1
|
Si H, Mendoza Mendoza E, Esquivel M, Creighton CJ, Xu J, Roarty K. Noncanonical Wnt/Ror2 Signaling Regulates Basal Cell Fidelity and Branching Morphogenesis in the Mammary Gland. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640099. [PMID: 40060578 PMCID: PMC11888327 DOI: 10.1101/2025.02.25.640099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The mammary gland epithelium relies on a delicate balance between basal and luminal cell lineages to maintain tissue homeostasis and enable proper development. While the role of canonical Wnt signaling in mammary biology is well-established, the contribution of noncanonical Wnt signaling to lineage identity has remained unclear. Noncanonical Wnt pathways are primarily associated with morphogenesis, cytoskeletal regulation, and cell migration, but whether they are required for maintaining epithelial cell fate remains largely unexplored. Here, we demonstrate that the noncanonical Wnt receptor Ror2 is expressed in both basal and luminal lineages, yet selectively maintained in basal cells throughout development, suggesting a lineage-specific function. Using a p63CreERT2/+ lineage-specific mouse model, we show that Ror2 deletion in basal epithelial cells enhances secondary and tertiary branching while driving a basal-to-luminal fate transition, marked by downregulation of basal markers (K14, K5) and upregulation of luminal markers (K8, K18, ERα). Mechanistically, Ror2 loss disrupts RhoA-ROCK1-YAP1 signaling, leading to cytoskeletal reorganization, chromatin remodeling, and increased accessibility at luminal regulatory loci. Notably, ROCK1 inhibition phenocopies Ror2 loss, reinforcing the critical role of the RhoA-ROCK1 axis in basal cell maintenance. These findings provide direct genetic and mechanistic evidence that noncanonical Wnt signaling is essential for maintaining basal lineage fidelity, offering new insights into the mechanisms regulating epithelial plasticity. Given the fundamental importance of lineage stability in epithelial homeostasis, our results suggest that disruptions in Wnt/Ror2 signaling may contribute to aberrant fate transitions relevant to breast cancer progression.
Collapse
Affiliation(s)
- Hongjiang Si
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Erika Mendoza Mendoza
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Madelyn Esquivel
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Chad J. Creighton
- Dan L. Duncan Comprehensive Cancer Center, Breast Cancer Program, Baylor College of Medicine, Houston, TX 77030
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Jianming Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Dan L. Duncan Comprehensive Cancer Center, Breast Cancer Program, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
2
|
Giesen M, Fleck E, Scheele J, Hartmann TN, Henschler R. Rap1 Guanosine Triphosphate Hydrolase (GTPase) Regulates Shear Stress-Mediated Adhesion of Mesenchymal Stromal Cells. BIOLOGY 2025; 14:96. [PMID: 39857326 PMCID: PMC11762871 DOI: 10.3390/biology14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/18/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Intravenously transplanted mesenchymal stromal cells (MSCs) have been shown to interact with endothelial cells and to migrate to tissues. However, intracellular signals regulating MSC migration are still incompletely understood. Here, we analyzed the role of Rap1 GTPase in the migration of human bone marrow-derived MSCs in vitro and in short-term homing in mice in vivo. MSCs expressed both Rap1A and Rap1B mRNAs, which were downregulated after treatment with siRNA against Rap1A and/or B. In a flow chamber model with pre-established human umbilical vein endothelial cells (HUVECs), Rap1A/B downregulated MSCs interacted for longer distances before arrest, indicating adhesion defects. CXCL12-induced adhesion of MSCs on immobilized Vascular Cell Adhesion Molecule (VCAM)-1 was also decreased after the downregulation of Rap1A, Rap1B, or both, as was CXCL12-induced transwell migration. In a competitive murine short-term homing model with i.v. co-injection of Rap1A+B siRNA-treated and control MSCs that were labeled with PKH 26 and PKH 67 fluorescent dyes, the Rap1A+B siRNA-treated MSCs were detected at increased frequencies in blood, liver, and spleen compared to control MSCs. Thus, Rap1 GTPase modulates the adhesion and migration of MSCs in vitro and may increase the bio-availability of i.v.-transplanted MSCs in tissues in a murine model.
Collapse
Affiliation(s)
- Melanie Giesen
- Institute for Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, Clinics of the Goethe University Frankfurt (Main), 60528 Frankfurt am Main, Germany; (M.G.); (E.F.)
| | - Erika Fleck
- Institute for Transfusion Medicine and Immune Hematology, German Red Cross Blood Donor Service, Clinics of the Goethe University Frankfurt (Main), 60528 Frankfurt am Main, Germany; (M.G.); (E.F.)
| | - Jürgen Scheele
- Department of Medicine I, Medical Center University of Freiburg and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.S.); (T.N.H.)
| | - Tanja Nicole Hartmann
- Department of Medicine I, Medical Center University of Freiburg and Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (J.S.); (T.N.H.)
| | - Reinhard Henschler
- Institute for Transfusion Medicine, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Shi R, Zhu Y, Chen Y, Lin Y, Shi S. Advances in DNA nanotechnology for chronic wound management: Innovative functional nucleic acid nanostructures for overcoming key challenges. J Control Release 2024; 375:155-177. [PMID: 39242033 DOI: 10.1016/j.jconrel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Chronic wound management is affected by three primary challenges: bacterial infection, oxidative stress and inflammation, and impaired regenerative capacity. Conventional treatment methods typically fail to deliver optimal outcomes, thus highlighting the urgency to develop innovative materials that can address these issues and improve efficacy. Recent advances in DNA nanotechnology have garnered significant interest, particularly in the field of functional nucleic acid (FNA) nanomaterials, owing to their exceptional biocompatibility, programmability, and therapeutic potential. Among them, FNAs with unique nanostructures have garnered considerable attention. First, they inherit the biological properties of FNAs, including biocompatibility, reactive oxygen species (ROS)-scavenging capabilities, and modulation of cellular functions. Second, based on a precise design, these nanostructures exhibit superior physical properties, stability, and cellular uptake. Third, by leveraging the programmability of DNA strands, FNA nanostructures can be customized to accommodate therapeutic nucleic acids, peptides, and small-molecule drugs, thereby enabling a stable and controlled drug delivery system. These unique characteristics enable the use of FNA nanostructures to effectively address the major challenges in chronic wound management. This review focuses on various FNA nanostructures, including tetrahedral framework nucleic acids (tFNAs), DNA hydrogels, DNA origami, and rolling-circle amplification (RCA) DNA assembly. Additionally, a summary of recent advancements in their design and application for chronic wound management as well as insights for future research in this field are provided.
Collapse
Affiliation(s)
- Ruijianghan Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yujie Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Yang Chen
- Department of Pediatric Surgery, Department of Liver Surgery & Liver Transplantation Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Provincial Engineering Research Center of Oral Biomaterials, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Liu Z, Liu Y, Li Y, Xu S, Wang Y, Zhu Y, Jiang C, Wang K, Zhang Y, Wang Y. ECM stiffness affects cargo sorting into MSC-EVs to regulate their secretion and uptake behaviors. J Nanobiotechnology 2024; 22:124. [PMID: 38515095 PMCID: PMC10956366 DOI: 10.1186/s12951-024-02411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have garnered extensive attention as natural product-based nanomedicines and potential drug delivery vehicles. However, the specific mechanism for regulating MSC-EVs secretion and delivery remains unclear. Here, we demonstrate that extracellular matrix (ECM) stiffness regulates the secretion and delivery of EVs by affecting MSCs' cargo sorting mechanically. Using multi-omics analysis, we found that a decrease in ECM stiffness impeded the sorting of vesicular transport-related proteins and autophagy-related lipids into MSC-EVs, impairing their secretion and subsequent uptake by macrophages. Hence, MSC-EVs with different secretion and uptake behaviors can be produced by changing the stiffness of culture substrates. This study provides new insights into MSC-EV biology and establishes a connection between MSC-EV behaviors and ECM from a biophysical perspective, providing a basis for the rational design of biomedical materials.
Collapse
Affiliation(s)
- Zhixiao Liu
- Department of Histology and Embryology, College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Yingying Liu
- School of Chemistry and Chemical Engineering, Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Li
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Sha Xu
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China
| | - Yang Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, 200086, China
| | - Yuruchen Zhu
- College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Chu Jiang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, China.
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China.
| |
Collapse
|
5
|
Wang J, Fang CL, Noller K, Wei Z, Liu G, Shen K, Song K, Cao X, Wan M. Bone-derived PDGF-BB drives brain vascular calcification in male mice. J Clin Invest 2023; 133:e168447. [PMID: 37815871 PMCID: PMC10688993 DOI: 10.1172/jci168447] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRβ (p-PDGFRβ) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRβ/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.
Collapse
Affiliation(s)
- Jiekang Wang
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | | | | | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ke Shen
- Department of Orthopaedic Surgery
| | - Kangping Song
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Xu Cao
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Mei Wan
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| |
Collapse
|
6
|
Zhou ZY, Chang TF, Lin ZB, Jing YT, Wen LS, Niu YL, Bai Q, Guo CM, Sun JX, Wang YS, Dou GR. Microglial Galectin3 enhances endothelial metabolism and promotes pathological angiogenesis via Notch inhibition by competitively binding to Jag1. Cell Death Dis 2023; 14:380. [PMID: 37369647 DOI: 10.1038/s41419-023-05897-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/26/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Microglia were considered as immune cells in inflammation until their angiogenic role was widely understood. Although the pro-inflammatory role of microglia in retinal angiogenesis has been explored, little is known about its role in pro-angiogenesis and the microglia-endothelia interaction. Here, we report that galectin-3 (Gal3) released by activated microglia functions as a communicator between microglia and endothelia and competitively binds to Jag1, thus inhibiting the Notch signaling pathway and enhancing endothelial angiogenic metabolism to promote angiogenesis. These results suggest that Gal3 may be a novel and effective target in the treatment of retinal angiogenesis.
Collapse
Affiliation(s)
- Zi-Yi Zhou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tian-Fang Chang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhi-Bin Lin
- Department of Hepatobiliary Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Tong Jing
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Shi Wen
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Li Niu
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian Bai
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Chang-Mei Guo
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Xing Sun
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Yu-Sheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Guo-Rui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Lipopolysaccharide alters VEGF-A secretion of mesenchymal stem cells via the integrin β3-PI3K-AKT pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Wang Y, Fang J, Liu B, Shao C, Shi Y. Reciprocal regulation of mesenchymal stem cells and immune responses. Cell Stem Cell 2022; 29:1515-1530. [DOI: 10.1016/j.stem.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
|
9
|
Fatehi Hassanabad A, Schoettler FI, Kent WD, Adams CA, Holloway DD, Ali IS, Novick RJ, Ahsan MR, McClure RS, Shanmugam G, Kidd WT, Kieser TM, Fedak PW, Deniset JF. Comprehensive characterization of the postoperative pericardial inflammatory response: Potential implications for clinical outcomes. JTCVS OPEN 2022; 12:118-136. [PMID: 36590740 PMCID: PMC9801292 DOI: 10.1016/j.xjon.2022.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 01/04/2023]
Abstract
Objective There is a paucity of data on the inflammatory response that takes place in the pericardial space after cardiac surgery. This study provides a comprehensive assessment of the local postoperative inflammatory response. Methods Forty-three patients underwent cardiotomy, where native pericardial fluid was aspirated and compared with postoperative pericardial effluent collected at 4, 24, and 48 hours' postcardiopulmonary bypass. Flow cytometry was used to define the levels and proportions of specific immune cells. Samples were also probed for concentrations of inflammatory cytokines, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Results Preoperatively, the pericardial space mainly contains macrophages and T cells. However, the postsurgical pericardial space was populated predominately by neutrophils, which constituted almost 80% of immune cells present, and peaked at 24 hours. When surgical approaches were compared, minimally invasive surgery was associated with fewer neutrophils in the pericardial space at 4 hours' postsurgery. Analysis of the intrapericardial concentrations of inflammatory mediators showed interleukin-6, MMP-9, and TIMP-1 to be highest postsurgery. Over time, MMP-9 concentrations decreased significantly, whereas TIMP-1 levels increased, resulting in a significant reduction of the ratio of MMP:TIMP after surgery, suggesting that active inflammatory processes may influence extracellular matrix remodeling. Conclusions These results show that cardiac surgery elicits profound alterations in the immune cell profile in the pericardial space. Defining the cellular and molecular mediators that drive pericardial-specific postoperative inflammatory processes may allow for targeted therapies to reduce immune-mediated complications.
Collapse
Key Words
- AVR, aortic valve replacement
- CABG, coronary artery bypass graft
- CD, cluster of differentiation
- CPB, cardiopulmonary bypass
- DC, dendritic cell
- ECM, extracellular matrix
- FS, full median sternotomy
- IL, interleukin
- IL-1Ra, interleukin-1 receptor antagonist
- Inf DC, inflammatory dendritic cell
- MICS, minimally invasive cardiac surgery
- MMP, matrix metalloproteinase
- MMPtot, total matrix metalloproteinases
- Mφ, macrophage
- NK, natural killer cell
- PAOF, postoperative atrial fibrillation
- PPS, postpericardiotomy syndrome
- RAMT-AVR, right anterior minithoracotomy aortic valve replacement
- SSC, side scatter
- TGFβ, transforming growth factor-beta
- TIMP, tissue inhibitor of metalloproteinases
- TIMPtot, total tissue inhibitors of metalloproteinases
- cDC, classical dendritic cell
- conventional cardiac surgery
- inflammation
- minimally invasive cardiac surgery
- pericardial space
- postoperative pericardial fluid
- sAVR, conventional full median sternotomy surgical aortic valve replacement
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Friederike I. Schoettler
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Surgery, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - William D.T. Kent
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Corey A. Adams
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel D. Holloway
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Imtiaz S. Ali
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Richard J. Novick
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Critical Care Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Muhammad R. Ahsan
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robert Scott McClure
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ganesh Shanmugam
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - William T. Kidd
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Teresa M. Kieser
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Paul W.M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Justin F. Deniset
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Calgary, Alberta, Canada
- Address for reprints: Justin F. Deniset, PhD, Department of Physiology & Pharmacology, Department of Cardiac Sciences, Libin Cardiovascular Institute Cumming School of Medicine, Health Research Innovation Centre, University of Calgary, 3330 Hospital Dr NW, Room GAC56, Calgary, Alberta, Canada, T2N 4N1.
| |
Collapse
|
10
|
Song X, Zhao M, Cao Q, Wang S, Li R, Zhang X, Zhang L, Shi K. Transcriptome provides insights into bovine mammary regulatory mechanisms during the lactation cycle. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2064865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xuyang Song
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Meng Zhao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Qiaoqiao Cao
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Shengxuan Wang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Ranran Li
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Xuan Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Letian Zhang
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Kerong Shi
- Shandong Key Laboratory of Animal Bioengineering and Disease Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, People’s Republic of China
| |
Collapse
|
11
|
Fu M, Peng D, Lan T, Wei Y, Wei X. Multifunctional regulatory protein connective tissue growth factor (CTGF): A potential therapeutic target for diverse diseases. Acta Pharm Sin B 2022; 12:1740-1760. [PMID: 35847511 PMCID: PMC9279711 DOI: 10.1016/j.apsb.2022.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022] Open
Abstract
Connective tissue growth factor (CTGF), a multifunctional protein of the CCN family, regulates cell proliferation, differentiation, adhesion, and a variety of other biological processes. It is involved in the disease-related pathways such as the Hippo pathway, p53 and nuclear factor kappa-B (NF-κB) pathways and thus contributes to the developments of inflammation, fibrosis, cancer and other diseases as a downstream effector. Therefore, CTGF might be a potential therapeutic target for treating various diseases. In recent years, the research on the potential of CTGF in the treatment of diseases has also been paid more attention. Several drugs targeting CTGF (monoclonal antibodies FG3149 and FG3019) are being assessed by clinical or preclinical trials and have shown promising outcomes. In this review, the cellular events regulated by CTGF, and the relationships between CTGF and pathogenesis of diseases are systematically summarized. In addition, we highlight the current researches, focusing on the preclinical and clinical trials concerned with CTGF as the therapeutic target.
Collapse
|
12
|
Zhang F, Wu J, Li X, Ying X, Fang W, Dong Y. Angiopoietin-like protein 4 treated bone marrow-derived mesenchymal stem cells alleviate myocardial injury of patients with myocardial infarction. Nurs Health Sci 2022; 24:312-321. [PMID: 35157362 PMCID: PMC9306838 DOI: 10.1111/nhs.12927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Bone marrow‐derived mesenchymal stem cells (BMSCs) and their exosomes are of great significance for the recovery of cardiac function in patients with myocardial infarction (MI). However, the underlying mechanisms of BMSCs applied to MI treatment remain unclear. Fluorescence‐activated cell sorting (FACs) are performed to assess the apoptosis, reactive oxygen species levels and glucose uptake capacity of BMSCs. Reverse transcription polymerase chain reaction is conducted to detect the levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin‐like growth factor (IGF), transforming growth factor‐beta 1, connective tissue growth factor, and platelet‐derived growth factor. The levels of apoptosis‐related proteins were detected by Western blot. The levels of VEGF, bFGF, HGF, and IGF were assessed by enzyme‐linked immunosorbent assay. The biochemical kits are applied to detect the levels of malondialdehyde, superoxide dismutase, and adenosine triphosphate/adenosine diphosphate. 2,3,5‐triphenyltetrazolium and Masson staining and immunofluorescence are performed to assess myocardial function of rats. Angiopoietin‐like protein 4 (ANGPTL4) alleviates apoptosis and oxidative stress of BMSCs induced by serum deprivation and hypoxia; ANGPTL4 activates paracrine and accelerate metabolic energy of BMSCs; and ANGPTL4 treated‐BMSCs alleviate myocardial injury of rats with MI. ANGPTL4 treated‐BMSCs alleviate myocardial injury in rats with MI, indicating the combination therapy of ANGPTL4 and BMSCs may alleviate myocardial injury in rats with MI.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Jie Wu
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Xingxing Li
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Xuan Ying
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Wenbing Fang
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Yang Dong
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| |
Collapse
|
13
|
Zhang Z, Liu M, Zheng Y. Role of Rho GTPases in stem cell regulation. Biochem Soc Trans 2021; 49:2941-2955. [PMID: 34854916 PMCID: PMC9008577 DOI: 10.1042/bst20211071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The future of regenerative medicine relies on our understanding of stem cells which are essential for tissue/organ generation and regeneration to maintain and/or restore tissue homeostasis. Rho family GTPases are known regulators of a wide variety of cellular processes related to cytoskeletal dynamics, polarity and gene transcription. In the last decade, major new advances have been made in understanding the regulatory role and mechanism of Rho GTPases in self-renewal, differentiation, migration, and lineage specification in tissue-specific signaling mechanisms in various stem cell types to regulate embryonic development, adult tissue homeostasis, and tissue regeneration upon stress or damage. Importantly, implication of Rho GTPases and their upstream regulators or downstream effectors in the transformation, migration, invasion and tumorigenesis of diverse cancer stem cells highlights the potential of Rho GTPase targeting in cancer therapy. In this review, we discuss recent evidence of Rho GTPase signaling in the regulation of embryonic stem cells, multiple somatic stem cells, and cancer stem cells. We propose promising areas where Rho GTPase pathways may serve as useful targets for stem cell manipulation and related future therapies.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| |
Collapse
|
14
|
Zaykov V, Chaqour B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J Cell Commun Signal 2021; 15:567-580. [PMID: 34613590 DOI: 10.1007/s12079-021-00650-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
Cellular communication network 2 (CCN2), also known as connective tissue growth factor (CTGF) regulates diverse cellular processes, some at odds with others, including adhesion, proliferation, apoptosis, and extracellular matrix (ECM) protein synthesis. Although a cause-and-effect relationship between CCN2/CTGF expression and local fibrotic reactions has initially been established, CCN2/CTGF manifests cell-, tissue-, and context-specific functions and differentially affects developmental and pathological processes ranging from progenitor cell fate decisions and angiogenesis to inflammation and tumorigenesis. CCN2/CTGF multimodular structure, binding to and activation or inhibition of multiple cell surface receptors, growth factors and ECM proteins, and susceptibility for proteolytic cleavage highlight the complexity to CCN2/CTGF biochemical attributes. CCN2/CTGF expression and dosage in the local environment affects a defined community of its interacting partners, and this results in sequestration of growth factors, interference with or potentiation of ligand-receptor binding, cellular internalization of CCN2/CTGF, inhibition or activation of proteases, and generation of CCN2/CTGF degradome products that add molecular diversity and expand the repertoire of functional modules in the cells and their microenvironment. Through these interactions, different intracellular signals and cellular responses are elicited culminating into physiological or pathological reactions. Thus, the CCN2/CTGF interactome is a defining factor of its tissue- and context-specific effects. Mapping of new CCN2/CTGF binding partners might shed light on yet unknown roles of CCN2/CTGF and provide a solid basis for tissue-specific targeting this molecule or its interacting partners in a therapeutic context.
Collapse
Affiliation(s)
- Viktor Zaykov
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA
| | - Brahim Chaqour
- Department of Cell Biology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA. .,Department of Ophthalmology, State University of New York (SUNY), Downstate Health Science University, 450 Clarkson Avenue, MSC 5, Brooklyn, NY, 11203, USA.
| |
Collapse
|
15
|
Senescent immune cells release grancalcin to promote skeletal aging. Cell Metab 2021; 33:1957-1973.e6. [PMID: 34614408 DOI: 10.1016/j.cmet.2021.08.009] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/06/2021] [Accepted: 08/14/2021] [Indexed: 01/18/2023]
Abstract
Skeletal aging is characterized by low bone turnover and marrow fat accumulation. However, the underlying mechanism for this imbalance is unclear. Here, we show that during aging in rats and mice proinflammatory and senescent subtypes of immune cells, including macrophages and neutrophils, accumulate in the bone marrow and secrete abundant grancalcin. The injection of recombinant grancalcin into young mice was sufficient to induce premature skeletal aging. In contrast, genetic deletion of Gca in neutrophils and macrophages delayed skeletal aging. Mechanistically, we found that grancalcin binds to the plexin-b2 receptor and partially inactivates its downstream signaling pathways, thus repressing osteogenesis and promoting adipogenesis of bone marrow mesenchymal stromal cells. Heterozygous genetic deletion of Plexnb2 in skeletal stem cells abrogated the improved bone phenotype of Gca-knockout mice. Finally, we developed a grancalcin-neutralizing antibody and showed that its treatment of older mice improved bone health. Together, our data suggest that grancalcin could be a potential target for the treatment of age-related osteoporosis.
Collapse
|
16
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
17
|
Lu GD, Cheng P, Liu T, Wang Z. BMSC-Derived Exosomal miR-29a Promotes Angiogenesis and Osteogenesis. Front Cell Dev Biol 2020; 8:608521. [PMID: 33363169 PMCID: PMC7755650 DOI: 10.3389/fcell.2020.608521] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/04/2020] [Indexed: 01/08/2023] Open
Abstract
Angiogenesis and osteogenesis are tightly coupled during bone modeling and remodeling processes. Here we reported that bone marrow mesenchymal stem cell (BMSC)-derived exosomal miR-29a promotes angiogenesis and osteogenesis in vitro and in vivo. BMSC-derived exosomes (BMSCs-Exos) can be taken up by human umbilical vein endothelial cells (HUVECs) and promote the proliferation, migration, and tube formation of HUVECs. MiRNA-29a level was high in BMSCs-Exos and can be transported into HUVECs to regulate angiogenesis. VASH1 was identified as a direct target of miR-29a, mediating the effects of BMSC-derived exosomal miR-29a on angiogenesis. More interestingly, miR29a-loaded exosomes from engineered BMSCs (miR-29a-loaded BMSCs-Exos) showed a robust ability of promoting angiogenesis and osteogenesis in vivo. Taken together, these findings suggest that BMSC-derived exosomal miR-29a regulates angiogenesis and osteogenesis, and miR-29a-loaded BMSCs-Exos may serve as a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Guo-Dong Lu
- Department of Cardiology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
| | - Peng Cheng
- Division of Geriatric Endocrinology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ting Liu
- Department of Endocrinology, Changsha Central Hospital, Changsha, China
| | - Zhong Wang
- Department of Cardiology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi, China
| |
Collapse
|
18
|
Li M, Zhang A, Li J, Zhou J, Zheng Y, Zhang C, Xia D, Mao H, Zhao J. Osteoblast/fibroblast coculture derived bioactive ECM with unique matrisome profile facilitates bone regeneration. Bioact Mater 2020; 5:938-948. [PMID: 32637756 PMCID: PMC7330453 DOI: 10.1016/j.bioactmat.2020.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Extracellular matrix (ECM) with mimetic tissue niches was attractive to facilitate tissue regeneration in situ via recruitment of endogenous cells and stimulation of self-healing process. However, how to engineer the complicate tissue specific ECM with unique matrisome in vitro was a challenge of ECM-based biomaterials in tissue engineering and regenerative medicine. Here, we introduced coculture system to engineer bone mimetic ECM niche guided by cell-cell communication. In the cocultures, fibroblasts promoted osteogenic differentiation of osteoblasts via extracellular vesicles. The generated ECM (MN-ECM) displayed a unique appearance of morphology and biological components. The advantages of MN-ECM were demonstrated with promotion of multiple cellular behaviors (proliferation, adhesion and osteogenic mineralization) in vitro and bone regeneration in vivo. Moreover, proteomic analysis was used to clarify the molecular mechanism of MN-ECM, which revealed a specific matrisome signature. The present study provides a novel strategy to generate ECM with tissue mimetic niches via cell-cell communication in a coculture system, which forwards the development of tissue-bioactive ECM engineering along with deepening the understanding of ECM niches regulated by cells for bone tissue engineering.
Collapse
Affiliation(s)
- Mei Li
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
- Ningbo Institute of Medical Sciences, Ningbo, Zhejiang, PR China
| | - Anqi Zhang
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Jiajing Li
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Jing Zhou
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Yanan Zheng
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| | - Chi Zhang
- Orthopedic Department, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Dongdong Xia
- Orthopedic Department, Ningbo First Hospital, Ningbo, Zhejiang, PR China
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jiyuan Zhao
- Zhejiang Key Laboratory of Pathophysiology, Medical School in Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
19
|
Hellinger JW, Schömel F, Buse JV, Lenz C, Bauerschmitz G, Emons G, Gründker C. Identification of drivers of breast cancer invasion by secretome analysis: insight into CTGF signaling. Sci Rep 2020; 10:17889. [PMID: 33087801 PMCID: PMC7578015 DOI: 10.1038/s41598-020-74838-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
An altered consistency of tumor microenvironment facilitates the progression of the tumor towards metastasis. Here we combine data from secretome and proteome analysis using mass spectrometry with microarray data from mesenchymal transformed breast cancer cells (MCF-7-EMT) to elucidate the drivers of epithelial-mesenchymal transition (EMT) and cell invasion. Suppression of connective tissue growth factor (CTGF) reduced invasion in 2D and 3D invasion assays and expression of transforming growth factor-beta-induced protein ig-h3 (TGFBI), Zinc finger E-box-binding homeobox 1 (ZEB1) and lysyl oxidase (LOX), while the adhesion of cell-extracellular matrix (ECM) in mesenchymal transformed breast cancer cells is increased. In contrast, an enhanced expression of CTGF leads to an increased 3D invasion, expression of fibronectin 1 (FN1), secreted protein acidic and cysteine rich (SPARC) and CD44 and a reduced cell ECM adhesion. Gonadotropin-releasing hormone (GnRH) agonist Triptorelin reduces CTGF expression in a Ras homolog family member A (RhoA)-dependent manner. Our results suggest that CTGF drives breast cancer cell invasion in vitro and therefore could be an attractive therapeutic target for drug development to prevent the spread of breast cancer.
Collapse
Affiliation(s)
- Johanna W Hellinger
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Franziska Schömel
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Judith V Buse
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Christof Lenz
- Institute of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Bauerschmitz
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Günter Emons
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Carsten Gründker
- Department of Gynecology and Obstetrics, University Medicine Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| |
Collapse
|
20
|
Kurenkova AD, Medvedeva EV, Newton PT, Chagin AS. Niches for Skeletal Stem Cells of Mesenchymal Origin. Front Cell Dev Biol 2020; 8:592. [PMID: 32754592 PMCID: PMC7366157 DOI: 10.3389/fcell.2020.00592] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
With very few exceptions, all adult tissues in mammals are maintained and can be renewed by stem cells that self-renew and generate the committed progeny required. These functions are regulated by a specific and in many ways unique microenvironment in stem cell niches. In most cases disruption of an adult stem cell niche leads to depletion of stem cells, followed by impairment of the ability of the tissue in question to maintain its functions. The presence of stem cells, often referred to as mesenchymal stem cells (MSCs) or multipotent bone marrow stromal cells (BMSCs), in the adult skeleton has long been realized. In recent years there has been exceptional progress in identifying and characterizing BMSCs in terms of their capacity to generate specific types of skeletal cells in vivo. Such BMSCs are often referred to as skeletal stem cells (SSCs) or skeletal stem and progenitor cells (SSPCs), with the latter term being used throughout this review. SSPCs have been detected in the bone marrow, periosteum, and growth plate and characterized in vivo on the basis of various genetic markers (i.e., Nestin, Leptin receptor, Gremlin1, Cathepsin-K, etc.). However, the niches in which these cells reside have received less attention. Here, we summarize the current scientific literature on stem cell niches for the SSPCs identified so far and discuss potential factors and environmental cues of importance in these niches in vivo. In this context we focus on (i) articular cartilage, (ii) growth plate cartilage, (iii) periosteum, (iv) the adult endosteal compartment, and (v) the developing endosteal compartment, in that order.
Collapse
Affiliation(s)
- Anastasiia D Kurenkova
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ekaterina V Medvedeva
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Phillip T Newton
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Andrei S Chagin
- Institute for Regenerative Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Zhang C, Lin Y, Liu Q, He J, Xiang P, Wang D, Hu X, Chen J, Zhu W, Yu H. Growth differentiation factor 11 promotes differentiation of MSCs into endothelial-like cells for angiogenesis. J Cell Mol Med 2020; 24:8703-8717. [PMID: 32588524 PMCID: PMC7412688 DOI: 10.1111/jcmm.15502] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β super family. It has multiple effects on development, physiology and diseases. However, the role of GDF11 in the development of mesenchymal stem cells (MSCs) is not clear. To explore the effects of GDF11 on the differentiation and pro-angiogenic activities of MSCs, mouse bone marrow-derived MSCs were engineered to overexpress GDF11 (MSCGDF11 ) and their capacity for differentiation and paracrine actions were examined both in vitro and in vivo. Expression of endothelial markers CD31 and VEGFR2 at the levels of both mRNA and protein was significantly higher in MSCGDF11 than control MSCs (MSCVector ) during differentiation. More tube formation was observed in MSCGDF11 as compared with controls. In an in vivo angiogenesis assay with Matrigel plug, MSCGDF11 showed more differentiation into CD31+ endothelial-like cells and better pro-angiogenic activity as compared with MSCVector . Mechanistically, the enhanced differentiation by GDF11 involved activation of extracellular-signal-related kinase (ERK) and eukaryotic translation initiation factor 4E (EIF4E). Inhibition of either TGF-β receptor or ERK diminished the effect of GDF11 on MSC differentiation. In summary, our study unveils the function of GDF11 in the pro-angiogenic activities of MSCs by enhancing endothelial differentiation via the TGFβ-R/ERK/EIF4E pathway.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yinuo Lin
- Department of Cardiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qi Liu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Junhua He
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Pingping Xiang
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Dianliang Wang
- Stem Cell and Tissue Engineering Research Laboratory, PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Xinyang Hu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinghai Chen
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wei Zhu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Hong Yu
- Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
22
|
Zhang Y, Saradna A, Ratan R, Ke X, Tu W, Do DC, Hu C, Gao P. RhoA/Rho-kinases in asthma: from pathogenesis to therapeutic targets. Clin Transl Immunology 2020; 9:e01134. [PMID: 32355562 PMCID: PMC7190398 DOI: 10.1002/cti2.1134] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Asthma is a chronic and heterogeneous disease characterised by airway inflammation and intermittent airway narrowing. The key obstacle in the prevention and treatment of asthma has been our incomplete understanding of its aetiology and biological mechanisms. The ras homolog family member A (RhoA) of the Rho family GTPases has been considered to be one of the most promising and novel therapeutic targets for asthma. It is well known that RhoA/Rho-kinases play an important role in the pathophysiology of asthma, including airway smooth muscle contraction, airway hyper-responsiveness, β-adrenergic desensitisation and airway remodelling. However, recent advances have suggested novel roles for RhoA in regulating allergic airway inflammation. Specifically, RhoA has been shown to regulate allergic airway inflammation through controlling Th2 or Th17 cell differentiation and to regulate airway remodelling through regulating mesenchymal stem cell (MSC) differentiation. In this review, we evaluate the literature regarding the recent advances in the activation of RhoA/Rho-kinase, cytokine and epigenetic regulation of RhoA/Rho-kinase, and the role of RhoA/Rho-kinase in regulating major features of asthma, such as airway hyper-responsiveness, remodelling and inflammation. We also discuss the importance of the newly identified role of RhoA/Rho-kinase signalling in MSC differentiation and bronchial epithelial barrier dysfunction. These findings indicate the functional significance of the RhoA/Rho-kinase pathway in the pathophysiology of asthma and suggest that RhoA/Rho-kinase signalling may be a promising therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Arjun Saradna
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Division of PulmonaryCritical Care and Sleep MedicineState University of New York at BuffaloBuffaloNYUSA
| | - Rhea Ratan
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Xia Ke
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of OtorhinolaryngologyFirst Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Wei Tu
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
- Department of Respirology and AllergyThird Affiliated Hospital of Shenzhen UniversityShenzhenChina
| | - Danh C Do
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Chengping Hu
- Department of Respiratory MedicineXiangya HospitalCentral South UniversityChangshaChina
| | - Peisong Gao
- Division of Allergy and Clinical ImmunologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
23
|
Jahn SK, Hennicke T, Kassack MU, Drews L, Reichert AS, Fritz G. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118711. [PMID: 32224192 DOI: 10.1016/j.bbamcr.2020.118711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Cardiotoxicity is a highly relevant, because often life-threatening, adverse effect of doxorubicin (Doxo)-based anticancer therapy. Here, we investigated the Doxo-response of cardiovascular stem/progenitor cells employing a mouse embryonic stem cell (mESC)-based in vitro differentiation model. Endothelial progenitor cells revealed a pronounced Doxo sensitivity as compared to mESC, differentiated endothelial-like (EC) and cardiomyocyte-like cells (CM) and CM progenitors, which rests on the activation of senescence. Doxo treatment of EC progenitors altered protein expression of individual endothelial markers, actin cytoskeleton morphology, mRNA expression of genes related to mitochondrial functions, autophagy, apoptosis, and DNA repair as well as mitochondrial DNA content, respiration and ATP production in the surviving differentiated EC progeny. By contrast, LDL uptake, ATP-stimulated Ca2+ release, and cytokine-stimulated ICAM-1 expression remained unaffected by the anthracycline treatment. Thus, exposure of EC progenitors to Doxo elicits isolated and persistent dysfunctions in the surviving EC progeny. In conclusion, we suggest that Doxo-induced injury of EC progenitors adds to anthracycline-induced cardiotoxicity, making this cell-type a preferential target for pharmacoprotective and regenerative strategies.
Collapse
Affiliation(s)
- Sarah K Jahn
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
24
|
Midgley AC, Woods EL, Jenkins RH, Brown C, Khalid U, Chavez R, Hascall V, Steadman R, Phillips AO, Meran S. Hyaluronidase-2 Regulates RhoA Signaling, Myofibroblast Contractility, and Other Key Profibrotic Myofibroblast Functions. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1236-1255. [PMID: 32201263 PMCID: PMC7254050 DOI: 10.1016/j.ajpath.2020.02.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 12/17/2022]
Abstract
Hyaluronidase (HYAL)-2 is a weak, acid-active, hyaluronan-degrading enzyme broadly expressed in somatic tissues. Aberrant HYAL2 expression is implicated in diverse pathology. However, a significant proportion of HYAL2 is enzymatically inactive; thus the mechanisms through which HYAL2 dysregulation influences pathobiology are unclear. Recently, nonenzymatic HYAL2 functions have been described, and nuclear HYAL2 has been shown to influence mRNA splicing to prevent myofibroblast differentiation. Myofibroblasts drive fibrosis, thereby promoting progressive tissue damage and leading to multimorbidity. This study identifies a novel HYAL2 cytoplasmic function in myofibroblasts that is unrelated to its enzymatic activity. In fibroblasts and myofibroblasts, HYAL2 interacts with the GTPase-signaling small molecule ras homolog family member A (RhoA). Transforming growth factor beta 1–driven fibroblast-to-myofibroblast differentiation promotes HYAL2 cytoplasmic relocalization to bind to the actin cytoskeleton. Cytoskeletal-bound HYAL2 functions as a key regulator of downstream RhoA signaling and influences profibrotic myofibroblast functions, including myosin light-chain kinase–mediated myofibroblast contractility, myofibroblast migration, myofibroblast collagen/fibronectin deposition, as well as connective tissue growth factor and matrix metalloproteinase-2 expression. These data demonstrate that, in certain biological contexts, the nonenzymatic effects of HYAL2 are crucial in orchestrating RhoA signaling and downstream pathways that are important for full profibrotic myofibroblast functionality. In conjunction with previous data demonstrating the influence of HYAL2 on RNA splicing, these findings begin to explain the broad biological effects of HYAL2.
Collapse
Affiliation(s)
- Adam C Midgley
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Emma L Woods
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Robert H Jenkins
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Charlotte Brown
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Usman Khalid
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Rafael Chavez
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Vincent Hascall
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Robert Steadman
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Aled O Phillips
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Soma Meran
- Wales Kidney Research Unit, Systems Immunity URI, Division of Infection and Immunity, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
25
|
Do DC, Mu J, Ke X, Sachdeva K, Qin Z, Wan M, Ishmael FT, Gao P. miR-511-3p protects against cockroach allergen-induced lung inflammation by antagonizing CCL2. JCI Insight 2019; 4:126832. [PMID: 31536479 DOI: 10.1172/jci.insight.126832] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 09/12/2019] [Indexed: 02/06/2023] Open
Abstract
miR-511-3p, encoded by CD206/Mrc1, was demonstrated to reduce allergic inflammation and promote alternative (M2) macrophage polarization. Here, we sought to elucidate the fundamental mechanism by which miR-511-3p attenuates allergic inflammation and promotes macrophage polarization. Compared with WT mice, the allergen-challenged Mrc1-/- mice showed increased airway hyperresponsiveness (AHR) and inflammation. However, this increased AHR and inflammation were significantly attenuated when these mice were pretransduced with adeno-associated virus-miR-511-3p (AAV-miR-511-3p). Gene expression profiling of macrophages identified Ccl2 as one of the major genes that was highly expressed in M2 macrophages but antagonized by miR-511-3p. The interaction between miR-511-3p and Ccl2 was confirmed by in silico analysis and mRNA-miR pulldown assay. Further evidence for the inhibition of Ccl2 by miR-511-3p was given by reduced levels of Ccl2 in supernatants of miR-511-3p-transduced macrophages and in bronchoalveolar lavage fluids of AAV-miR-511-3p-infected Mrc1-/- mice. Mechanistically, we demonstrated that Ccl2 promotes M1 macrophage polarization by activating RhoA signaling through Ccr2. The interaction between Ccr2 and RhoA was also supported by coimmunoprecipitation assay. Importantly, inhibition of RhoA signaling suppressed cockroach allergen-induced AHR and lung inflammation. These findings suggest a potentially novel mechanism by which miR-511-3p regulates allergic inflammation and macrophage polarization by targeting Ccl2 and its downstream Ccr2/RhoA axis.
Collapse
Affiliation(s)
- Danh C Do
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jie Mu
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Anesthesiology, West China School of Medicine, Sichuan University, Chengdu, China
| | - Xia Ke
- Department of Otorhinolaryngology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Karan Sachdeva
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Zili Qin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Faoud T Ishmael
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Lin Z, He H, Wang M, Liang J. MicroRNA-130a controls bone marrow mesenchymal stem cell differentiation towards the osteoblastic and adipogenic fate. Cell Prolif 2019; 52:e12688. [PMID: 31557368 PMCID: PMC6869834 DOI: 10.1111/cpr.12688] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives With age, bone marrow mesenchymal stem cells (BMSC) have reduced ability of differentiating into osteoblasts but have increased ability of differentiating into adipocytes which leads to age‐related bone loss. MicroRNAs (miRNAs) play major roles in regulating BMSC differentiation. This paper explored the role of miRNAs in regulating BMSC differentiation swift fate in age‐related osteoporosis. Material and methods Mice and human BMSC were isolated from bone marrow, whose miR‐130a level was measured. The abilities of BMSC differentiate into osteoblast or fat cell under the transfected with agomiR‐130a or antagomiR‐130a were analysed by the level of ALP, osteocalcin, Runx2, osterix or peroxisome proliferator‐activated receptorγ (PPARγ), Fabp4. Related mechanism was verified via qT‐PCR, Western blotting (WB) and siRNA transfection. Animal phenotype intravenous injection with agomiR‐130a or agomiR‐NC was explored by Micro‐CT, immunochemistry and calcein double‐labelling. Results MiR‐130a was dramatically decreased in BMSC of advanced subjects. Overexpression of miR‐130a increased osteogenic differentiation of BMSC and attenuated adipogenic differentiation in BMSC, conversely, Inhibition of miR‐130a reduced osteogenic differentiation and facilitated lipid droplet formation. Consistently, overexpression of miR‐130a in elderly mice dropped off the bone loss. Furthermore, the protein levels of Smad regulatory factors 2 (Smurf2) and PPARγ were regulated by miR‐130a with an negative effect through directly combining the 3'UTR of Smurf2 and PPARγ. Conclusions The results indicated that miR‐130a promotes osteoblastic differentiation of BMSC by negatively regulating Smurf2 expression and suppresses adipogenic differentiation of BMSC by targeting the PPARγ, and supply a new target for clinical therapy of age‐related bone loss.
Collapse
Affiliation(s)
- Zhangyuan Lin
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Hongbo He
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| | - Min Wang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Jieyu Liang
- Department of Orthopedic, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Ren F, Zhao Q, Liu B, Sun X, Tang Y, Huang H, Mei L, Yu Y, Mo H, Dong H, Zheng P, Mi Y. Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J Cell Physiol 2019; 235:2738-2752. [PMID: 31498430 DOI: 10.1002/jcp.29177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/23/2019] [Indexed: 12/31/2022]
Abstract
Gastric cancer has the fifth highest incidence of disease and is the third leading cause of cancer-associated mortality in the world. The etiology of gastric cancer is complex and needs to be fully elucidated. Thus, it is necessary to explore potential pathogenic genes and pathways that contribute to gastric cancer. Gene expression profiles of the GSE33335 and GSE54129 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were compared and identified using R software. The DEGs were then subjected to gene set enrichment analysis and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Survival analyses based on The Cancer Genome Atlas database were used to further screen the essential DEGs. A knockdown assay was performed to determine the function of the candidate gene in gastric cancer. Finally, the association between the candidate gene and immune-related genes was investigated. We found that GPNMB serves as an essential gene, with a high expression level, and predicts a worse outcome of gastric cancer. Knockdown of GPNMB inhibited gastric cancer cell proliferation and migration. In addition, GPNMB may augment the immunosuppressive ability of gastric cancer by recruiting immunosuppressive cells and promoting immune cell exhaustion through PI3K/AKT/CCL4 signaling axis. Collectively, these data suggest that GPNMB acts as an important positive mediator of tumor progression in gastric cancer, and GPNMB could exert multimodality modulation of gastric cancer-mediated immune suppression.
Collapse
Affiliation(s)
- Feifei Ren
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qitai Zhao
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bin Liu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangdong Sun
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Youcai Tang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Sciences and Education and Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huang Huang
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Mei
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yong Yu
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hui Mo
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Haibin Dong
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengyuan Zheng
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Mi
- Henan Key Laboratory for Helicobacter pylori & Microbiota and GI cancer, Marshall Medical Research Center, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Gastroenterology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
28
|
Abstract
Objective: Recent studies have shown the important influence of various micro factors on the general biological activity and function of endothelial cells (ECs). Vascular endothelial growth factor (VEGF) and angiogenin (ANG) are classic micro factors that promote proliferation, differentiation, and migration of ECs. The underlying pathophysiological mechanisms and related pathways of these micro factors remain the focus of current research. Data sources: An extensive search was undertaken in the PubMed database by using keywords including “micro factors” and “endothelial cell.” This search covered relevant research articles published between January 1, 2007 and December 31, 2018. Study selection: Original articles, reviews, and other articles were searched and reviewed for content on micro factors of ECs. Results: VEGF and ANG have critical functions in the occurrence, development, and status of the physiological pathology of ECs. Other EC-associated micro factors include interleukin 10, tumor protein P53, nuclear factor kappa B subunit, interleukin 6, and tumor necrosis factor. The results of Gene Ontology analysis revealed that variations were mainly enriched in positive regulation of transcription by the RNA polymerase II promoter, cellular response to lipopolysaccharides, negative regulation of apoptotic processes, external side of the plasma membrane, cytoplasm, extracellular regions, cytokine activity, growth factor activity, and identical protein binding. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that micro factors were predominantly enriched in inflammatory diseases. Conclusions: In summary, the main mediators, factors, or genes associated with ECs include VEGF and ANG. The effect of micro factors on ECs is complex and multifaceted. This review summarizes the correlation between ECs and several micro factors.
Collapse
|
29
|
Yeh YT, Wei J, Thorossian S, Nguyen K, Hoffman C, Del Álamo JC, Serrano R, Li YSJ, Wang KC, Chien S. MiR-145 mediates cell morphology-regulated mesenchymal stem cell differentiation to smooth muscle cells. Biomaterials 2019; 204:59-69. [PMID: 30884320 PMCID: PMC6825513 DOI: 10.1016/j.biomaterials.2019.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/17/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The use of biochemical signaling to derive smooth muscle cells (SMCs) from mesenchymal stem cells (MSCs) has been explored, but the induction of a fully functional SMC phenotype remains to be a major challenge. Cell morphology has been shown to regulate MSC differentiation into various lineages, including SMCs. We engineered substrates with microgrooves to induce cell elongation to study the mechanism underlying the MSC shape modulation in SMC differentiation. In comparison to those on flat substrates, MSCs cultured on engineered substrates were elongated with increased aspect ratios for both cell body and nucleus, as well as augmented cytoskeletal tensions. Biochemical studies indicated that the microgroove-elongated cells expressed significantly higher levels of SMC markers. MicroRNA analyses showed that up-regulation of miR-145 and the consequent repression of KLF4 in these elongated cells promoted MSC-to-SMC differentiation. Rho/ROCK inhibitions, which impair cytoskeletal tension, attenuated cell and nuclear elongations and disrupted the miR-145/KLF4 regulation for SMC differentiation. Furthermore, cell traction force measurements showed that miR-145 is essential for the functional contractility in the microgroove-induced SMC differentiation. Collectively, our findings demonstrate that, through a Rho-ROCK/miR-145/KLF4 pathway, the elongated cell shape serves as a decisive geometric cue to direct MSC differentiation into functional SMCs.
Collapse
Affiliation(s)
- Yi-Ting Yeh
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Josh Wei
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Satenick Thorossian
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Katherine Nguyen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Clarissa Hoffman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Juan C Del Álamo
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States; Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Yi-Shuan Julie Li
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States
| | - Kuei-Chun Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, United States; Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
30
|
Adipose tissue macrophage-derived exosomal miR-29a regulates obesity-associated insulin resistance. Biochem Biophys Res Commun 2019; 515:352-358. [PMID: 31153636 DOI: 10.1016/j.bbrc.2019.05.113] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/16/2019] [Indexed: 01/13/2023]
Abstract
Obesity-associated insulin resistance is a forerunner of type 2 diabetes. Macrophages reside within adipose tissue (ATMs) have been reported to regulate insulin sensitivity through secreting miRNAs containing exosomes. Here, we show that miR-29a is increased in obese ATMs derived exosomes (ATMs-Exos) and can be transferred into adipocytes, myocytes and hepatocytes causing insulin resistance in vitro and in vivo. Administration of obese ATMs-Exos impairs insulin sensitivity of lean mice. While knockdown miR-29a level in obese ATM-Exos blunts this effect. PPAR-δ is identified to function as downstream target of miR-29a in regulating insulin resistance. PPAR-δ agonist GW501516 partially rescued the insulin resistance induced by miR-29a. Taken together, these findings suggest that ATMs derived exosomal miR-29a could regulate obesity-associated insulin resistance, which may serve as a potential therapeutic target for obesity-associated type 2 diabetes.
Collapse
|
31
|
Sung J, Sodhi CP, Voltaggio L, Hou X, Jia H, Zhou Q, Čiháková D, Hackam DJ. The recruitment of extra-intestinal cells to the injured mucosa promotes healing in radiation enteritis and chemical colitis in a mouse parabiosis model. Mucosal Immunol 2019; 12:503-517. [PMID: 30617302 PMCID: PMC6445662 DOI: 10.1038/s41385-018-0123-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/05/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023]
Abstract
Mucosal healing occurs through migration and proliferation of cells within injured epithelium, yet these processes may be inadequate for mucosal healing after significant injury where the mucosa is denuded. We hypothesize that extra-intestinal cells can contribute to mucosal healing after injury to the small and large intestine. We generated parabiotic pairs between wild-type and tdTomato mice, which were then subjected to radiation-induced enteritis and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. We now show that as compared with singleton mice, mice with a parabiotic partner were protected against intestinal damage as revealed by significantly reduced weight loss, reduced expression of pro-inflammatory cytokines, reduced enterocyte apoptosis, and improved crypt proliferation. Donor cells expressed CD45-, Sca-1+, c-kit+, and CXCR4+ and accumulated around the injured crypts but did not transdifferentiate into epithelia, suggesting that extra-intestinal cells play a paracrine role in the healing response, while parabiotic pairings with Rag1-/- mice showed improved healing, indicating that adaptive immune cells were dispensable for mucosal healing. Strikingly, ablation of the bone marrow of the donor parabionts removed the protective effects. These findings reveal that the recruitment of extra-intestinal, bone marrow-derived cells into the injured intestinal mucosa can promote mucosal healing, suggesting novel therapeutic approaches for severe intestinal disease.
Collapse
Affiliation(s)
- J Sung
- Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - C P Sodhi
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - L Voltaggio
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - X Hou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - H Jia
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - Q Zhou
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA
| | - D Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D J Hackam
- Institute of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Division of Pediatric Surgery, Johns Hopkins Children's Center and Department of Surgery, Baltimore, MD, USA.
| |
Collapse
|
32
|
Angiomotin-p130 inhibits β-catenin stability by competing with Axin for binding to tankyrase in breast cancer. Cell Death Dis 2019; 10:179. [PMID: 30792381 PMCID: PMC6385204 DOI: 10.1038/s41419-019-1427-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 01/02/2023]
Abstract
Growing evidence indicates that Angiomotin (Amot)-p130 and Amot-p80 have different physiological functions. We hypothesized that Amot-p130 is a tumor suppressor gene in breast cancer, in contrast with the canonical oncogenicity of Amot-p80 or total Amot. To clarify the role of Amot-p130 in breast cancer, we performed real-time quantitative PCR, western blotting, flow cytometry, microarray, immunofluorescence, immunoprecipitation, and tumor sphere-formation assays in vitro, as well as tumorigenesis and limited-dilution analysis in vivo. In this study, we showed that Amot-p130 inhibited the proliferation, migration, and invasion of breast cancer cells. Interestingly, transcriptional profiles indicated that genes differentially expressed in response to Amot-p130 knockdown were mostly related to β-catenin signaling in MCF7 cells. More importantly, most of the downstream partners of β-catenin were associated with stemness. In a further validation, Amot-p130 inhibited the cancer stem cell potential of breast cancer cells both in vitro and in vivo. Mechanistically, Amot-p130 decreased β-catenin stability by competing with Axin for binding to tankyrase, leading to a further inhibition of the WNT pathway. In conclusions, Amot-p130 functions as a tumor suppressor gene in breast cancer, disrupting β-catenin stability by competing with Axin for binding to tankyrase. Amot-p130 was identified as a potential target for WNT pathway-targeted therapies in breast cancer.
Collapse
|
33
|
Flentje A, Kalsi R, Monahan TS. Small GTPases and Their Role in Vascular Disease. Int J Mol Sci 2019; 20:ijms20040917. [PMID: 30791562 PMCID: PMC6413073 DOI: 10.3390/ijms20040917] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
Over eighty million people in the United States have cardiovascular disease that can affect the heart causing myocardial infarction; the carotid arteries causing stroke; and the lower extremities leading to amputation. The treatment for end-stage cardiovascular disease is surgical—either endovascular therapy with balloons and stents—or open reconstruction to reestablish blood flow. All interventions damage or destroy the protective inner lining of the blood vessel—the endothelium. An intact endothelium is essential to provide a protective; antithrombotic lining of a blood vessel. Currently; there are no agents used in the clinical setting that promote reendothelialization. This process requires migration of endothelial cells to the denuded vessel; proliferation of endothelial cells on the denuded vessel surface; and the reconstitution of the tight adherence junctions responsible for the formation of an impermeable surface. These processes are all regulated in part and are dependent on small GTPases. As important as the small GTPases are for reendothelialization, dysregulation of these molecules can result in various vascular pathologies including aneurysm formation, atherosclerosis, diabetes, angiogenesis, and hypertension. A better understanding of the role of small GTPases in endothelial cell migration is essential to the development for novel agents to treat vascular disease.
Collapse
Affiliation(s)
- Alison Flentje
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| | - Richa Kalsi
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| | - Thomas S Monahan
- Division of Vascular Surgery, Department of Surgery, University of Maryland School of Medicine, 22 South Greene Street, Suite S10B00, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Wang L, Wang F, Zhao L, Yang W, Wan X, Yue C, Mo Z. Mesenchymal Stem Cells Coated by the Extracellular Matrix Promote Wound Healing in Diabetic Rats. Stem Cells Int 2019; 2019:9564869. [PMID: 30833970 PMCID: PMC6369500 DOI: 10.1155/2019/9564869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/20/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To investigate the effects of mesenchymal stem cells (MSCs) coated by the extracellular matrix (ECM) on wound healing in diabetic rats. METHODS Mesenchymal stem cells were cocultured with ECM. Cell viabilities were evaluated using MTT assay. The diabetes model was established using both STZ and high-glucose/fat methods in SD rats. A wound area was made on the middle of the rats' back. MSCs or ECM-MSCs were used to treat the rats. HE staining and CD31 immunohistochemistry were used to detect the skin thickness and angiogenesis. Western blotting and qRT-PCR were conducted to determine the level of VEGF-α, PDGF, and EGF. RESULTS It was observed that treatment of ECM had no significant effects on the cell viability of ECM-MSCs. Wound area assay showed that both MSCs and ECM-MSCs could enhance the wound healing of diabetic rats and ECM-MSCs could further promote the effects. Both MSCs and ECM-MSCs could enhance angiogenesis and epithelialization of the wounds, as well as the expression of VEGF-α, PDGF, and EGF in wound tissues, while ECM-MSC treatment showed more obvious effects. CONCLUSION Mesenchymal stem cells coated by the extracellular matrix could promote wound healing in diabetic rats. Our study may offer a novel therapeutic method for impaired diabetic wound healing.
Collapse
Affiliation(s)
- Linhao Wang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Fang Wang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Liling Zhao
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Wenjun Yang
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Xinxing Wan
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Chun Yue
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| | - Zhaohui Mo
- Department of Endocrinology and Metabolism, Third Xiangya Hospital of Central South University, China
| |
Collapse
|
35
|
Wang X, Tang P, Guo F, Zhang M, Yan Y, Huang M, Chen Y, Zhang L, Zhang L. mDia1 and Cdc42 Regulate Activin B-Induced Migration of Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells 2019; 37:150-162. [PMID: 30358011 PMCID: PMC7379979 DOI: 10.1002/stem.2924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022]
Abstract
In a previous study, we have shown that Activin B is a potent chemoattractant for bone marrow-derived mesenchymal stromal cells (BMSCs). As such, the combination of Activin B and BMSCs significantly accelerated rat skin wound healing. In another study, we showed that RhoA activation plays a key role in Activin B-induced BMSC migration. However, the role of the immediate downstream effectors of RhoA in this process is unclear. Here, we demonstrated that mammalian homolog of Drosophila diaphanous-1 (mDia1), a downstream effector of RhoA, exerts a crucial function in Activin B-induced BMSC migration by promoting membrane ruffling, microtubule morphology, and adhesion signaling dynamics. Furthermore, we showed that Activin B does not change Rac1 activity but increases Cdc42 activity in BMSCs. Inactivation of Cdc42 inhibited Activin B-stimulated Golgi reorientation and the cell migration of BMSCs. Furthermore, knockdown of mDia1 affected Activin B-induced BMSC-mediated wound healing in vivo. In conclusion, this study demonstrated that the RhoA-mDia1 and Cdc42 pathways regulate Activin B-induced BMSC migration. This study may help to optimize clinical MSC-based transplantation strategies to promote skin wound healing. Stem Cells 2019;37:150-162.
Collapse
Affiliation(s)
- Xueer Wang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Pei Tang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Fukun Guo
- Division of Experimental Hematology and Cancer BiologyChildren's Hospital Research FoundationCincinnatiOhioUSA
| | - Min Zhang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Yuan Yan
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Mianbo Huang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Yinghua Chen
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Lu Zhang
- Guangdong Provincial Key Laboratory of Proteomics, Key Laboratory of Mental Health of the Ministry of Education, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Tissue Construction and Detection, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouPeople's Republic of China
| |
Collapse
|
36
|
Zhu LP, Tian T, Wang JY, He JN, Chen T, Pan M, Xu L, Zhang HX, Qiu XT, Li CC, Wang KK, Shen H, Zhang GG, Bai YP. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Am J Cancer Res 2018; 8:6163-6177. [PMID: 30613290 PMCID: PMC6299684 DOI: 10.7150/thno.28021] [Citation(s) in RCA: 389] [Impact Index Per Article: 55.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/13/2022] Open
Abstract
Exosomes (Exo) secreted from hypoxia-conditioned bone marrow mesenchymal stem cells (BM-MSCs) were found to be protective for ischemic disease. However, the role of exosomal miRNA in the protective effect of hypoxia-conditioned BM-MSCs-derived Exo (Hypo-Exo) remains largely uncharacterized and the poor specificity of tissue targeting of Exo limits their clinical applications. Therefore, the objective of this study was to examine the effect of miRNA in Hypo-Exo on the repair of ischemic myocardium and its underlying mechanisms. We further developed modified Hypo-Exo with high specificity to the myocardium and evaluate its therapeutic effects. Methods: Murine BM-MSCs were subjected to hypoxia or normoxia culture and Exo were subsequently collected. Hypo-Exo or normoxia-conditioned BM-MSC-derived Exo (Nor-Exo) were administered to mice with permanent condition of myocardial infarction (MI). After 28 days, to evaluate the therapeutic effects of Hypo-Exo, infarction area and cardio output in Hypo-Exo and Nor-Exo treated MI mice were compared through Masson's trichrome staining and echocardiography respectively. We utilized the miRNA array to identify the significantly differentially expressed miRNAs between Nor-Exo and Hypo-Exo. One of the most enriched miRNA in Hypo-Exo was knockdown by applying antimiR in Hypoxia-conditioned BM-MSCs. Then we performed intramyocardial injection of candidate miRNA-knockdown-Hypo-Exo in a murine MI model, changes in the candidate miRNA's targets expression of cardiomyocytes and the cardiac function were characterized. We conjugated Hypo-Exo with an ischemic myocardium-targeted (IMT) peptide by bio-orthogonal chemistry, and tested its targeting specificity and therapeutic efficiency via systemic administration in the MI mice. Results: The miRNA array revealed significant enrichment of miR-125b-5p in Hypo-Exo compared with Nor-Exo. Administration of miR-125b knockdown Hypo-Exo significantly increased the infarction area and suppressed cardiomyocyte survival post-MI. Mechanistically, miR-125b knockdown Hypo-Exo lost the capability to suppress the expression of the proapoptotic genes p53 and BAK1 in cardiomyocytes. Intravenous administration of IMT-conjugated Hypo-Exo (IMT-Exo) showed specific targeting to the ischemic lesions in the injured heart and exerted a marked cardioprotective function post-MI. Conclusion: Our results illustrate a new mechanism by which Hypo-Exo-derived miR125b-5p facilitates ischemic cardiac repair by ameliorating cardiomyocyte apoptosis. Furthermore, our IMT- Exo may serve as a novel drug carrier that enhances the specificity of drug delivery for ischemic disease.
Collapse
|
37
|
Li CJ, Xiao Y, Yang M, Su T, Sun X, Guo Q, Huang Y, Luo XH. Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 2018; 128:5251-5266. [PMID: 30352426 DOI: 10.1172/jci99044] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 09/11/2018] [Indexed: 12/22/2022] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-related lineage switch between osteogenic and adipogenic fates, which contributes to bone loss and adiposity. Here we identified a long noncoding RNA, Bmncr, which regulated the fate of BMSCs during aging. Mice depleted of Bmncr (Bmncr-KO) showed decreased bone mass and increased bone marrow adiposity, whereas transgenic overexpression of Bmncr (Bmncr-Tg) alleviated bone loss and bone marrow fat accumulation. Bmncr regulated the osteogenic niche of BMSCs by maintaining extracellular matrix protein fibromodulin (FMOD) and activation of the BMP2 pathway. Bmncr affected local 3D chromatin structure and transcription of Fmod. The absence of Fmod modified the bone phenotype of Bmncr-Tg mice. Further analysis revealed that Bmncr would serve as a scaffold to facilitate the interaction of TAZ and ABL, and thus facilitate the assembly of the TAZ and RUNX2/PPARG transcriptional complex, promoting osteogenesis and inhibiting adipogenesis. Adeno-associated viral-mediated overexpression of Taz in osteoprogenitors alleviated bone loss and marrow fat accumulation in Bmncr-KO mice. Furthermore, restoring BMNCR levels in human BMSCs reversed the age-related switch between osteoblast and adipocyte differentiation. Our findings indicate that Bmncr is a key regulator of the age-related osteogenic niche alteration and cell fate switch of BMSCs.
Collapse
Affiliation(s)
- Chang-Jun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan, China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan, China.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tian Su
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi Sun
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, Hunan, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Hunan, China
| |
Collapse
|
38
|
Qiu K, Zhang X, Wang L, Jiao N, Xu D, Yin J. Protein Expression Landscape Defines the Differentiation Potential Specificity of Adipogenic and Myogenic Precursors in the Skeletal Muscle. J Proteome Res 2018; 17:3853-3865. [DOI: 10.1021/acs.jproteome.8b00530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kai Qiu
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Liqi Wang
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Ning Jiao
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Doudou Xu
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| | - Jingdong Yin
- State Key Lab of Animal Nutrition & Ministry of Agriculture Feed Industry Centre, College of Animal Science & Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
39
|
Ma T, Dong LJ, Du XL, Niu R, Hu BJ. Research progress on the role of connective tissue growth factor in fibrosis of diabetic retinopathy. Int J Ophthalmol 2018; 11:1550-1554. [PMID: 30225233 DOI: 10.18240/ijo.2018.09.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Abstract
Diabetic retinopathy (DR) is one of the most important types of diabetic microangiopathy, which is a specific change of fundus lesions and is one of the most serious complications of diabetes. When DR develops to proliferative DR, the main factors of decreasing vision, and even blindness, include retinal detachment and vitreous hemorrhage caused by contraction of blood vessels by fiber membrane. Recent studies reported that the formation of fiber vascular membrane is closely related to retinal fibrosis. The connective tissue growth factor (CTGF) is a cytokine that is closely related to DR fibrosis. However, its mechanism is poorly understood. This paper summarizes the recent studies about CTGF on DR fibrosis for a comprehensive understanding of the role and mechanism of CTGF in PDR.
Collapse
Affiliation(s)
- Teng Ma
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Ophthalmology College of Tianjin Medical University, Tianjin 300384, China
| | - Li-Jie Dong
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Ophthalmology College of Tianjin Medical University, Tianjin 300384, China
| | - Xue-Li Du
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Ophthalmology College of Tianjin Medical University, Tianjin 300384, China
| | - Rui Niu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Ophthalmology College of Tianjin Medical University, Tianjin 300384, China
| | - Bo-Jie Hu
- Tianjin Medical University Eye Hospital, Tianjin Medical University Eye Institute, Ophthalmology College of Tianjin Medical University, Tianjin 300384, China
| |
Collapse
|
40
|
Ke X, Do DC, Li C, Zhao Y, Kollarik M, Fu Q, Wan M, Gao P. Ras homolog family member A/Rho-associated protein kinase 1 signaling modulates lineage commitment of mesenchymal stem cells in asthmatic patients through lymphoid enhancer-binding factor 1. J Allergy Clin Immunol 2018; 143:1560-1574.e6. [PMID: 30194990 DOI: 10.1016/j.jaci.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/31/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Numbers of mesenchymal stem cells (MSCs) are increased in the airways after allergen challenge. Ras homolog family member A (RhoA)/Rho-associated protein kinase 1 (ROCK) signaling is critical in determining the lineage fate of MSCs in tissue repair/remodeling. OBJECTIVES We sought to investigate the role of RhoA/ROCK signaling in lineage commitment of MSCs during allergen-induced airway remodeling and delineate the underlying mechanisms. METHODS Active RhoA expression in lung tissues of asthmatic patients and its role in cockroach allergen-induced airway inflammation and remodeling were investigated. RhoA/ROCK signaling-mediated MSC lineage commitment was assessed in an asthma mouse model by using MSC lineage tracing mice (nestin-Cre; ROSA26-EYFP). The role of RhoA/ROCK in MSC lineage commitment was also examined by using MSCs expressing constitutively active RhoA (RhoA-L63) or dominant negative RhoA (RhoA-N19). Downstream RhoA-regulated genes were identified by using the Stem Cell Signaling Array. RESULTS Lung tissues from asthmatic mice showed increased expression of active RhoA when compared with those from control mice. Inhibition of RhoA/ROCK signaling with fasudil, a RhoA/ROCK inhibitor, reversed established cockroach allergen-induced airway inflammation and remodeling, as assessed based on greater collagen deposition/fibrosis. Furthermore, fasudil inhibited MSC differentiation into fibroblasts/myofibroblasts but promoted MSC differentiation into epithelial cells in asthmatic nestin-Cre; ROSA26-EYFP mice. Consistently, expression of RhoA-L63 facilitated differentiation of MSCs into fibroblasts/myofibroblasts, whereas expression of RhoA-19 switched the differentiation toward epithelial cells. The gene array identified the Wnt signaling effector lymphoid enhancer-binding factor 1 (Lef1) as the most upregulated gene in RhoA-L63-transfected MSCs. Knockdown of Lef1 induced MSC differentiation away from fibroblasts/myofibroblasts but toward epithelial cells. CONCLUSIONS These findings uncover a previously unrecognized role of RhoA/ROCK signaling in MSC-involved airway repair/remodeling in the setting of asthma.
Collapse
Affiliation(s)
- Xia Ke
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Otorhinolaryngology, First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Danh C Do
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Changjun Li
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Yilin Zhao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Department of Respiratory Medicine, Fourth Military Medical University, Xi'an, China
| | - Marian Kollarik
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Qingling Fu
- Otorhinolaryngology Hospital, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mei Wan
- Department of Orthopedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Peisong Gao
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
41
|
Zhang S, Wan H, Wang P, Liu M, Li G, Zhang C, Sun Y. Extracellular matrix protein DMP1 suppresses osteogenic differentiation of Mesenchymal Stem Cells. Biochem Biophys Res Commun 2018; 501:968-973. [PMID: 29775615 DOI: 10.1016/j.bbrc.2018.05.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 05/14/2018] [Indexed: 01/11/2023]
Abstract
Mesenchymal Stem Cells (MSCs) are self-renewing and multipotent stem cells which was investigated for diverse clinical applications. However, complex mechanism of MSCs fate determination is still not fully disclosed. Extracellular matrix (ECM) proteins contribute to maintain MSCs stemness by providing extracellular microenvironment. Increasing evidences show that ECM proteins could also regulate the fate of MSCs directly. Dentin matrix protein 1 (DMP1) is an ECM protein enrich in bone tissue and terminal cells, which well-known in promoting osteoblasts and osteocytes maturation, and facilitate mineralization. Recently, our experiment indicated that DMP1 was also expressed in MSCs of long bone. In present study, it is found that DMP1 expressed in Prx1 positive MSCs. And, DMP1 is down-regulated in early osteoblasts and up-regulated again in mature osteoblasts. DMP1 conditional knockout mice model under Prx1cre was generated to explore whether DMP1 regulates MSCs osteogenic differentiation. Specific ablation of DMP1 in Prx1 positive MSCs increased bone mass in vivo and promoted osteoblasts activity in vitro. This study provides a new understanding of DMP1's function in regulation of osteogenesis: not only an enhancer of bone formation, but also a negative regulator of MSCs differentiation in bone.
Collapse
Affiliation(s)
- Shufan Zhang
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Huixuan Wan
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Peng Wang
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Mengmeng Liu
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Gongchen Li
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Chunxue Zhang
- Tongji University School of Medicine, Stem Cell Translational Research Center, Tongji Hospital, Shanghai, 200065, China
| | - Yao Sun
- Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
42
|
Dong HJ, Zhao ML, Li XH, Chen YS, Wang J, Chen MB, Wu S, Wang JJ, Liang HQ, Sun HT, Tu Y, Zhang S, Xiong J, Chen C. Hypothermia-Modulating Matrix Elasticity of Injured Brain Promoted Neural Lineage Specification of Mesenchymal Stem Cells. Neuroscience 2018; 377:1-11. [DOI: 10.1016/j.neuroscience.2018.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/15/2022]
|
43
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018. [PMID: 29701666 DOI: 10.3390/ijms19051294.pmid:29701666;pmcid:pmc5983604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
44
|
Caja L, Dituri F, Mancarella S, Caballero-Diaz D, Moustakas A, Giannelli G, Fabregat I. TGF-β and the Tissue Microenvironment: Relevance in Fibrosis and Cancer. Int J Mol Sci 2018; 19:ijms19051294. [PMID: 29701666 PMCID: PMC5983604 DOI: 10.3390/ijms19051294] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/17/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a cytokine essential for the induction of the fibrotic response and for the activation of the cancer stroma. Strong evidence suggests that a strong cross-talk exists among TGF-β and the tissue extracellular matrix components. TGF-β is stored in the matrix as part of a large latent complex bound to the latent TGF-β binding protein (LTBP) and matrix binding of latent TGF-β complexes, which is required for an adequate TGF-β function. Once TGF-β is activated, it regulates extracellular matrix remodelling and promotes a fibroblast to myofibroblast transition, which is essential in fibrotic processes. This cytokine also acts on other cell types present in the fibrotic and tumour microenvironment, such as epithelial, endothelial cells or macrophages and it contributes to the cancer-associated fibroblast (CAF) phenotype. Furthermore, TGF-β exerts anti-tumour activity by inhibiting the host tumour immunosurveillance. Aim of this review is to update how TGF-β and the tissue microenvironment cooperate to promote the pleiotropic actions that regulate cell responses of different cell types, essential for the development of fibrosis and tumour progression. We discuss recent evidences suggesting the use of TGF-β chemical inhibitors as a new line of defence against fibrotic disorders or cancer.
Collapse
Affiliation(s)
- Laia Caja
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Francesco Dituri
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Serena Mancarella
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Daniel Caballero-Diaz
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Aristidis Moustakas
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Box 582, 75123 Uppsala, Sweden.
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, Castellana Grotte, 70013 Bari, Italy.
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran Via de l'Hospitalet, 199, 08908 Barcelona, Spain.
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain.
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet, 08907 Barcelona, Spain.
| |
Collapse
|
45
|
Khaki M, Salmanian AH, Abtahi H, Ganji A, Mosayebi G. Mesenchymal Stem Cells Differentiate to Endothelial Cells Using Recombinant Vascular Endothelial Growth Factor -A. Rep Biochem Mol Biol 2018; 6:144-150. [PMID: 29761109 PMCID: PMC5940356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 04/23/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Vascular endothelial growth factor-A (VEGF-A), an endothelial cell-specific mitogen produced by various cell types, plays important roles in cell differentiation and proliferation. In this study we investigated the effect of recombinant VEGF-A on differentiation of mesenchymal stem cells (MSCs) to endothelial cells (ECs). METHODS VEGF-A was expressed in E. coli BL21 (DE3) and BL21 pLysS competent cells with the pET32a expression vector. Recombinant VEGF-A protein expression was verified by SDS-PAGE and western blotting. Mesenchymal stem cell differentiation to ECs in the presence of VEGF-A was evaluated by flow cytometry and fluorescence microscopy. RESULTS Recombinant VEGF-A was produced in E. coli BL21 (DE3) cells at 0.8 mg/mL concentration. Expression of CD31 and CD 144 was significantly greater, while expression of CD90, CD73, and CD44 was significantly less, in MSCs treated with our recombinant VEGF-A than in those treated with the commercial protein (p < 0.05). CONCLUSION Recombinant VEGF-A expressed in a prokaryotic system can induce MSCs differentiation to ECs and can be used in research and likely therapeutic applications.
Collapse
Affiliation(s)
- Mohsen Khaki
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | | | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Ghasem Mosayebi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
46
|
Guo L, Cai T, Chen K, Wang R, Wang J, Cui C, Yuan J, Zhang K, Liu Z, Deng Y, Xiao G, Wu C. Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ. J Cell Biol 2018; 217:1431-1451. [PMID: 29496737 PMCID: PMC5881491 DOI: 10.1083/jcb.201612177] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cell (MSC) fate decision is strongly influenced by cell microenvironment. Guo et al. identify kindlin-2 as a key determinant of MSC lineage commitment and delineate a novel signaling pathway consisting of kindlin-2, RhoA, MLCK, AIP4, and YAP1/TAZ that senses mechanical cues of the cell microenvironment and controls MSC differentiation. Precise control of mesenchymal stem cell (MSC) differentiation is critical for tissue development and regeneration. We show here that kindlin-2 is a key determinant of MSC fate decision. Depletion of kindlin-2 in MSCs is sufficient to induce adipogenesis and inhibit osteogenesis in vitro and in vivo. Mechanistically, kindlin-2 regulates MSC differentiation through controlling YAP1/TAZ at both the transcript and protein levels. Kindlin-2 physically associates with myosin light-chain kinase in response to mechanical cues of cell microenvironment and intracellular signaling events and promotes myosin light-chain phosphorylation. Loss of kindlin-2 inhibits RhoA activation and reduces myosin light-chain phosphorylation, stress fiber formation, and focal adhesion assembly, resulting in increased Ser127 phosphorylation, nuclear exclusion, and ubiquitin ligase atrophin-1 interacting protein 4–mediated degradation of YAP1/TAZ. Our findings reveal a novel kindlin-2 signaling axis that senses the mechanical cues of cell microenvironment and controls MSC fate decision, and they suggest a new strategy to regulate MSC differentiation, tissue repair, and regeneration.
Collapse
Affiliation(s)
- Ling Guo
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Ting Cai
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Keng Chen
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Rong Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jiaxin Wang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Chunhong Cui
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Jifan Yuan
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Kuo Zhang
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhongzhen Liu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Yi Deng
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Guozhi Xiao
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China.,Department of Biochemistry, Rush University Medical Center, Chicago, IL
| | - Chuanyue Wu
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen Key Laboratory of Cell Microenvironment, and Department of Biology, Southern University of Science and Technology, Shenzhen, China .,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
47
|
Nomura-Kitabayashi A, Kovacic JC. Mouse Model of Wire Injury-Induced Vascular Remodeling. Methods Mol Biol 2018; 1816:253-268. [PMID: 29987826 DOI: 10.1007/978-1-4939-8597-5_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We introduced the vascular remodeling mouse system induced by the wire injury to investigate the molecular and cellular mechanisms of cardiovascular diseases. Using these models, we focus on the adventitial cell population in the outermost layer of the adult vasculature as a vascular progenitor niche. Firstly we used the standard wire injury approach, leaving the wire for 1 min in the artery and retracting the wire by twisting out to expand the artery and denude the inner layer endothelial cells in the both peripheral artery and femoral artery. This method leads to adventitial lineage cell accumulation on the medial-adventitial border, but no contribution into the hyperplastic neointima. Since advanced atherosclerotic plaques in the mouse models and human clinical specimens show the elastic lamina in the media broken, we hypothesized that adventitial lineage cells contribute to acute neointima formation induced by the mechanical damage in both endothelial and medial layers. To make this intensive damage, next, we used the bigger diameter wire with no hydrophilic coating and repeated the ten-times insertion and retraction of the wire after leaving for 1 min in the femoral artery. The additional ten-times intensive movements of the wire lead to breakdown and rupture of the elastic lamina together with a contribution of adventitial lineage cells to the hyperplastic neointima. Here we describe these two different wire injury methods to induce different types of vascular remodeling at the point of adventitial lineage cell contribution to the hyperplastic neointima by targeting two separate locations of hind limb artery, the peripheral artery and femoral artery, and using two different diameter wires.
Collapse
Affiliation(s)
- Aya Nomura-Kitabayashi
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jason C Kovacic
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
48
|
Le Bras A, Yu B, Issa Bhaloo S, Hong X, Zhang Z, Hu Y, Xu Q. Adventitial Sca1+ Cells Transduced With ETV2 Are Committed to the Endothelial Fate and Improve Vascular Remodeling After Injury. Arterioscler Thromb Vasc Biol 2017; 38:232-244. [PMID: 29191922 PMCID: PMC5757665 DOI: 10.1161/atvbaha.117.309853] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 11/15/2017] [Indexed: 01/06/2023]
Abstract
Supplemental Digital Content is available in the text. Objective— Vascular adventitial Sca1+ (stem cell antigen-1) progenitor cells preferentially differentiate into smooth muscle cells, which contribute to vascular remodeling and neointima formation in vessel grafts. Therefore, directing the differentiation of Sca1+ cells toward the endothelial lineage could represent a new therapeutic strategy against vascular disease. Approach and Results— We thus developed a fast, reproducible protocol based on the single-gene transfer of ETV2 (ETS variant 2) to differentiate Sca1+ cells toward the endothelial fate and studied the effect of cell conversion on vascular hyperplasia in a model of endothelial injury. After ETV2 transduction, Sca1+ adventitial cells presented a significant increase in the expression of early endothelial cell genes, including VE-cadherin, Flk-1, and Tie2 at the mRNA and protein levels. ETV2 overexpression also induced the downregulation of a panel of smooth muscle cell and mesenchymal genes through epigenetic regulations, by decreasing the expression of DNA-modifying enzymes ten-eleven translocation dioxygenases. Adventitial Sca1+ cells grafted on the adventitial side of wire-injured femoral arteries increased vascular wall hyperplasia compared with control arteries with no grafted cells. Arteries seeded with ETV2-transduced cells, on the contrary, showed reduced hyperplasia compared with control. Conclusions— These data give evidence that the genetic manipulation of vascular progenitors is a promising approach to improve vascular function after endothelial injury.
Collapse
Affiliation(s)
- Alexandra Le Bras
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Baoqi Yu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Shirin Issa Bhaloo
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Xuechong Hong
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Zhongyi Zhang
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Yanhua Hu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom
| | - Qingbo Xu
- From the School of Cardiovascular Medicine & Sciences, King's College London British Heart Foundation Centre, London, United Kingdom.
| |
Collapse
|
49
|
Llontop P, Lopez-Fernandez D, Clavo B, Afonso Martín JL, Fiuza-Pérez MD, García Arranz M, Calatayud J, Molins López-Rodó L, Alshehri K, Ayub A, Raad W, Bhora F, Santana-Rodríguez N. Airway transplantation of adipose stem cells protects against bleomycin-induced pulmonary fibrosis. J Investig Med 2017; 66:739-746. [PMID: 29167193 DOI: 10.1136/jim-2017-000494] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2017] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with poor prognosis. Adipose-derived stem cells (ADSC) have demonstrated regenerative properties in several tissues. The hypothesis of this study was that airway transplantation of ADSC could protect against bleomycin (BLM)-induced pulmonary fibrosis (PF). Fifty-eight lungs from 29 male Sprague-Dawley rats were analyzed. Animals were randomly divided into five groups: a) control (n=3); b) sham (n=6); c) BLM (n=6); d) BLM+ADSC-2d (n=6); and e) BLM+ADSC-14d (n=8). Animals received 500 µL saline (sham), 2.5 UI/kg BLM in 500 µL saline (BLM), and 2×106 ADSC in 100 µL saline intratracheally at 2 (BLM+ADSC-2d) and 14 days (BLM+ADSC-14d) after BLM. Animals were sacrificed at 28 days. Blinded Ashcroft score was used to determine pulmonary fibrosis extent on histology. Hsp27, Vegf, Nfkβ, IL-1, IL-6, Col4, and Tgfβ1 mRNA gene expression were determined using real-time quantitative-PCR. Ashcroft index was: control=0; sham=0.37±0.07; BLM=6.55±0.34 vs sham (P=0.006). BLM vs BLM+ADSC-2d=4.63±0.38 (P=0.005) and BLM+ADSC-14d=3.77±0.46 (P=0.005). BLM vs sham significantly increased Hsp27 (P=0.018), Nfkβ (P=0.009), Col4 (P=0.004), Tgfβ1 (P=0.006) and decreased IL-1 (P=0.006). BLM+ADSC-2d vs BLM significantly decreased Hsp27 (P=0.009) and increased Vegf (P=0.006), Nfkβ (P=0.009). BLM+ADSC-14d vs BLM significantly decreased Hsp27 (P=0.028), IL-6 (P=0.013), Col4 (P=0.002), and increased Nfkβ (P=0.040) and Tgfβ1 (P=0.002). Airway transplantation of ADSC significantly decreased the fibrosis rate in both early and established pulmonary fibrosis, modulating the expression of Hsp27, Vegfa, Nfkβ, IL-6, Col4, and Tgfβ1. From a translational perspective, this technique could become a new adjuvant treatment for patients with IPF.
Collapse
Affiliation(s)
- Pedro Llontop
- Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain.,Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Group, Universidadde Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Experimental Surgery Group, Research Unit, Hospital Dr Negrín, Las Palmas de Gran Canaria, Spain.,Experimental Surgery and Medicine Unit, Hospital General Gregorio Marañon. Instituto de Investigación Sanitaria Gregorio Marañon, Madrid, Spain
| | - Daniel Lopez-Fernandez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Group, Universidadde Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Experimental Surgery Group, Research Unit, Hospital Dr Negrín, Las Palmas de Gran Canaria, Spain
| | - Bernardino Clavo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Group, Universidadde Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Experimental Surgery Group, Research Unit, Hospital Dr Negrín, Las Palmas de Gran Canaria, Spain
| | - Juan Luis Afonso Martín
- Pathology Service, Complejo Hospitalario Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - María D Fiuza-Pérez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Group, Universidadde Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Experimental Surgery Group, Research Unit, Hospital Dr Negrín, Las Palmas de Gran Canaria, Spain
| | - Mariano García Arranz
- Department of Surgery, Laboratorio de Nuevas Tecnologías, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joaquín Calatayud
- Department of Thoracic Surgery, Hospital Clínico San Carlos, Madrid, Spain
| | | | - Khalid Alshehri
- Department of Thoracic Surgery, Mount Sinai Health System, New York, USA
| | - Adil Ayub
- Department of Thoracic Surgery, Mount Sinai Health System, New York, USA
| | - Wissam Raad
- Department of Thoracic Surgery, Mount Sinai Health System, New York, USA
| | - Faiz Bhora
- Department of Thoracic Surgery, Mount Sinai Health System, New York, USA
| | - Norberto Santana-Rodríguez
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS)-BioPharm Group, Universidadde Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.,Department of Thoracic Surgery, Mount Sinai Health System, New York, USA.,Section of Thoracic Surgery, Department of Surgery, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Li C, Chai Y, Wang L, Gao B, Chen H, Gao P, Zhou FQ, Luo X, Crane JL, Yu B, Cao X, Wan M. Programmed cell senescence in skeleton during late puberty. Nat Commun 2017; 8:1312. [PMID: 29101351 PMCID: PMC5670205 DOI: 10.1038/s41467-017-01509-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/22/2017] [Indexed: 11/28/2022] Open
Abstract
Mesenchymal stem/progenitor cells (MSPCs) undergo rapid self-renewal and differentiation, contributing to fast skeletal growth during childhood and puberty. It remains unclear whether these cells change their properties during late puberty to young adulthood, when bone growth and accrual decelerate. Here we show that MSPCs in primary spongiosa of long bone in mice at late puberty undergo normal programmed senescence, characterized by loss of nestin expression. MSPC senescence is epigenetically controlled by the polycomb histone methyltransferase enhancer of zeste homolog 2 (Ezh2) and its trimethylation of histone H3 on Lysine 27 (H3K27me3) mark. Ezh2 maintains the repression of key cell senescence inducer genes through H3K27me3, and deletion of Ezh2 in early pubertal mice results in premature cellular senescence, depleted MSPCs pool, and impaired osteogenesis as well as osteoporosis in later life. Our data reveals a programmed cell fate change in postnatal skeleton and unravels a regulatory mechanism underlying this phenomenon. Mesenchymal stem cells are essential for bone development, but it is unclear if their activity is maintained after late puberty, when bone growth decelerates. The authors show that during late puberty in mice, these cells undergo senescence under the epigenetic control of Ezh2.
Collapse
Affiliation(s)
- Changjun Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Yu Chai
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Lei Wang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Bo Gao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hao Chen
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Peisong Gao
- Johns Hopkins Asthma & Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Feng-Quan Zhou
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Janet L Crane
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Bin Yu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Xu Cao
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mei Wan
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|