1
|
Baumann N, Wagener RJ, Javed A, Conti E, Abe P, Lopes A, Sansevrino R, Lavalley A, Magrinelli E, Szalai T, Fuciec D, Ferreira C, Fièvre S, Fouassier A, D'Amico D, Harschnitz O, Jabaudon D. Regional differences in progenitor metabolism shape brain growth during development. Cell 2025:S0092-8674(25)00405-2. [PMID: 40300602 DOI: 10.1016/j.cell.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/17/2024] [Accepted: 04/02/2025] [Indexed: 05/01/2025]
Abstract
Mammals have particularly large forebrains compared with other brain parts, yet the developmental mechanisms underlying this regional expansion remain poorly understood. Here, we provide a single-cell-resolution birthdate atlas of the mouse brain (www.neurobirth.org), which reveals that while hindbrain neurogenesis is transient and restricted to early development, forebrain neurogenesis is temporally sustained through reduced consumptive divisions of ventricular zone progenitors. This atlas additionally reveals region-specific patterns of direct and indirect neurogenesis. Using single-cell RNA sequencing, we identify evolutionarily conserved cell-cycle programs and metabolism-related molecular pathways that control regional temporal windows of proliferation. We identify the late neocortex-enriched mitochondrial protein FAM210B as a key regulator using in vivo gain- and loss-of-function experiments. FAM210B elongates mitochondria and increases lactate production, which promotes progenitor self-replicative divisions and, ultimately, the larger clonal size of their progeny. Together, these findings indicate that spatiotemporal heterogeneity in mitochondrial function regulates regional progenitor cycling behavior and associated clonal neuronal production during brain development.
Collapse
Affiliation(s)
- Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Robin J Wagener
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Awais Javed
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Eleonora Conti
- Human Technopole, Viale Rita Levi-Montalcini, 1, 20157 Milan, Italy
| | - Philipp Abe
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Institute for Clinical Genetics, University Hospital Carl Gustav Carus at TUD Dresden University of Technology and Faculty of Medicine of TUD Dresden University of Technology, Dresden, Germany
| | - Andrea Lopes
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Adrien Lavalley
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Elia Magrinelli
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Timea Szalai
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Daniel Fuciec
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Clothilde Ferreira
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sabine Fièvre
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland; Université Paris Cité, Imagine Institute, Paris, France.
| |
Collapse
|
2
|
Chaya GNM, Syed MH. Cell cycle-dependent cues regulate temporal patterning of the Drosophila central brain neural stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.629716. [PMID: 39868166 PMCID: PMC11760265 DOI: 10.1101/2025.01.16.629716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
During nervous system development, diverse types of neurons and glia are sequentially generated by self-renewing neural stem cells (NSCs). Temporal changes in gene expression within NSCs are thought to regulate neural diversity; however, the mechanisms regulating the timing of these temporal gene transitions remain poorly understood. Drosophila type II NSCs, like human outer radial glia, divide to self-renew and generate intermediate neural progenitors, amplifying and diversifying the population of neurons innervating the central complex, a brain region required for sensorimotor coordination. Type II NSCs express over a dozen genes temporally, broadly classified as early and late-expressed genes. A conserved gene, Seven-up mediates early to late gene expression by activating ecdysone receptor (EcR) expression. However, what determines the timing of EcR expression and, hence, early to late gene transition is unknown. This study investigates whether intrinsic mechanisms of cell cycle progression and cytokinesis are required to induce the NSC early-late transition. By generating mutant clones that arrest the NSC cell cycle or block cytokinesis, we show that both processes are necessary for the early-to-late transitions. When NSCs are cell cycle or cytokinesis arrested, the early gene Imp failed to be down-regulated and persisted into the old NSCs, while the late factors EcR and Syncrip failed to be expressed. Furthermore, we show that the early factor Seven-up is insufficient to drive the transition despite its normal expression in the cell cycle- or cytokinesis-inhibited NSCs. These results suggest that both intrinsic (cell cycle/cytokinesis) and extrinsic (hormone) cues are required for the early-late NSC gene expression transition.
Collapse
Affiliation(s)
- Gonzalo N Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene,OR 97403, USA
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
3
|
Hatanaka Y, Yamada K, Eritate T, Kawaguchi Y, Hirata T. Neuronal fate resulting from indirect neurogenesis in the mouse neocortex. Cereb Cortex 2024; 34:bhae439. [PMID: 39526524 DOI: 10.1093/cercor/bhae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/12/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Excitatory cortical neurons originate from cortical radial glial cells (RGCs). Initially, these neurons were thought to derive directly from RGCs (direct neurogenesis) and be distributed in an inside-out fashion. However, the discovery of indirect neurogenesis, whereby intermediate neuronal progenitors (INPs) generate neurons, challenged this view. To investigate the integration of neurons via these two modes, we developed a method to identify INP progeny and analyze their fate using transgenic mice expressing tamoxifen-inducible Cre recombinase under the neurogenin-2 promoter, alongside thymidine analog incorporation. Their fate was further analyzed using mosaic analysis with double markers in mice. Indirect neurogenesis was prominent during early neurogenesis, generating neuron types that would emerge slightly later than those produced via direct neurogenesis. Despite the timing difference, both neurogenic modes produced fundamentally similar neuron types, as evidenced by marker expression and cortical-depth location. Furthermore, INPs generated pairs of similar phenotype neurons. These findings suggest that indirect neurogenesis, like direct neurogenesis, generates neuron types in a temporally ordered sequence and increases the number of similar neuron types, particularly in deep layers. Thus, both neurogenic modes cooperatively generate a diverse array of neuron types in a similar order, and their progeny populate together to form a coherent cortical structure.
Collapse
Affiliation(s)
- Yumiko Hatanaka
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Developmental Neuroscience Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Kentaro Yamada
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoki Eritate
- Laboratory of Cellular and Molecular Neurobiology, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Brain Science Institute, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Tatsumi Hirata
- Brain Function Laboratory, National Institute of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
4
|
Sood C, Nahid MA, Branham KR, Pahl M, Doyle SE, Siegrist SE. Delta-dependent Notch activation closes the early neuroblast temporal program to promote lineage progression and neurogenesis termination in Drosophila. eLife 2024; 12:RP88565. [PMID: 38391176 PMCID: PMC10942576 DOI: 10.7554/elife.88565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.
Collapse
Affiliation(s)
- Chhavi Sood
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | | | - Kendall R Branham
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Matt Pahl
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Susan E Doyle
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah E Siegrist
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
5
|
Paudel S, Yue M, Nalamalapu R, Saha MS. Deciphering the Calcium Code: A Review of Calcium Activity Analysis Methods Employed to Identify Meaningful Activity in Early Neural Development. Biomolecules 2024; 14:138. [PMID: 38275767 PMCID: PMC10813340 DOI: 10.3390/biom14010138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The intracellular and intercellular flux of calcium ions represents an ancient and universal mode of signaling that regulates an extensive array of cellular processes. Evidence for the central role of calcium signaling includes various techniques that allow the visualization of calcium activity in living cells. While extensively investigated in mature cells, calcium activity is equally important in developing cells, particularly the embryonic nervous system where it has been implicated in a wide variety array of determinative events. However, unlike in mature cells, where the calcium dynamics display regular, predictable patterns, calcium activity in developing systems is far more sporadic, irregular, and diverse. This renders the ability to assess calcium activity in a consistent manner extremely challenging, challenges reflected in the diversity of methods employed to analyze calcium activity in neural development. Here we review the wide array of calcium detection and analysis methods used across studies, limiting the extent to which they can be comparatively analyzed. The goal is to provide investigators not only with an overview of calcium activity analysis techniques currently available, but also to offer suggestions for future work and standardization to enable informative comparative evaluations of this fundamental and important process in neural development.
Collapse
Affiliation(s)
- Sudip Paudel
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Michelle Yue
- Wyss Institute, Harvard University, Boston, MA 02215, USA; (S.P.); (M.Y.)
| | - Rithvik Nalamalapu
- School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | | |
Collapse
|
6
|
Bilgic M, Wu Q, Suetsugu T, Shitamukai A, Tsunekawa Y, Shimogori T, Kadota M, Nishimura O, Kuraku S, Kiyonari H, Matsuzaki F. Truncated radial glia as a common precursor in the late corticogenesis of gyrencephalic mammals. eLife 2023; 12:RP91406. [PMID: 37988289 PMCID: PMC10662950 DOI: 10.7554/elife.91406] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
The diversity of neural stem cells is a hallmark of the cerebral cortex development in gyrencephalic mammals, such as Primates and Carnivora. Among them, ferrets are a good model for mechanistic studies. However, information on their neural progenitor cells (NPC), termed radial glia (RG), is limited. Here, we surveyed the temporal series of single-cell transcriptomes of progenitors regarding ferret corticogenesis and found a conserved diversity and temporal trajectory between human and ferret NPC, despite the large timescale difference. We found truncated RG (tRG) in ferret cortical development, a progenitor subtype previously described in humans. The combination of in silico and in vivo analyses identified that tRG differentiate into both ependymal and astrogenic cells. Via transcriptomic comparison, we predict that this is also the case in humans. Our findings suggest that tRG plays a role in the formation of adult ventricles, thereby providing the architectural bases for brain expansion.
Collapse
Affiliation(s)
- Merve Bilgic
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| | - Quan Wu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Taeko Suetsugu
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Atsunori Shitamukai
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuji Tsunekawa
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, RIKEN Center for Brain ScienceWakoJapan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Laboratory of Molecular Cell Biology and Development, Department of Animal Development and Physiology, Graduate School for Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
7
|
Yang C, Shitamukai A, Yang S, Kawaguchi A. Advanced Techniques Using In Vivo Electroporation to Study the Molecular Mechanisms of Cerebral Development Disorders. Int J Mol Sci 2023; 24:14128. [PMID: 37762431 PMCID: PMC10531473 DOI: 10.3390/ijms241814128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The mammalian cerebral cortex undergoes a strictly regulated developmental process. Detailed in situ visualizations, imaging of these dynamic processes, and in vivo functional gene studies significantly enhance our understanding of brain development and related disorders. This review introduces basic techniques and recent advancements in in vivo electroporation for investigating the molecular mechanisms underlying cerebral diseases. In utero electroporation (IUE) is extensively used to visualize and modify these processes, including the forced expression of pathological mutants in human diseases; thus, this method can be used to establish animal disease models. The advent of advanced techniques, such as genome editing, including de novo knockout, knock-in, epigenetic editing, and spatiotemporal gene regulation, has further expanded our list of investigative tools. These tools include the iON expression switch for the precise control of timing and copy numbers of exogenous genes and TEMPO for investigating the temporal effects of genes. We also introduce the iGONAD method, an improved genome editing via oviductal nucleic acid delivery approach, as a novel genome-editing technique that has accelerated brain development exploration. These advanced in vivo electroporation methods are expected to provide valuable insights into pathological conditions associated with human brain disorders.
Collapse
Affiliation(s)
- Chen Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Atsunori Shitamukai
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shucai Yang
- Human Anatomy and Histology and Embryology, School of Basic Medicine, Harbin Medical University, Harbin 150081, China
| | - Ayano Kawaguchi
- Department of Human Morphology, Okayama University Graduate School of Medicine, Density and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
8
|
Sood C, Nahid MA, Branham KR, Pahl MC, Doyle SE, Siegrist SE. Delta-dependent Notch activation closes the early neuroblast temporal program to promote lineage progression and neurogenesis termination in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534626. [PMID: 37034719 PMCID: PMC10081207 DOI: 10.1101/2023.03.28.534626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Neuroblasts in Drosophila divide asymmetrically, sequentially expressing a series of intrinsic factors to generate a diversity of neuron types. These intrinsic factors known as temporal factors dictate timing of neuroblast transitions in response to steroid hormone signaling and specify early versus late temporal fates in neuroblast neuron progeny. After completing their temporal programs, neuroblasts differentiate or die, finalizing both neuron number and type within each neuroblast lineage. From a screen aimed at identifying genes required to terminate neuroblast divisions, we identified Notch and Notch pathway components. When Notch is knocked down, neuroblasts maintain early temporal factor expression longer, delay late temporal factor expression, and continue dividing into adulthood. We find that Delta, expressed in cortex glia, neuroblasts, and after division, their GMC progeny, regulates neuroblast Notch activity. We also find that Delta in neuroblasts is expressed high early, low late, and is controlled by the intrinsic temporal program: early factor Imp promotes Delta, late factors Syp/E93 reduce Delta. Thus, in addition to systemic steroid hormone cues, forward lineage progression is controlled by local cell-cell signaling between neuroblasts and their cortex glia/GMC neighbors: Delta transactivates Notch in neuroblasts bringing the early temporal program and early temporal factor expression to a close.
Collapse
|
9
|
Ray A, Li X. A Notch-dependent transcriptional mechanism controls expression of temporal patterning factors in Drosophila medulla. eLife 2022; 11:e75879. [PMID: 36040415 PMCID: PMC9427115 DOI: 10.7554/elife.75879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Temporal patterning is an important mechanism for generating a great diversity of neuron subtypes from a seemingly homogenous progenitor pool in both vertebrates and invertebrates. Drosophila neuroblasts are temporally patterned by sequentially expressed Temporal Transcription Factors (TTFs). These TTFs are proposed to form a transcriptional cascade based on mutant phenotypes, although direct transcriptional regulation between TTFs has not been verified in most cases. Furthermore, it is not known how the temporal transitions are coupled with the generation of the appropriate number of neurons at each stage. We use neuroblasts of the Drosophila optic lobe medulla to address these questions and show that the expression of TTFs Sloppy-paired 1/2 (Slp1/2) is directly regulated at the transcriptional level by two other TTFs and the cell-cycle dependent Notch signaling through two cis-regulatory elements. We also show that supplying constitutively active Notch can rescue the delayed transition into the Slp stage in cell cycle arrested neuroblasts. Our findings reveal a novel Notch-pathway dependent mechanism through which the cell cycle progression regulates the timing of a temporal transition within a TTF transcriptional cascade.
Collapse
Affiliation(s)
- Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
10
|
Chou FS, Chen CY, Lee AC, Wang PS. Impaired Cell Cycle Progression and Self-Renewal of Fetal Neural Stem and Progenitor Cells in a Murine Model of Intrauterine Growth Restriction. Front Cell Dev Biol 2022; 10:821848. [PMID: 35903551 PMCID: PMC9314876 DOI: 10.3389/fcell.2022.821848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals with intrauterine growth restriction (IUGR) are at an increased risk for neurodevelopmental impairment. Fetal cortical neurogenesis is a time-sensitive process in which fetal neural stem cells (NSCs) follow a distinct pattern of layer-specific neuron generation to populate the cerebral cortex. Here, we used a murine maternal hypoxia-induced IUGR model to study the impact of IUGR on fetal NSC development. In this model, timed-pregnant mice were exposed to hypoxia during the active stage of neurogenesis, followed by fetal brain collection and analysis. In the IUGR fetal brains, we found a significant reduction in cerebral cortical thickness accompanied by decreases in layer-specific neurons. Using EdU labeling, we demonstrated that cell cycle progression of fetal NSCs was delayed, primarily observed in the G2/M phase during inward interkinetic nuclear migration. Following relief from maternal hypoxia exposure, the remaining fetal NSCs re-established their neurogenic ability and resumed production of layer-specific neurons. Surprisingly, the newly generated neurons matched their control counterparts in layer-specific marker expression, suggesting preservation of the fetal NSC temporal identity despite IUGR effects. As expected, the absolute number of neurons generated in the IUGR group remained lower compared to that in the control group due to a reduced fetal NSC pool size as a result of cell cycle defect. Transcriptome analysis identified genes related to energy expenditure and G2/M cell cycle progression being affected by maternal hypoxia-induced IUGR. Taken together, maternal hypoxia-induced IUGR is associated with a defect in cell cycle progression of fetal NSCs, and has a long-term impact on offspring cognitive development.
Collapse
Affiliation(s)
- Fu-Sheng Chou
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
- Division of Neonatology, Children’s Mercy-Kansas City, Kansas City, MO, United States
- *Correspondence: Fu-Sheng Chou, ; Pei-Shan Wang,
| | - Chu-Yen Chen
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - An-Chun Lee
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Pei-Shan Wang
- Department of Pediatrics, The University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Fu-Sheng Chou, ; Pei-Shan Wang,
| |
Collapse
|
11
|
Zhu H, Zhao SD, Ray A, Zhang Y, Li X. A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing. Nat Commun 2022; 13:1247. [PMID: 35273186 PMCID: PMC8913700 DOI: 10.1038/s41467-022-28915-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
During development, neural progenitors are temporally patterned to sequentially generate a variety of neural types. In Drosophila neural progenitors called neuroblasts, temporal patterning is regulated by cascades of Temporal Transcription Factors (TTFs). However, known TTFs were mostly identified through candidate approaches and may not be complete. In addition, many fundamental questions remain concerning the TTF cascade initiation, progression, and termination. In this work, we use single-cell RNA sequencing of Drosophila medulla neuroblasts of all ages to identify a list of previously unknown TTFs, and experimentally characterize their roles in temporal patterning and neuronal specification. Our study reveals a comprehensive temporal gene network that patterns medulla neuroblasts from start to end. Furthermore, the speed of the cascade progression is regulated by Lola transcription factors expressed in all medulla neuroblasts. Our comprehensive study of the medulla neuroblast temporal cascade illustrates mechanisms that may be conserved in the temporal patterning of neural progenitors. During development, neural progenitors generate a variety of neural types sequentially. Here the authors examine gene expression patterns in Drosophila neural progenitors at single-cell level, and identify a gene regulatory network controlling the sequential generation of different neural types.
Collapse
Affiliation(s)
- Hailun Zhu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
12
|
Liu J, Wu X, Lu Q. Molecular divergence of mammalian astrocyte progenitor cells at early gliogenesis. Development 2022; 149:dev199985. [PMID: 35253855 PMCID: PMC8959143 DOI: 10.1242/dev.199985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
During mammalian brain development, how different astrocytes are specified from progenitor cells is not well understood. In particular, whether astrocyte progenitor cells (APCs) start as a relatively homogenous population or whether there is early heterogeneity remains unclear. Here, we have dissected subpopulations of embryonic mouse forebrain progenitors using single-cell transcriptome analyses. Our sequencing data revealed two molecularly distinct APC subgroups at the start of gliogenesis from both dorsal and ventral forebrains. The two APC subgroups were marked, respectively, by specific expression of Sparc and Sparcl1, which are known to function in mature astrocytes with opposing activities for regulating synapse formation. Expression analyses showed that SPARC and SPARCL1 mark APC subgroups that display distinct temporal and spatial patterns, correlating with major waves of astrogliogenesis during development. Our results uncover an early molecular divergence of APCs in the mammalian brain and provide a useful transcriptome resource for the study of glial cell specification.
Collapse
Affiliation(s)
- Jiancheng Liu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Qiang Lu
- Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
13
|
Wu Q, Shichino Y, Abe T, Suetsugu T, Omori A, Kiyonari H, Iwasaki S, Matsuzaki F. Selective translation of epigenetic modifiers affects the temporal pattern and differentiation of neural stem cells. Nat Commun 2022; 13:470. [PMID: 35078993 PMCID: PMC8789897 DOI: 10.1038/s41467-022-28097-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/07/2022] [Indexed: 11/09/2022] Open
Abstract
The cerebral cortex is formed by diverse neurons generated sequentially from neural stem cells (NSCs). A clock mechanism has been suggested to underlie the temporal progression of NSCs, which is mainly defined by the transcriptome and the epigenetic state. However, what drives such a developmental clock remains elusive. We show that translational control of histone H3 trimethylation in Lys27 (H3K27me3) modifiers is part of this clock. We find that depletion of Fbl, an rRNA methyltransferase, reduces translation of both Ezh2 methyltransferase and Kdm6b demethylase of H3K27me3 and delays the progression of the NSC state. These defects are partially phenocopied by simultaneous inhibition of H3K27me3 methyltransferase and demethylase, indicating the role of Fbl in the genome-wide H3K27me3 pattern. Therefore, we propose that Fbl drives the intrinsic clock through the translational enhancement of the H3K27me3 modifiers that predominantly define the NSC state. The temporal development of tissues and organs may be defined by the genome-wide epigenetic and transcriptional state functioning as the clock. Here the authors found that Fbl, a ribosomal RNA methyltransferase, potentially behaves as a clock during neural stem cell (NSC) development by controlling translational efficiencies of epigenetic modifiers in the cerebral cortex primordium.
Collapse
|
14
|
Prodromidou K, Matsas R. Evolving features of human cortical development and the emerging roles of non-coding RNAs in neural progenitor cell diversity and function. Cell Mol Life Sci 2021; 79:56. [PMID: 34921638 PMCID: PMC11071749 DOI: 10.1007/s00018-021-04063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
The human cerebral cortex is a uniquely complex structure encompassing an unparalleled diversity of neuronal types and subtypes. These arise during development through a series of evolutionary conserved processes, such as progenitor cell proliferation, migration and differentiation, incorporating human-associated adaptations including a protracted neurogenesis and the emergence of novel highly heterogeneous progenitor populations. Disentangling the unique features of human cortical development involves elucidation of the intricate developmental cell transitions orchestrated by progressive molecular events. Crucially, developmental timing controls the fine balance between cell cycle progression/exit and the neurogenic competence of precursor cells, which undergo morphological transitions coupled to transcriptome-defined temporal states. Recent advances in bulk and single-cell transcriptomic technologies suggest that alongside protein-coding genes, non-coding RNAs exert important regulatory roles in these processes. Interestingly, a considerable number of novel long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have appeared in human and non-human primates suggesting an evolutionary role in shaping cortical development. Here, we present an overview of human cortical development and highlight the marked diversification and complexity of human neuronal progenitors. We further discuss how lncRNAs and miRNAs constitute critical components of the extended epigenetic regulatory network defining intermediate states of progenitors and controlling cell cycle dynamics and fate choices with spatiotemporal precision, during human neurodevelopment.
Collapse
Affiliation(s)
- Kanella Prodromidou
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece.
| | - Rebecca Matsas
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Department of Neurobiology, Hellenic Pasteur Institute, 127 Vasilissis Sofias Avenue, 11521, Athens, Greece
| |
Collapse
|
15
|
Cao Y, Wu HN, Cao XL, Yue KY, Han WJ, Cao ZP, Zhang YF, Gao XY, Luo C, Jiang XF, Han H, Zheng MH. Transmembrane Protein Ttyh1 Maintains the Quiescence of Neural Stem Cells Through Ca 2+/NFATc3 Signaling. Front Cell Dev Biol 2021; 9:779373. [PMID: 34869383 PMCID: PMC8635056 DOI: 10.3389/fcell.2021.779373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
The quiescence, activation, and subsequent neurogenesis of neural stem cells (NSCs) play essential roles in the physiological homeostasis and pathological repair of the central nervous system. Previous studies indicate that transmembrane protein Ttyh1 is required for the stemness of NSCs, whereas the exact functions in vivo and precise mechanisms are still waiting to be elucidated. By constructing Ttyh1-promoter driven reporter mice, we determined the specific expression of Ttyh1 in quiescent NSCs and niche astrocytes. Further evaluations on Ttyh1 knockout mice revealed that Ttyh1 ablation leads to activated neurogenesis and enhanced spatial learning and memory in adult mice (6-8 weeks). Correspondingly, Ttyh1 deficiency results in accelerated exhaustion of NSC pool and impaired neurogenesis in aged mice (12 months). By RNA-sequencing, bioinformatics and molecular biological analysis, we found that Ttyh1 is involved in the regulation of calcium signaling in NSCs, and transcription factor NFATc3 is a critical effector in quiescence versus cell cycle entry regulated by Ttyh1. Our research uncovered new endogenous mechanisms that regulate quiescence versus activation of NSCs, therefore provide novel targets for the intervention to activate quiescent NSCs to participate in injury repair during pathology and aging.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hai-ning Wu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Xiu-li Cao
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| | - Kang-yi Yue
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Wen-juan Han
- Department of Neurobiology, Fourth Military Medical University, Xi’an, China
| | - Zi-peng Cao
- Department of Occupational and Environmental Health, Fourth Military Medical University, Xi’an, China
| | - Yu-fei Zhang
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Xiang-yu Gao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi’an, China
| | - Xiao-fan Jiang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - Min-hua Zheng
- Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Transcriptional and epigenetic regulation of temporal patterning in neural progenitors. Dev Biol 2021; 481:116-128. [PMID: 34666024 DOI: 10.1016/j.ydbio.2021.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022]
Abstract
During development, neural progenitors undergo temporal patterning as they age to sequentially generate differently fated progeny. Temporal patterning of neural progenitors is relatively well-studied in Drosophila. Temporal cascades of transcription factors or opposing temporal gradients of RNA-binding proteins are expressed in neural progenitors as they age to control the fates of the progeny. The temporal progression is mostly driven by intrinsic mechanisms including cross-regulations between temporal genes, but environmental cues also play important roles in certain transitions. Vertebrate neural progenitors demonstrate greater plasticity in response to extrinsic cues. Recent studies suggest that vertebrate neural progenitors are also temporally patterned by a combination of transcriptional and post-transcriptional mechanisms in response to extracellular signaling to regulate neural fate specification. In this review, we summarize recent advances in the study of temporal patterning of neural progenitors in Drosophila and vertebrates. We also discuss the involvement of epigenetic mechanisms, specifically the Polycomb group complexes and ATP-dependent chromatin remodeling complexes, in the temporal patterning of neural progenitors.
Collapse
|
17
|
Moreau MX, Saillour Y, Cwetsch AW, Pierani A, Causeret F. Single-cell transcriptomics of the early developing mouse cerebral cortex disentangle the spatial and temporal components of neuronal fate acquisition. Development 2021; 148:269283. [PMID: 34170322 DOI: 10.1242/dev.197962] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 06/21/2021] [Indexed: 01/01/2023]
Abstract
In the developing cerebral cortex, how progenitors that seemingly display limited diversity end up producing a vast array of neurons remains a puzzling question. The prevailing model suggests that temporal maturation of progenitors is a key driver in the diversification of the neuronal output. However, temporal constraints are unlikely to account for all diversity, especially in the ventral and lateral pallium where neuronal types significantly differ from their dorsal neocortical counterparts born at the same time. In this study, we implemented single-cell RNAseq to sample the diversity of progenitors and neurons along the dorso-ventral axis of the early developing pallium. We first identified neuronal types, mapped them on the tissue and determined their origin through genetic tracing. We characterised progenitor diversity and disentangled the gene modules underlying temporal versus spatial regulations of neuronal specification. Finally, we reconstructed the developmental trajectories followed by ventral and dorsal pallial neurons to identify lineage-specific gene waves. Our data suggest a model by which discrete neuronal fate acquisition from a continuous gradient of progenitors results from the superimposition of spatial information and temporal maturation.
Collapse
Affiliation(s)
- Matthieu X Moreau
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Yoann Saillour
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Andrzej W Cwetsch
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Alessandra Pierani
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| | - Frédéric Causeret
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015, Paris, France.,Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014, Paris, France
| |
Collapse
|
18
|
Du K, Zhang Z, Zeng Z, Tang J, Lee T, Sun T. Distinct roles of Fto and Mettl3 in controlling development of the cerebral cortex through transcriptional and translational regulations. Cell Death Dis 2021; 12:700. [PMID: 34262022 PMCID: PMC8280107 DOI: 10.1038/s41419-021-03992-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/21/2022]
Abstract
Proper development of the mammalian cerebral cortex relies on precise gene expression regulation, which is controlled by genetic, epigenetic, and epitranscriptomic factors. Here we generate RNA demethylase Fto and methyltransferase Mettl3 cortical-specific conditional knockout mice, and detect severe brain defects caused by Mettl3 deletion but not Fto knockout. Transcriptomic profiles using RNA sequencing indicate that knockout of Mettl3 causes a more dramatic alteration on gene transcription than that of Fto. Interestingly, we conduct ribosome profiling sequencing, and find that knockout of Mettl3 leads to a more severe disruption of translational regulation of mRNAs than deletion of Fto and results in altered translation of crucial genes in cortical radial glial cells and intermediate progenitors. Moreover, Mettl3 deletion causes elevated translation of a significant number of mRNAs, in particular major components in m6A methylation. Our findings indicate distinct functions of Mettl3 and Fto in brain development, and uncover a profound role of Mettl3 in regulating translation of major mRNAs that control proper cortical development.
Collapse
Affiliation(s)
- Kunzhao Du
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhen Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiwei Zeng
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Jinling Tang
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Trevor Lee
- Department of Cell and Developmental Biology, Cornell University Weill Medical College, New York, NY, USA
| | - Tao Sun
- Center for Precision Medicine, School of Medicine and School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China.
| |
Collapse
|
19
|
Nalamalapu RR, Yue M, Stone AR, Murphy S, Saha MS. The tweety Gene Family: From Embryo to Disease. Front Mol Neurosci 2021; 14:672511. [PMID: 34262434 PMCID: PMC8273234 DOI: 10.3389/fnmol.2021.672511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/18/2021] [Indexed: 12/31/2022] Open
Abstract
The tweety genes encode gated chloride channels that are found in animals, plants, and even simple eukaryotes, signifying their deep evolutionary origin. In vertebrates, the tweety gene family is highly conserved and consists of three members—ttyh1, ttyh2, and ttyh3—that are important for the regulation of cell volume. While research has elucidated potential physiological functions of ttyh1 in neural stem cell maintenance, proliferation, and filopodia formation during neural development, the roles of ttyh2 and ttyh3 are less characterized, though their expression patterns during embryonic and fetal development suggest potential roles in the development of a wide range of tissues including a role in the immune system in response to pathogen-associated molecules. Additionally, members of the tweety gene family have been implicated in various pathologies including cancers, particularly pediatric brain tumors, and neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Here, we review the current state of research using information from published articles and open-source databases on the tweety gene family with regard to its structure, evolution, expression during development and adulthood, biochemical and cellular functions, and role in human disease. We also identify promising areas for further research to advance our understanding of this important, yet still understudied, family of genes.
Collapse
Affiliation(s)
- Rithvik R Nalamalapu
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Michelle Yue
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Aaron R Stone
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Samantha Murphy
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| | - Margaret S Saha
- Department of Biology, College of William and Mary, Williamsburg, VA, United States
| |
Collapse
|
20
|
Busby L, Steventon B. Tissue tectonics and the multi-scale regulation of developmental timing. Interface Focus 2021; 11:20200057. [PMID: 34055304 PMCID: PMC8086930 DOI: 10.1098/rsfs.2020.0057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/17/2022] Open
Abstract
Development encompasses processes that occur at multiple length scales, including gene-regulatory interactions, cell movements and reorganization, cell signalling and growth. It is essential that the timing of events in all of these different processes is coordinated to generate well-patterned tissues and organs. However, how the timing of intrinsic cell state changes is coordinated with events occurring at the multi-tissue and whole-organism level is unknown. Here, we argue that an important mechanism that accounts for the integration of timing across levels of organization is provided by tissue tectonics, i.e. how morphogenetic events driving tissue shape changes result in the relative displacement of signalling and responding tissues and coordinate developmental timing across scales. In doing so, tissue tectonics provides a mechanism by which the cell specification events intrinsic to cells can be modulated by the temporal exposure to extracellular signals. This exposure is in turn regulated by higher-order properties of the embryo, such as their physical properties, rates of growth and the combination of dynamic cell behaviours, impacting tissue morphogenesis. Tissue tectonics creates a downward flow of information from higher to lower levels of biological organization, providing an instance of downward causation in development.
Collapse
Affiliation(s)
- Lara Busby
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
21
|
Gantner CW, Hunt CPJ, Niclis JC, Penna V, McDougall SJ, Thompson LH, Parish CL. FGF-MAPK signaling regulates human deep-layer corticogenesis. Stem Cell Reports 2021; 16:1262-1275. [PMID: 33836146 PMCID: PMC8185433 DOI: 10.1016/j.stemcr.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Despite heterogeneity across the six layers of the mammalian cortex, all excitatory neurons are generated from a single founder population of neuroepithelial stem cells. However, how these progenitors alter their layer competence over time remains unknown. Here, we used human embryonic stem cell-derived cortical progenitors to examine the role of fibroblast growth factor (FGF) and Notch signaling in influencing cell fate, assessing their impact on progenitor phenotype, cell-cycle kinetics, and layer specificity. Forced early cell-cycle exit, via Notch inhibition, caused rapid, near-exclusive generation of deep-layer VI neurons. In contrast, prolonged FGF2 promoted proliferation and maintained progenitor identity, delaying laminar progression via MAPK-dependent mechanisms. Inhibiting MAPK extended cell-cycle length and led to generation of layer-V CTIP2+ neurons by repressing alternative laminar fates. Taken together, FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis and provides a resource for generating layer-specific neurons for studying development and disease. FGF/MAPK regulates the proliferative/neurogenic balance in deep-layer corticogenesis FGF/MAPK signaling maintains the progenitor pool and generates layer-VI neurons MAPK inhibition prolongs cell cycle to yield layer-V neurons, repressing other fates Protocols to generate layer-specific cortical neurons to study development and disease
Collapse
Affiliation(s)
- Carlos W Gantner
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Cameron P J Hunt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan C Niclis
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vanessa Penna
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stuart J McDougall
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
22
|
Mancinelli S, Vitiello M, Donnini M, Mantile F, Palma G, Luciano A, Arra C, Cerchia L, Liguori GL, Fedele M. The Transcription Regulator Patz1 Is Essential for Neural Stem Cell Maintenance and Proliferation. Front Cell Dev Biol 2021; 9:657149. [PMID: 33898458 PMCID: PMC8058466 DOI: 10.3389/fcell.2021.657149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
Proper regulation of neurogenesis, the process by which new neurons are generated from neural stem and progenitor cells (NS/PCs), is essential for embryonic brain development and adult brain function. The transcription regulator Patz1 is ubiquitously expressed in early mouse embryos and has a key role in embryonic stem cell maintenance. At later stages, the detection of Patz1 expression mainly in the developing brain suggests a specific involvement of Patz1 in neurogenesis. To address this point, we first got insights in Patz1 expression profile in different brain territories at both embryonic and postnatal stages, evidencing a general decreasing trend with respect to time. Then, we performed in vivo and ex vivo analysis of Patz1-knockout mice, focusing on the ventricular and subventricular zone, where we confirmed Patz1 enrichment through the analysis of public RNA-seq datasets. Both embryos and adults showed a significant reduction in the number of Patz1-null NS/PCs, as well as of their self-renewal capability, compared to controls. Consistently, molecular analysis revealed the downregulation of stemness markers in NS/PCs derived from Patz1-null mice. Overall, these data demonstrate the requirement of Patz1 for NS/PC maintenance and proliferation, suggesting new roles for this key transcription factor specifically in brain development and plasticity, with possible implications for neurodegenerative disorders and glial brain tumors.
Collapse
Affiliation(s)
- Sara Mancinelli
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Michela Vitiello
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Maria Donnini
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Francesca Mantile
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy
| | - Giuseppe Palma
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Antonio Luciano
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Claudio Arra
- Struttura Semplice Dipartimentale (S.S.D.) Sperimentazione Animale, Istituto Nazionale Tumori—Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–Fondazione G. Pascale, Naples, Italy
| | - Laura Cerchia
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | | | - Monica Fedele
- Institute for Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
23
|
Umemura M, Kaneko Y, Tanabe R, Takahashi Y. ATF5 deficiency causes abnormal cortical development. Sci Rep 2021; 11:7295. [PMID: 33790322 PMCID: PMC8012588 DOI: 10.1038/s41598-021-86442-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/15/2021] [Indexed: 11/29/2022] Open
Abstract
Activating transcription factor 5 (ATF5) is a member of the cAMP response element binding protein (CREB)/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5−/−) mice exhibited behavioural abnormalities, including abnormal social interactions, reduced behavioural flexibility, increased anxiety-like behaviours, and hyperactivity in novel environments. ATF5−/− mice may therefore be a useful animal model for psychiatric disorders. ATF5 is highly expressed in the ventricular zone and subventricular zone during cortical development, but its physiological role in higher-order brain structures remains unknown. To investigate the cause of abnormal behaviours exhibited by ATF5−/− mice, we analysed the embryonic cerebral cortex of ATF5−/− mice. The ATF5−/− embryonic cerebral cortex was slightly thinner and had reduced numbers of radial glial cells and neural progenitor cells, compared to a wild-type cerebral cortex. ATF5 deficiency also affected the basal processes of radial glial cells, which serve as a scaffold for radial migration during cortical development. Further, the radial migration of cortical upper layer neurons was impaired in ATF5−/− mice. These results suggest that ATF5 deficiency affects cortical development and radial migration, which may partly contribute to the observed abnormal behaviours.
Collapse
Affiliation(s)
- Mariko Umemura
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan.
| | - Yasuyuki Kaneko
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ryoko Tanabe
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Yuji Takahashi
- Laboratory of Environmental Molecular Physiology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
24
|
Pease NA, Nguyen PHB, Woodworth MA, Ng KKH, Irwin B, Vaughan JC, Kueh HY. Tunable, division-independent control of gene activation timing by a polycomb switch. Cell Rep 2021; 34:108888. [PMID: 33761349 PMCID: PMC8024876 DOI: 10.1016/j.celrep.2021.108888] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2020] [Accepted: 03/01/2021] [Indexed: 01/09/2023] Open
Abstract
During development, progenitors often differentiate many cell generations after receiving signals. These delays must be robust yet tunable for precise population size control. Polycomb repressive mechanisms, involving histone H3 lysine-27 trimethylation (H3K27me3), restrain the expression of lineage-specifying genes in progenitors and may delay their activation and ensuing differentiation. Here, we elucidate an epigenetic switch controlling the T cell commitment gene Bcl11b that holds its locus in a heritable inactive state for multiple cell generations before activation. Integrating experiments and modeling, we identify a mechanism where H3K27me3 levels at Bcl11b, regulated by methyltransferase and demethylase activities, set the time delay at which the locus switches from a compacted, silent state to an extended, active state. This activation delay robustly spans many cell generations, is tunable by chromatin modifiers and transcription factors, and is independent of cell division. With their regulatory flexibility, such timed epigenetic switches may broadly control timing in development.
Collapse
Affiliation(s)
- Nicholas A Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | - Phuc H B Nguyen
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA 98195, USA
| | - Marcus A Woodworth
- Biological Physics, Structure and Design Program, University of Washington, Seattle, WA 98195, USA; Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Kenneth K H Ng
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Blythe Irwin
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Joshua C Vaughan
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Kawaguchi A. Neuronal Delamination and Outer Radial Glia Generation in Neocortical Development. Front Cell Dev Biol 2021; 8:623573. [PMID: 33614631 PMCID: PMC7892903 DOI: 10.3389/fcell.2020.623573] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022] Open
Abstract
During neocortical development, many neuronally differentiating cells (neurons and intermediate progenitor cells) are generated at the apical/ventricular surface by the division of neural progenitor cells (apical radial glial cells, aRGs). Neurogenic cell delamination, in which these neuronally differentiating cells retract their apical processes and depart from the apical surface, is the first step of their migration. Since the microenvironment established by the apical endfeet is crucial for maintaining neuroepithelial (NE)/aRGs, proper timing of the detachment of the apical endfeet is critical for the quantitative control of neurogenesis in cerebral development. During delamination, the microtubule-actin-AJ (adherens junction) configuration at the apical endfeet shows dynamic changes, concurrent with the constriction of the AJ ring at the apical endfeet and downregulation of cadherin expression. This process is mediated by transcriptional suppression of AJ-related molecules and multiple cascades to regulate cell adhesion and cytoskeletal architecture in a posttranscriptional manner. Recent advances have added molecules to the latter category: the interphase centrosome protein AKNA affects microtubule dynamics to destabilize the microtubule-actin-AJ complex, and the microtubule-associated protein Lzts1 inhibits microtubule assembly and activates actomyosin systems at the apical endfeet of differentiating cells. Moreover, Lzts1 induces the oblique division of aRGs, and loss of Lzts1 reduces the generation of outer radial glia (oRGs, also called basal radial glia, bRGs), another type of neural progenitor cell in the subventricular zone. These findings suggest that neurogenic cell delamination, and in some cases oRG generation, could be caused by a spectrum of interlinked mechanisms.
Collapse
Affiliation(s)
- Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
26
|
Bonnefont J, Vanderhaeghen P. Neuronal fate acquisition and specification: time for a change. Curr Opin Neurobiol 2021; 66:195-204. [PMID: 33412482 PMCID: PMC8064025 DOI: 10.1016/j.conb.2020.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022]
Abstract
During embryonic development, neural stem/progenitor cells generate hundreds of different cell types through the combination of intrinsic and extrinsic cues. Recent data obtained in mouse and human cortical neurogenesis provide novel views about this interplay and how it evolves with time, whether during irreversible cell fate transitions that neural stem cells undergo to become neurons, or through gradual temporal changes of competence that lead to increased neuronal diversity from a common stem cell pool. In each case the temporal changes result from a dynamic balance between intracellular states and extracellular signalling factors. The underlying mechanisms are mostly conserved across species, but some display unique features in human corticogenesis, thereby linking temporal features of neurogenesis and human brain evolution.
Collapse
Affiliation(s)
- Jérôme Bonnefont
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), and ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium; VIB-KULeuven Center for Brain & Disease Research, KULeuven Department of Neurosciences, Leuven Brain Institute, 3000 Leuven, Belgium.
| |
Collapse
|
27
|
Fischer E, Morin X. Fate restrictions in embryonic neural progenitors. Curr Opin Neurobiol 2020; 66:178-185. [PMID: 33259983 DOI: 10.1016/j.conb.2020.10.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
The vertebrate central nervous system (CNS) is a fantastically complex organ composed of dozens of cell types within the neural and glial lineages. Its organization is laid down during development, through the localized and sequential production of subsets of neurons with specific identities. The principles and mechanisms that underlie the timely production of adequate classes of cells are only partially understood. Recent advances in molecular profiling describe the developmental trajectories leading to this amazing cellular diversity and provide us with cell atlases of an unprecedented level of precision. Yet, some long-standing questions pertaining to lineage relationships between neural progenitor cells and their differentiated progeny remain unanswered. Here, we discuss questions related to proliferation potential, timing of fate choices and restriction of neuronal output potential of individual CNS progenitors through the lens of lineage relationship. Unlocking methodological barriers will be essential to accurately describe CNS development at a cellular resolution.
Collapse
Affiliation(s)
- Evelyne Fischer
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France.
| |
Collapse
|
28
|
Learning about cell lineage, cellular diversity and evolution of the human brain through stem cell models. Curr Opin Neurobiol 2020; 66:166-177. [PMID: 33246264 DOI: 10.1016/j.conb.2020.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023]
Abstract
Here, we summarize the current knowledge on cell diversity in the cortex and other brain regions from in vivo mouse models and in vitro models based on pluripotent stem cells. We discuss the mechanisms underlying cell proliferation and temporal progression that leads to the sequential generation of neurons dedicated to different layers of the cortex. We highlight models of corticogenesis from stem cells that recapitulate specific transcriptional and connectivity patterns from different cortical areas. We overview state-of-the art of human brain organoids modeling different brain regions, and we discuss insights into human cortical evolution from stem cells. Finally, we interrogate human brain organoid models for their competence to recapitulate the essence of human brain development.
Collapse
|
29
|
Falcone C, Santo M, Liuzzi G, Cannizzaro N, Grudina C, Valencic E, Peruzzotti-Jametti L, Pluchino S, Mallamaci A. Foxg1 Antagonizes Neocortical Stem Cell Progression to Astrogenesis. Cereb Cortex 2020; 29:4903-4918. [PMID: 30821834 DOI: 10.1093/cercor/bhz031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 01/06/2019] [Accepted: 02/09/2019] [Indexed: 12/12/2022] Open
Abstract
Neocortical astrogenesis follows neuronogenesis and precedes oligogenesis. Among key factors dictating its temporal articulation, there are progression rates of pallial stem cells (SCs) towards astroglial lineages as well as activation rates of astrocyte differentiation programs in response to extrinsic gliogenic cues. In this study, we showed that high Foxg1 SC expression antagonizes astrocyte generation, while stimulating SC self-renewal and committing SCs to neuronogenesis. We found that mechanisms underlying this activity are mainly cell autonomous and highly pleiotropic. They include a concerted downregulation of 4 key effectors channeling neural SCs to astroglial fates, as well as defective activation of core molecular machineries implementing astroglial differentiation programs. Next, we found that SC Foxg1 levels specifically decline during the neuronogenic-to-gliogenic transition, pointing to a pivotal Foxg1 role in temporal modulation of astrogenesis. Finally, we showed that Foxg1 inhibits astrogenesis from human neocortical precursors, suggesting that this is an evolutionarily ancient trait.
Collapse
Affiliation(s)
- Carmen Falcone
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Manuela Santo
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Gabriele Liuzzi
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Noemi Cannizzaro
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Clara Grudina
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| | - Erica Valencic
- Department of Diagnostics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Luca Peruzzotti-Jametti
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Stefano Pluchino
- Dept of Clinical Neurosciences, University of Cambridge, Clifford Allbutt Building -- Cambridge Biosciences Campus, Hills Road, Cambridge, UK
| | - Antonello Mallamaci
- Laboratory of Cerebral Cortex Development, Neuroscience Area, SISSA, Trieste, Italy
| |
Collapse
|
30
|
Llorca A, Marín O. Orchestrated freedom: new insights into cortical neurogenesis. Curr Opin Neurobiol 2020; 66:48-56. [PMID: 33096393 DOI: 10.1016/j.conb.2020.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/03/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022]
Abstract
In mammals, the construction of the cerebral cortex involves the coordinated output of large populations of apical progenitor cells. Cortical progenitor cells use intrinsic molecular programs and complex regulatory mechanisms to generate a large diversity of excitatory projection neurons in appropriate numbers. In this review, we summarize recent findings regarding the neurogenic behavior of cortical progenitors during neurogenesis. We describe alternative models explaining the generation of neuronal diversity among excitatory projection neurons and the role of intrinsic and extrinsic signals in the modulation of the individual output of apical progenitor cells.
Collapse
Affiliation(s)
- Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom.
| |
Collapse
|
31
|
Lopes A, Magrinelli E, Telley L. Emerging Roles of Single-Cell Multi-Omics in Studying Developmental Temporal Patterning. Int J Mol Sci 2020; 21:E7491. [PMID: 33050604 PMCID: PMC7589732 DOI: 10.3390/ijms21207491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/06/2020] [Accepted: 10/08/2020] [Indexed: 01/16/2023] Open
Abstract
The complexity of brain structure and function is rooted in the precise spatial and temporal regulation of selective developmental events. During neurogenesis, both vertebrates and invertebrates generate a wide variety of specialized cell types through the expansion and specification of a restricted set of neuronal progenitors. Temporal patterning of neural progenitors rests on fine regulation between cell-intrinsic and cell-extrinsic mechanisms. The rapid emergence of high-throughput single-cell technologies combined with elaborate computational analysis has started to provide us with unprecedented biological insights related to temporal patterning in the developing central nervous system (CNS). Here, we present an overview of recent advances in Drosophila and vertebrates, focusing both on cell-intrinsic mechanisms and environmental influences. We then describe the various multi-omics approaches that have strongly contributed to our current understanding and discuss perspectives on the various -omics approaches that hold great potential for the future of temporal patterning research.
Collapse
Affiliation(s)
| | | | - Ludovic Telley
- Department of Basic Neuroscience, University of Lausanne, 1005 Lausanne, Switzerland; (A.L.); (E.M.)
| |
Collapse
|
32
|
Dias JM, Alekseenko Z, Jeggari A, Boareto M, Vollmer J, Kozhevnikova M, Wang H, Matise MP, Alexeyenko A, Iber D, Ericson J. A Shh/Gli-driven three-node timer motif controls temporal identity and fate of neural stem cells. SCIENCE ADVANCES 2020; 6:6/38/eaba8196. [PMID: 32938678 PMCID: PMC7494341 DOI: 10.1126/sciadv.aba8196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 07/28/2020] [Indexed: 05/03/2023]
Abstract
How time is measured by neural stem cells during temporal neurogenesis has remained unresolved. By combining experiments and computational modeling, we define a Shh/Gli-driven three-node timer underlying the sequential generation of motor neurons (MNs) and serotonergic neurons in the brainstem. The timer is founded on temporal decline of Gli-activator and Gli-repressor activities established through down-regulation of Gli transcription. The circuitry conforms an incoherent feed-forward loop, whereby Gli proteins not only promote expression of Phox2b and thereby MN-fate but also account for a delayed activation of a self-promoting transforming growth factor-β (Tgfβ) node triggering a fate switch by repressing Phox2b. Hysteresis and spatial averaging by diffusion of Tgfβ counteract noise and increase temporal accuracy at the population level, providing a functional rationale for the intrinsically programmed activation of extrinsic switch signals in temporal patterning. Our study defines how time is reliably encoded during the sequential specification of neurons.
Collapse
Affiliation(s)
- José M Dias
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Zhanna Alekseenko
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Ashwini Jeggari
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Marcelo Boareto
- D-BSSE, ETF Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Jannik Vollmer
- D-BSSE, ETF Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Mariya Kozhevnikova
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - Hui Wang
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Michael P Matise
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ, 08854, USA
| | - Andrey Alexeyenko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Science for Life Laboratory, Box 1031, 17121, Solna, Sweden
| | - Dagmar Iber
- D-BSSE, ETF Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics (SIB), Mattenstrasse 26, 4058 Basel, Switzerland
| | - Johan Ericson
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| |
Collapse
|
33
|
Maurange C. Temporal patterning in neural progenitors: from Drosophila development to childhood cancers. Dis Model Mech 2020; 13:dmm044883. [PMID: 32816915 PMCID: PMC7390627 DOI: 10.1242/dmm.044883] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The developing central nervous system (CNS) is particularly prone to malignant transformation, but the underlying mechanisms remain unresolved. However, periods of tumor susceptibility appear to correlate with windows of increased proliferation, which are often observed during embryonic and fetal stages and reflect stereotypical changes in the proliferative properties of neural progenitors. The temporal mechanisms underlying these proliferation patterns are still unclear in mammals. In Drosophila, two decades of work have revealed a network of sequentially expressed transcription factors and RNA-binding proteins that compose a neural progenitor-intrinsic temporal patterning system. Temporal patterning controls both the identity of the post-mitotic progeny of neural progenitors, according to the order in which they arose, and the proliferative properties of neural progenitors along development. In addition, in Drosophila, temporal patterning delineates early windows of cancer susceptibility and is aberrantly regulated in developmental tumors to govern cellular hierarchy as well as the metabolic and proliferative heterogeneity of tumor cells. Whereas recent studies have shown that similar genetic programs unfold during both fetal development and pediatric brain tumors, I discuss, in this Review, how the concept of temporal patterning that was pioneered in Drosophila could help to understand the mechanisms of initiation and progression of CNS tumors in children.
Collapse
Affiliation(s)
- Cédric Maurange
- Aix Marseille University, CNRS, IBDM, Equipe Labellisée LIGUE Contre le Cancer, Marseille 13009, France
| |
Collapse
|
34
|
Mira H, Morante J. Neurogenesis From Embryo to Adult - Lessons From Flies and Mice. Front Cell Dev Biol 2020; 8:533. [PMID: 32695783 PMCID: PMC7339912 DOI: 10.3389/fcell.2020.00533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
The human brain is composed of billions of cells, including neurons and glia, with an undetermined number of subtypes. During the embryonic and early postnatal stages, the vast majority of these cells are generated from neural progenitors and stem cells located in all regions of the neural tube. A smaller number of neurons will continue to be generated throughout our lives, in localized neurogenic zones, mainly confined at least in rodents to the subependymal zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. During neurogenesis, a combination of extrinsic cues interacting with temporal and regional intrinsic programs are thought to be critical for increasing neuronal diversity, but their underlying mechanisms need further elucidation. In this review, we discuss the recent findings in Drosophila and mammals on the types of cell division and cell interactions used by neural progenitors and stem cells to sustain neurogenesis, and how they are influenced by glia.
Collapse
Affiliation(s)
- Helena Mira
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas y Universidad Miguel Hernandez, Alicante, Spain
| |
Collapse
|
35
|
Hagey DW, Topcic D, Kee N, Reynaud F, Bergsland M, Perlmann T, Muhr J. CYCLIN-B1/2 and -D1 act in opposition to coordinate cortical progenitor self-renewal and lineage commitment. Nat Commun 2020; 11:2898. [PMID: 32518258 PMCID: PMC7283355 DOI: 10.1038/s41467-020-16597-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
The sequential generation of layer-specific cortical neurons requires radial glia cells (RGCs) to precisely balance self-renewal and lineage commitment. While specific cell-cycle phases have been associated with these decisions, the mechanisms linking the cell-cycle machinery to cell-fate commitment remain obscure. Using single-cell RNA-sequencing, we find that the strongest transcriptional signature defining multipotent RGCs is that of G2/M-phase, and particularly CYCLIN-B1/2, while lineage-committed progenitors are enriched in G1/S-phase genes, including CYCLIN-D1. These data also reveal cell-surface markers that allow us to isolate RGCs and lineage-committed progenitors, and functionally confirm the relationship between cell-cycle phase enrichment and cell fate competence. Finally, we use cortical electroporation to demonstrate that CYCLIN-B1/2 cooperate with CDK1 to maintain uncommitted RGCs by activating the NOTCH pathway, and that CYCLIN-D1 promotes differentiation. Thus, this work establishes that cell-cycle phase-specific regulators act in opposition to coordinate the self-renewal and lineage commitment of RGCs via core stem cell regulatory pathways.
Collapse
Affiliation(s)
- Daniel W Hagey
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden.
| | - Danijal Topcic
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Nigel Kee
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Florie Reynaud
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Maria Bergsland
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Thomas Perlmann
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden
| | - Jonas Muhr
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, SE-171 65, Stockholm, Sweden.
| |
Collapse
|
36
|
Fawal MA, Jungas T, Kischel A, Audouard C, Iacovoni JS, Davy A. Cross Talk between One-Carbon Metabolism, Eph Signaling, and Histone Methylation Promotes Neural Stem Cell Differentiation. Cell Rep 2019; 23:2864-2873.e7. [PMID: 29874574 DOI: 10.1016/j.celrep.2018.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/25/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic pathways, once seen as a mere consequence of cell states, have emerged as active players in dictating different cellular events such as proliferation, self-renewal, and differentiation. Several studies have reported a role for folate-dependent one-carbon (1C) metabolism in stem cells; however, its exact mode of action and how it interacts with other cues are largely unknown. Here, we report a link between the Eph:ephrin cell-cell communication pathway and 1C metabolism in controlling neural stem cell differentiation. Transcriptional and functional analyses following ephrin stimulation revealed alterations in folate metabolism-related genes and enzymatic activity. In vitro and in vivo data indicate that Eph-B forward signaling alters the methylation state of H3K4 by regulating 1C metabolism and locks neural stem cell in a differentiation-ready state. Our study highlights a functional link between cell-cell communication, metabolism, and epigenomic remodeling in the control of stem cell self-renewal.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Thomas Jungas
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Anthony Kischel
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Christophe Audouard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jason S Iacovoni
- Bioinformatic Plateau I2MC, INSERM and University of Toulouse, 31432 Toulouse, France
| | - Alice Davy
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France.
| |
Collapse
|
37
|
Oberst P, Fièvre S, Baumann N, Concetti C, Bartolini G, Jabaudon D. Temporal plasticity of apical progenitors in the developing mouse neocortex. Nature 2019; 573:370-374. [PMID: 31462778 DOI: 10.1038/s41586-019-1515-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/29/2019] [Indexed: 12/20/2022]
Abstract
The diverse subtypes of excitatory neurons that populate the neocortex are born from apical progenitors located in the ventricular zone. During corticogenesis, apical progenitors sequentially generate deep-layer neurons followed by superficial-layer neurons directly or via the generation of intermediate progenitors. Whether neurogenic fate progression necessarily implies fate restriction in single progenitor types is unknown. Here we specifically isolated apical progenitors and intermediate progenitors, and fate-mapped their respective neuronal progeny following heterochronic transplantation into younger embryos. We find that apical progenitors are temporally plastic and can re-enter past molecular, electrophysiological and neurogenic states when exposed to an earlier-stage environment by sensing dynamic changes in extracellular Wnt. By contrast, intermediate progenitors are committed progenitors that lack such retrograde fate plasticity. These findings identify a diversity in the temporal plasticity of neocortical progenitors, revealing that some subtypes of cells can be untethered from their normal temporal progression to re-enter past developmental states.
Collapse
Affiliation(s)
- Polina Oberst
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sabine Fièvre
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Natalia Baumann
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Cristina Concetti
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.,Institute of Neuroscience, ETH Zürich, Schwerzenbach, Switzerland
| | - Giorgia Bartolini
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland. .,Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
38
|
Abdusselamoglu MD, Eroglu E, Burkard TR, Knoblich JA. The transcription factor odd-paired regulates temporal identity in transit-amplifying neural progenitors via an incoherent feed-forward loop. eLife 2019; 8:46566. [PMID: 31329099 PMCID: PMC6645715 DOI: 10.7554/elife.46566] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
Neural progenitors undergo temporal patterning to generate diverse neurons in a chronological order. This process is well-studied in the developing Drosophila brain and conserved in mammals. During larval stages, intermediate neural progenitors (INPs) serially express Dichaete (D), grainyhead (Grh) and eyeless (Ey/Pax6), but how the transitions are regulated is not precisely understood. Here, we developed a method to isolate transcriptomes of INPs in their distinct temporal states to identify a complete set of temporal patterning factors. Our analysis identifies odd-paired (opa), as a key regulator of temporal patterning. Temporal patterning is initiated when the SWI/SNF complex component Osa induces D and its repressor Opa at the same time but with distinct kinetics. Then, high Opa levels repress D to allow Grh transcription and progress to the next temporal state. We propose that Osa and its target genes opa and D form an incoherent feedforward loop (FFL) and a new mechanism allowing the successive expression of temporal identities. The brain consists of billions of neurons that come in a range of shapes and sizes, with different types of neurons specialized to perform different tasks. Despite their diversity, all of these neurons originate from a single population known as neural stem cells. As the brain develops, each neural stem cell divides to produce two daughter cells: one remains a stem cell, which can then divide again, and the other becomes a neuron. A longstanding question in developmental biology is how a limited pool of neural stem cells can generate so many different types of neurons. The answer seems to lie in a process known as temporal identity, whereby neural stem cells of different ages give rise to different types of neurons. This requires neural stem cells to keep track of their own age, but it is still unclear how they can do so. Abdusselamoglu et al. have now uncovered part of the underlying mechanism behind temporal identity by studying fruit flies, an insect in which the early stages of brain development are similar to the ones in mammals. A method was developed to sort fly neural stem cells into groups based on their age. Comparing these groups revealed that a protein called Opa make neural stem cells switch from being 'young' to being 'middle-aged'. Another protein, Osa activates Opa, which in turn represses a protein called Dichaete. As Dichaete is mainly active in young neural stem cells, the actions of Osa and Opa push neural stem cells into middle age. Fruit flies are therefore a valuable system with which to study the mechanisms that regulate neural stem cell aging. Revealing how the brain generates different types of neurons could help us study the way these cells organize themselves into complex circuits. This knowledge could then be harnessed to understand how these processes go wrong and disrupt development.
Collapse
Affiliation(s)
- Merve Deniz Abdusselamoglu
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter (VBC), Vienna, Austria
| | - Elif Eroglu
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter (VBC), Vienna, Austria
| | - Thomas R Burkard
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter (VBC), Vienna, Austria
| | - Jürgen A Knoblich
- IMBA - Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
39
|
Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development. Nat Commun 2019; 10:2780. [PMID: 31239441 PMCID: PMC6592889 DOI: 10.1038/s41467-019-10730-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/24/2019] [Indexed: 01/09/2023] Open
Abstract
In the developing central nervous system, cell departure from the apical surface is the initial and fundamental step to form the 3D, organized architecture. Both delamination of differentiating cells and repositioning of progenitors to generate outer radial glial cells (oRGs) contribute to mammalian neocortical expansion; however, a comprehensive understanding of their mechanisms is lacking. Here, we demonstrate that Lzts1, a molecule associated with microtubule components, promotes both cell departure events. In neuronally committed cells, Lzts1 functions in apical delamination by altering apical junctional organization. In apical RGs (aRGs), Lzts1 expression is variable, depending on Hes1 expression levels. According to its differential levels, Lzts1 induces diverse RG behaviors: planar division, oblique divisions of aRGs that generate oRGs, and their mitotic somal translocation. Loss-of-function of lzts1 impairs all these cell departure processes. Thus, Lzts1 functions as a master modulator of cellular dynamics, contributing to increasing complexity of the cerebral architecture during evolution. Outer radial glial cells (oRGs) are undifferentiated cells that divide in the subventricular zone during neurodevelopment, but the underlying mechanisms are not fully understood. Here the authors show that Lzts1 positively controls both neuronal delamination and generation of oRG-like cell types.
Collapse
|
40
|
Suzuki IK. Molecular drivers of human cerebral cortical evolution. Neurosci Res 2019; 151:1-14. [PMID: 31175883 DOI: 10.1016/j.neures.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/10/2023]
Abstract
One of the most important questions in human evolutionary biology is how our ancestor has acquired an expanded volume of the cerebral cortex, which may have significantly impacted on improving our cognitive abilities. Recent comparative approaches have identified developmental features unique to the human or hominid cerebral cortex, not shared with other animals including conventional experimental models. In addition, genomic, transcriptomic, and epigenomic signatures associated with human- or hominid-specific processes of the cortical development are becoming identified by virtue of technical progress in the deep nucleotide sequencing. This review discusses ontogenic and phylogenetic processes of the human cerebral cortex, followed by the introduction of recent comprehensive approaches identifying molecular mechanisms potentially driving the evolutionary changes in the cortical development.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 Japan; VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KULeuven, 3000 Leuven, Belgium; Université Libre de Bruxelles (U.L.B.), Institut de Recherches en Biologie Humaine et Moléculaire (IRIBHM), ULB Neuroscience Institute (UNI), 1070 Brussels, Belgium.
| |
Collapse
|
41
|
Schulten HJ, Hussein D. Array expression meta-analysis of cancer stem cell genes identifies upregulation of PODXL especially in DCC low expression meningiomas. PLoS One 2019; 14:e0215452. [PMID: 31083655 PMCID: PMC6513070 DOI: 10.1371/journal.pone.0215452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/02/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Meningiomas are the most common intracranial tumors, with a subset of cases bearing a progressive phenotype. The DCC netrin 1 receptor (DCC) is a candidate gene for early meningioma progression. Cancer stem cell (CSC) genes are emerging as cancer therapeutic targets, as their expression is frequently associated with aggressive tumor phenotypes. The main objective of the study was to identify deregulated CSC genes in meningiomas. MATERIALS AND METHODS Interrogating two expression data repositories, significantly differentially expressed genes (DEGs) were determined using DCC low vs. DCC high expression groups and WHO grade I (GI) vs. grade II + grade III (GII + GIII) comparison groups. Human stem cell (SC) genes were compiled from two published data sets and were extracted from the DEG lists. Biofunctional analysis was performed to assess associations between genes or molecules. RESULTS In the DCC low vs. DCC high expression groups, we assessed seven studies representing each between seven and 58 samples. The type I transmembrane protein podocalyxin like (PODXL) was markedly upregulated in DCC low expression meningiomas in six studies. Other CSC genes repeatedly deregulated included, e.g., BMP/retinoic acid inducible neural specific 1 (BRINP1), prominin 1 (PROM1), solute carrier family 24 member 3 (SLC24A3), rRho GTPase activating protein 28 (ARHGAP28), Kruppel like factor 5 (KLF5), and leucine rich repeat containing G protein-coupled receptor 4 (LGR4). In the GI vs. GII + GIII comparison groups, we assessed six studies representing each between nine and 68 samples. DNA topoisomerase 2-alpha (TOP2A) was markedly upregulated in GII + GIII meningiomas in four studies. Other CSC genes repeatedly deregulated included, e.g., ARHGAP28 and PODXL. Network analysis revealed associations of molecules with, e.g., cellular development and movement; nervous system development and function; and cancer. CONCLUSIONS This meta-analysis on meningiomas identified a comprehensive list of deregulated CSC genes across different array expression studies. Especially, PODXL is of interest for functional assessment in progressive meningiomas.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deema Hussein
- King Fahad Medical Research Center, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
42
|
Telley L, Agirman G, Prados J, Amberg N, Fièvre S, Oberst P, Bartolini G, Vitali I, Cadilhac C, Hippenmeyer S, Nguyen L, Dayer A, Jabaudon D. Temporal patterning of apical progenitors and their daughter neurons in the developing neocortex. Science 2019; 364:eaav2522. [PMID: 31073041 DOI: 10.1126/science.aav2522] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 04/04/2019] [Indexed: 12/13/2022]
Abstract
During corticogenesis, distinct subtypes of neurons are sequentially born from ventricular zone progenitors. How these cells are molecularly temporally patterned is poorly understood. We used single-cell RNA sequencing at high temporal resolution to trace the lineage of the molecular identities of successive generations of apical progenitors (APs) and their daughter neurons in mouse embryos. We identified a core set of evolutionarily conserved, temporally patterned genes that drive APs from internally driven to more exteroceptive states. We found that the Polycomb repressor complex 2 (PRC2) epigenetically regulates AP temporal progression. Embryonic age-dependent AP molecular states are transmitted to their progeny as successive ground states, onto which essentially conserved early postmitotic differentiation programs are applied, and are complemented by later-occurring environment-dependent signals. Thus, epigenetically regulated temporal molecular birthmarks present in progenitors act in their postmitotic progeny to seed adult neuronal diversity.
Collapse
Affiliation(s)
- L Telley
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - G Agirman
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- GIGA-Stem Cells, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - J Prados
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - N Amberg
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - S Fièvre
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - P Oberst
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - G Bartolini
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - I Vitali
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - C Cadilhac
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - S Hippenmeyer
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - L Nguyen
- GIGA-Stem Cells, University of Liège, C.H.U. Sart Tilman, Liège, Belgium
| | - A Dayer
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Geneva, Switzerland
| | - D Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
- Clinic of Neurology, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
43
|
Wu HN, Cao XL, Fang Z, Zhang YF, Han WJ, Yue KY, Cao Y, Zheng MH, Wang LL, Han H. Deficiency of Ttyh1 downstream to Notch signaling results in precocious differentiation of neural stem cells. Biochem Biophys Res Commun 2019; 514:842-847. [PMID: 31079925 DOI: 10.1016/j.bbrc.2019.04.181] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/27/2019] [Indexed: 12/18/2022]
Abstract
Mammalian neural stem cells (NSCs) are not only responsible for normal development of the central nervous system (CNS), but also participate in brain homeostasis and repair, thus hold promising clinical potentials in the treatment of neurodegenerative diseases and trauma. However the molecular networks regulating the stemness and differentiation of NSCs have not been fully understood. In this study, we show that Tweety-homolog 1 (Ttyh1), a five-pass transmembrane protein specifically expressed in mouse brain, is involved in maintaining stemness of murine NSCs. Blocking or activating Notch signal led to downregulation and upregulation of Ttyh1 in cultured NSCs, respectively, suggesting that Ttyh1 is under the control of Notch signaling. Knockdown of Ttyh1 in cultured NSCs resulted in a transient increase in the number and size of neurospheres, followed by a decrease of stemness as manifested by compromised neurosphere formation, downregulated stem cell markers, and increased neuronal differentiation. We generated Ttyh1 knockout mice by deleting its exon 4 using the CRISPR-Cas9 technology. Surprisingly, in contrast to a previous report, Ttyh1 knockout did not result in embryonic lethality. NSCs derived from Ttyh1 knockout mice phenocopied NSCs transfected with Ttyh1 siRNA. Immunofluorescence showed that loss of Ttyh1 leads to the increase of neurogenesis in adult mice. Taken together, these findings indicate that Ttyh1, which is likely downstream to Notch signaling, plays an important role in regulating NSCs.
Collapse
Affiliation(s)
- Hai-Ning Wu
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiu-Li Cao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zheng Fang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Fei Zhang
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Wen-Juan Han
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Kang-Yi Yue
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Yuan Cao
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Min-Hua Zheng
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, 710032, China.
| | - Li-Li Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, Institute of Modern Separation Science, Northwest University, Shaanxi Key Laboratory of Modern Separation Science, Xi'an, 710069, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an, 710032, China; Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
44
|
Oberst P, Agirman G, Jabaudon D. Principles of progenitor temporal patterning in the developing invertebrate and vertebrate nervous system. Curr Opin Neurobiol 2019; 56:185-193. [PMID: 30999235 DOI: 10.1016/j.conb.2019.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
During the development of the central nervous system, progenitors successively generate distinct types of neurons which assemble into the circuits that underlie our ability to interact with the environment. Spatial and temporal patterning mechanisms are partially evolutionarily conserved processes that allow generation of neuronal diversity from a limited set of progenitors. Here, we review examples of temporal patterning in neuronal progenitors in the Drosophila ventral nerve cord and in the mammalian cerebral cortex. We discuss cell-autonomous mechanisms and environmental influences on the temporal transitions of neuronal progenitors. Identifying the principles controlling the temporal specification of progenitors across species, as highlighted here, may help understand the evolutionary constraints over brain circuit design and function.
Collapse
Affiliation(s)
- Polina Oberst
- Department of Basic Neurosciences, University of Geneva, Switzerland
| | - Gulistan Agirman
- Department of Basic Neurosciences, University of Geneva, Switzerland; GIGA-Neurosciences, University of Liège, C.H.U. Sart-Tilman, Liège, Belgium
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Switzerland; Department of Neurology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
45
|
A Notch-mediated, temporal asymmetry in BMP pathway activation promotes photoreceptor subtype diversification. PLoS Biol 2019; 17:e2006250. [PMID: 30703098 PMCID: PMC6372210 DOI: 10.1371/journal.pbio.2006250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 02/12/2019] [Accepted: 01/22/2019] [Indexed: 11/19/2022] Open
Abstract
Neural progenitors produce neurons whose identities can vary as a function of the time that specification occurs. Here, we describe the heterochronic specification of two photoreceptor (PhR) subtypes in the zebrafish pineal gland. We find that accelerating PhR specification by impairing Notch signaling favors the early fate at the expense of the later fate. Using in vivo lineage tracing, we show that most pineal PhRs are born from a fate-restricted progenitor. Furthermore, sister cells derived from the division of PhR-restricted progenitors activate the bone morphogenetic protein (BMP) signaling pathway at different times after division, and this heterochrony requires Notch activity. Finally, we demonstrate that PhR identity is established as a function of when the BMP pathway is activated. We propose a novel model in which division of a progenitor with restricted potential generates sister cells with distinct identities via a temporal asymmetry in the activation of a signaling pathway. A major goal in the field of developmental neurobiology is to identify the mechanisms that underly the diversification of the subtypes of neurons that are needed for the function of the nervous system. When investigating these mechanisms, time is an often-overlooked variable. Here, we show that in the zebrafish pineal gland—a neuroendocrine organ containing mostly photoreceptors (PhRs) and projection neurons—different classes of PhRs appear in a temporal sequence. In this simple system, the decision to adopt a PhR fate is driven by the activation of the bone morphogenetic protein (BMP) signaling pathway. Following the final cell division of a PhR progenitor, the sister cells normally activate the BMP pathway at different times. When Notch signaling activity is abrogated, activation of the BMP pathway occurs earlier and synchronously, which in turn favors the development of early PhR fates at the expense of later fates. We propose a model in which preventing sister cells from activating a signaling pathway in a synchronous fashion after their final division allows diversification of cell fates.
Collapse
|
46
|
Amaral JD, Silva D, Rodrigues CMP, Solá S, Santos MMM. A Novel Small Molecule p53 Stabilizer for Brain Cell Differentiation. Front Chem 2019; 7:15. [PMID: 30766866 PMCID: PMC6365904 DOI: 10.3389/fchem.2019.00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Brain tumor, as any type of cancer, is assumed to be sustained by a small subpopulation of stem-like cells with distinctive properties that allow them to survive conventional therapies and drive tumor recurrence. Thus, the identification of new molecules capable of controlling stemness properties may be key in developing effective therapeutic strategies for cancer by inducing stem-like cells differentiation. Spiropyrazoline oxindoles have previously been shown to induce apoptosis and cell cycle arrest, as well as upregulate p53 steady-state levels, while decreasing its main inhibitor MDM2 in the HCT116 human colorectal carcinoma cell line. In this study, we made modifications in this scaffold by including combinations of different substituents in the pyrazoline ring in order to obtain novel small molecules that could modulate p53 activity and act as differentiation inducer agents. The antiproliferative activity of the synthesized compounds was assessed using the isogenic pair of HCT116 cell lines differing in the presence or absence of the p53 gene. Among the tested spirooxindoles, spiropyrazoline oxindole 1a was selective against the cancer cell line expressing wild-type p53 and presented low cytotoxicity. This small molecule induced neural stem cell (NSC) differentiation through reduced SOX2 (marker of multipotency) and increased βIII-tubulin (marker of neural differentiation) which suggests a great potential as a non-toxic inducer of cell differentiation. More importantly, in glioma cancer cells (GL-261), compound 1a reduced stemness, by decreasing SOX2 protein levels, while also promoting chemotherapy sensitization. These results highlight the potential of p53 modulators for brain cell differentiation, with spirooxindole 1a representing a promising lead molecule for the development of new brain antitumor drugs.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Dário Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
47
|
Ohtsuka T, Kageyama R. Regulation of temporal properties of neural stem cells and transition timing of neurogenesis and gliogenesis during mammalian neocortical development. Semin Cell Dev Biol 2019; 95:4-11. [PMID: 30634047 DOI: 10.1016/j.semcdb.2019.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/05/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
In the developing mammalian neocortex, neural stem cells (NSCs) gradually alter their characteristics as development proceeds. NSCs initially expand the progenitor pool by symmetric proliferative division and then shift to asymmetric neurogenic division to commence neurogenesis. NSCs sequentially give rise to deep layer neurons first and superficial layer neurons later through mid- to late-embryonic stages, followed by shifting to a gliogenic phase at perinatal stages. The precise mechanisms regulating developmental timing of the transition from symmetric to asymmetric division have not been fully elucidated; however, gradual elongation in cell cycle length and concomitant accumulation of determinants that promote neuronal differentiation may function as a biological clock that regulates the onset of asymmetric neurogenic division. On the other hand, epigenetic regulatory systems have been implicated in the regulation of transition timing of neurogenesis and gliogenesis; the polycomb group (PcG) complex and Hmga genes have been found to govern the developmental timing by modulating chromatin structure during neocortical development. Furthermore, we uncovered several factors and mechanisms underlying the regulation of timing of neocortical neurogenesis and gliogenesis. In this review, we discuss recent findings regarding the mechanisms that govern the temporal properties of NSCs and the precise transition timing during neocortical development.
Collapse
Affiliation(s)
- Toshiyuki Ohtsuka
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan.
| | - Ryoichiro Kageyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan; Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan; Kyoto University Graduate School of Biostudies, Kyoto, 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| |
Collapse
|
48
|
Fawal MA, Davy A. Impact of Metabolic Pathways and Epigenetics on Neural Stem Cells. Epigenet Insights 2018; 11:2516865718820946. [PMID: 30627699 PMCID: PMC6311566 DOI: 10.1177/2516865718820946] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/18/2022] Open
Abstract
Balancing self-renewal with differentiation is crucial for neural stem cells (NSC) functions to ensure tissue development and homeostasis. Over the last years, multiple studies have highlighted the coupling of either metabolic or epigenetic reprogramming to NSC fate decisions. Metabolites are essential as they provide the energy and building blocks for proper cell function. Moreover, metabolites can also function as substrates and/or cofactors for epigenetic modifiers. It is becoming more evident that metabolic alterations and epigenetics rewiring are highly intertwined; however, their relation regarding determining NSC fate is not well understood. In this review, we summarize the major metabolic pathways and epigenetic modifications that play a role in NSC. We then focus on the notion that nutrients availability can function as a switch to modify the epigenetic machinery and drive NSC sequential differentiation during embryonic neurogenesis.
Collapse
Affiliation(s)
- Mohamad-Ali Fawal
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Alice Davy
- Centre de Biologie Intégrative (CBI) and Centre de Biologie du Développement (CBD), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
49
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
50
|
Kawaguchi A. Temporal patterning of neocortical progenitor cells: How do they know the right time? Neurosci Res 2018; 138:3-11. [PMID: 30227161 DOI: 10.1016/j.neures.2018.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
During mammalian neocortical development, neural progenitor cells undergo sequential division to produce different types of progenies. Regulation of when and how many cells with a specific fate are produced from neural progenitor cells, i.e., 'temporal patterning' for cytogenesis, is crucial for the formation of the functional neocortex. Recently advanced techniques for transcriptome profiling at the single-cell level provide a solid basis to investigate the molecular nature underlying temporal patterning, including examining the necessity of cell-cycle progression. Evidence has indicated that cell-intrinsic programs and extrinsic cues coordinately regulate the timing of both the change in the division mode of neural progenitors from proliferative to neurogenic and their laminar fate transition from deep-layer to upper-layer neurons. Epigenetic modulation, transcriptional cascades, and post-transcriptional regulation are reported to function as cell-intrinsic programs, whereas extrinsic cues from the environment or surrounding cells supposedly function in a negative feedback or positive switching manner for temporal patterning. These findings suggest that neural progenitor cells have intrinsic temporal programs that can progress cell-autonomously and cell-cycle independently, while extrinsic cues play a critical role in tuning the temporal programs to let neural progenitor cells know the 'right' time to progress.
Collapse
Affiliation(s)
- Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|