, stemness, and epithelial mesenchymal transition (EMT) and it suppressed cell apoptosis. The higher levels of DVL is associated with the clinicopathological characteristic of cancer-affected patients, including lymph node metastasis, tumor grade, histological type, and age. In addition, the higher levels of DVL could be a promising diagnostic and prognostic biomarker in cancer as well as it could be a mediator in cancer chemoresistance to Methotrexate, paclitaxel, and 5-fluorouracil. This study aimed to investigate the underlying molecular mechanism of DVL in cancer pathogenesis as well as to explore its importance in cancer diagnosis and prognosis as well as its role as a mediator in cancer chemotherapy.
Collapse
Affiliation(s)
| | - Nodir Rakhimov
- Department of Oncology, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan; Department of Scientific Affairs,Tashkent State Dental Institute, Makhtumkuli 103, Tashkent, Uzbekistan
| | - Arti Rana
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohaned Adile
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | | | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Reza Mahmoudi
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Liu D, Wang H, Li X, Liu J, Zhang Y, Hu J. Small molecule inhibitors for cancer metabolism: promising prospects to be explored. J Cancer Res Clin Oncol 2023; 149:8051-8076. [PMID: 37002510 DOI: 10.1007/s00432-022-04501-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Abnormal metabolism is the main hallmark of cancer, and cancer metabolism plays an important role in tumorigenesis, metastasis, and drug resistance. Therefore, studying the changes of tumor metabolic pathways is beneficial to find targets for the treatment of cancer diseases. The success of metabolism-targeted chemotherapy suggests that cancer metabolism research will provide potential new targets for the treatment of malignant tumors. PURPOSE The aim of this study was to systemically review recent research findings on targeted inhibitors of tumor metabolism. In addition, we summarized new insights into tumor metabolic reprogramming and discussed how to guide the exploration of new strategies for cancer-targeted therapy. CONCLUSION Cancer cells have shown various altered metabolic pathways, providing sufficient fuel for their survival. The combination of these pathways is considered to be a more useful method for screening multilateral pathways. Better understanding of the clinical research progress of small molecule inhibitors of potential targets of tumor metabolism will help to explore more effective cancer treatment strategies.
Collapse
Affiliation(s)
- Dan Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - HongPing Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - XingXing Li
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - JiFang Liu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - YanLing Zhang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China
| | - Jing Hu
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
13
|
Warrier NM, Kelkar N, Johnson CT, Govindarajan T, Prabhu V, Kumar P. Understanding cancer stem cells and plasticity: Towards better therapeutics. Eur J Cell Biol 2023; 102:151321. [PMID: 37137199 DOI: 10.1016/j.ejcb.2023.151321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The ability of cancer cells to finally overcome various lines of treatment in due course has always baffled the scientific community. Even with the most promising therapies, relapse is ultimately seen, and this resilience has proved to be a major hurdle in the management of cancer. Accumulating evidence now attributes this resilience to plasticity. Plasticity is the ability of cells to change their properties and is substantial as it helps in normal tissue regeneration or post-injury repair processes. It also helps in the overall maintenance of homeostasis. Unfortunately, this critical ability of cells, when activated incorrectly, can lead to numerous diseases, including cancer. Therefore, in this review, we focus on the plasticity aspect with an emphasis on cancer stem cells (CSCs). We discuss the various forms of plasticity that provide survival advantages to CSCs. Moreover, we explore various factors that affect plasticity. Furthermore, we provide the therapeutic implications of plasticity. Finally, we provide an insight into the future targeted therapies involving plasticity for better clinical outcomes.
Collapse
Affiliation(s)
- Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nachiket Kelkar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Carol Tresa Johnson
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Vijendra Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
14
|
Hashemi M, Hasani S, Hajimazdarany S, Ghadyani F, Olyaee Y, Khodadadi M, Ziyarani MF, Dehghanpour A, Salehi H, Kakavand A, Goharrizi MASB, Aref AR, Salimimoghadam S, Akbari ME, Taheriazam A, Hushmandi K, Entezari M. Biological functions and molecular interactions of Wnt/β-catenin in breast cancer: Revisiting signaling networks. Int J Biol Macromol 2023; 232:123377. [PMID: 36702226 DOI: 10.1016/j.ijbiomac.2023.123377] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/27/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023]
Abstract
Changes in lifestyle such as physical activity and eating habits have been one of the main reasons for development of various diseases in modern world, especially cancer. However, role of genetic factors in initiation of cancer cannot be ignored and Wnt/β-catenin signaling is such factor that can affect tumor progression. Breast tumor is the most malignant tumor in females and it causes high mortality and morbidity around the world. The survival and prognosis of patients are not still desirable, although there have been advances in introducing new kinds of therapies and diagnosis. The present review provides an update of Wnt/β-catenin function in breast cancer malignancy. The upregulation of Wnt is commonly observed during progression of breast tumor and confirms that tumor cells are dependent on this pathway Wnt/β-catenin induction prevents apoptosis that is of importance for mediating drug resistance. Furthermore, Wnt/β-catenin signaling induces DNA damage repair in ameliorating radio-resistance. Wnt/β-catenin enhances proliferation and metastasis of breast tumor. Wnt/β-catenin induces EMT and elevates MMP expression. Furthermore, Wnt/β-catenin participates in tumor microenvironment remodeling and due to its tumor-promoting factor, drugs for its suppression have been developed. Different kinds of upstream mediators Wnt/β-catenin signaling in breast cancer have been recognized that their targeting is a therapeutic approach. Finally, Wnt/β-catenin can be considered as a biomarker in clinical trials.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Hasani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yeganeh Olyaee
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzieh Khodadadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Fallah Ziyarani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hasti Salehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
15
|
Chen ZH, Tian Y, Zhou GL, Yue HR, Zhou XJ, Ma HY, Ge J, Wang X, Cao XC, Yu Y. CMTM7 inhibits breast cancer progression by regulating Wnt/β-catenin signaling. Breast Cancer Res 2023; 25:22. [PMID: 36829181 PMCID: PMC9960403 DOI: 10.1186/s13058-023-01620-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/12/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Breast cancer is the major cause of death in females globally. Chemokine-like factor like MARVEL transmembrane domain containing 7 (CMTM7) is reported as a tumor suppressor and is involved in epidermal growth factor receptor degradation and PI3K/AKT signaling in previous studies. However, other molecular mechanisms of CMTM7 remain unclear. METHODS The expression level of CMTM7 in breast cancer cells and tissues was detected by qRT-PCR and western blot, and the methylation of CMTM7 promoter was detected by BSP sequencing. The effect of CMTM7 was verified both in vitro and in vivo, including MTT, colony formation, EdU assay, transwell assay and wound healing assay. The interaction between CMTM7 and CTNNA1 was investigated by co-IP assay. The regulation of miR-182-5p on CMTM7 and TCF3 on miR-182-5p was detected by luciferase reporter assay and ChIP analysis. RESULTS This study detected the hypermethylation levels of the CMTM7 promoter region in breast cancer tissues and cell lines. CMTM7 was performed as a tumor suppressor both in vitro and in vivo. Furthermore, CMTM7 was a direct miR-182-5p target. Besides, we found that CMTM7 could interact with Catenin Alpha 1 (CTNNA1) and regulate Wnt/β-catenin signaling. Finally, transcription factor 3 (TCF3) can regulate miR-182-5p. We identified a feedback loop with the composition of miR-182-5p, CMTM7, CTNNA1, CTNNB1 (β-catenin), and TCF3, which play essential roles in breast cancer progression. CONCLUSION These findings reveal the emerging character of CMTM7 in Wnt/β-catenin signaling and bring new sights of gene interaction. CMTM7 and other elements in the feedback loop may serve as emerging targets for breast cancer therapy.
Collapse
Affiliation(s)
- Zhao-Hui Chen
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yao Tian
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.,Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Guang-Lei Zhou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hao-Ran Yue
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xue-Jie Zhou
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hai-Yan Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China.,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin, 300060, China. .,Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China. .,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
16
|
PLA2G7/PAF-AH as Potential Negative Regulator of the Wnt Signaling Pathway Mediates Protective Effects in BRCA1 Mutant Breast Cancer. Int J Mol Sci 2023; 24:ijms24010882. [PMID: 36614323 PMCID: PMC9821466 DOI: 10.3390/ijms24010882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Past studies have confirmed that aberrant activation of the Wnt/β-catenin signaling is associated with tumorigenesis and metastasis in breast cancer, while the role of platelet-activating factor acetylhydrolase (PLA2G7/PAF-AH) in this signaling pathway remains unclear. In this study, we analyze the functional impact of PAF-AH on BRCA1 mutant breast cancer and explore its relationship to the Wnt signaling pathway. By performing immunohistochemistry, PAF-AH expression and β-catenin expression were examined in both BRCA1 WT and BRCA1 mutant breast cancer specimens. The BRCA1 mutant breast cancer cell line HCC1937 was used for in vitro experiments to assess the impact of PAF-AH on cellular functions. The intracellular distribution of β-catenin depending on PLA2G7/PAF-AH expression was investigated by immunocytochemistry. Significantly higher nuclear expression levels of PAF-AH were found in BRCA1 mutant tissue specimens than in BRCA1 WT samples. Cell viability, proliferation, and the motility rate of HCC1937 were significantly enhanced after PLA2G7 silencing, which indicated a protective role of PAF-AH in breast cancer. Nuclear PAF-AH expressed correlatedly with membranous β-catenin. PLA2G7 silencing provoked the β-catenin translocation from the membrane to the nucleus and activated Wnt signaling downstream genes. Our data showed a protective effect of high PAF-AH expression in BRCA1 mutant breast cancer. PAF-AH may achieve its protective effect by negatively regulating the Wnt pathway. In conclusion, our research sheds new light on the regulatory pathways in BRCA1 mutant breast cancer.
Collapse
|
17
|
Zhang H, Meng L, Yin L, Fan T, Yu L, Han S, Wang L, Liang W, Yang X, Sun S. ClC-3 silencing mediates lysosomal acidification arrest and autophagy inhibition to sensitize chemo-photothermal therapy. Int J Pharm 2022; 628:122297. [DOI: 10.1016/j.ijpharm.2022.122297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/18/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022]
|
18
|
Li C, Yoshimura T, Tian M, Wang Y, Kondo T, Yamamoto KI, Fujisawa M, Ohara T, Sakaguchi M, Matsukawa A. Exosomal Wnt7a from a low metastatic subclone promotes lung metastasis of a highly metastatic subclone in the murine 4t1 breast cancer. BREAST CANCER RESEARCH : BCR 2022; 24:60. [PMID: 36096830 PMCID: PMC9469633 DOI: 10.1186/s13058-022-01557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022]
Abstract
Background Patients with triple-negative breast cancer (TNBC) often have poorer prognosis than those with other subtypes because of its aggressive behaviors. Cancer cells are heterogeneous, and only a few highly metastatic subclones metastasize. Although the majority of subclones may not metastasize, they could contribute by releasing factors that increase the capacity of highly metastatic cells and/or provide a favorable tumor microenvironment (TME). Here, we analyzed the interclonal communication in TNBC which leads to efficient cancer progression, particularly lung metastasis, using the polyclonal murine 4T1 BC model. Methods We isolated two 4T1 subclones, LM.4T1 and HM.4T1 cells with a low and a high metastatic potential, respectively, and examined the effects of LM.4T1 cells on the behaviors of HM.4T1 cells using the cell scratch assay, sphere-forming assay, sphere invasion assay, RT-qPCR, and western blotting in vitro. We also examined the contribution of LM.4T1 cells to the lung metastasis of HM.4T1 cells and TME in vivo. To identify a critical factor which may be responsible for the effects by LM.4T1 cells, we analyzed the data obtained from the GEO database. Results Co-injection of LM.4T1 cells significantly augmented lung metastases by HM.4T1 cells. LM.4T1-derived exosomes promoted the migration and invasion of HM.4T1 cells in vitro, and blocking the secretion of exosome abrogated their effects on HM.4T1 cells. Analyses of data obtained from the GEO database suggested that Wnt7a might be a critical factor responsible for the enhancing effects. In fact, a higher level of Wnt7a was detected in LM.4T1 cells, especially in exosomes, than in HM.4T1 cells, and deletion of Wnt7a in LM.4T1 cells significantly decreased the lung metastasis of HM.4T1 cells. Further, treatment with Wnt7a increased the spheroid formation by HM.4T1 cells via activation of the PI3K/Akt/mTOR signaling pathway. Finally, infiltration of αSMA-positive fibroblasts and angiogenesis was more prominent in tumors of LM.4T1 cells and deletion of Wnt7a in LM.4T1 cells markedly reduced angiogenesis. Conclusions We demonstrated, for the first time, that a low metastatic subclone can enhance lung metastasis of highly metastatic subclone via exosomal Wnt7a and propose Wnt7a as a molecular target to treat TNBC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-022-01557-5.
Collapse
Affiliation(s)
- Chunning Li
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Teizo Yoshimura
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| | - Miao Tian
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Yuze Wang
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Takamasa Kondo
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Ken-Ichi Yamamoto
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Masayoshi Fujisawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.,Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
19
|
Xie J, Liao G, Feng Z, Liu B, Li X, Qiu M. ERO1L promotes the proliferation and metastasis of lung adenocarcinoma via the Wnt2/β-catenin signaling pathway. Mol Carcinog 2022; 61:897-909. [PMID: 35785492 DOI: 10.1002/mc.23441] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE This study aimed to explore the role and underlying mechanism of action of Endoplasmic reticulum oxidoreductin-1 L (ERO1L) in lung adenocarcinoma (LUAD). MATERIALS AND METHODS The Gene expression profiling interactive analysis database was used to analyze the expression of ERO1L in LUAD cases. The expression of ERO1L and Wnt2 in LUAD tissue was evaluated using immunohistochemistry. We also used western blotting to assess the expression of ERO1L or Wnt2 and the phosphorylation of β-catenin in LUAD cell lines. Plasmid transfection and small interfering RNA were used for overexpression and knockdown of ERO1L in LUAD cells, respectively. The proliferation, invasion and migration of LUAD cells were analyzed using cell viability, Transwell invasion and wound healing assays. The growth of LUAD tumors in animal models was assessed using tumor xenograft experiments. RESULTS This study revealed that elevated ERO1L expression was associated with a poor prognosis in LUAD patients. In addition, ERO1L expression was significantly associated with lymph-node metastasis, TNM stage and tumor size. The expression of Wnt2 was positively associated with ERO1L expression in LUAD tissue samples and cell lines. ERO1L overexpression upregulated the expression of Wnt2 and β-catenin phosphorylation in vitro. Additionally, ERO1L was essential for the ubiquitination of Wnt2. Last, ERO1L promoted the proliferation and metastasis of LUAD via the Wnt2 signaling pathway in vitro and in vivo. CONCLUSION These findings suggest that ERO1L was highly expressed in LUAD tissue, and it promoted the proliferation and metastasis of LUAD by activating the Wnt2/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jinbao Xie
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guoliang Liao
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Zhi Feng
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Bo Liu
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xu Li
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Minglian Qiu
- Department of Thoracic Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Ibragimova M, Tsyganov M, Litviakov N. Tumour Stem Cells in Breast Cancer. Int J Mol Sci 2022; 23:ijms23095058. [PMID: 35563449 PMCID: PMC9099719 DOI: 10.3390/ijms23095058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022] Open
Abstract
Tumour stem cells (CSCs) are a self-renewing population that plays important roles in tumour initiation, recurrence, and metastasis. Although the medical literature is extensive, problems with CSC identification and cancer therapy remain. This review provides the main mechanisms of CSC action in breast cancer (BC): CSC markers and signalling pathways, heterogeneity, plasticity, and ecological behaviour. The dynamic heterogeneity of CSCs and the dynamic transitions of CSC− non-CSCs and their significance for metastasis are considered.
Collapse
Affiliation(s)
- Marina Ibragimova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
- Correspondence:
| | - Matvey Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
| | - Nikolai Litviakov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (M.T.); (N.L.)
- Laboratory of Genetic Technologies, Siberian State Medical University, 2, Moscow Tract, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin, 634050 Tomsk, Russia
| |
Collapse
|
21
|
Huber R, Koval A, Marcourt L, Héritier M, Schnee S, Michellod E, Scapozza L, Katanaev VL, Wolfender JL, Gindro K, Ferreira Queiroz E. Chemoenzymatic Synthesis of Original Stilbene Dimers Possessing Wnt Inhibition Activity in Triple-Negative Breast Cancer Cells Using the Enzymatic Secretome of Botrytis cinerea Pers. Front Chem 2022; 10:881298. [PMID: 35518712 PMCID: PMC9062038 DOI: 10.3389/fchem.2022.881298] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022] Open
Abstract
The Wnt signaling pathway controls multiple events during embryonic development of multicellular animals and is carcinogenic when aberrantly activated in adults. Breast cancer and triple-negative breast cancer (TNBC) in particular depend upon Wnt pathway overactivation. Despite this importance, no Wnt pathway-targeting drugs are currently available, which necessitates novel approaches to search for therapeutically relevant compounds targeting this oncogenic pathway. Stilbene analogs represent an under-explored field of therapeutic natural products research. In the present work, a library of complex stilbene derivatives was obtained through biotransformation of a mixture of resveratrol and pterostilbene using the enzymatic secretome of Botrytis cinerea. To improve the chemodiversity, the reactions were performed using i-PrOH, n-BuOH, i-BuOH, EtOH, or MeOH as cosolvents. Using this strategy, a series of 73 unusual derivatives was generated distributed among 6 scaffolds; 55 derivatives represent novel compounds. The structure of each compound isolated was determined by nuclear magnetic resonance and high-resolution mass spectrometry. The inhibitory activity of the isolated compounds against the oncogenic Wnt pathway was comprehensively quantified and correlated with their capacity to inhibit the growth of the cancer cells, leading to insights into structure-activity relationships of the derivatives. Finally, we have dissected mechanistic details of the stilbene derivatives activity within the pathway.
Collapse
Affiliation(s)
- Robin Huber
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
| | - Laurence Marcourt
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Sylvain Schnee
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emilie Michellod
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, CMU, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| | - Katia Gindro
- Mycology Group, Research Department Plant Protection, Agroscope, Nyon, Switzerland
| | - Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU, Geneva, Switzerland
| |
Collapse
|
22
|
SEC14L3 plays a tumor-suppressive role in breast cancer through a Wnt/β-catenin-related way. Exp Cell Res 2022; 417:113161. [PMID: 35447102 DOI: 10.1016/j.yexcr.2022.113161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/20/2022]
Abstract
Breast cancer, the most prevalent malignancy in women, is also the leading cause of cancer-related deaths in women worldwide. The activation of the Wnt pathway plays a pivotal role in the metastatic abilities of breast cancer. In this study, IL1F6, MRGPRX1, and SEC14L3 were significantly correlated to breast cancer patients'overall survival based on TCGA-BRCA dataset. Although IL1F6, MRGPRX1 and SEC14L3 high expression were associated with better survival in breast cancer patients, SEC14L3 had the biggest survival benefit for breast cancer; therefore, SEC14L3 was selected for the subsequent investigation. SEC14L3 mRNA expression and protein levels within breast cancer cell lines decreased compared with normal human breast epithelial cells. Overexpressing SEC14L3 in breast cancer cells inhibited the malignant phenotypes of cancer cells, including the capacity of cells to migrate and invade. SEC14L3 overexpression decreased the levels of mesenchymal markers, whereas SEC14L3 knockdown facilitated the malignant behaviors of breast cancer cells. SEC14L3 overexpression also inhibited Wnt/β-catenin activation. The Wnt agonist strengthened the malignant phenotypes of breast cancer cells; moreover, the anti-tumor effects of SEC14L3 overexpression were partially attenuated by the Wnt agonist. Conclusively, SEC14L3, which is underexpressed in breast cancer cells and tissues, could play a tumor-suppressive role in a Wnt/β-catenin-related way.
Collapse
|
23
|
Yang X, Cao D, Ma W, Gao S, Wen G, Zhong J. Wnt signaling in triple-negative breast cancers: Its roles in molecular subtyping and cancer cell stemness and its crosstalk with non-coding RNAs. Life Sci 2022; 300:120565. [DOI: 10.1016/j.lfs.2022.120565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/20/2022]
|
24
|
Cui J, Chen H, Zhang K, Li X. Targeting the Wnt signaling pathway for breast cancer bone metastasis therapy. J Mol Med (Berl) 2021; 100:373-384. [PMID: 34821953 DOI: 10.1007/s00109-021-02159-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 02/05/2023]
Abstract
Osteolytic bone destruction is found in approximately 60% of advanced breast cancer patients. With the pathogenesis of bone metastasis being unclear, traditional antiresorptive therapeutic strategies might not be ideal for treatment. The Wnt pathway is a highly organized cascade involved in multiple stages of cancer bone metastasis, and Wnt-targeted therapeutic strategies have shown promise in achieving favorable outcomes. In this review, we summarize the current progress of pharmacological Wnt modulators against breast cancer bone metastasis, discuss emerging therapeutic strategies based on Wnt pathway-related targets for bone therapy, and highlight opportunities to better harness the Wnt pathway for bone metastasis therapeutics to further reveal the implications of the Wnt pathway in bone metastasis pathology and provide new ideas for the development of Wnt-based intervention strategies against breast cancer bone metastasis.
Collapse
Affiliation(s)
- Jingyao Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Haoran Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Kaiwen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
25
|
Yang B, Wang F, Zheng G. Transmembrane protein TMEM119 facilitates the stemness of breast cancer cells by activating Wnt/β-catenin pathway. Bioengineered 2021; 12:4856-4867. [PMID: 34334123 PMCID: PMC8806430 DOI: 10.1080/21655979.2021.1960464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The effects of transmembrane protein 119 (TMEM119) on breast cancer progression have not been elucidated. This study aims to investigate the roles of TMEM119 in breast cancer progression. Clinical samples and online datasets were used to determine TMEM119 expression and its correlation between patients’ survival. Wound healing, transwell invasion, mammary spheroid formation, and ALDH activity were performed to detect the effects of TMEM119. RNA-sequencing, Luciferase report analysis, Co-IP, and ChIP analysis were constructed to reveal the underlying mechanisms. We found that TMEM119 was highly expressed in breast cancer tissues and cells compared to that in normal tissues and cells. Additionally, TMEM119 expression was negatively correlated with the survival of breast cancer patients. TMEM119 knockdown reduced the expression of stemness markers, mammary spheroid-formation ability and ALDH activity. RNA-sequencing analysis indicated that Wnt/β-catenin signaling was enriched in cells with TMEM119 overexpression. Further co-IP experiments indicated that TMEM119 interacted with β-catenin and maintained its protein stability. Conversely, β-catenin directly bound to TMEM119 gene promoter and thus increased TMEM119 transcriptional activity and its expression. Finally, we demonstrated that TMEM119-mediated effects depended on Wnt/β-catenin signaling. Thus, this work reveals a novel TMEM119-β-catenin positive feedback loop essential for breast cancer cell stemness.
Collapse
Affiliation(s)
- Ben Yang
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Fengling Wang
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Gang Zheng
- Department of Breast Surgery, Shandong Cancer Hospital, the Cancer Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| |
Collapse
|
26
|
Abstract
Mucins are high molecular-weight epithelial glycoproteins and are implicated in many physiological processes, including epithelial cell protection, signaling transduction, and tissue homeostasis. Abnormality of mucus expression and structure contributes to biological properties related to human cancer progression. Tumor growth sites induce inhospitable conditions. Many kinds of research suggest that mucins provide a microenvironment to avoid hypoxia, acidic, and other biological conditions that promote cancer progression. Given that the mucus layer captures growth factors or cytokines, we propose that mucin helps to ameliorate inhospitable conditions in tumor-growing sites. Additionally, the composition and structure of mucins enable them to mimic the surface of normal epithelial cells, allowing tumor cells to escape from immune surveillance. Indeed, human cancers such as mucinous carcinoma, show a higher incidence of invasion to adjacent organs and lymph node metastasis than do non-mucinous carcinoma. In this mini-review, we discuss how mucin provides a tumor-friendly environment and contributes to increased cancer malignancy in mucinous carcinoma.
Collapse
Affiliation(s)
- Dong-Han Wi
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| | - Jong-Ho Cha
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212, Korea
- Department of Biomedical Science, Program in Biomedical Science and Engineering, Graduate school, Inha University, Incheon 22212, Korea
| | - Youn-Sang Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Korea
| |
Collapse
|
27
|
Catara G, Spano D. Combinatorial Strategies to Target Molecular and Signaling Pathways to Disarm Cancer Stem Cells. Front Oncol 2021; 11:689131. [PMID: 34381714 PMCID: PMC8352560 DOI: 10.3389/fonc.2021.689131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is an urgent public health issue with a very huge number of cases all over the world expected to increase by 2040. Despite improved diagnosis and therapeutic protocols, it remains the main leading cause of death in the world. Cancer stem cells (CSCs) constitute a tumor subpopulation defined by ability to self-renewal and to generate the heterogeneous and differentiated cell lineages that form the tumor bulk. These cells represent a major concern in cancer treatment due to resistance to conventional protocols of radiotherapy, chemotherapy and molecular targeted therapy. In fact, although partial or complete tumor regression can be achieved in patients, these responses are often followed by cancer relapse due to the expansion of CSCs population. The aberrant activation of developmental and oncogenic signaling pathways plays a relevant role in promoting CSCs therapy resistance. Although several targeted approaches relying on monotherapy have been developed to affect these pathways, they have shown limited efficacy. Therefore, an urgent need to design alternative combinatorial strategies to replace conventional regimens exists. This review summarizes the preclinical studies which provide a proof of concept of therapeutic efficacy of combinatorial approaches targeting the CSCs.
Collapse
Affiliation(s)
- Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
28
|
Zhou L, Zhou Q, Wu Y, Xin L. Integrating 13 Microarrays to Construct a 6 RNA-binding proteins Prognostic Signature for Gastric Cancer patients. J Cancer 2021; 12:4971-4984. [PMID: 34234866 PMCID: PMC8247375 DOI: 10.7150/jca.57225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/21/2021] [Indexed: 12/24/2022] Open
Abstract
Background: It has been confirmed in many tumors that RNA-binding proteins (RBPs) will affect the progress of cancer, but there is still a lack of large-scale research in gastric cancer (GC). Methods: We obtained 13 microarray mRNA expression profiles of the GPL570 platform, and extracted expression from them after integration to analyze the expression differences of RBPs. Enrichment analysis studies the role of these RBPs in GC. Univariate, Lasso and multivariate Cox regression analysis are used to identify independent prognostic hub RBPs, thereby constructing and verifying a prognostic signature. External data and rt-PCR verified the expression of hub RBPs. Results: We have identified 51 dysregulated RBPs in GC. Enrichment analysis shows that it can mainly participate in RNA decomposition, modification, processing, etc. and affect the progress of GC. After multiple statistical analysis, six independent prognostic RBPs of GC were determined and a prognostic signature was developed. According to the median risk value, the training cohort was divided into high-risk and low-risk groups. Considering the clinical characteristics, in training, testing, and complete cohorts, the overall survival rate of the high-risk group was significantly lower than that of the low-risk group, which was confirmed by the time-dependent receiver operating characteristic curve. Univariate and multivariate Cox regression analysis of independent prognostic ability of risk score. In addition, we constructed and verified a nomogram based on the prognostic signature, showing accurate prediction performance. rt-PCR and external data verification are consistent with our conclusions. Conclusion: This study analyzed the overall expression of RPBs in GC and explored its mechanism. A new prognostic signature was developed and verified. A nomogram has also been established and verified, which helps to improve the treatment strategy for GC.
Collapse
Affiliation(s)
- Liqiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - You Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| |
Collapse
|
29
|
Li M, Mu XD, Song JR, Zhai PT, Cheng Y, Le Y, Li ZB. PAF enhances cancer stem cell properties via β-catenin signaling in hepatocellular carcinoma. Cell Cycle 2021; 20:1010-1020. [PMID: 33970778 PMCID: PMC8172152 DOI: 10.1080/15384101.2021.1919826] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/18/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing proofs have declared that liver cancer stem cells (CSCs) are the main contributors to tumor initiation, metastasis, therapy resistance, and recurrence of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying CSCs regulation remain largely unclear. Recently, PCNA-associated factor (PAF) was identified to play a key role in maintaining breast cancer cell stemness, but its role in liver cancer stem cells has not been declared yet. Herein, we found that both mRNA and protein expression levels of PAF were significantly higher in HCC tissues and cell lines than normal controls. CSC-enriched hepatoma spheres displayed an increase in PAF expression compared to monolayer-cultured cells. Both loss-of-function and gain-of-function experiments revealed that PAF enhanced sphere formation and the percentage of CD133+ or EpCAM+ cells in HCCLM3 and Huh7 cells. In the xenograft HCC tumor model, tumor initiation rates and tumor growth were suppressed by knockdown of PAF. Mechanistically, PAF can amplify the self-renewal of liver CSCs by activating β-catenin signaling. Taken together, our results demonstrate that PAF plays a crucial role in maintaining the hepatoma cell stemness by β-catenin signaling.Abbreviations: CSCs: cancer stem cells; HCC: hepatocellular carcinoma; PAF: pCNA-associated factor.
Collapse
Affiliation(s)
- Mei Li
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Xu-Dong Mu
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Juan-Rong Song
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Peng-Tao Zhai
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Yuan Cheng
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi’an, China
| | - Yao Le
- Department of Infectious Diseases, Yulin First Hospital of Shaanxi Province, Yulin, China
| | - Zhu-Bin Li
- Department of Minimally Invasive Intervention, Shaanxi Provincial Cancer Hospital, Xi’an, China
| |
Collapse
|
30
|
Bhattacharya S, Mohanty A, Achuthan S, Kotnala S, Jolly MK, Kulkarni P, Salgia R. Group Behavior and Emergence of Cancer Drug Resistance. Trends Cancer 2021; 7:323-334. [PMID: 33622644 PMCID: PMC8500356 DOI: 10.1016/j.trecan.2021.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023]
Abstract
Drug resistance is a major impediment in cancer. Although it is generally thought that acquired drug resistance is due to genetic mutations, emerging evidence indicates that nongenetic mechanisms also play an important role. Resistance emerges through a complex interplay of clonal groups within a heterogeneous tumor and the surrounding microenvironment. Traits such as phenotypic plasticity, intercellular communication, and adaptive stress response, act in concert to ensure survival of intermediate reversible phenotypes, until permanent, resistant clones can emerge. Understanding the role of group behavior, and the underlying nongenetic mechanisms, can lead to more efficacious treatment designs and minimize or delay emergence of resistance.
Collapse
Affiliation(s)
- Supriyo Bhattacharya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Sourabh Kotnala
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
31
|
Mohamed RI, Bargal SA, Mekawy AS, El-Shiekh I, Tuncbag N, Ahmed AS, Badr E, Elserafy M. The overexpression of DNA repair genes in invasive ductal and lobular breast carcinomas: Insights on individual variations and precision medicine. PLoS One 2021; 16:e0247837. [PMID: 33662042 PMCID: PMC7932549 DOI: 10.1371/journal.pone.0247837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/14/2021] [Indexed: 12/22/2022] Open
Abstract
In the era of precision medicine, analyzing the transcriptomic profile of patients is essential to tailor the appropriate therapy. In this study, we explored transcriptional differences between two invasive breast cancer subtypes; infiltrating ductal carcinoma (IDC) and lobular carcinoma (LC) using RNA-Seq data deposited in the TCGA-BRCA project. We revealed 3854 differentially expressed genes between normal ductal tissues and IDC. In addition, IDC to LC comparison resulted in 663 differentially expressed genes. We then focused on DNA repair genes because of their known effects on patients' response to therapy and resistance. We here report that 36 DNA repair genes are overexpressed in a significant number of both IDC and LC patients' samples. Despite the upregulation in a significant number of samples, we observed a noticeable variation in the expression levels of the repair genes across patients of the same cancer subtype. The same trend is valid for the expression of miRNAs, where remarkable variations between patients' samples of the same cancer subtype are also observed. These individual variations could lie behind the differential response of patients to treatment. The future of cancer diagnostics and therapy will inevitably depend on high-throughput genomic and transcriptomic data analysis. However, we propose that performing analysis on individual patients rather than a big set of patients' samples will be necessary to ensure that the best treatment is determined, and therapy resistance is reduced.
Collapse
Affiliation(s)
- Ruwaa I. Mohamed
- Center for Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Salma A. Bargal
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Asmaa S. Mekawy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Iman El-Shiekh
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Nurcan Tuncbag
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Alaa S. Ahmed
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
| | - Eman Badr
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- Faculty of Computers and Artificial Intelligence, Cairo University, Giza, Egypt
- * E-mail: (EB); (ME)
| | - Menattallah Elserafy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
- University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt
- * E-mail: (EB); (ME)
| |
Collapse
|
32
|
Kim MJ, Cervantes C, Jung YS, Zhang X, Zhang J, Lee SH, Jun S, Litovchick L, Wang W, Chen J, Fang B, Park JI. PAF remodels the DREAM complex to bypass cell quiescence and promote lung tumorigenesis. Mol Cell 2021; 81:1698-1714.e6. [PMID: 33626321 PMCID: PMC8052288 DOI: 10.1016/j.molcel.2021.02.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 12/15/2020] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
The DREAM complex orchestrates cell quiescence and the cell cycle. However, how the DREAM complex is deregulated in cancer remains elusive. Here, we report that PAF (PCLAF/KIAA0101) drives cell quiescence exit to promote lung tumorigenesis by remodeling the DREAM complex. PAF is highly expressed in lung adenocarcinoma (LUAD) and is associated with poor prognosis. Importantly, Paf knockout markedly suppressed LUAD development in mouse models. PAF depletion induced LUAD cell quiescence and growth arrest. PAF is required for the global expression of cell-cycle genes controlled by the repressive DREAM complex. Mechanistically, PAF inhibits DREAM complex formation by binding to RBBP4, a core DREAM subunit, leading to transactivation of DREAM target genes. Furthermore, pharmacological mimicking of PAF-depleted transcriptomes inhibited LUAD tumor growth. Our results unveil how the PAF-remodeled DREAM complex bypasses cell quiescence to promote lung tumorigenesis and suggest that the PAF-DREAM axis may be a therapeutic vulnerability in lung cancer.
Collapse
Affiliation(s)
- Moon Jong Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher Cervantes
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Xiaoshan Zhang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Ho Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Larisa Litovchick
- Department of Internal Medicine and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Zhou HM, Zhang JG, Zhang X, Li Q. Targeting cancer stem cells for reversing therapy resistance: mechanism, signaling, and prospective agents. Signal Transduct Target Ther 2021; 6:62. [PMID: 33589595 PMCID: PMC7884707 DOI: 10.1038/s41392-020-00430-1] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/26/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) show a self-renewal capacity and differentiation potential that contribute to tumor progression and therapy resistance. However, the underlying processes are still unclear. Elucidation of the key hallmarks and resistance mechanisms of CSCs may help improve patient outcomes and reduce relapse by altering therapeutic regimens. Here, we reviewed the identification of CSCs, the intrinsic and extrinsic mechanisms of therapy resistance in CSCs, the signaling pathways of CSCs that mediate treatment failure, and potential CSC-targeting agents in various tumors from the clinical perspective. Targeting the mechanisms and pathways described here might contribute to further drug discovery and therapy.
Collapse
Affiliation(s)
- He-Ming Zhou
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Ji-Gang Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Xue Zhang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China
| | - Qin Li
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of medicine, No.100 Haining Road, 200080, Shanghai, People's Republic of China.
| |
Collapse
|
34
|
Lee HY, Son SW, Moeng S, Choi SY, Park JK. The Role of Noncoding RNAs in the Regulation of Anoikis and Anchorage-Independent Growth in Cancer. Int J Mol Sci 2021; 22:ijms22020627. [PMID: 33435156 PMCID: PMC7827914 DOI: 10.3390/ijms22020627] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a global health concern, and the prognosis of patients with cancer is associated with metastasis. Multistep processes are involved in cancer metastasis. Accumulating evidence has shown that cancer cells acquire the capacity of anoikis resistance and anchorage-independent cell growth, which are critical prerequisite features of metastatic cancer cells. Multiple cellular factors and events, such as apoptosis, survival factors, cell cycle, EMT, stemness, autophagy, and integrins influence the anoikis resistance and anchorage-independent cell growth in cancer. Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are dysregulated in cancer. They regulate cellular signaling pathways and events, eventually contributing to cancer aggressiveness. This review presents the role of miRNAs and lncRNAs in modulating anoikis resistance and anchorage-independent cell growth. We also discuss the feasibility of ncRNA-based therapy and the natural features of ncRNAs that need to be contemplated for more beneficial therapeutic strategies against cancer.
Collapse
|
35
|
Chen Y, Jin Y, Ying H, Zhang P, Chen M, Hu X. Synergistic effect of PAF inhibition and X-ray irradiation in non-small cell lung cancer cells. Strahlenther Onkol 2020; 197:343-352. [PMID: 33231712 DOI: 10.1007/s00066-020-01708-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/23/2020] [Indexed: 12/30/2022]
Abstract
PURPOSE Proliferating cell nuclear antigen-associated factor (PAF) is involved in cancer cell growth and associated with cell death induced by ultraviolet (UV) radiation. However, the contribution of PAF to radiotherapy sensitivity in non-small cell lung cancer (NSCLC) is unknown. The aim of this study was to investigate the relationship between PAF expression and radiotherapy response in NSCLC. METHODS Associations between PAF expression and patient survival outcomes were evaluated using publicly available online gene expression datasets. RNA interference was performed to knockdown PAF expression in the NSCLC cells. The effects of PAF knockdown on cell proliferation, migration, apoptosis, DNA damage, and activation of MEK/ERK and Wnt/β-catenin signaling pathways following X‑ray irradiation were evaluated in vitro. RESULTS PAF was found to be overexpressed in lung cancer tissues compared with normal samples, and elevated PAF expression was significantly correlated with inferior patient survival. In vitro, knockdown of PAF inhibited cell proliferation, cell apoptosis, and migration induced by X‑ray irradiation. Moreover, X‑ray-induced intracellular DNA strand damage was more obvious following PAF knockdown. Additionally, PAF knockdown inhibited activation of the MEK/ERK and Wnt/β-catenin signaling pathways in X‑ray-irradiated A549 cells. CONCLUSION These data demonstrate that reduced expression of PAF enhances radiosensitivity in NSCLC cells. Mechanistically, inhibition of the MEK/ERK and Wnt/β-catenin signaling pathways caused by PAF interference may lead to impaired cell function and enhance sensitivity to X‑rays. Targeting PAF may therefore serve as a potential therapeutic strategy to increase the efficiency of radiotherapy in NSCLC patients, ultimately improving patient survival.
Collapse
Affiliation(s)
- Yamei Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Ying Jin
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.,Department of Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Hangjie Ying
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Ming Chen
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China. .,Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| | - Xiao Hu
- Zhejiang Key Laboratory of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China. .,Department of Radiation Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Xu X, Zhang M, Xu F, Jiang S. Wnt signaling in breast cancer: biological mechanisms, challenges and opportunities. Mol Cancer 2020; 19:165. [PMID: 33234169 PMCID: PMC7686704 DOI: 10.1186/s12943-020-01276-5] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling is a highly conserved signaling pathway that plays a critical role in controlling embryonic and organ development, as well as cancer progression. Genome-wide sequencing and gene expression profile analyses have demonstrated that Wnt signaling is involved mainly in the processes of breast cancer proliferation and metastasis. The most recent studies have indicated that Wnt signaling is also crucial in breast cancer immune microenvironment regulation, stemness maintenance, therapeutic resistance, phenotype shaping, etc. Wnt/β-Catenin, Wnt-planar cell polarity (PCP), and Wnt-Ca2+ signaling are three well-established Wnt signaling pathways that share overlapping components and play different roles in breast cancer progression. In this review, we summarize the main findings concerning the relationship between Wnt signaling and breast cancer and provide an overview of existing mechanisms, challenges, and potential opportunities for advancing the therapy and diagnosis of breast cancer.
Collapse
Affiliation(s)
- Xiufang Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Miaofeng Zhang
- Department of Orthopedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Faying Xu
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| | - Shaojie Jiang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou, 310053 Zhejiang China
| |
Collapse
|
37
|
Sharma M, Pruitt K. Wnt Pathway: An Integral Hub for Developmental and Oncogenic Signaling Networks. Int J Mol Sci 2020; 21:E8018. [PMID: 33126517 PMCID: PMC7663720 DOI: 10.3390/ijms21218018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt pathway is an integral cell-to-cell signaling hub which regulates crucial development processes and maintenance of tissue homeostasis by coordinating cell proliferation, differentiation, cell polarity, cell movement, and stem cell renewal. When dysregulated, it is associated with various developmental diseases, fibrosis, and tumorigenesis. We now better appreciate the complexity and crosstalk of the Wnt pathway with other signaling cascades. Emerging roles of the Wnt signaling in the cancer stem cell niche and drug resistance have led to development of therapeutics specifically targeting various Wnt components, with some agents currently in clinical trials. This review highlights historical and recent findings on key mediators of Wnt signaling and how they impact antitumor immunity and maintenance of cancer stem cells. This review also examines current therapeutics being developed that modulate Wnt signaling in cancer and discusses potential shortcomings associated with available therapeutics.
Collapse
Affiliation(s)
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
38
|
Dysregulated NF-κB signal promotes the hub gene PCLAF expression to facilitate nasopharyngeal carcinoma proliferation and metastasis. Biomed Pharmacother 2020; 125:109905. [PMID: 32070873 DOI: 10.1016/j.biopha.2020.109905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/22/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nasopharyngeal carcinoma (NPC) is common in Southern China. The molecular mechanism underlying NPC genesis and progression has been comprehensively investigated, but the key gene (s) or pathway (s) pertaining to NPC are unidentified. METHODS We explored some key genes and pathways involved in NPC through using meta-analysis of deposited expression of microarray data of NPC. The expression of proliferating cell nuclear antigen clamp associated factor (PCLAF) was determined by real-time PCR and western blots. CCK-8 assay, colony formation assay, transwell migration assay, cell wound healing assay, cell cycle analysis and cell apoptosis were carried out to assess biological behaviors caused by downregulation and overexpression of PCLAF in vitro. CHIP was utilized to determine the direct upstream regulatory transcription factors of PCLAF. RESULTS PCLAF was the key gene of NPC, which was significantly up-regulated in NPC cell line compared to the normal nasopharyngeal cell line. Additionally, in vitro assay has demonstrated the down-regulation and overexpression of PCLAF, resulted in significantly suppressed and enhanced NPC proliferation, metastasis and invasion respectively. Furthermore, the up-regulation of PCLAF in NPC is induced by direct binding of dysregulated NF-κB p50/RelB complex to the promoter of PCLAF. CONCLUSION Our results offer a strategy for re-using the deposited data to find the key genes and pathways involved in pathogenesis of cancer. Our study has provided evidence of supporting the role of PCLAF in NPC genesis and progression.
Collapse
|
39
|
Misra R, Kandoi S, Varadaraj S, Vijayalakshmi S, Nanda A, Verma RS. Nanotheranostics: A tactic for cancer stem cells prognosis and management. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Abad E, Graifer D, Lyakhovich A. DNA damage response and resistance of cancer stem cells. Cancer Lett 2020; 474:106-117. [PMID: 31968219 DOI: 10.1016/j.canlet.2020.01.008] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/20/2022]
Abstract
The cancer stem cell (CSC) model defines tumors as hierarchically organized entities, containing a small population of tumorigenic CSC, or tumour-initiating cells, placed at the apex of this hierarchy. These cells may share common qualities with chemo- and radio-resistant cancer cells and contribute to self-renewal activities resulting in tumour formation, maintenance, growth and metastasis. Yet, it remains obscure what self-defense mechanisms are utilized by these cells against the chemotherapeutic drugs or radiotherapy. Recently, attention has been focused on the pivotal role of the DNA damage response (DDR) in tumorigenesis. In line with this note, an increased DDR that prevents CSC and chemoresistant cells from genotoxic pressure of chemotherapeutic drugs or radiation may be responsible for cancer metastasis. In this review, we focus on the current knowledge concerning the role of DDR in CSC and resistant cancer cells and describe the existing opportunities of re-sensitizing such cells to modulate therapeutic treatment effects.
Collapse
Affiliation(s)
- Etna Abad
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Alex Lyakhovich
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia; Vall D'Hebron Institut de Recerca, 08035, Barcelona, Spain.
| |
Collapse
|
41
|
Zou Y, Lin X, Bu J, Lin Z, Chen Y, Qiu Y, Mo H, Tang Y, Fang W, Wu Z. Timeless-Stimulated miR-5188-FOXO1/β-Catenin-c-Jun Feedback Loop Promotes Stemness via Ubiquitination of β-Catenin in Breast Cancer. Mol Ther 2020; 28:313-327. [PMID: 31604679 PMCID: PMC6951841 DOI: 10.1016/j.ymthe.2019.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) play an essential role in the self-renewal of breast cancer stem cells (BCCs). Our study aimed to clarify the role of proto-oncogene c-Jun-regulated miR-5188 in breast cancer progression and its association with Timeless-mediated cancer stemness. In the present study, we showed that miR-5188 exerted an oncogenic effect by inducing breast cancer stemness, proliferation, metastasis, and chemoresistance in vitro and in vivo. The mechanistic analysis demonstrated that miR-5188 directly targeted FOXO1, which interacted with β-catenin in the cytoplasm, facilitated β-catenin degradation, and impaired the nuclear accumulation of β-catenin, thus stimulating the activation of known Wnt targets, epithelial-mesenchymal transition (EMT) markers, and key regulators of cancer stemness. Moreover, miR-5188 potentiated Wnt/β-catenin/c-Jun signaling to promote breast cancer progression. Interestingly, c-Jun enhanced miR-5188 transcription to form a positive regulatory loop, and Timeless interacted with Sp1/c-Jun to induce miR-5188 expression by promoting c-Jun-mediated transcription, which further activated miR-5188-FOXO1/β-catenin-c-Jun loop and facilitated breast cancer progression. Importantly, miR-5188 was upregulated in breast cancer and was positively correlated with poor patient prognosis. This study identifies miR-5188 as a novel oncomiR and provides a new theoretical basis for the clinical use of miR-5188 antagonists in the treatment of breast cancer.
Collapse
Affiliation(s)
- Yujiao Zou
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China; Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xian Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Junguo Bu
- Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zelong Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Yanjuan Chen
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Yunhui Qiu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Haiyue Mo
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Yao Tang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China.
| | - Ziqing Wu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510310, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
42
|
Gupta PK, Dharanivasan G, Misra R, Gupta S, Verma RS. Nanomedicine in Cancer Stem Cell Therapy. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
43
|
Zhao J, Han M, Zhou L, Liang P, Wang Y, Feng S, Lu H, Yuan X, Han K, Chen X, Liu S, Cheng J. TAF and TDF attenuate liver fibrosis through NS5ATP9, TGFβ1/Smad3, and NF-κB/NLRP3 inflammasome signaling pathways. Hepatol Int 2019; 14:145-160. [PMID: 31758498 DOI: 10.1007/s12072-019-09997-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/23/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND This study aimed to investigate the roles and mechanisms of tenofovir alafenamide fumarate (TAF)/tenofovir disoproxil fumarate (TDF) in treating liver fibrosis. METHODS The effects of TAF/TDF on carbon tetrachloride (CCl4)-induced liver fibrosis in C57BL/6 wild-type or nonstructural protein 5A transactivated protein 9 (NS5ATP9) knockout mice were studied. The differentiation, activation, and proliferation of LX-2 cells after TAF/TDF treatment were tested in vitro. The expression of NS5ATP9 and activities of transforming growth factor-β1 (TGFβ1)/Sekelsky mothers against decapentaplegic homolog 3 (Smad3) and NF-κB/NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome signaling pathways were detected in TAF/TDF-treated mice and LX-2 cells. The genes related to extracellular matrix accumulation were detected in vivo and in vitro after NS5ATP9 silencing or knockout. RESULTS TAF/TDF significantly inhibited CCl4-induced liver fibrosis in mice, and regulated the differentiation, activation, and proliferation of hepatic stellate cells (HSCs). Furthermore, TAF/TDF suppressed the activities of TGFβ1/Smad3 and NF-κB/NLRP3 inflammasome signaling pathways in vivo and in vitro. NS5ATP9 inhibited liver fibrosis through TGFβ1/Smad3 and NF-κB signaling pathways. TAF/TDF upregulated the expression of NS5ATP9 in vivo and in vitro. Finally, TAF/TDF could only show marginal therapeutic effects when NS5ATP9 was silenced and knocked out in vivo and in vitro. CONCLUSIONS TAF/TDF prevented progression and promoted reversion of liver fibrosis through assembling TGFβ1/Smad3 and NF-κB/NLRP3 inflammasome signaling pathways via upregulating the expression of NS5ATP9. TAF/TDF also regulated the differentiation, activation, and proliferation of HSCs. The findings provided strong evidence for the role of TAF/TDF as a new promising therapeutic strategy in liver fibrosis.
Collapse
Affiliation(s)
- Jing Zhao
- Peking University Ditan Teaching Hospital, Beijing, 100015, China
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Ming Han
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Li Zhou
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
- Department of Infectious Disease, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Pu Liang
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Yun Wang
- Peking University Ditan Teaching Hospital, Beijing, 100015, China
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Shenghu Feng
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
- Department of Infectious Diseases and Clinical Microbiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongping Lu
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Xiaoxue Yuan
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Kai Han
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Xiaofan Chen
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
- Department of Infectious Diseases, Center for Liver Diseases, Peking University First Hospital, Beijing, 100034, China
| | - Shunai Liu
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing, 100015, China.
- Institiute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100191, China.
| |
Collapse
|
44
|
Song X, Zhang X, Wang X, Chen L, Jiang L, Zheng A, Zhang M, Zhao L, Wei M. LncRNA SPRY4-IT1 regulates breast cancer cell stemness through competitively binding miR-6882-3p with TCF7L2. J Cell Mol Med 2019; 24:772-784. [PMID: 31736268 PMCID: PMC6933354 DOI: 10.1111/jcmm.14786] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/08/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
SPRY4-intronic transcript 1 has been found in several kinds of cancers, but the role of SPRY4-IT1 in breast cancer stem cells has not been studied. We investigated whether SPRY4-IT1 is involved in the promotion of breast cancer stem cells (BCSCs). We used qRT-PCR to detect the expression of SPRY4-IT1 in MCF-7 cells and MCF-7 cancer stem cells (MCF-7 CSCs). The effects of SPRY4-IT1 on the proliferation and renewal ability of breast cancer cells were investigated by in vitro and in vivo assays (ie in situ hybridization, colony formation assay, sphere formation assay, flow cytometry assay, western blotting, xenograft model and immunohistochemistry). The mechanism of SPPRY4-IT1 as a ceRNA was studied by a dual-luciferase reporter assay and bioinformatic analysis. In our study, SPRY4-IT1 was up-regulated in MCF-7 CSCs compared with MCF-7 cells, and high SPRY4-IT1 expression was related to reduced breast cancer patient survival. Furthermore, SPRY4-IT1 overexpression promoted breast cancer cell proliferation and stemness in vitro and in vivo. In addition, SPRY4-IT1 knockdown suppressed BCSC renewal ability and stemness maintenance in vivo and in vitro. The dual-luciferase reporter assays indicated that SPRY4-IT1 as a sponge for miR-6882-3p repressed transcription factor 7-like 2 (TCF7L2) expression. Taken together, these findings demonstrated that SPRY4-IT1 promotes proliferation and stemness of breast cancer cells as well as renewal ability and stemness maintenance of BCSCs by increasing the expression of TCF7L2 through targeting miR-6882-3p.
Collapse
Affiliation(s)
- Xinyue Song
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Xiaoxue Zhang
- Department of Medical Imaging, Cancer Hospital of China Medical University, Shenyang, China
| | - Xinnan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Lianze Chen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Ang Zheng
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, China
| |
Collapse
|
45
|
González-Magaña A, de Opakua AI, Merino N, Monteiro H, Diercks T, Murciano-Calles J, Luque I, Bernadó P, Cordeiro TN, Biasio AD, Blanco FJ. Double Monoubiquitination Modifies the Molecular Recognition Properties of p15 PAF Promoting Binding to the Reader Module of Dnmt1. ACS Chem Biol 2019; 14:2315-2326. [PMID: 31479228 DOI: 10.1021/acschembio.9b00679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The proliferating cell nuclear antigen (PCNA)-associated factor p15PAF is a nuclear protein that acts as a regulator of DNA repair during DNA replication. The p15PAF gene is overexpressed in several types of human cancer, and its function is regulated by monoubiquitination of two lysines (K15 and K24) at the protein N-terminal region. We have previously shown that p15PAF is an intrinsically disordered protein which partially folds upon binding to PCNA and independently contacts DNA through its N-terminal tail. Here we present an NMR conformational characterization of p15PAF monoubiquitinated at both K15 and K24 via a disulfide bridge mimicking the isopeptide bond. We show that doubly monoubiquitinated p15PAF is monomeric, intrinsically disordered, and binds to PCNA as nonubiquitinated p15PAF does but interacts with DNA with reduced affinity. Our SAXS-derived conformational ensemble of doubly monoubiquitinated p15PAF shows that the ubiquitin moieties, separated by eight disordered residues, form transient dimers because of the high local effective ubiquitin concentration. This observation and the sequence similarity with histone H3 N-terminal tail suggest that doubly monoubiquitinated p15PAF is a binding target of DNA methyl transferase Dnmt1, as confirmed by calorimetry. Therefore, doubly monoubiquitinated p15PAF directly interacts with PCNA and recruits Dnmt1 for maintenance of DNA methylation during replication.
Collapse
Affiliation(s)
| | | | | | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xabier, ITQB NOVA, 2780-157 Oeiras, Portugal
| | | | - Javier Murciano-Calles
- Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada 18071, Spain
| | - Irene Luque
- Department of Physical Chemistry and Institute of Biotechnology, Universidad de Granada, Granada 18071, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, and Université Montpellier, 34090 Montpellier, France
| | - Tiago N. Cordeiro
- Instituto de Tecnologia Química e Biológica António Xabier, ITQB NOVA, 2780-157 Oeiras, Portugal
| | - Alfredo De Biasio
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell Biology, University of Leicester, Leicester LE1 7RH, U.K
| | - Francisco J. Blanco
- CIC bioGUNE, 48160 Derio, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
46
|
Breast Cancer Stem Cells as Drivers of Tumor Chemoresistance, Dormancy and Relapse: New Challenges and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11101569. [PMID: 31619007 PMCID: PMC6826533 DOI: 10.3390/cancers11101569] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most frequent cancer among women worldwide. Therapeutic strategies to prevent or treat metastatic disease are still inadequate although great progress has been made in treating early-stage breast cancer. Cancer stem-like cells (CSCs) that are endowed with high plasticity and self-renewal properties have been shown to play a key role in breast cancer development, progression, and metastasis. A subpopulation of CSCs that combines tumor-initiating capacity and a dormant/quiescent/slow cycling status is present throughout the clinical history of breast cancer patients. Dormant/quiescent/slow cycling CSCs are a key component of tumor heterogeneity and they are responsible for chemoresistance, tumor migration, and metastatic dormancy, defined as the ability of CSCs to survive in target organs and generate metastasis up to two decades after diagnosis. Understanding the strategies that are used by CSCs to resist conventional and targeted therapies, to interact with their niche, to escape immune surveillance, and finally to awaken from dormancy is of key importance to prevent and treat metastatic cancer. This review summarizes the current understanding of mechanisms involved in CSCs chemoresistance, dissemination, and metastasis in breast cancer, with a particular focus on dormant cells. Finally, we discuss how advancements in the detection, molecular understanding, and targeting of dormant CSCs will likely open new therapeutic avenues for breast cancer treatment.
Collapse
|
47
|
Najafi M, Mortezaee K, Ahadi R. Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci 2019; 231:116520. [DOI: 10.1016/j.lfs.2019.05.076] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 12/17/2022]
|
48
|
Smigiel JM, Taylor SE, Bryson BL, Tamagno I, Polak K, Jackson MW. Cellular plasticity and metastasis in breast cancer: a pre- and post-malignant problem. JOURNAL OF CANCER METASTASIS AND TREATMENT 2019; 5:47. [PMID: 32355893 PMCID: PMC7192216 DOI: 10.20517/2394-4722.2019.26] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
As a field we have made tremendous strides in treating breast cancer, with a decline in the past 30 years of overall breast cancer mortality. However, this progress is met with little affect once the disease spreads beyond the primary site. With a 5-year survival rate of 22%, 10-year of 13%, for those patients with metastatic breast cancer (mBC), our ability to effectively treat wide spread disease is minimal. A major contributing factor to this ineffectiveness is the complex make-up, or heterogeneity, of the primary site. Within a primary tumor, secreted factors, malignant and pre-malignant epithelial cells, immune cells, stromal fibroblasts and many others all reside alongside each other creating a dynamic environment contributing to metastasis. Furthermore, heterogeneity contributes to our lack of understanding regarding the cells' remarkable ability to undergo epithelial/non-cancer stem cell (CSC) to mesenchymal/CSC (E-M/CSC) plasticity. The enhanced invasion & motility, tumor-initiating potential, and acquired therapeutic resistance which accompanies E-M/CSC plasticity implicates a significant role in metastasis. While most work trying to understand E-M/CSC plasticity has been done on malignant cells, recent evidence is emerging concerning the ability for pre-malignant cells to undergo E-M/CSC plasticity and contribute to the metastatic process. Here we will discuss the importance of E-M/CSC plasticity within malignant and pre-malignant populations of the tumor. Moreover, we will discuss how one may potentially target these populations, ultimately disrupting the metastatic cascade and increasing patient survival for those with mBC.
Collapse
Affiliation(s)
- Jacob M. Smigiel
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Sarah E. Taylor
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Benjamin L. Bryson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ilaria Tamagno
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Kelsey Polak
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Mark W. Jackson
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
49
|
Zhang T, Guo J, Gu J, Chen K, Wang Z, Li H, Wang G, Wang J. KIAA0101 is a novel transcriptional target of FoxM1 and is involved in the regulation of hepatocellular carcinoma microvascular invasion by regulating epithelial-mesenchymal transition. J Cancer 2019; 10:3501-3516. [PMID: 31293655 PMCID: PMC6603413 DOI: 10.7150/jca.29490] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths due to tumor invasiveness, frequent intrahepatic dissemination and extrahepatic metastasis. However, the genes and signaling pathways that are involved remain incompletely understood. In this study, weighted gene coexpression network analysis (WGCNA) was performed to jointly analyze clinical information and gene expression data to identify key genes associated with clinical features. Through the bioinformatic analysis, the yellow module and microvascular invasion (MVI) were found to be highly associated (r=0.41) by Pearson's correlation analysis, and 20 hub genes were identified with both high gene significance (GS) and high module membership (MM) in the yellow module. Among these genes, FoxM1 and KIAA0101 were upregulated in HCC with MVI and were significantly positively correlated in HCC samples, indicating a novel regulatory network in HCC microvascular invasion. Moreover, in vitro experiments demonstrated that KIAA0101 is a direct target of FoxM1 and that KIAA0101 is required for the FoxM1-induced promotion of HCC cell invasion and migration. In addition, the FoxM1-KIAA0101 axis promotes HCC metastasis by inducing epithelial-mesenchymal transition (EMT). In summary, KIAA0101 is a novel target of FoxM1 and contributes to HCC metastasis by activating EMT. The FoxM1-KIAA0101 axis might be applied as a potential prognostic biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jianrong Guo
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Gu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,Research Centre for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guobin Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiliang Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
50
|
Nagaprashantha LD, Singhal J, Chikara S, Gugiu G, Horne D, Awasthi S, Salgia R, Singhal SS. 2′-Hydroxyflavanone induced changes in the proteomic profile of breast cancer cells. J Proteomics 2019; 192:233-245. [DOI: 10.1016/j.jprot.2018.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/03/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
|