1
|
Luo X, Tang N, Ren Y, Li J, Zhu H, Wu S, Ding Z. Single-cell multi-dimensional data analysis decodes RNF19A-mediated drug resistance in rheumatoid arthritis fibroblast-like synoviocytes: mechanisms and biological insights. Cell Mol Life Sci 2025; 82:180. [PMID: 40293542 PMCID: PMC12037462 DOI: 10.1007/s00018-025-05707-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/16/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
Rheumatoid arthritis (RA) is a prevalent autoimmune disease, affecting approximately 1% of the global population. Methotrexate (MTX) is the most widely prescribed drug for RA treatment; however, its efficacy is often limited, with resistance frequently observed. Fibroblast-like synoviocytes (FLS) play a pivotal role in RA progression and are closely linked to drug resistance, although the underlying mechanisms remain poorly understood. In this study, we conducted a comprehensive analysis of public single-cell transcriptomics data from osteoarthritis and rheumatoid arthritis synovial tissues, identifying RNF19A as a gene potentially associated with RA resistance in FLS. Our findings indicate that RNF19A is significantly overexpressed in drug-resistant FLS and is closely associated with the dysregulation of FLS proliferation, migration, invasion, and apoptosis. Furthermore, we demonstrated that RNF19A promotes functional disruption in FLS by ubiquitinating and degrading MKP-1, thereby activating the MAPK signaling pathway. This activation also facilitates the nuclear translocation of ZBTB20, an upstream transcription factor of RNF19A, which further enhances RNF19A transcription. This biological process creates a positive feedback loop in FLS, contributing to RA resistance-a mechanism that was also validated in vivo. In summary, this study is the first to underscore the crucial role of RNF19A in mediating drug resistance in RA FLS, elucidating the underlying biological processes, and providing novel insights into RA pathogenesis, thereby offering a new experimental foundation for RA drug development.
Collapse
Affiliation(s)
- Xin Luo
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ning Tang
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yijun Ren
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jingchen Li
- Department of Food Engineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Huancheng Zhu
- Lab of Research and Engineering of Cell Therapy Technology, Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Song Wu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiyu Ding
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Lab of Research and Engineering of Cell Therapy Technology, Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Li Y, Yang Y, Sun Y, He L, Zhao L, Sun H, Chang X, Liang R, Wang S, Han X, Zhu Y. The miR-203/ZBTB20/MAFA Axis Orchestrates Pancreatic β-Cell Maturation and Identity During Weaning and Diabetes. Diabetes 2024; 73:1673-1686. [PMID: 39058664 DOI: 10.2337/db23-0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Maturation of postnatal β-cells is regulated in a cell-autonomous manner, and metabolically stressed β-cells regress to an immature state, ensuring defective β-cell function and the onset of type 2 diabetes. The molecular mechanisms connecting the nutritional transition to β-cell maturation remain largely unknown. Here, we report a mature form of miRNA (miR-203)/ZBTB20/MAFA regulatory axis that mediates the β-cell maturation process. We show that the level of the mature form of miRNA (miR-203) in β-cells changes during the nutritional transition and that miR-203 inhibits β-cell maturation at the neonatal stage and under high-fat diet conditions. Using single-cell RNA sequencing, we demonstrated that miR-203 elevation promoted the transition of immature β-cells into CgBHi endocrine cells while suppressing gene expressions associated with β-cell maturation in a ZBTB20/MAFA-dependent manner. ZBTB20 is an authentic target of miR-203 and transcriptionally upregulates MAFA expression. Manipulating the miR-203/ZBTB20/MAFA axis may therefore offer a novel strategy for boosting functional β-cell numbers to alleviate diabetes. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Yating Li
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqian Yang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu He
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Zhao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haoran Sun
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rui Liang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Xiao Han
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunxia Zhu
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Luo D, Liu Y, Li J, Liu X, Zhang R, Liu X, Zhang N, Zhang W, Liu J, Zhang L, Wang T. Systematic Analysis of the Relationship Between Elevated Zinc and Epilepsy. J Mol Neurosci 2024; 74:39. [PMID: 38581598 DOI: 10.1007/s12031-024-02213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Previous studies have indicated a potential relationship between zinc and epilepsy. The aim of this study is to investigate the causal relationship between zinc, zinc-dependent carbonic anhydrase, and gray matter volume in brain regions enriched with zinc and epilepsy, as well as explore the possible mechanisms by which zinc contributes to epilepsy. First, this study assessed the risk causality between zinc, carbonic anhydrase, and gray matter volume alterations in zinc-enriched brain regions and various subtypes of epilepsy based on Two-sample Mendelian randomization analysis. And then, this study conducted GO/KEGG analysis based on colocalization analysis, MAGMA analysis, lasso regression, random forest model, and XGBoost model. The results of Mendelian randomization analyses showed a causal relationship between zinc, carbonic anhydrase-4, and generalized epilepsy (p = 0.044 , p = 0.010). Additionally, carbonic anhydrase-1 and gray matter volume of the caudate nucleus were found to be associated with epilepsy and focal epilepsy (p = 0.014, p = 0.003 and p = 0.022, p = 0.009). A colocalization relationship was found between epilepsy and focal epilepsy (PP.H4.abf = 97.7e - 2). Meanwhile, the MAGMA analysis indicated that SNPs associated with epilepsy and focal epilepsy were functionally localized to zinc-finger-protein-related genes (p < 1.0e - 5). The genes associated with focal epilepsy were found to have a molecular function of zinc ion binding (FDR = 2.3e - 6). After the onset of epilepsy, the function of the gene whose expression changed in the rats with focal epilepsy was enriched in the biological process of vascular response (FDR = 4.0e - 5). These results revealed mechanism of the increased risk of epilepsy caused by elevated zinc may be related to the increase of zinc ion-dependent carbonic anhydrase or the increase of the volume of zinc-rich caudate gray matter.
Collapse
Affiliation(s)
- Dadong Luo
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yaqing Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Junqiang Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Xuhui Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Ruirui Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Xuejuan Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Ningning Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Wenzhao Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jiayi Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Lan Zhang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Tiancheng Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
| |
Collapse
|
4
|
Liu J, Zhang H. Zinc Finger and BTB Domain-Containing 20: A Newly Emerging Player in Pathogenesis and Development of Human Cancers. Biomolecules 2024; 14:192. [PMID: 38397429 PMCID: PMC10887282 DOI: 10.3390/biom14020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Zinc finger and BTB domain-containing 20 (ZBTB20), which was initially identified in human dendritic cells, belongs to a family of transcription factors (TFs) with an N-terminal BTB domain and one or more C-terminal DNA-binding zinc finger domains. Under physiological conditions, ZBTB20 acts as a transcriptional repressor in cellular development and differentiation, metabolism, and innate immunity. Interestingly, multiple lines of evidence from mice and human systems have revealed the importance of ZBTB20 in the pathogenesis and development of cancers. ZBTB20 is not only a hotspot of genetic variation or fusion in many types of human cancers, but also a key TF or intermediator involving in the dysregulation of cancer cells. Given the diverse functions of ZBTB20 in both health and disease, we herein summarize the structure and physiological roles of ZBTB20, with an emphasis on the latest findings on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China;
| |
Collapse
|
5
|
Ren AJ, Wei C, Liu YJ, Liu M, Wang P, Fan J, Wang K, Zhang S, Qin Z, Ren QX, Zheng Y, Chen YX, Xie Z, Gao L, Zhu Y, Zhang Y, Yang HT, Zhang WJ. ZBTB20 Regulates SERCA2a Activity and Myocardial Contractility Through Phospholamban. Circ Res 2024; 134:252-265. [PMID: 38166470 DOI: 10.1161/circresaha.123.323798] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND Intracellular Ca2+ cycling determines myocardial contraction and relaxation in response to physiological demands. SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) is responsible for the sequestration of cytosolic Ca2+ into intracellular stores during cardiac relaxation, and its activity is reversibly inhibited by PLN (phospholamban). However, the regulatory hierarchy of SERCA2a activity remains unclear. METHODS Cardiomyocyte-specific ZBTB20 knockout mice were generated by crossing ZBTB20flox mice with Myh6-Cre mice. Echocardiography, blood pressure measurements, Langendorff perfusion, histological analysis and immunohistochemistry, quantitative reverse transcription-PCR, Western blot analysis, electrophysiological measurements, and chromatin immunoprecipitation assay were performed to clarify the phenotype and elucidate the molecular mechanisms. RESULTS Specific ablation of ZBTB20 in cardiomyocyte led to a significant increase in basal myocardial contractile parameters both in vivo and in vitro, accompanied by an impairment in cardiac reserve and exercise capacity. Moreover, the cardiomyocytes lacking ZBTB20 showed an increase in sarcoplasmic reticular Ca2+ content and exhibited a remarkable enhancement in both SERCA2a activity and electrically stimulated contraction. Mechanistically, PLN expression was dramatically reduced in cardiomyocytes at the mRNA and protein levels by ZBTB20 deletion or silencing, and PLN overexpression could largely restore the basal contractility in ZBTB20-deficient cardiomyocytes. CONCLUSIONS These data point to ZBTB20 as a fine-tuning modulator of PLN expression and SERCA2a activity, thereby offering new perspective on the regulation of basal contractility in the mammalian heart.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
- Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai, China (A.-J.R., J.F.)
| | - Chunchun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Ya-Jin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| | - Mengna Liu
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Ping Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Juan Fan
- Experimental Teaching Center, College of Basic Medical Sciences, Naval Medical University, Shanghai, China (A.-J.R., J.F.)
| | - Kai Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Sha Zhang
- Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China (S.Z.)
| | - Zhenbang Qin
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Qiu-Xiao Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Yanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Y. Zheng, H.-T.Y.)
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, China (Z.X.)
| | - Ling Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, China (L.G.)
| | - Yi Zhu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| | - Youyi Zhang
- Institute of Vascular Medicine, National Key Laboratory of Cardiovascular Homeostasis and Remodeling, Peking University Third Hospital, Beijing, China (Y. Zhang)
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, China (Y. Zheng, H.-T.Y.)
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China (A.-J.R., C.W., M.L., P.W., K.W., Z.Q., Q.-X.R., Y.-X.C., W.J.Z.)
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Institute of Endocrinology and Chu Hsien-I Memorial Hospital, Tianjin Medical University Tianjin, China (Y.-J.L., Y. Zhu, W.J.Z.)
| |
Collapse
|
6
|
Shi JH, Chen YX, Feng Y, Yang X, Lin J, Wang T, Wei CC, Ma XH, Yang R, Cao D, Zhang H, Xie X, Xie Z, Zhang WJ. Fructose overconsumption impairs hepatic manganese homeostasis and ammonia disposal. Nat Commun 2023; 14:7934. [PMID: 38040719 PMCID: PMC10692208 DOI: 10.1038/s41467-023-43609-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
Arginase, a manganese (Mn)-dependent enzyme, is indispensable for urea generation and ammonia disposal in the liver. The potential role of fructose in Mn and ammonia metabolism is undefined. Here we demonstrate that fructose overconsumption impairs hepatic Mn homeostasis and ammonia disposal in male mice. Fructose overexposure reduces liver Mn content as well as its activity of arginase and Mn-SOD, and impairs the clearance of blood ammonia under liver dysfunction. Mechanistically, fructose activates the Mn exporter Slc30a10 gene transcription in the liver in a ChREBP-dependent manner. Hepatic overexpression of Slc30a10 can mimic the effect of fructose on liver Mn content and ammonia disposal. Hepatocyte-specific deletion of Slc30a10 or ChREBP increases liver Mn contents and arginase activity, and abolishes their responsiveness to fructose. Collectively, our data establish a role of fructose in hepatic Mn and ammonia metabolism through ChREBP/Slc30a10 pathway, and postulate fructose dietary restriction for the prevention and treatment of hyperammonemia.
Collapse
Affiliation(s)
- Jian-Hui Shi
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yu-Xia Chen
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yingying Feng
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaohang Yang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Jie Lin
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Ting Wang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Chun-Chun Wei
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xian-Hua Ma
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Rui Yang
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Dongmei Cao
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hai Zhang
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xiangyang Xie
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Zhifang Xie
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Weiping J Zhang
- National Key Laboratory of Immunity & Inflammation and Department of Pathophysiology, Naval Medical University, Shanghai, China.
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
7
|
Stoyanov D, Stoyanov GS, Ivanov MN, Spasov RH, Tonchev AB. Transcription Factor Zbtb20 as a Regulator of Malignancy and Its Practical Applications. Int J Mol Sci 2023; 24:13763. [PMID: 37762065 PMCID: PMC10530547 DOI: 10.3390/ijms241813763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/30/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Zbtb20 (zinc finger and BTB domain-containing protein 20) is a transcription factor with a zinc finger DNA binding domain and a BTB domain responsible for protein-protein interaction. Recently, this TF has received attention because new data showed its pivotal involvement in normal neural development and its regulatory effects on proliferation and differentiation in different tissues. Zbtb20 was shown to increase proliferation and migration and confer resistance to apoptosis in the contexts of many malignant tumors like hepatocellular carcinoma, non-small-cell lung carcinoma, gastric adenocarcinoma, glioblastoma multiforme, breast cancer, and acute myeloid leukemia. The involvement of Zbtb20 in tumor biology is best studied in hepatocellular carcinoma, where it is a promising candidate as an immunohistochemical tumor marker or may be used in patient screening. Here we review the current data connecting Zbtb20 with malignant tumors.
Collapse
Affiliation(s)
- Dimo Stoyanov
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
| | - George S. Stoyanov
- Department of Clinical Pathology, Complex Oncology Center, 9700 Shumen, Bulgaria
| | - Martin N. Ivanov
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| | - Radoslav H. Spasov
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
| | - Anton B. Tonchev
- Department of Anatomy and Cell Biology, Medical University of Varna, 9000 Varna, Bulgaria
- Department of Stem Cell Biology, Research Institute, Medical University of Varna, 9000 Varna, Bulgaria
| |
Collapse
|
8
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
9
|
Xie Z, Ma XH, Bai QF, Tang J, Sun JH, Jiang F, Guo W, Wang CM, Yang R, Wen YC, Wang FY, Chen YX, Zhang H, He DZ, Kelley MW, Yang S, Zhang WJ. ZBTB20 is essential for cochlear maturation and hearing in mice. Proc Natl Acad Sci U S A 2023; 120:e2220867120. [PMID: 37279265 PMCID: PMC10268240 DOI: 10.1073/pnas.2220867120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/25/2023] [Indexed: 06/08/2023] Open
Abstract
The mammalian cochlear epithelium undergoes substantial remodeling and maturation before the onset of hearing. However, very little is known about the transcriptional network governing cochlear late-stage maturation and particularly the differentiation of its lateral nonsensory region. Here, we establish ZBTB20 as an essential transcription factor required for cochlear terminal differentiation and maturation and hearing. ZBTB20 is abundantly expressed in the developing and mature cochlear nonsensory epithelial cells, with transient expression in immature hair cells and spiral ganglion neurons. Otocyst-specific deletion of Zbtb20 causes profound deafness with reduced endolymph potential in mice. The subtypes of cochlear epithelial cells are normally generated, but their postnatal development is arrested in the absence of ZBTB20, as manifested by an immature appearance of the organ of Corti, malformation of tectorial membrane (TM), a flattened spiral prominence (SP), and a lack of identifiable Boettcher cells. Furthermore, these defects are related with a failure in the terminal differentiation of the nonsensory epithelium covering the outer border Claudius cells, outer sulcus root cells, and SP epithelial cells. Transcriptome analysis shows that ZBTB20 regulates genes encoding for TM proteins in the greater epithelial ridge, and those preferentially expressed in root cells and SP epithelium. Our results point to ZBTB20 as an essential regulator for postnatal cochlear maturation and particularly for the terminal differentiation of cochlear lateral nonsensory domain.
Collapse
Affiliation(s)
- Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200092, China
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Xian-Hua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Qiu-Fang Bai
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| | - Jie Tang
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jian-He Sun
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Fei Jiang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai200092, China
| | - Wei Guo
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Chen-Ma Wang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| | - Rui Yang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Yin-Chuan Wen
- Department of Physiology, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Fang-Yuan Wang
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - Hai Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
| | - David Z. He
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, NE68178
| | | | - Shiming Yang
- Senior Department of Otolaryngology-Head and Neck Surgery, National Clinical Research Center for Otolaryngologic Diseases, the Sixth Medical Center of PLA General Hospital, Beijing100141, China
| | - Weiping J. Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai200433, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin300134, China
| |
Collapse
|
10
|
Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells. Cancers (Basel) 2022; 15:cancers15010110. [PMID: 36612109 PMCID: PMC9817686 DOI: 10.3390/cancers15010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pituitary gland is one of the most cellularly diverse regions of the brain. Recent advancements in transcriptomic biology, such as single-cell RNA sequencing, bring an unprecedented glimpse into the molecular composition of the pituitary, both in its normal physiological state and in disease. Deciphering the normal pituitary transcriptomic signatures provides a better insight into the ontological origin and development of five types of endocrine cells, a process involving complex cascades of transcription factors that are still being established. In parallel with these observations about normal pituitary development, recent transcriptomic findings on pituitary neuroendocrine tumors (PitNETs) demonstrate both preservations and changes in transcription factor expression patterns compared to those seen during gland development. Furthermore, recent studies also identify differentially expressed genes that drive various tumor behaviors, including hormone hypersecretion and tumor aggression. Understanding the comprehensive multiomic profiles of PitNETs is essential in developing molecular profile-based therapies for PitNETs not curable with current treatment modalities and could eventually help align PitNETs with the breakthroughs being made in applying precision medicine to other tumors.
Collapse
|
11
|
Han Q, Yan X, Ye Y, Han L, Ma X, Wang T, Cao D, Zhang WJ. ZBTB20 Regulates Prolactin Expression and Lactotrope Function in Adult Mice. Endocrinology 2022; 163:6775161. [PMID: 36288554 DOI: 10.1210/endocr/bqac181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 11/19/2022]
Abstract
Lactotropes are prolactin (PRL)-secreting endocrine cells in the anterior pituitary. We have established the zinc finger protein ZBTB20 as an essential transcription factor for lactotrope specification, the disruption of which results in complete loss of lactotropes in mice. However, the potential role of ZBTB20 in mature lactotropes remains unclear. Here we demonstrate that ZBTB20 acts as a critical cell-autonomous regulator for PRL expression in mature lactotropes in adult mice. Via a CRISPR/Cas9 approach, we first generated a tamoxifen-inducible Prl-CreER knockin mouse line that could efficiently mediate gene recombination specifically in lactotropes. Conditional deletion of the Zbtb20 gene specifically in mature lactotropes at adulthood led to a substantial decrease in PRL levels both in the pituitary and in plasma, without significant alterations of lactotrope relative density in the pituitary from male or female mice. Furthermore, conditional disruption of Zbtb20 in adult female mice did not significantly change pregnancy-elicited lactotrope expansion, but caused an impaired mammary gland expansion and lactation due to the PRL defect. Thus, our data point to an important role of ZBTB20 in regulating PRL expression and lactotrope function at adulthood.
Collapse
Affiliation(s)
- Qing Han
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Xuede Yan
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Yufei Ye
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Linhui Han
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Ting Wang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Dongmei Cao
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai 200433, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| |
Collapse
|
12
|
Eesmaa A, Yu LY, Göös H, Danilova T, Nõges K, Pakarinen E, Varjosalo M, Lindahl M, Lindholm P, Saarma M. CDNF Interacts with ER Chaperones and Requires UPR Sensors to Promote Neuronal Survival. Int J Mol Sci 2022; 23:ijms23169489. [PMID: 36012764 PMCID: PMC9408947 DOI: 10.3390/ijms23169489] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is a neurotrophic factor that has beneficial effects on dopamine neurons in both in vitro and in vivo models of Parkinson's disease (PD). CDNF was recently tested in phase I-II clinical trials for the treatment of PD, but the mechanisms underlying its neuroprotective properties are still poorly understood, although studies have suggested its role in the regulation of endoplasmic reticulum (ER) homeostasis and the unfolded protein response (UPR). The aim of this study was to investigate the mechanism of action of CDNF through analyzing the involvement of UPR signaling in its anti-apoptotic function. We used tunicamycin to induce ER stress in mice in vivo and used cultured primary neurons and found that CDNF expression is regulated by ER stress in vivo and that the involvement of UPR pathways is important for the neuroprotective function of CDNF. Moreover, we used AP-MS and BiFC to perform the first interactome screening for CDNF and report novel binding partners of CDNF. These findings allowed us to hypothesize that CDNF protects neurons from ER-stress-inducing agents by modulating UPR signaling towards cell survival outcomes.
Collapse
|
13
|
Xie X, Feng Y, Zhang H, Su Q, Song T, Yang G, Li N, Wei X, Li T, Qin X, Li S, Wu C, Zhang X, Wang G, Liu Y, Yang H. Remodeling tumor immunosuppressive microenvironment via a novel bioactive nanovaccines potentiates the efficacy of cancer immunotherapy. Bioact Mater 2022; 16:107-119. [PMID: 35386322 PMCID: PMC8958467 DOI: 10.1016/j.bioactmat.2022.03.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical outcomes of cancer nanovaccine have been largely impeded owing to the low antigen-specific T cell response rate and acquired resistance caused by the immunosuppressive tumor microenvironment (TME). Here, we reported a tumor acidity-responsive nanovaccine to remodel the immunosuppressive TME and expand the recruitment of tumor infiltrating lymphocytes (TILs) using hybrid micelles (HM), which encapsulated colony stimulating factor 1 receptor (CSF1-R) inhibitor BLZ-945 and indoleamine 2,3-dioxygenase (IDO) inhibitor NLG-919 in its core and displayed a model antigen ovalbumin (OVA) on its surface (denoted as BN@HM-OVA). The bioactive nanovaccine is coated with a polyethylene glycol (PEG) shell for extending nanoparticle circulation. The shell can be shed in response to the weakly acidic tumor microenvironment. The decrease in size and the increase in positive charge may cause the deep tumor penetration of drugs. We demonstrated that the bioactive nanovaccine dramatically enhance antigen presentation by dendritic cells (DCs) and drugs transportation into M1-like tumor-associated macrophages (TAMs) and tumor cells via size reduction and increasing positive charge caused by the weakly acidic TME. Such bioactive nanovaccine could remodel the immunosuppressive TME into an effector T cells favorable environment, leading to tumor growth inhibition in prophylactic and therapeutic E.G7-OVA tumor models. Furthermore, combining the bioactive nanovaccine with simultaneous anti-PD-1 antibody treatment leads to a long-term tumor inhibition, based on the optimal timing and sequence of PD-1 blockade against T cell receptor. This research provides a new strategy for the development of efficient cancer immunotherapy. A bioactive nanovaccine (BN@HM-OVA) was adopted for synergistic immunotherapy of E.G7-OVA tumors. BN@HM-OVA exhibited superior ability to induce DCs maturation and robust antigen-specific T cell responses. BN@HM-OVA contributed to a homeostasis in the tumor microenvironment ideal for antitumor vaccination. The combination treatment of BN@HM-OVA and αPD-1 achieved maximum therapeutic benefits.
Collapse
|
14
|
Zhang Q, Zhang L, Huang Y, Ma P, Mao B, Ding YQ, Song NN. Satb2 regulates the development of dopaminergic neurons in the arcuate nucleus by Dlx1. Cell Death Dis 2021; 12:879. [PMID: 34564702 PMCID: PMC8464595 DOI: 10.1038/s41419-021-04175-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
Dopaminergic (DA) neurons in the arcuate nucleus (ARC) of the hypothalamus play essential roles in the secretion of prolactin and the regulation of energy homeostasis. However, the gene regulatory network responsible for the development of the DA neurons remains poorly understood. Here we report that the transcription factor special AT-rich binding protein 2 (Satb2) is required for the development of ARC DA neurons. Satb2 is expressed in a large proportion of DA neurons without colocalization with proopiomelanocortin (POMC), orexigenic agouti-related peptide (AgRP), neuropeptide-Y (NPY), somatostatin (Sst), growth hormone-releasing hormone (GHRH), or galanin in the ARC. Nestin-Cre;Satb2flox/flox (Satb2 CKO) mice show a reduced number of ARC DA neurons with unchanged numbers of the other types of ARC neurons, and exhibit an increase of serum prolactin level and an elevated metabolic rate. The reduction of ARC DA neurons in the CKO mice is observed at an embryonic stage and Dlx1 is identified as a potential downstream gene of Satb2 in regulating the development of ARC DA neurons. Together, our study demonstrates that Satb2 plays a critical role in the gene regulatory network directing the development of DA neurons in ARC.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lei Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Huang
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
| | - Pengcheng Ma
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Bingyu Mao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, China
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, and Department of Anatomy and Neurobiology, Tongji University School of Medicine, Shanghai, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ning-Ning Song
- Department of Laboratory Animal Science, Fudan University, Shanghai, China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
15
|
Zhang S, Cui Y, Ma X, Yong J, Yan L, Yang M, Ren J, Tang F, Wen L, Qiao J. Single-cell transcriptomics identifies divergent developmental lineage trajectories during human pituitary development. Nat Commun 2020; 11:5275. [PMID: 33077725 PMCID: PMC7572359 DOI: 10.1038/s41467-020-19012-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 09/23/2020] [Indexed: 12/01/2022] Open
Abstract
The anterior pituitary gland plays a central role in regulating various physiological processes, including body growth, reproduction, metabolism and stress response. Here, we perform single-cell RNA-sequencing (scRNA-seq) of 4113 individual cells from human fetal pituitaries. We characterize divergent developmental trajectories with distinct transitional intermediate states in five hormone-producing cell lineages. Corticotropes exhibit an early intermediate state prior to full differentiation. Three cell types of the PIT-1 lineage (somatotropes, lactotropes and thyrotropes) segregate from a common progenitor coexpressing lineage-specific transcription factors of different sublineages. Gonadotropes experience two multistep developmental trajectories. Furthermore, we identify a fetal gonadotrope cell subtype expressing the primate-specific hormone chorionic gonadotropin. We also characterize the cellular heterogeneity of pituitary stem cells and identify a hybrid epithelial/mesenchymal state and an early-to-late state transition. Here, our results provide insights into the transcriptional landscape of human pituitary development, defining distinct cell substates and subtypes and illustrating transcription factor dynamics during cell fate commitment. Editor’s summary_NCOMMS-19-41732B The anterior pituitary gland controls body growth and reproduction but how early development is dynamically regulated is unclear. Here, the authors use scRNA-seq of human fetal pituitaries to identify different developmental routes and state transitions of five hormone-producing cell lineages, and a hybrid epithelial/mesenchymal state of pituitary stem cells.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Yueli Cui
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Xinyi Ma
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Jun Yong
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Liying Yan
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China
| | - Ming Yang
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jie Ren
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China
| | - Fuchou Tang
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China.,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Lu Wen
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. .,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China.
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Beijing Advanced Innovation Center for Genomics, School of Life Sciences, Third Hospital, Peking University, Beijing, 100871, China. .,Biomedical Pioneering Innovation Center, School of Life Sciences, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing, 100871, China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
16
|
Ren AJ, Chen C, Zhang S, Liu M, Wei C, Wang K, Ma X, Song Y, Wang R, Zhang H, Chen YX, Wu H, Xie Z, Zhang Y, Zhang WJ. Zbtb20 deficiency causes cardiac contractile dysfunction in mice. FASEB J 2020; 34:13862-13876. [PMID: 32844471 DOI: 10.1096/fj.202000160rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022]
Abstract
The zinc-finger protein ZBTB20 regulates development and metabolism in multiple systems, and is essential for postnatal survival in mice. However, its potential role in the cardiovascular system remains undefined. Here, we demonstrate that ZBTB20 is critically involved in the regulation of cardiac contractility and blood pressure in mice. At the age of 16 days, the relatively healthy Zbtb20-null mice exhibited hypotension without obvious change of heart rate or other evidence for heart failure. Moreover, Zbtb20 deletion led to a marked reduction in heart size, left ventricular wall thickness, and cell size of cardiomyocytes, which was largely proportional to the decreased body growth. Notably, echocardiographic and hemodynamic analyses showed that cardiac contractility was greatly impaired in the absence of ZBTB20. Mechanistically, ZBTB20 deficiency decreased cardiac ATP contents, and compromised the enzyme activity of mitochondrial complex I in heart as well as L-type calcium current density in cardiomyocytes. Furthermore, the developmental activation of some mitochondrial function-related genes was significantly attenuated in Zbtb20-null myocardium, which included Hspb8, Ckmt2, Cox7a1, Tfrc, and Ogdhl. Put together, these results suggest that ZBTB20 plays a crucial role in the regulation of heart development, energy metabolism, and contractility.
Collapse
Affiliation(s)
- An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Chao Chen
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Sha Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China.,Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Mengna Liu
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Chunchun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Kai Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xianhua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yao Song
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Rui Wang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hai Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Hong Wu
- Department of Cardiovascular Diseases, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Youyi Zhang
- Institute of Vascular Medicine, Peking University Third Hospital, Beijing, China
| | - Weiping J Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China.,NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| |
Collapse
|
17
|
Ho Y, Hu P, Peel MT, Chen S, Camara PG, Epstein DJ, Wu H, Liebhaber SA. Single-cell transcriptomic analysis of adult mouse pituitary reveals sexual dimorphism and physiologic demand-induced cellular plasticity. Protein Cell 2020; 11:565-583. [PMID: 32193873 PMCID: PMC7381518 DOI: 10.1007/s13238-020-00705-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 02/26/2020] [Indexed: 12/23/2022] Open
Abstract
The anterior pituitary gland drives highly conserved physiologic processes in mammalian species. These hormonally controlled processes are central to somatic growth, pubertal transformation, fertility, lactation, and metabolism. Current cellular models of mammalian anteiror pituitary, largely built on candidate gene based immuno-histochemical and mRNA analyses, suggest that each of the seven hormones synthesized by the pituitary is produced by a specific and exclusive cell lineage. However, emerging evidence suggests more complex relationship between hormone specificity and cell plasticity. Here we have applied massively parallel single-cell RNA sequencing (scRNA-seq), in conjunction with complementary imaging-based single-cell analyses of mRNAs and proteins, to systematically map both cell-type diversity and functional state heterogeneity in adult male and female mouse pituitaries at single-cell resolution and in the context of major physiologic demands. These quantitative single-cell analyses reveal sex-specific cell-type composition under normal pituitary homeostasis, identify an array of cells associated with complex complements of hormone-enrichment, and undercover non-hormone producing interstitial and supporting cell-types. Interestingly, we also identified a Pou1f1-expressing cell population that is characterized by a unique multi-hormone gene expression profile. In response to two well-defined physiologic stresses, dynamic shifts in cellular diversity and transcriptome profiles were observed for major hormone producing and the putative multi-hormone cells. These studies reveal unanticipated cellular complexity and plasticity in adult pituitary, and provide a rich resource for further validating and expanding our molecular understanding of pituitary gene expression programs and hormone production.
Collapse
Affiliation(s)
- Yugong Ho
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Peng Hu
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael T Peel
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sixing Chen
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pablo G Camara
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Penn Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas J Epstein
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hao Wu
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Stephen A Liebhaber
- Departments of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Departments of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
He Z, Zhu J, Mo J, Zhao H, Chen Q. HBV DNA integrates into upregulated ZBTB20 in patients with hepatocellular carcinoma. Mol Med Rep 2020; 22:380-386. [PMID: 32319639 PMCID: PMC7248478 DOI: 10.3892/mmr.2020.11074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/18/2020] [Indexed: 12/27/2022] Open
Abstract
Hepatitis B virus (HBV) affects the malignant phenotype of hepatocellular carcinoma (HCC). The aim of the present study was to investigate the integration sites of HBV DNA and the expression of the zinc finger protein, zinc finger and BTB domain containing 20 (ZBTB20) in patients with hepatocellular carcinoma. Integration of the HBV gene was detected using a high-throughput sequencing technique based on the HBV-Alu-PCR method. The expression of ZBTB20 was detected by western blotting. HBVX integration sites were detected in ~70% of the HCC tissue samples. HBV-integrated subgene X detection suggested that 67% of the integrated specimens were inserted into the host X gene in a forward direction, 57% in a reverse direction, 24% in both forward and reverse directions, and 38% had two HBV integration sites. A total of 3,320 HBV integration sites were identified, including 1,397 in HCC tissues, 1,205 in paracancerous tissues and 718 in normal liver tissues. HBV integration fragments displayed enrichment in the 200–800 bp region. Additionally, the results suggested that HBV was highly integrated into transmembrane phosphatase with tensin homology, long intergenic non-protein coding RNA (LINC)00618, LOC101929241, ACTR3 pseudogene 5, LINC00999, LOC101928775, deleted in oesophageal cancer 1, LINC00824, EBF transcription factor 2 and ZBTB20 in tumour tissues. Furthermore, the expression of ZBTB20 was upregulated in HCC tissues compared with normal control liver tissues, and was associated with HBV integration frequency. The present study suggested that HBV DNA integrated into upregulated ZBTB20 in patients with hepatocellular carcinoma, which might promote the occurrence and development of HCC. Furthermore, the results of the present study may provide a theoretical basis for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Zebao He
- Department of Neurology, Taizhou Enze Medical Center Enze Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Jiansheng Zhu
- Department of Neurology, Taizhou Enze Medical Center Enze Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Jinggang Mo
- Department of Neurology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Haihong Zhao
- Department of Neurology, Taizhou Enze Medical Center Enze Hospital, Taizhou, Zhejiang 318000, P.R. China
| | - Qiuyue Chen
- Department of Neurology, Taizhou Central Hospital, Taizhou University Hospital, Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
19
|
Zhang H, Chen T, Xiong J, Hu B, Luo J, Xi Q, Jiang Q, Sun J, Zhang Y. MiR-130a-3p Inhibits PRL Expression and Is Associated With Heat Stress-Induced PRL Reduction. Front Endocrinol (Lausanne) 2020; 11:92. [PMID: 32194503 PMCID: PMC7062671 DOI: 10.3389/fendo.2020.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
MicroRNAs (MiRNAs) play critical roles in the regulation of pituitary function. MiR-130a-3p has previously been found to be down-regulated in prolactinoma, but its roles in prolactin (PRL) regulation and the underlying mechanisms are still unclear. Heat stress has been shown to induce alteration of endocrine hormones and miRNAs expressions. However, there is limited information regarding the emerging roles of miRNAs in heat stress response. In this study, we transfected miR-130a-3p mimic into the pituitary adenoma cells (GH3 cells) to investigate the function of miR-130a-3p in regulating PRL. Our results showed that miR-130a-3p overexpression significantly decreased the PRL expression at both mRNA and protein levels. Subsequently, estrogen receptor α (ERα) was identified as a direct target of miR-130a-3p by bioinformatics prediction, luciferase reporter assay and western blotting assay. Furthermore, the inhibition of ERα caused by estrogen receptor antagonist significantly reduced the PRL expression. Overexpression of ERα rescued the suppressed expression of PRL caused by miR-130a-3p mimic. Besides, we also studied the effect of heat stress on PRL and miRNAs expressions. Interestingly, we found that heat stress reduced PRL and ERα expressions while it increased miR-130a-3p expression both in vitro and in vivo. Taken together, our results indicate that miR-130a-3p represses ERα by targeting its 3'UTR leading to a decrease in PRL expression, and miR-130a-3p is correlative with heat stress-induced PRL reduction, which provides a novel mechanism that miRNAs are involved in PRL regulation.
Collapse
Affiliation(s)
- Haojie Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Jiali Xiong
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Baoyu Hu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
| | - Qingyang Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiajie Sun
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering & Research Center for Woody Fodder Plants, South China Agricultural University, Guangzhou, China
- Yongliang Zhang
| |
Collapse
|
20
|
Extrapituitary prolactin promotes generation of Eomes-positive helper T cells mediating neuroinflammation. Proc Natl Acad Sci U S A 2019; 116:21131-21139. [PMID: 31570595 PMCID: PMC6800326 DOI: 10.1073/pnas.1906438116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We have previously demonstrated that induction of pathogenic eomesodermin-positive CD4+ T cells (Eomes+ T helper [Th] cells) is associated with transition from an acute stage to a later stage of experimental autoimmune encephalomyelitis (EAE). In the late phase of EAE, B cells and non-B cell antigen-presenting cells (APCs) recruited to the central nervous system strikingly up-regulate prolactin (PRL). The PRL-producing APCs have the potential to promote generation of Eomes+ Th cells from naïve T cells in an MHC class II-restricted manner, and therapies inhibitory for PRL production suppress the induction of Eomes+ Th cells and ameliorate clinical signs of EAE. Our study highlights the unexpected role of extrapituitary PRL in the development of persistent neuroinflammation. Induction of eomesodermin-positive CD4+ T cells (Eomes+ T helper [Th] cells) has recently been correlated with the transition from an acute stage to a later stage of experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. Moreover, these cells’ pathogenic role has been experimentally proven in EAE. While exploring how the pathogenic Eomes+ Th cells are generated during the course of EAE, we unexpectedly found that B cells and MHC class II+ myeloid cells isolated from the late EAE lesions strikingly up-regulated the expression of prolactin (PRL). We demonstrate that such PRL-producing cells have a unique potential to induce Eomes+ Th cells from naïve T cells ex vivo, and that anti-MHC class II antibody could block this process. Furthermore, PRL levels in the cerebrospinal fluid were significantly increased in the late phase of EAE, and blocking the production of PRL by bromocriptine or Zbtb20-specific siRNA significantly reduced the numbers of Eomes+ Th cells in the central nervous system (CNS) and ameliorated clinical signs in the later phase of EAE. The PRL dependency of Eomes+ Th cells was confirmed in a series of in vitro and ex vivo experiments. Collectively, these results indicate that extrapituitary PRL plays a crucial role in the CNS inflammation mediated by pathogenic Eomes+ Th cells. Cellular interactions involving PRL-producing immune cells could be considered as a therapeutic target for the prevention of chronic neuroinflammation.
Collapse
|
21
|
Edwards W, Raetzman LT. Complex integration of intrinsic and peripheral signaling is required for pituitary gland development. Biol Reprod 2019; 99:504-513. [PMID: 29757344 DOI: 10.1093/biolre/ioy081] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
The coordination of pituitary development is complicated and requires input from multiple cellular processes. Recent research has provided insight into key molecular determinants that govern cell fate specification in the pituitary. Moreover, increasing research aimed to identify, characterize, and functionally describe the presumptive pituitary stem cell population has allowed for a better understanding of the processes that govern endocrine cell differentiation in the developing pituitary. The culmination of this research has led to the ability of investigators to recapitulate some of embryonic pituitary development in vitro, the first steps to developing novel regenerative therapies for pituitary diseases. In this current review, we cover the major players in pituitary stem/progenitor cell function and maintenance, and the key molecular determinants of endocrine cell specification. In addition, we discuss the contribution of peripheral hormonal regulation of pituitary gland development, an understudied area of research.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
22
|
Ren YA, Monkkonen T, Lewis MT, Bernard DJ, Christian HC, Jorgez CJ, Moore JA, Landua JD, Chin HM, Chen W, Singh S, Kim IS, Zhang XH, Xia Y, Phillips KJ, MacKay H, Waterland RA, Ljungberg MC, Saha PK, Hartig SM, Coll TF, Richards JS. S100a4-Cre-mediated deletion of Patched1 causes hypogonadotropic hypogonadism: role of pituitary hematopoietic cells in endocrine regulation. JCI Insight 2019; 5:126325. [PMID: 31265437 DOI: 10.1172/jci.insight.126325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Hormones produced by the anterior pituitary gland regulate an array of important physiological functions, but pituitary hormone disorders are not fully understood. Herein we report that genetically-engineered mice with deletion of the hedgehog signaling receptor Patched1 by S100a4 promoter-driven Cre recombinase (S100a4-Cre;Ptch1fl/fl mutants) exhibit adult-onset hypogonadotropic hypogonadism and multiple pituitary hormone disorders. During the transition from puberty to adult, S100a4-Cre;Ptch1fl/fl mice of both sexes develop hypogonadism coupled with reduced gonadotropin levels. Their pituitary glands also display severe structural and functional abnormalities, as revealed by transmission electron microscopy and expression of key genes regulating pituitary endocrine functions. S100a4-Cre activity in the anterior pituitary gland is restricted to CD45+ cells of hematopoietic origin, including folliculo-stellate cells and other immune cell types, causing sex-specific changes in the expression of genes regulating the local microenvironment of the anterior pituitary. These findings provide in vivo evidence for the importance of pituitary hematopoietic cells in regulating fertility and endocrine function, in particular during sexual maturation and likely through sexually dimorphic mechanisms. These findings support a previously unrecognized role of hematopoietic cells in causing hypogonadotropic hypogonadism and provide inroads into the molecular and cellular basis for pituitary hormone disorders in humans.
Collapse
Affiliation(s)
- Yi Athena Ren
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Helen C Christian
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Carolina J Jorgez
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Joshua A Moore
- Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - John D Landua
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Department of Radiology and.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Haelee M Chin
- Department of Biology, Rice University, Houston, Texas, USA
| | - Weiqin Chen
- Department of Physiology, Augusta University, Augusta, Georgia, USA
| | - Swarnima Singh
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Ik Sun Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Xiang Hf Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas, USA
| | - Yan Xia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Kevin J Phillips
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry MacKay
- USDA/ARS Children's Nutrition Research Center, Houston, Texas, USA
| | | | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Jan and Dan Duncan Neurological Research Center at Texas Children's Hospital, Houston, Texas, USA
| | - Pradip K Saha
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Tatiana Fiordelisio Coll
- Institut de Génomique Fonctionnelle, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, University of Montpellier, Montpellier, France.,Laboratorio de Neuroendocrinología Comparada, Departamento de Ecología y Recursos Naturales, Biología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, México City, Distrito Federal, México
| | - JoAnne S Richards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
23
|
Du Q, Hoover AR, Dozmorov I, Raj P, Khan S, Molina E, Chang TC, de la Morena MT, Cleaver OB, Mendell JT, van Oers NSC. MIR205HG Is a Long Noncoding RNA that Regulates Growth Hormone and Prolactin Production in the Anterior Pituitary. Dev Cell 2019; 49:618-631.e5. [PMID: 30982661 DOI: 10.1016/j.devcel.2019.03.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/21/2018] [Accepted: 03/13/2019] [Indexed: 01/09/2023]
Abstract
MicroRNAs (miRNAs) are processed from primary miRNA transcripts (pri-miRNAs), many of which are annotated as long noncoding RNAs (lncRNAs). We assessed whether MIR205HG, the host gene for miR-205, has independent functions as an lncRNA. Comparing mice with targeted deletions of MIR205HG and miR-205 revealed a functional role for the lncRNA in the anterior pituitary. Mice lacking MIR205HG had a temporal reduction in Pit1, growth hormone, and prolactin. This was mediated, in part, through the ability of this lncRNA to bind and regulate the transcriptional activity of Pit1 in conjunction with Zbtb20. Knockdown of MIR205HG in lactotropes decreased the expression of Pit1, Zbtb20, prolactin, and growth hormone, while its overexpression enhanced the levels of these transcripts. The effects of MIR205HG on the pituitary were independent of miR-205. The data support a role for MIR205HG as an lncRNA that regulates growth hormone and prolactin production in the anterior pituitary.
Collapse
Affiliation(s)
- Qiumei Du
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Ashley R Hoover
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Igor Dozmorov
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Prithvi Raj
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Shaheen Khan
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Erika Molina
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Tsung-Cheng Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Maria Teresa de la Morena
- Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Ondine B Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Nicolai S C van Oers
- Department of Immunology University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA; Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| |
Collapse
|
24
|
Danilova T, Galli E, Pakarinen E, Palm E, Lindholm P, Saarma M, Lindahl M. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Is Highly Expressed in Mouse Tissues With Metabolic Function. Front Endocrinol (Lausanne) 2019; 10:765. [PMID: 31781038 PMCID: PMC6851024 DOI: 10.3389/fendo.2019.00765] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/21/2019] [Indexed: 01/02/2023] Open
Abstract
Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) form a family of atypical growth factors discovered for their neuroprotective properties in the central nervous system (CNS) in animal models of neurodegenerative diseases. Although their mechanism of protective action still remains unclear, it has been suggested that both MANF and CDNF promote cell survival through regulating the unfolded protein response (UPR), thereby relieving endoplasmic reticulum (ER) stress. Recent studies identified MANF for its emerging roles in metabolic function, inflammation and pancreatic β-cells. We have found that MANF deletion from the pancreas and β-cells leads to postnatal depletion of β-cells and diabetes. Moreover, global MANF-deficiency in mice results in severe diabetes-independent growth retardation. As the expression pattern of MANF in mouse tissues has not been extensively studied, we set out to thoroughly investigate MANF expression in embryonic and adult mice using immunohistochemistry, histochemical X-gal staining, enzyme-linked immunosorbent assay (ELISA), and quantitative reverse transcription PCR (RT-qPCR). We found that MANF is highly expressed in brain neurons regulating energy homeostasis and appetite, as well as in hypothalamic nuclei producing hormones and neuropeptides important for different body functions. Strong expression of MANF was also observed in peripheral mouse tissues and cells with high secretory and metabolic function. These include pituitary gland and interestingly we found that the anterior pituitary gland is smaller in MANF-deficient mice compared to wild-type mice. Consequently, we found reduction in the number of growth hormone- and prolactin-producing cells. This combined with increased expression of UPR genes, reduced number of proliferating cells in the anterior pituitary and dysregulated expression of pituitary hormones might contribute to the severe growth defect seen in the MANF knockout mice. Moreover, in this study we compared MANF and CDNF levels in mouse tissues. Unlike MANF, CDNF protein levels are generally lower in mouse tissues, and the highest levels of CDNF was observed in the tissues with high-energy demands and oxidative roles, including heart, muscle, testis, and brown adipose tissue.
Collapse
|
25
|
|
26
|
Godini R, Fallahi H. Dynamics changes in the transcription factors during early human embryonic development. J Cell Physiol 2018; 234:6489-6502. [PMID: 30246428 DOI: 10.1002/jcp.27386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022]
Abstract
Development of an embryo from a single cell, zygote, to multicellular morulae requires activation of hundreds of genes that were mostly inactivated before fertilization. Inevitably, transcription factors (TFs) would be involved in modulating the drastic changes in gene expression pattern observed at all preimplantation stages. Despite many ongoing efforts to uncover the role of TFs at the early stages of embryogenesis, still many unanswered questions remained that need to be explored. This could be done by studying the expression pattern of multiple genes obtained by high-throughput techniques. In the current study, we have identified a set of TFs that are involved in the progression of the zygote to blastocyst. Global gene expression patterns of consecutive stages were compared and differences documented. Expectedly, at the early stages of development, only a few sets of TFs differentially expressed while at the later stages hundreds of TFs appear to be upregulated. Interestingly, the expression levels of many TFs show an oscillation pattern during development indicating a need for their precise expression. A significant shift in gene expression was observed during the transition from four- to eight-cell stages, an indication of zygote genome activation. Additionally, we have found 11 TFs that were common in all stages including ATF3, EN1, IFI16, IKZF3, KLF3, NPAS3, NR2F2, RUNX1, SOX2, ZBTB20, and ZSCAN4. However, their expression patterns did not follow similar trends in the steps studied. Besides, our findings showed that both upregulation and active downregulation of the TFs expression is required for successful embryogenesis. Furthermore, our detailed network analysis identified the hub TFs for each transition. We found that HNF4A, FOXA2, and EP300 are the three most important elements for the first division of zygote.
Collapse
Affiliation(s)
- Rasoul Godini
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
27
|
Allensworth-James ML, Odle A, Haney A, MacNicol M, MacNicol A, Childs G. Sex-specific changes in postnatal GH and PRL secretion in somatotrope LEPR-null mice. J Endocrinol 2018; 238:221-230. [PMID: 29929987 PMCID: PMC6354591 DOI: 10.1530/joe-18-0238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/21/2018] [Indexed: 12/24/2022]
Abstract
The developing pituitary is a rapidly changing environment that is constantly meeting the physiological demands of the growing organism. During early postnatal development, the anterior pituitary is refining patterns of anterior hormone secretion in response to numerous genetic factors. Our laboratory previously developed a somatotrope leptin receptor (LEPR) deletion mouse model that had decreased lean body mass, disrupted metabolism, decreased GH stores and was GH deficient as an adult. To understand how deletion of LEPR in somatotropes altered GH, we turned our attention to postnatal development. The current study examines GH, PRL, TSH, ACTH, LH and FSH secretion during postnatal days 4, 5, 8, 10 and 15 and compares age and sex differences. The LEPR mutants have dysregulation of GH (P < 0.03) and a reduced developmental prolactin peak in males (P < 0.04) and females (P < 0.002). There were no differences in weight between groups, and the postnatal leptin surge appeared to be normal. Percentages of immunolabeled GH cells were reduced in mutants compared with controls in all age groups by 35-61% in males and 41-44% in females. In addition, we measured pituitary expression of pituitary transcription factors, POU1F1 and PROP1. POU1F1 was reduced in mutant females at PND 10 (P < 0.009) and PND 15 (P < 0.02) but increased in males at PND 10 (P < 0.01). PROP1 was unchanged in female mutants but showed developmental increases at PND 5 (P < 0.02) and PND 15 (P < 0.01). These studies show that the dysfunction caused by LEPR deletion in somatotropes begins as early as neonatal development and involves developing GH and prolactin cells (somatolactotropes).
Collapse
Affiliation(s)
- Melody L Allensworth-James
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angela Odle
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Anessa Haney
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Melanie MacNicol
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Angus MacNicol
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Gwen Childs
- Department of Neurobiology and Developmental SciencesCollege of Medicine University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
28
|
Zhang H, Shi JH, Jiang H, Wang K, Lu JY, Jiang X, Ma X, Chen YX, Ren AJ, Zheng J, Xie Z, Guo S, Xu X, Zhang WJ. ZBTB20 regulates EGFR expression and hepatocyte proliferation in mouse liver regeneration. Cell Death Dis 2018; 9:462. [PMID: 29700307 PMCID: PMC5920068 DOI: 10.1038/s41419-018-0514-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/14/2022]
Abstract
Liver has a unique regenerative capacity, however, its regulatory mechanism is not fully defined. We have established the zinc-finger protein ZBTB20 as a key transcriptional repressor for alpha-fetoprotein (AFP) gene in liver. As a marker of hepatic differentiation, AFP expression is closely associated with hepatocyte proliferation. Unexpectedly, here we showed that ZBTB20 acts as a positive regulator of hepatic replication and is required for efficient liver regeneration. The mice specifically lacking ZBTB20 in hepatocytes exhibited a remarkable defect in liver regeneration after partial hepatectomy, which was characterized by impaired hepatocyte proliferation along with delayed cyclin D1 induction and diminished AKT activation. Furthermore, we found that epithelial growth factor receptor (EGFR) expression was dramatically reduced in the liver in the absence of ZBTB20, thereby substantially attenuating the activation of EGFR signaling pathway in regenerating liver. Adenovirus-mediated EGFR overexpression in ZBTB20-deficient hepatocytes could largely restore AKT activation in response to EGFR ligands in vitro, as well as hepatocyte replication in liver regeneration. Furthermore, ZBTB20 overexpression could significantly restore hepatic EGFR expression and cell proliferation after hepatectomy in ZBTB20-deficient liver. Taken together, our data point to ZBTB20 as a critical regulator of EGFR expression and hepatocyte proliferation in mouse liver regeneration, and may serve as a potential therapeutic target in clinical settings of liver regeneration.
Collapse
Affiliation(s)
- Hai Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jian-Hui Shi
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Hui Jiang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Kejia Wang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jun-Yu Lu
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Xuchao Jiang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - An-Jing Ren
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Jianming Zheng
- Department of Pathology, Changhai Hospital, Shanghai, 200433, China
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China
| | - Shaodong Guo
- Department of Nutrition and Metabolism, Texas University of Agriculture and Mechanics, College Station, TX, 77843, USA
| | - Xiongfei Xu
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China.
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
29
|
Cao D, Ma X, Zhang WJ, Xie Z. Dissection and Coronal Slice Preparation of Developing Mouse Pituitary Gland. J Vis Exp 2017. [PMID: 29286362 DOI: 10.3791/56356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The pituitary gland or hypophysis is an important endocrine organ secreting hormones essential for homeostasis. It consists of two glands with separate embryonic origins and functions - the neurohypophysis and the adenohypophysis. The developing mouse pituitary gland is tiny and delicate with an elongated oval shape. A coronal section is preferred to display both the adenohypophysis and neurohypophysis in a single slice of the mouse pituitary. The goal of this protocol is to achieve proper pituitary coronal sections with well-preserved tissue architectures from developing mice. In this protocol, we describe in detail how to dissect and process pituitary glands properly from developing mice. First, mice are fixed by transcardial perfusion of formaldehyde prior to dissection. Then three different dissecting techniques are applied to obtain intact pituitary glands depending on the age of mice. For fetal mice aged embryonic days (E) 17.5 - 18.5 and neonates up to 4 days, the entire sella regions including the sphenoid bone, gland, and trigeminal nerves are dissected. For pups aged postnatal days (P) 5 - 14, the pituitary glands connected with trigeminal nerves are dissected as a whole. For mice over 3 weeks old, the pituitary glands are carefully dissected free from the surrounding tissues. We also display how to embed the pituitary glands in a proper orientation by using the surrounding tissues as landmarks to obtain satisfying coronal sections. These methods are useful in analyzing histological and developmental features of pituitary glands in developing mice.
Collapse
Affiliation(s)
- Dongmei Cao
- Department of Pathophysiology, Second Military Medical University
| | - Xianhua Ma
- Department of Pathophysiology, Second Military Medical University
| | - Weiping J Zhang
- Department of Pathophysiology, Second Military Medical University;
| | - Zhifang Xie
- Department of Pathophysiology, Second Military Medical University; Department of Cell Biology, Second Military Medical University;
| |
Collapse
|
30
|
Regulation of hepatic lipogenesis by the zinc finger protein Zbtb20. Nat Commun 2017; 8:14824. [PMID: 28327662 PMCID: PMC5364431 DOI: 10.1038/ncomms14824] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatic de novo lipogenesis (DNL) converts carbohydrates into triglycerides and is known to influence systemic lipid homoeostasis. Here, we demonstrate that the zinc finger protein Zbtb20 is required for DNL. Mice lacking Zbtb20 in the liver exhibit hypolipidemia and reduced levels of liver triglycerides, along with impaired hepatic lipogenesis. The expression of genes involved in glycolysis and DNL, including that of two ChREBP isoforms, is decreased in livers of knockout mice. Zbtb20 binds to and enhances the activity of the ChREBP-α promoter, suggesting that altered metabolic gene expression is mainly driven by ChREBP. In addition, ChREBP-β overexpression largely restores hepatic expression of genes involved in glucose and lipid metabolism, and increases plasma and liver triglyceride levels in knockout mice. Finally, we show that Zbtb20 ablation protects from diet-induced liver steatosis and improves hepatic insulin resistance. We suggest ZBTB20 is an essential regulator of hepatic lipogenesis and may be a therapeutic target for the treatment of fatty liver disease. De novo lipogenesis is tightly controlled by hormonal and nutritional signals and plays an important role in energy homoeostasis. Here, Liu et al. show that zinc finger protein ZBTB20 regulates the expression of key glycolytic and lipogenic genes by modulating ChREBP expression and transcriptional activity.
Collapse
|
31
|
Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang THT, Zammit PS, Relaix F. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Front Cell Dev Biol 2016; 4:58. [PMID: 27446912 PMCID: PMC4914952 DOI: 10.3389/fcell.2016.00058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies.
Collapse
Affiliation(s)
- Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Anne Rochat
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Despoina Mademtzoglou
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Jessica Morais
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer Paris, France
| | - Frédéric Auradé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Center for Research in Myology Paris, France
| | - Ted Hung-Tse Chang
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | - Frédéric Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France; Etablissement Français du SangCréteil, France; APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy and Centre de Référence des Maladies Neuromusculaires GNMHCréteil, France
| |
Collapse
|
32
|
Liu G, Xu JN, Liu D, Ding Q, Liu MN, Chen R, Fan M, Zhang Y, Zheng C, Zou DJ, Lyu J, Zhang WJ. Regulation of plasma lipid homeostasis by hepatic lipoprotein lipase in adult mice. J Lipid Res 2016; 57:1155-61. [PMID: 27234787 PMCID: PMC4918845 DOI: 10.1194/jlr.m065011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
LPL is a pivotal rate-limiting enzyme to catalyze the hydrolysis of TG in circulation, and plays a critical role in regulating lipid metabolism. However, little attention has been paid to LPL in the adult liver due to its relatively low expression. Here we show that endogenous hepatic LPL plays an important physiological role in plasma lipid homeostasis in adult mice. We generated a mouse model with the Lpl gene specifically ablated in hepatocytes with the Cre/LoxP approach, and found that specific deletion of hepatic Lpl resulted in a significant decrease in plasma LPL contents and activity. As a result, the postprandial TG clearance was markedly impaired, and plasma TG and cholesterol levels were significantly elevated. However, deficiency of hepatic Lpl did not change the liver TG and cholesterol contents or glucose homeostasis. Taken together, our study reveals that hepatic LPL is involved in the regulation of plasma LPL activity and lipid homeostasis.
Collapse
Affiliation(s)
- Gan Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Jun-Nan Xu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Dong Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Qingli Ding
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China
| | - Meng-Na Liu
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Rong Chen
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Mengdi Fan
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Ye Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| | - Chao Zheng
- Department of Endocrinology, Second Affiliated Hospital, Wenchou Medical University, Wenchou, Zhejiang 325000, China
| | - Da-Jin Zou
- Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China Department of Endocrinology, Changhai Hospital, Shanghai 200433, China
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, Wenchou Medical University School of Laboratory Medicine and Life Sciences, Wenchou, Zhejiang 325035, China
| | - Weiping J Zhang
- Department of Pathophysiology Second Military Medical University, Shanghai 200433, China Obesity and Diabetes Research Center, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|