1
|
Kim DH, Go HS, Jeon EJ, Nguyen TQT, Kim DY, Park H, Eom HJ, Kim SY, Park SC, Cho KA. The Impact of Toll-Like Receptor 5 on Liver Function in Age-Related Metabolic Disorders. Aging Cell 2025:e70009. [PMID: 39957532 DOI: 10.1111/acel.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/09/2024] [Accepted: 01/10/2025] [Indexed: 02/18/2025] Open
Abstract
Toll-like receptor 5 (TLR5) plays a critical role beyond its traditional function in innate immunity, significantly impacting metabolic regulation and liver health. Previously, we reported that TLR5 activation extends the healthspan and lifespan of aging mice. This study demonstrates that TLR5 deficiency leads to pronounced metabolic abnormalities with age, primarily affecting liver metabolic functions rather than intestinal inflammation. Comprehensive RNA sequencing analysis revealed that TLR5 deficiency induces gene expression changes in liver tissue similar to those caused by the methionine-choline deficient (MCD) diet, particularly affecting lipid metabolism and circadian rhythm-related genes. TLR5 knockout (TLR5 KO) mice displayed an increased propensity for liver fibrosis and lipid accumulation under the MCD diet, exacerbating liver pathology. Both hepatocytes and hepatic stellate cells in TLR5 KO mice were functionally impacted, leading to metabolic dysfunction and fibrosis. These findings suggest that TLR5 could be a significant target for addressing metabolic diseases that arise and worsen with aging. Furthermore, understanding the mechanisms by which TLR5 activation extends healthspan could provide valuable insights into therapeutic strategies for enhancing longevity and managing age-related metabolic disorders.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Hye Sun Go
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Eun Jae Jeon
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Thi Quynh Trang Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| | - Da Yeon Kim
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Hansung Park
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| | - Hyo-Ji Eom
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul, South Korea
| | - Sang Chul Park
- Future Life and Society Research Center, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| | - Kyung A Cho
- MediSpan, Inc, Bundang-gu, Gyeonggi-do, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Hwasun-gun, Jeonnam-do, Republic of Korea
| |
Collapse
|
2
|
Li Y, Zhu J, Zhai F, Kong L, Li H, Jin X. Advances in the understanding of nuclear pore complexes in human diseases. J Cancer Res Clin Oncol 2024; 150:374. [PMID: 39080077 PMCID: PMC11289042 DOI: 10.1007/s00432-024-05881-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND Nuclear pore complexes (NPCs) are sophisticated and dynamic protein structures that straddle the nuclear envelope and act as gatekeepers for transporting molecules between the nucleus and the cytoplasm. NPCs comprise up to 30 different proteins known as nucleoporins (NUPs). However, a growing body of research has suggested that NPCs play important roles in gene regulation, viral infections, cancer, mitosis, genetic diseases, kidney diseases, immune system diseases, and degenerative neurological and muscular pathologies. PURPOSE In this review, we introduce the structure and function of NPCs. Then We described the physiological and pathological effects of each component of NPCs which provide a direction for future clinical applications. METHODS The literatures from PubMed have been reviewed for this article. CONCLUSION This review summarizes current studies on the implications of NPCs in human physiology and pathology, highlighting the mechanistic underpinnings of NPC-associated diseases.
Collapse
Affiliation(s)
- Yuxuan Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Jie Zhu
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Lili Kong
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China
| | - Hong Li
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| | - Xiaofeng Jin
- The Affiliated Lihuili Hospital of Ningbo University, Ningbo, 315040, Zhejiang, China.
- Department of Biochemistry and Molecular Biology, and Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Nngbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
3
|
Wei S, Wang R, Chen L, Jing M, Li H, Zheng R, Zhu Y, Zhao Y. The contribution of small heterodimer partner to the occurrence and progression of cholestatic liver injury. J Gastroenterol Hepatol 2024; 39:1134-1144. [PMID: 38615196 DOI: 10.1111/jgh.16544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND AND AIM Small heterodimer partner (SHP, encoded by NR0B2) plays an important role in maintaining bile acid homeostasis. The loss of the hepatic farnesoid X receptor (FXR)/SHP signal can cause severe cholestatic liver injury (CLI). FXR and SHP have overlapping and nonoverlapping functions in bile acid homeostasis. However, the key role played by SHP in CLI is unclear. METHODS In this study, an alpha-naphthylisothiocyanate (ANIT)-induced cholestasis mouse model was established. The effect of SHP knockout (SHP-KO) on liver and ileal pathology was evaluated. 16S rRNA gene sequencing analysis combined with untargeted metabolomics was applied to reveal the involvement of SHP in the pathogenesis of CLI. RESULTS The results showed that ANIT (75 mg/kg) induced cholestasis in WT mice. No significant morphological changes were found in the liver and ileal tissue of SHP-KO mice. However, the serum metabolism and intestinal flora characteristics were significantly changed. Moreover, compared with the WT + ANIT group, the serum levels of ALT and AST in the SHP-KO + ANIT group were significantly increased, and punctate necrosis in the liver tissue was more obvious. The ileum villi showed obvious shedding, thinning, and shortening. In addition, SHP-KO-associated differential intestinal flora and differential biomarkers were significantly associated. CONCLUSION In this study, we elucidated the serum metabolic characteristics and intestinal flora changes related to the aggravation of CLI in SHP-KO mice induced by ANIT.
Collapse
Affiliation(s)
- Shizhang Wei
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Division of Integrative Medicine, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Lisheng Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yun Zhu
- Senior Department of Hepatology, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Patil H, Yi H, Cho KI, Ferreira PA. Proteostatic Remodeling of Small Heat Shock Chaperones─Crystallins by Ran-Binding Protein 2─and the Peptidyl-Prolyl cis-trans Isomerase and Chaperone Activities of Its Cyclophilin Domain. ACS Chem Neurosci 2024; 15:1967-1989. [PMID: 38657106 DOI: 10.1021/acschemneuro.3c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Disturbances in protein phase transitions promote protein aggregation─a neurodegeneration hallmark. The modular Ran-binding protein 2 (Ranbp2) is a cytosolic molecular hub for rate-limiting steps of phase transitions of Ran-GTP-bound protein ensembles exiting nuclear pores. Chaperones also regulate phase transitions and proteostasis by suppressing protein aggregation. Ranbp2 haploinsufficiency promotes the age-dependent neuroprotection of the chorioretina against phototoxicity by proteostatic regulations of neuroprotective substrates of Ranbp2 and by suppressing the buildup of polyubiquitylated substrates. Losses of peptidyl-prolyl cis-trans isomerase (PPIase) and chaperone activities of the cyclophilin domain (CY) of Ranbp2 recapitulate molecular effects of Ranbp2 haploinsufficiency. These CY impairments also stimulate deubiquitylation activities and phase transitions of 19S cap subunits of the 26S proteasome that associates with Ranbp2. However, links between CY moonlighting activity, substrate ubiquitylation, and proteostasis remain incomplete. Here, we reveal the Ranbp2 regulation of small heat shock chaperones─crystallins in the chorioretina by proteomics of mice with total or selective modular deficits of Ranbp2. Specifically, loss of CY PPIase of Ranbp2 upregulates αA-Crystallin, which is repressed in adult nonlenticular tissues. Conversely, impairment of CY's chaperone activity opposite to the PPIase pocket downregulates a subset of αA-Crystallin's substrates, γ-crystallins. These CY-dependent effects cause age-dependent and chorioretinal-selective declines of ubiquitylated substrates without affecting the chorioretinal morphology. A model emerges whereby inhibition of Ranbp2's CY PPIase remodels crystallins' expressions, subdues molecular aging, and preordains the chorioretina to neuroprotection by augmenting the chaperone capacity and the degradation of polyubiquitylated substrates against proteostatic impairments. Further, the druggable Ranbp2 CY holds pan-therapeutic potential against proteotoxicity and neurodegeneration.
Collapse
Affiliation(s)
- Hemangi Patil
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Haiqing Yi
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kyoung-In Cho
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Paulo A Ferreira
- Department of Ophthalmology Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Pathology Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
5
|
Chen J, Wang R, Xiong F, Sun H, Kemper B, Li W, Kemper J. Hammerhead-type FXR agonists induce an enhancer RNA Fincor that ameliorates nonalcoholic steatohepatitis in mice. eLife 2024; 13:RP91438. [PMID: 38619504 PMCID: PMC11018349 DOI: 10.7554/elife.91438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
The nuclear receptor, farnesoid X receptor (FXR/NR1H4), is increasingly recognized as a promising drug target for metabolic diseases, including nonalcoholic steatohepatitis (NASH). Protein-coding genes regulated by FXR are well known, but whether FXR also acts through regulation of long non-coding RNAs (lncRNAs), which vastly outnumber protein-coding genes, remains unknown. Utilizing RNA-seq and global run-on sequencing (GRO-seq) analyses in mouse liver, we found that FXR activation affects the expression of many RNA transcripts from chromatin regions bearing enhancer features. Among these we discovered a previously unannotated liver-enriched enhancer-derived lncRNA (eRNA), termed FXR-induced non-coding RNA (Fincor). We show that Fincor is specifically induced by the hammerhead-type FXR agonists, including GW4064 and tropifexor. CRISPR/Cas9-mediated liver-specific knockdown of Fincor in dietary NASH mice reduced the beneficial effects of tropifexor, an FXR agonist currently in clinical trials for NASH and primary biliary cholangitis (PBC), indicating that amelioration of liver fibrosis and inflammation in NASH treatment by tropifexor is mediated in part by Fincor. Overall, our findings highlight that pharmacological activation of FXR by hammerhead-type agonists induces a novel eRNA, Fincor, contributing to the amelioration of NASH in mice. Fincor may represent a new drug target for addressing metabolic disorders, including NASH.
Collapse
Affiliation(s)
- Jinjing Chen
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ruoyu Wang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Feng Xiong
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Hao Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science CenterHoustonUnited States
| | - Jongsook Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-ChampaignUrbanaUnited States
| |
Collapse
|
6
|
Liu F, Ma Y, Sun H, Cai H, Liang X, Xu C, Du L, Wang Y, Liu Q. SUMO1 Modification Stabilizes TET3 Protein and Increases Colorectal Cancer Radiation Therapy Sensitivity. Int J Radiat Oncol Biol Phys 2023; 117:942-954. [PMID: 37244630 DOI: 10.1016/j.ijrobp.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE The aim of this work was to explore the role and mechanism of active DNA demethylase in colorectal cancer (CRC) radiation sensitization and better understand the function of DNA demethylation in tumor radiosensitization. METHODS AND MATERIALS Tested the effect of ten-eleven translocation 3 (TET3) overexpression on the sensitivity of CRC to radiation therapy through G2/M arrest, apoptosis, and clonogenic suppression. TET3 knockdown HCT 116 and TET3 knockdown LS 180 cell lines were constructed by siRNA technology, and the effect of exogenous knockdown of TET3 on radiation-induced apoptosis, cell cycle arrest, DNA damage, and clone formation in CRC cells were detected. The co-localization of TET3 and small ubiquitin-like modifier 1 (SUMO1), SUMO2/3 was detected by immunofluorescence and cytoplasmic-nuclear extraction, and the interaction between TET3 and SUMO1, SUMO2/3 was detected by a coimmunoprecipitation assay. RESULTS The malignant phenotype and radiosensitivity of CRC cell lines were favorably linked with TET3 protein and mRNA expression. TET3 is upregulated in 23 of the 27 tumor types investigated, including colon cancer. TET3 was shown to correlate with the CRC pathologic malignancy grade positively. Overexpression of TET3 in CRC cell lines increased radiation-induced apoptosis, G2/M phase arrest, DNA damage, and clonal suppression in vitro. The binding region of TET3 and SUMO2/3 was located at 833-1795 AA except for K1012, K1188, K1397, and K1623. SUMOylation of TET3 increased the stability of the TET3 protein without changing its nuclear localization. CONCLUSIONS We report the sensitizing role of TET3 protein in the radiation of CRC cells, depending on SUMO1 modification of TET3 at the lysine sites (K479, K758, K1012, K1188, K1397, K1623), in turn stabilizing TET3 expression in the nucleus and subsequently increasing the sensitivity of CRC to radiation therapy. Together, this study highlights the potentially critical role of TET3 SUMOylation in radiation regulation, which may contribute to an enhanced understanding of the relationship between DNA demethylation and radiation therapy.
Collapse
Affiliation(s)
- Fengting Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Department of Radiation Oncology, The Afliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou 450008, Henan, China
| | - Ya Ma
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cai
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Liang
- School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
7
|
Gong Z, Zhu J, Chen J, Feng F, Zhang H, Zhang Z, Song C, Liang K, Yang S, Fan S, Fang X, Shen S. CircRREB1 mediates lipid metabolism related senescent phenotypes in chondrocytes through FASN post-translational modifications. Nat Commun 2023; 14:5242. [PMID: 37640697 PMCID: PMC10462713 DOI: 10.1038/s41467-023-40975-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Osteoarthritis is a prevalent age-related disease characterized by dysregulation of extracellular matrix metabolism, lipid metabolism, and upregulation of senescence-associated secretory phenotypes. Herein, we clarify that CircRREB1 is highly expressed in secondary generation chondrocytes and its deficiency can alleviate FASN related senescent phenotypes and osteoarthritis progression. CircRREB1 impedes proteasome-mediated degradation of FASN by inhibiting acetylation-mediated ubiquitination. Meanwhile, CircRREB1 induces RanBP2-mediated SUMOylation of FASN and enhances its protein stability. CircRREB1-FASN axis inhibits FGF18 and FGFR3 mediated PI3K-AKT signal transduction, then increased p21 expression. Intra-articular injection of adenovirus-CircRreb1 reverses the protective effects in CircRreb1 deficiency mice. Further therapeutic interventions could have beneficial effects in identifying CircRREB1 as a potential prognostic and therapeutic target for age-related OA.
Collapse
Affiliation(s)
- Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Jinjin Zhu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Junxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Fan Feng
- Obstetrics and Gynecology Hospital, Kunpeng Road, Hangzhou, 310016, Zhejiang Province, China
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Zheyuan Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Chenxin Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Kaiyu Liang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shuhui Yang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province Sir Run Run Shaw Institute of Clinical Medicine of Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
8
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
9
|
Ma Q, Long S, Gan Z, Tettamanti G, Li K, Tian L. Transcriptional and Post-Transcriptional Regulation of Autophagy. Cells 2022; 11:cells11030441. [PMID: 35159248 PMCID: PMC8833990 DOI: 10.3390/cells11030441] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/03/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is a widely conserved process in eukaryotes that is involved in a series of physiological and pathological events, including development, immunity, neurodegenerative disease, and tumorigenesis. It is regulated by nutrient deprivation, energy stress, and other unfavorable conditions through multiple pathways. In general, autophagy is synergistically governed at the RNA and protein levels. The upstream transcription factors trigger or inhibit the expression of autophagy- or lysosome-related genes to facilitate or reduce autophagy. Moreover, a significant number of non-coding RNAs (microRNA, circRNA, and lncRNA) are reported to participate in autophagy regulation. Finally, post-transcriptional modifications, such as RNA methylation, play a key role in controlling autophagy occurrence. In this review, we summarize the progress on autophagy research regarding transcriptional regulation, which will provide the foundations and directions for future studies on this self-eating process.
Collapse
Affiliation(s)
- Qiuqin Ma
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
| | - Zhending Gan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80138 Napoli, Italy
| | - Kang Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China;
- Correspondence: (K.L.); (L.T.)
| | - Ling Tian
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.M.); (Z.G.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (K.L.); (L.T.)
| |
Collapse
|
10
|
Nguyen JT, Riessen R, Zhang T, Kieffer C, Anakk S. Deletion of Intestinal SHP Impairs Short-term Response to Cholic Acid Challenge in Male Mice. Endocrinology 2021; 162:6189092. [PMID: 33769482 PMCID: PMC8256632 DOI: 10.1210/endocr/bqab063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Small heterodimer partner (SHP) is a crucial regulator of bile acid (BA) transport and synthesis; however, its intestine-specific role is not fully understood. Here, we report that male intestine-specific Shp knockout (IShpKO) mice exhibit higher intestinal BA but not hepatic or serum BA levels compared with the f/f Shp animals when challenged with an acute (5-day) 1% cholic acid (CA) diet. We also found that BA synthetic genes Cyp7a1 and Cyp8b1 are not repressed to the same extent in IShpKO compared with control mice post-CA challenge. Loss of intestinal SHP did not alter Fxrα messenger RNA (mRNA) but increased Asbt (BA ileal uptake transporter) and Ostα (BA ileal efflux transporter) expression even under chow-fed conditions. Surprisingly, the acute CA diet in IShpKO did not elicit the expected induction of Fgf15 but was able to maintain the suppression of Asbt, and Ostα/β mRNA levels. At the protein level, apical sodium-dependent bile acid transporter (ASBT) was downregulated, while organic solute transporter-α/β (OSTα/β) expression was induced and maintained regardless of diet. Examination of ileal histology in IShpKO mice challenged with acute CA diet revealed reduced villi length and goblet cell numbers. However, no difference in villi length, and the expression of BA regulator and transporter genes, was seen between f/f Shp and IShpKO animals after a chronic (14-day) CA diet, suggesting a potential adaptive response. We found the upregulation of the Pparα-Ugt axis after 14 days of CA diet may reduce the BA burden and compensate for the ileal SHP function. Thus, our study reveals that ileal SHP expression contributes to both overall intestinal structure and BA homeostasis.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ryan Riessen
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tongyu Zhang
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular & Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence:Sayeepriyadarshini Anakk, Department of Molecular & Integrative Physiology and Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 450 Medical Science Building, 506 South Matthews Avenue, Urbana, IL 61801, USA. E-mail:
| |
Collapse
|
11
|
Wang P, Xue N, Zhang C, Shan S, Jiang Z, Wu W, Liu X. Inhibition of SUMO2/3 antagonizes isoflurane-induced cancer-promoting effect in hepatocellular carcinoma Hep3B cells. Oncol Lett 2021; 21:274. [PMID: 33732350 PMCID: PMC7905670 DOI: 10.3892/ol.2021.12535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Abstract
Surgery for patients with complicated liver cancer often results in a long exposure to anesthesia with an increase in side effects. Continued long-term exposure to isoflurane may promote liver cancer progression. Small ubiquitin-like modifier (SUMO) 2 and 3, also known as SUMO2/3, conjugates to substrate proteins when cells undergo acute stress. However, whether or not SUMO2/3 is involved in isoflurane-mediated liver cancer progression is unknown. In the present study, hepatocellular carcinoma (HCC) cells were exposed to 2% isoflurane for 12 h, followed by 36 h of drug withdrawal, and the formation of SUMO2/3 conjugates and cancer behavioral characteristics were studied. The results demonstrated that the formation of SUMO2/3 conjugates was significantly increased following HCC cells being exposed to isoflurane for 0.5 h, and continued to increase for 48 h, even after the drug had been withdrawn. Furthermore, isoflurane-exposed HCC cells exhibited increased proliferation and invasion activity during the subsequent observation period. SUMO specific protease 3 (SENP3), which inhibits the binding of SUMO2/3 to its target proteins, was overexpressed and it was discovered that isoflurane-induced SUMOylation was significantly inhibited, and accordingly, the proliferation and invasion abilities of HCC cells were decreased to a certain extent. These findings indicated that SUMO2/3 is involved in the progression of HCC cells, at least in the Hep3B cell line, induced by the anesthetic isoflurane, and that inhibition of SUMO2/3 may antagonize the response. These results provided a novel target for decreasing the adverse reactions occurring in patients with HCC during anesthesia, particularly those who are exposed to isoflurane for long periods of time.
Collapse
Affiliation(s)
- Peng Wang
- Department of Anesthesiology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China.,Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Chunyan Zhang
- Department of Pharmacy, Binhai New Area Hospital of Traditional Chinese Medicine, Tianjin 300450, P.R. China
| | - Shimin Shan
- Department of Anesthesiology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China.,Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Zhongmin Jiang
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China.,Department of Pathology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Wenhan Wu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China.,Department of General Surgery, Peking University First Hospital, Beijing 100031, P.R. China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development in Preterm Infants, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China.,Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| |
Collapse
|
12
|
Functions of nuclear receptors SUMOylation. Clin Chim Acta 2021; 516:27-33. [PMID: 33476589 DOI: 10.1016/j.cca.2021.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
The nuclear receptor superfamily is a family of ligand-activated transcription factors that play a key role in cell metabolism and human diseases. They can be modified after translation, such as acetylation, ubiquitination, phosphorylation and SUMOylation. Crosstalk between SUMO and ubiquitin, phosphorylation and acetylation regulates a variety of metabolic and physiological activities. Nuclear receptors play an important role in lipid metabolism, inflammation, bile acid homeostasis and autophagy. SUMOylation nuclear receptors can regulate their function and affect cell metabolism. It also provides a potential therapeutic target for atherosclerosis, tumor and other metabolic and inflammation-related diseases. This review focuses on the function of SUMOylation nuclear receptors.
Collapse
|
13
|
Abstract
Nuclear pore complexes are multiprotein channels that span the nuclear envelope, which connects the nucleus to the cytoplasm. In addition to their main role in the regulation of nucleocytoplasmic molecule exchange, it has become evident that nuclear pore complexes and their components also have multiple transport-independent functions. In recent years, an increasing number of studies have reported the involvement of nuclear pore complex components in embryogenesis, cell differentiation and tissue-specific processes. Here, we review the findings that highlight the dynamic nature of nuclear pore complexes and their roles in many cell type-specific functions during development and tissue homeostasis.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - Maximiliano A D'Angelo
- Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
14
|
Jung H, Chen J, Hu X, Sun H, Wu SY, Chiang CM, Kemper B, Chen LF, Kemper JK. BRD4 inhibition and FXR activation, individually beneficial in cholestasis, are antagonistic in combination. JCI Insight 2020; 6:141640. [PMID: 33290278 PMCID: PMC7821603 DOI: 10.1172/jci.insight.141640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Activation of farnesoid X receptor (FXR) by obeticholic acid (OCA) reduces hepatic inflammation and fibrosis in patients with primary biliary cholangitis (PBC), a life-threatening cholestatic liver failure. Inhibition of bromodomain-containing protein 4 (BRD4) also has antiinflammatory, antifibrotic effects in mice. We determined the role of BRD4 in FXR function in bile acid (BA) regulation and examined whether the known beneficial effects of OCA are enhanced by inhibiting BRD4 in cholestatic mice. Liver-specific downregulation of BRD4 disrupted BA homeostasis in mice, and FXR-mediated regulation of BA-related genes, including small heterodimer partner and cholesterol 7 alpha-hydroxylase, was BRD4 dependent. In cholestatic mice, JQ1 or OCA treatment ameliorated hepatotoxicity, inflammation, and fibrosis, but surprisingly, was antagonistic in combination. Mechanistically, OCA increased binding of FXR, and the corepressor silencing mediator of retinoid and thyroid hormone receptor (SMRT) decreased NF-κB binding at inflammatory genes and repressed the genes in a BRD4-dependent manner. In patients with PBC, hepatic expression of FXR and BRD4 was significantly reduced. In conclusion, BRD4 is a potentially novel cofactor of FXR for maintaining BA homeostasis and hepatoprotection. Although BRD4 promotes hepatic inflammation and fibrosis in cholestasis, paradoxically, BRD4 is required for the antiinflammatory, antifibrotic actions of OCA-activated FXR. Cotreatment with OCA and JQ1, individually beneficial, may be antagonistic in treatment of liver disease patients with inflammation and fibrosis complications.
Collapse
Affiliation(s)
| | - Jinjing Chen
- Department of Molecular and Integrative Physiology and
| | - Xiangming Hu
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hao Sun
- Department of Molecular and Integrative Physiology and
| | - Shwu-Yuan Wu
- Harold C. Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, Department of Biochemistry, and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology and
| | - Lin-Feng Chen
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | |
Collapse
|
15
|
Kim YC, Seok S, Zhang Y, Ma J, Kong B, Guo G, Kemper B, Kemper JK. Intestinal FGF15/19 physiologically repress hepatic lipogenesis in the late fed-state by activating SHP and DNMT3A. Nat Commun 2020; 11:5969. [PMID: 33235221 PMCID: PMC7686350 DOI: 10.1038/s41467-020-19803-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatic lipogenesis is normally tightly regulated but is aberrantly elevated in obesity. Fibroblast Growth Factor-15/19 (mouse FGF15, human FGF19) are bile acid-induced late fed-state gut hormones that decrease hepatic lipid levels by unclear mechanisms. We show that FGF15/19 and FGF15/19-activated Small Heterodimer Partner (SHP/NR0B2) have a role in transcriptional repression of lipogenesis. Comparative genomic analyses reveal that most of the SHP cistrome, including lipogenic genes repressed by FGF19, have overlapping CpG islands. FGF19 treatment or SHP overexpression in mice inhibits lipogenesis in a DNA methyltransferase-3a (DNMT3A)-dependent manner. FGF19-mediated activation of SHP via phosphorylation recruits DNMT3A to lipogenic genes, leading to epigenetic repression via DNA methylation. In non-alcoholic fatty liver disease (NAFLD) patients and obese mice, occupancy of SHP and DNMT3A and DNA methylation at lipogenic genes are low, with elevated gene expression. In conclusion, FGF15/19 represses hepatic lipogenesis by activating SHP and DNMT3A physiologically, which is likely dysregulated in NAFLD. Hepatic lipogenesis is a tightly regulated process, which is elevated in obesity. Here the authors report that FGF15/19, bile acid-induced gut hormones, repress lipogenic genes in the late fed-state by activating small heterodimer partner (SHP) and promoting SHP-dependent recruitment of DNA methyltransferase DNMT3A to lipogenic genes.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Sapir A. Not So Slim Anymore-Evidence for the Role of SUMO in the Regulation of Lipid Metabolism. Biomolecules 2020; 10:E1154. [PMID: 32781719 PMCID: PMC7466032 DOI: 10.3390/biom10081154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
One of the basic building blocks of all life forms are lipids-biomolecules that dissolve in nonpolar organic solvents but not in water. Lipids have numerous structural, metabolic, and regulative functions in health and disease; thus, complex networks of enzymes coordinate the different compositions and functions of lipids with the physiology of the organism. One type of control on the activity of those enzymes is the conjugation of the Small Ubiquitin-like Modifier (SUMO) that in recent years has been identified as a critical regulator of many biological processes. In this review, I summarize the current knowledge about the role of SUMO in the regulation of lipid metabolism. In particular, I discuss (i) the role of SUMO in lipid metabolism of fungi and invertebrates; (ii) the function of SUMO as a regulator of lipid metabolism in mammals with emphasis on the two most well-characterized cases of SUMO regulation of lipid homeostasis. These include the effect of SUMO on the activity of two groups of master regulators of lipid metabolism-the Sterol Regulatory Element Binding Protein (SERBP) proteins and the family of nuclear receptors-and (iii) the role of SUMO as a regulator of lipid metabolism in arteriosclerosis, nonalcoholic fatty liver, cholestasis, and other lipid-related human diseases.
Collapse
Affiliation(s)
- Amir Sapir
- Department of Biology and the Environment, Faculty of Natural Sciences, University of Haifa-Oranim, Tivon 36006, Israel
| |
Collapse
|
17
|
Zeng M, Liu W, Hu Y, Fu N. Sumoylation in liver disease. Clin Chim Acta 2020; 510:347-353. [PMID: 32710938 DOI: 10.1016/j.cca.2020.07.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
Small ubiquitin-like modifiers (SUMO) are highly conserved post-translational modification proteins that are present in eukaryotic cells. They are extensively expressed in diverse tissues, including the heart, liver, kidney, and lungs. SUMOylation, a crucial post-translational modification, exhibits a strong effect on DNA repair, transcriptional regulation, protein stability and cell cycle progression. Increasing evidence has demonstrated that SUMOylation is closely related to the development of liver disease. Therefore, the effects of SUMOylation in liver diseases, such as Hepatocellular carcinoma (HCC), viral hepatitis, non-alcoholic fatty liver disease (NAFLD), cirrhosis and primary biliary cirrhosis (PBC) were reviewed in this study. Specifically, SUMO1 was found to promote the invasion and metastasis of HCC and may promote hypoxia-mediated P65 nuclear transport while accelerating the progression of HCC. In addition, SUMO1-modified centrosomal P4.1-associated protein (CAPA) was observed to be overexpressed in Hepatitis B virus (HBV)-related HCC in response to TNF-α stimulation. Furthermore, SUMOylated CAPA was found to induce HBX-triggered NF-κB activation. Considering the diversity and significance of SUMOylation, targeting of the SUMOylation pathway may serve as an effective approach in the treatment of liver diseases.
Collapse
Affiliation(s)
- Min Zeng
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Wenhui Liu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Yang Hu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| | - Nian Fu
- Department of Gastroenterology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
18
|
Lin R, Zhan M, Yang L, Wang H, Shen H, Huang S, Huang X, Xu S, Zhang Z, Li W, Liu Q, Shi Y, Chen W, Yu J, Wang J. Deoxycholic acid modulates the progression of gallbladder cancer through N 6-methyladenosine-dependent microRNA maturation. Oncogene 2020; 39:4983-5000. [PMID: 32514152 PMCID: PMC7314665 DOI: 10.1038/s41388-020-1349-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
Bile acids (BAs), well-defined signaling molecules with diverse metabolic functions, play important roles in cellular processes associated with many cancers. As one of the most common BAs, deoxycholic acid (DCA) is originally synthesized in the liver, stored in the gallbladder, and processed in the gut. DCA plays crucial roles in various tumors; however, functions and molecular mechanisms of DCA in gallbladder cancer (GBC) still remain poorly characterized. Here, we analyzed human GBC samples and found that DCA was significantly downregulated in GBC, and reduced levels of DCA was associated with poor clinical outcome in patients with GBC. DCA treatment impeded tumor progression by halting cell proliferation. DCA decreased miR-92b-3p expression in an m6A-dependent posttranscriptional modification manner by facilitating dissociation of METTL3 from METTL3-METTL14-WTAP complex, which increased the protein level of the phosphatase and tensin homolog, a newly identified target of miR-92b-3p, and subsequently inactivated the PI3K/AKT signaling pathway. Our findings revealed that DCA might function as a tumor suppressive factor in GBC at least by interfering with miR-92b-3p maturation, and suggested that DCA treatment could provide a new therapeutic strategy for GBC.
Collapse
Affiliation(s)
- Ruirong Lin
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Linhua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Shuai Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xince Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Zijie Zhang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongsheng Shi
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianxiu Yu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Basic Clinical Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Basic Clinical Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
19
|
Kim YC, Jung H, Seok S, Zhang Y, Ma J, Li T, Kemper B, Kemper JK. MicroRNA-210 Promotes Bile Acid-Induced Cholestatic Liver Injury by Targeting Mixed-Lineage Leukemia-4 Methyltransferase in Mice. Hepatology 2020; 71:2118-2134. [PMID: 31549733 PMCID: PMC7089843 DOI: 10.1002/hep.30966] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Bile acids (BAs) are important regulators of metabolism and energy balance, but excess BAs cause cholestatic liver injury. The histone methyltransferase mixed-lineage leukemia-4 (MLL4) is a transcriptional coactivator of the BA-sensing nuclear receptor farnesoid X receptor (FXR) and epigenetically up-regulates FXR targets important for the regulation of BA levels, small heterodimer partner (SHP), and bile salt export pump (BSEP). MLL4 expression is aberrantly down-regulated and BA homeostasis is disrupted in cholestatic mice, but the underlying mechanisms are unclear. APPROACH AND RESULTS We examined whether elevated microRNA-210 (miR-210) in cholestatic liver promotes BA-induced pathology by inhibiting MLL4 expression. miR-210 was the most highly elevated miR in hepatic SHP-down-regulated mice with elevated hepatic BA levels. MLL4 was identified as a direct target of miR-210, and overexpression of miR-210 inhibited MLL4 and, subsequently, BSEP and SHP expression, resulting in defective BA metabolism and hepatotoxicity with inflammation. miR-210 levels were elevated in cholestatic mouse models, and in vivo silencing of miR-210 ameliorated BA-induced liver pathology and decreased hydrophobic BA levels in an MLL4-dependent manner. In gene expression studies, SHP inhibited miR-210 expression by repressing a transcriptional activator, Kruppel-like factor-4 (KLF4). In patients with primary biliary cholangitis/cirrhosis (PBC), hepatic levels of miR-210 and KLF4 were highly elevated, whereas nuclear levels of SHP and MLL4 were reduced. CONCLUSIONS Hepatic miR-210 is physiologically regulated by SHP but elevated in cholestatic mice and patients with PBC, promoting BA-induced liver injury in part by targeting MLL4. The miR-210-MLL4 axis is a potential target for the treatment of BA-associated hepatobiliary disease.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,YK and HJ equally contributed to this study
| | - Hyunkyung Jung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,YK and HJ equally contributed to this study
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, Kansas University Medical Center, Kansas City, Kansas 66160
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801,To whom correspondence should be addressed: Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 S. Goodwin Avenue, Urbana, IL 61801.
| |
Collapse
|
20
|
Talamillo A, Ajuria L, Grillo M, Barroso-Gomila O, Mayor U, Barrio R. SUMOylation in the control of cholesterol homeostasis. Open Biol 2020; 10:200054. [PMID: 32370667 PMCID: PMC7276529 DOI: 10.1098/rsob.200054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
SUMOylation—protein modification by the small ubiquitin-related modifier (SUMO)—affects several cellular processes by modulating the activity, stability, interactions or subcellular localization of a variety of substrates. SUMO modification is involved in most cellular processes required for the maintenance of metabolic homeostasis. Cholesterol is one of the main lipids required to preserve the correct cellular function, contributing to the composition of the plasma membrane and participating in transmembrane receptor signalling. Besides these functions, cholesterol is required for the synthesis of steroid hormones, bile acids, oxysterols and vitamin D. Cholesterol levels need to be tightly regulated: in excess, it is toxic to the cell, and the disruption of its homeostasis is associated with various disorders like atherosclerosis and cardiovascular diseases. This review focuses on the role of SUMO in the regulation of proteins involved in the metabolism of cholesterol.
Collapse
Affiliation(s)
- Ana Talamillo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Leiore Ajuria
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Marco Grillo
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, Lyon, France.,Centre National de la Recherche Scientifique (CNRS), Paris, France
| | - Orhi Barroso-Gomila
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Ugo Mayor
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Rosa Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| |
Collapse
|
21
|
Jin C, Yan C, Zhang Y, Zhang YX, Jiang JH, Ding JY. A mutational profile in multiple thymic squamous cell carcinoma. Gland Surg 2020; 8:691-697. [PMID: 32042677 DOI: 10.21037/gs.2019.11.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Multiple thymic squamous cell carcinoma (TSCC) is a rare thymic epithelial tumor with a dismal prognosis. Mutational profiles of multiple TSCC may expand our understanding of tumorigenesis and treatment options for these tumors. Methods We sequenced the whole exomes of 3 TSCC nodules from a multiple TSCC patient and a paired peripheral blood sample and identified single-nucleotide variants and small insertions and deletions, and also performed gene ontological and pathway analyses. Results The 3 TSCC nodules were subjected to hematoxylin-eosin staining, and the results showed that these 3 nodules were highly similar with respect to histology. We identified 116, 94 and 98 non-synonymous somatic mutations in the 3 TSCC nodules, and 34 mutations, including mutations in TP53 and ARID1A, among others, were present in all 3 TSCC nodules. We then performed immunohistochemistry to assess two selected genes, TP53 and ARID1A, and found that the 3 TSCC nodules expressed similar levels of TP53 and ARID1A. Further gene ontological analysis and pathway analysis revealed that the 3 TSCC nodules also had similar significantly enriched pathways based on the identified genetic alterations. These results demonstrated that the 3 multiple TSCC nodules were spatially independent of each other but were highly similar with respect to histological sources and genetic characteristics, suggesting that 2 TSCC nodules were likely metastases of the third nodule. Conclusions These findings suggest that TSCC cells can be transferred to other sites inside the thymus and that total thymectomy is a good treatment option for thymic epithelial tumors.
Collapse
Affiliation(s)
- Chun Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Yan
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yi Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yong-Xing Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jia-Hao Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian-Yong Ding
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
22
|
Kim DH, Choi HI, Park JS, Kim CS, Bae EH, Ma SK, Kim SW. Src-mediated crosstalk between FXR and YAP protects against renal fibrosis. FASEB J 2019; 33:11109-11122. [PMID: 31298930 DOI: 10.1096/fj.201900325r] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Renal fibrosis is the common pathway of chronic kidney disease progression. The nuclear receptor farnesoid X receptor [FXR, NR1H4 (nuclear receptor subfamily 1 group member 4)], a multifunctional transcription factor, plays a pivotal role in protecting against fibrosis. However, the mechanisms underlying these antifibrotic actions of FXR in kidney disease are largely unknown. Here, we show that agonist GW4064-mediated FXR activation inhibits the activity of the nonreceptor tyrosine kinase Src (proto-oncogene tyrosine-protein kinase), which is critical for regulation of yes-associated protein (YAP) phosphorylation and nuclear localization in renal fibrosis. Activation of FXR suppressed renal fibrosis and Tyr416-Src phosphorylation in TGF-β-treated human renal proximal tubule epithelial (HK2) cells. Moreover, GW4064 treatment in HK2 cells increased Ser127 phosphorylation, cytosolic accumulation of YAP, and interaction of the hippo core kinases (Ste20-like kinase 1, large tumor suppressor kinase 1, and salvador homolog 1). Inhibition of Src using PP2 (Src kinase inhibitor) prevented renal fibrosis and increased Ser127 phosphorylation and cytosolic accumulation of YAP. The expression of fibrosis markers, inflammatory genes, and YAP target genes was increased in the kidneys of FXR knockout mice compared with those of wild-type mice. In addition, GW4064 or WAY-362450 (turofexorate isopropyl) treatment protected against unilateral ureteral obstruction-induced renal fibrosis. Collectively, our data support the novel conclusion that Src-mediated crosstalk between FXR and YAP protects against renal fibrosis, making this pathway a possible therapeutic target for chronic kidney disease.-Kim, D.-H., Choi, H.-I., Park, J. S., Kim, C. S., Bae, E. H., Ma, S. K., Kim, S. W. Src-mediated crosstalk between FXR and YAP protects against renal fibrosis.
Collapse
Affiliation(s)
- Dong-Hyun Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hoon-In Choi
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jung Sun Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Chang Seong Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| |
Collapse
|
23
|
Byun S, Jung H, Chen J, Kim YC, Kim DH, Kong B, Guo G, Kemper B, Kemper JK. Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. J Biol Chem 2019; 294:8732-8744. [PMID: 30996006 DOI: 10.1074/jbc.ra119.008360] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/12/2019] [Indexed: 12/13/2022] Open
Abstract
The bile acid (BA) nuclear receptor, farnesoid X receptor (FXR/NR1H4), maintains metabolic homeostasis by transcriptional control of numerous genes, including an intestinal hormone, fibroblast growth factor-19 (FGF19; FGF15 in mice). Besides activation by BAs, the gene-regulatory function of FXR is also modulated by hormone or nutrient signaling-induced post-translational modifications. Recently, phosphorylation at Tyr-67 by the FGF15/19 signaling-activated nonreceptor tyrosine kinase Src was shown to be important for FXR function in BA homeostasis. Here, we examined the role of this FXR phosphorylation in cholesterol regulation. In both hepatic FXR-knockout and FXR-knockdown mice, reconstitution of FXR expression up-regulated cholesterol transport genes for its biliary excretion, including scavenger receptor class B member 1 (Scarb1) and ABC subfamily G member 8 (Abcg5/8), decreased hepatic and plasma cholesterol levels, and increased biliary and fecal cholesterol levels. Of note, these sterol-lowering effects were blunted by substitution of Phe for Tyr-67 in FXR. Moreover, consistent with Src's role in phosphorylating FXR, Src knockdown impaired cholesterol regulation in mice. In hypercholesterolemic apolipoprotein E-deficient mice, expression of FXR, but not Y67F-FXR, ameliorated atherosclerosis, whereas Src down-regulation exacerbated it. Feeding or treatment with an FXR agonist induced Abcg5/8 and Scarb1 expression in WT, but not FGF15-knockout, mice. Furthermore, FGF19 treatment increased occupancy of FXR at Abcg5/8 and Scarb1, expression of these genes, and cholesterol efflux from hepatocytes. These FGF19-mediated effects were blunted by the Y67F-FXR substitution or Src down-regulation or inhibition. We conclude that phosphorylation of hepatic FXR by FGF15/19-induced Src maintains cholesterol homeostasis and protects against atherosclerosis.
Collapse
Affiliation(s)
- Sangwon Byun
- From the Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801 and
| | - Hyunkyung Jung
- From the Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801 and
| | - Jinjing Chen
- From the Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801 and
| | - Young-Chae Kim
- From the Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801 and
| | - Dong-Hyun Kim
- From the Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801 and
| | - Bo Kong
- the Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Grace Guo
- the Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Byron Kemper
- From the Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801 and
| | - Jongsook Kim Kemper
- From the Department of Molecular and Integrative Physiology, University of Illinois, Urbana, Illinois 61801 and
| |
Collapse
|
24
|
Ning M, Duarte JD, Stevison F, Isoherranen N, Rubin LH, Jeong H. Determinants of Cytochrome P450 2D6 mRNA Levels in Healthy Human Liver Tissue. Clin Transl Sci 2019; 12:416-423. [PMID: 30821899 PMCID: PMC6618095 DOI: 10.1111/cts.12632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022] Open
Abstract
Cytochrome P450 2D6 (CYP2D6) is a major drug‐metabolizing enzyme that exhibits large interindividual variability. Recent studies suggest that differential transcriptional regulation of CYP2D6 in part may be responsible for the variability. In this study, we characterized potential determinants of CYP 2D6 transcript levels in healthy human liver tissue samples (n = 115), including genetic polymorphisms in CYP2D6 and the genes encoding transcription regulators for CYP2D6 expression; mRNA expression of the transcription factors and their known target genes; and hepatic levels of bile acids and retinoids, agents that modulate the expression/activity of the transcription factors. Their associations with CYP2D6 mRNA levels in the tissues were examined. Results from multivariable linear regression analysis revealed CYP8B1 mRNA level and rs3892097, the single‐ nucleotide polymorphism defining the nonfunctional CYP2D6*4 allele, as the two most significant predictors of CYP2D6 mRNA levels in the liver tissue samples, explaining 30% of the variability.
Collapse
Affiliation(s)
- Miaoran Ning
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio D Duarte
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, Center for Pharmacogenomics, University of Florida, Gainesville, Florida, USA
| | - Faith Stevison
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington, USA
| | - Leah H Rubin
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Neurology, Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hyunyoung Jeong
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Kim YC, Byun S, Seok S, Guo G, Xu HE, Kemper B, Kemper JK. Small Heterodimer Partner and Fibroblast Growth Factor 19 Inhibit Expression of NPC1L1 in Mouse Intestine and Cholesterol Absorption. Gastroenterology 2019; 156:1052-1065. [PMID: 30521806 PMCID: PMC6409196 DOI: 10.1053/j.gastro.2018.11.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The nuclear receptor subfamily 0 group B member 2 (NR0B2, also called SHP) is expressed at high levels in the liver and intestine. Postprandial fibroblast growth factor 19 (human FGF19, mouse FGF15) signaling increases the transcriptional activity of SHP. We studied the functions of SHP and FGF19 in the intestines of mice, including their regulation of expression of the cholesterol transporter NPC1L1 )NPC1-like intracellular cholesterol transporter 1) and cholesterol absorption. METHODS We performed histologic and biochemical analyses of intestinal tissues from C57BL/6 and SHP-knockout mice and performed RNA-sequencing analyses to identify genes regulated by SHP. The effects of fasting and refeeding on intestinal expression of NPC1L1 were examined in C57BL/6, SHP-knockout, and FGF15-knockout mice. Mice were given FGF19 daily for 1 week; fractional cholesterol absorption, cholesterol and bile acid (BA) levels, and composition of BAs were measured. Intestinal organoids were generated from C57BL/6 and SHP-knockout mice, and cholesterol uptake was measured. Luciferase reporter assays were performed with HT29 cells. RESULTS We found that the genes that regulate lipid and ion transport in intestine, including NPC1L1, were up-regulated and that cholesterol absorption was increased in SHP-knockout mice compared with C57BL/6 mice. Expression of NPC1L1 was reduced in C57BL/6 mice after refeeding after fasting but not in SHP-knockout or FGF15-knockout mice. SHP-knockout mice had altered BA composition compared with C57BL/6 mice. FGF19 injection reduced expression of NPC1L1, decreased cholesterol absorption, and increased levels of hydrophilic BAs, including tauro-α- and -β-muricholic acids; these changes were not observed in SHP-knockout mice. SREBF2 (sterol regulatory element binding transcription factor 2), which regulates cholesterol, activated transcription of NPC1L1. FGF19 signaling led to phosphorylation of SHP, which inhibited SREBF2 activity. CONCLUSIONS Postprandial FGF19 and SHP inhibit SREBF2, which leads to repression of intestinal NPC1L1 expression and cholesterol absorption. Strategies to increase FGF19 signaling to activate SHP might be developed for treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Grace Guo
- Department of Pharmacology and Toxicology, School of Pharmacy, Rutgers University, Piscataway, New Jersey
| | - H Eric Xu
- Laboratory of Structure Sciences, Van Andel Research Institute, Grand Rapids, Michigan
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
26
|
Postprandial FGF19-induced phosphorylation by Src is critical for FXR function in bile acid homeostasis. Nat Commun 2018; 9:2590. [PMID: 29968724 PMCID: PMC6030054 DOI: 10.1038/s41467-018-04697-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/11/2018] [Indexed: 12/19/2022] Open
Abstract
Farnesoid-X-Receptor (FXR) plays a central role in maintaining bile acid (BA) homeostasis by transcriptional control of numerous enterohepatic genes, including intestinal FGF19, a hormone that strongly represses hepatic BA synthesis. How activation of the FGF19 receptor at the membrane is transmitted to the nucleus for transcriptional regulation of BA levels and whether FGF19 signaling posttranslationally modulates FXR function remain largely unknown. Here we show that FXR is phosphorylated at Y67 by non-receptor tyrosine kinase, Src, in response to postprandial FGF19, which is critical for its nuclear localization and transcriptional regulation of BA levels. Liver-specific expression of phospho-defective Y67F-FXR or Src downregulation in mice results in impaired homeostatic responses to acute BA feeding, and exacerbates cholestatic pathologies upon drug-induced hepatobiliary insults. Also, the hepatic FGF19-Src-FXR pathway is defective in primary biliary cirrhosis (PBC) patients. This study identifies Src-mediated FXR phosphorylation as a potential therapeutic target and biomarker for BA-related enterohepatic diseases. FXR plays an important role in bile acid homeostasis by transcriptionally modulating several enterohepatic genes, including intestinal FGF19, that repress hepatic bile acid synthesis. Here the authors show that postprandial FGF19 regulates FXR transcriptional activity via its action on the tyrosine kinase Src, which phosphorylates FXR.
Collapse
|
27
|
Yuan Z, Wang G, Qu J, Wang X, Li K. 9-cis-retinoic acid elevates MRP3 expression by inhibiting sumoylation of RXRα to alleviate cholestatic liver injury. Biochem Biophys Res Commun 2018; 503:188-194. [PMID: 29885283 DOI: 10.1016/j.bbrc.2018.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 06/01/2018] [Indexed: 12/26/2022]
Abstract
AIMS Vitamin A and its metabolites has been found to be protective against cholestatic liver injury, but the exact underlying mechanisms involved in cholestatic liver injury remain unclear. The objective of this study was to determine the function and mechanisms of 9-cis-retinoic acid, the metabolite of vitamin A, in cholestatic liver injury. METHODS The bile duct ligated (BDL) mice were treated with 9-cis-retinoic acid by intravenous injection through the tail for 10 days. The liver function and histology were assessed in the matched group and experimental group. The expression of MRP3 in liver tissue was tested by qRT-PCR, Western blotting, and IHC. Effect of RXRα sumoylation on MRP3 expression was investigated at a cellular level. Influence of 9-cis-retinoic acid on RXRα sumoylation was also tested in cells. RESULTS Our findings showed that 9-cis-retinoic acid significantly decreases the serum ALT and AST level, alleviates hepatic necrosis of the BDL-mice. We also identified MRP3, an important protective hepatobiliary transporter in cholestasis, was elevated by 9-cis-retinoic acid in vivo and in vitro. 9-cis-retinoic acid weakened the sumoylation of RXRα, which promotes the cytoplasmic location of RXRα and lightens the interaction of RXRα and RARα. Inhibition of RXRα and RARα interaction increased MRP3 expression. CONCLUSIONS 9-cis-retinoic acid alleviates cholestatic liver injury by elevating MRP3 expression through its mechanism of inhibiting sumoylation of RXRα.
Collapse
Affiliation(s)
- Zhiqing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Guiyang Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Junwen Qu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiaopeng Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Kewei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| |
Collapse
|
28
|
Seok S, Kim YC, Byun S, Choi S, Xiao Z, Iwamori N, Zhang Y, Wang C, Ma J, Ge K, Kemper B, Kemper JK. Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid β-oxidation. J Clin Invest 2018; 128:3144-3159. [PMID: 29911994 DOI: 10.1172/jci97736] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/24/2018] [Indexed: 12/21/2022] Open
Abstract
Jumonji D3 (JMJD3) histone demethylase epigenetically regulates development and differentiation, immunity, and tumorigenesis by demethylating a gene repression histone mark, H3K27-me3, but a role for JMJD3 in metabolic regulation has not been described. SIRT1 deacetylase maintains energy balance during fasting by directly activating both hepatic gluconeogenic and mitochondrial fatty acid β-oxidation genes, but the underlying epigenetic and gene-specific mechanisms remain unclear. In this study, JMJD3 was identified unexpectedly as a gene-specific transcriptional partner of SIRT1 and epigenetically activated mitochondrial β-oxidation, but not gluconeogenic, genes during fasting. Mechanistically, JMJD3, together with SIRT1 and the nuclear receptor PPARα, formed a positive autoregulatory loop upon fasting-activated PKA signaling and epigenetically activated β-oxidation-promoting genes, including Fgf21, Cpt1a, and Mcad. Liver-specific downregulation of JMJD3 resulted in intrinsic defects in β-oxidation, which contributed to hepatosteatosis as well as glucose and insulin intolerance. Remarkably, the lipid-lowering effects by JMJD3 or SIRT1 in diet-induced obese mice were mutually interdependent. JMJD3 histone demethylase may serve as an epigenetic drug target for obesity, hepatosteatosis, and type 2 diabetes that allows selective lowering of lipid levels without increasing glucose levels.
Collapse
Affiliation(s)
- Sunmi Seok
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Sunge Choi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zhen Xiao
- Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Naoki Iwamori
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, Japan
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Chaochen Wang
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Jian Ma
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH, Bethesda, Maryland, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
29
|
AhR and SHP regulate phosphatidylcholine and S-adenosylmethionine levels in the one-carbon cycle. Nat Commun 2018; 9:540. [PMID: 29416063 PMCID: PMC5803255 DOI: 10.1038/s41467-018-03060-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022] Open
Abstract
Phosphatidylcholines (PC) and S-adenosylmethionine (SAM) are critical determinants of hepatic lipid levels, but how their levels are regulated is unclear. Here, we show that Pemt and Gnmt, key one-carbon cycle genes regulating PC/SAM levels, are downregulated after feeding, leading to decreased PC and increased SAM levels, but these effects are blunted in small heterodimer partner (SHP)-null or FGF15-null mice. Further, aryl hydrocarbon receptor (AhR) is translocated into the nucleus by insulin/PKB signaling in the early fed state and induces Pemt and Gnmt expression. This induction is blocked by FGF15 signaling-activated SHP in the late fed state. Adenoviral-mediated expression of AhR in obese mice increases PC levels and exacerbates steatosis, effects that are blunted by SHP co-expression or Pemt downregulation. PEMT, AHR, and PC levels are elevated in simple steatosis patients, but PC levels are robustly reduced in steatohepatitis-fibrosis patients. This study identifies AhR and SHP as new physiological regulators of PC/SAM levels.
Collapse
|
30
|
Kwon S, Seok S, Yau P, Li X, Kemper B, Kemper JK. Obesity and aging diminish sirtuin 1 (SIRT1)-mediated deacetylation of SIRT3, leading to hyperacetylation and decreased activity and stability of SIRT3. J Biol Chem 2017; 292:17312-17323. [PMID: 28808064 DOI: 10.1074/jbc.m117.778720] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 08/09/2017] [Indexed: 12/27/2022] Open
Abstract
Sirtuin 3 (SIRT3) deacetylates and regulates many mitochondrial proteins to maintain health, but its functions are depressed in aging and obesity. The best-studied sirtuin, SIRT1, counteracts aging- and obesity-related diseases by deacetylating many proteins, but whether SIRT1 has a role in deacetylating and altering the function of SIRT3 is unknown. Here we show that SIRT3 is reversibly acetylated in the mitochondria and unexpectedly is a target of SIRT1 deacetylation. SIRT3 is hyperacetylated in aged and obese mice, in which SIRT1 activity is low, and SIRT3 acetylation at Lys57 inhibits its deacetylase activity and promotes protein degradation. Adenovirus-mediated expression of SIRT3 or an acetylation-defective SIRT3-K57R mutant in diet-induced obese mice decreased acetylation of mitochondrial long-chain acyl-CoA dehydrogenase, a known SIRT3 deacetylation target; improved fatty acid β-oxidation; and ameliorated liver steatosis and glucose intolerance. These SIRT3-mediated beneficial effects were not observed with an acetylation-mimic SIRT3-K57Q mutant. Our findings reveal an unexpected mechanism for SIRT3 regulation via SIRT1-mediated deacetylation. Improving mitochondrial SIRT3 functions by inhibiting SIRT3 acetylation may offer a new therapeutic approach for obesity- and aging-related diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Sanghoon Kwon
- From the Department of Molecular and Integrative Physiology and
| | - Sunmi Seok
- From the Department of Molecular and Integrative Physiology and
| | - Peter Yau
- the Proteomics Center, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | - Xiaoling Li
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Byron Kemper
- From the Department of Molecular and Integrative Physiology and
| | | |
Collapse
|
31
|
Obesity-Linked Phosphorylation of SIRT1 by Casein Kinase 2 Inhibits Its Nuclear Localization and Promotes Fatty Liver. Mol Cell Biol 2017; 37:MCB.00006-17. [PMID: 28533219 DOI: 10.1128/mcb.00006-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/05/2017] [Indexed: 12/15/2022] Open
Abstract
Sirtuin1 (SIRT1) deacetylase delays and improves many obesity-related diseases, including nonalcoholic fatty liver disease (NAFLD) and diabetes, and has received great attention as a drug target. SIRT1 function is aberrantly low in obesity, so understanding the underlying mechanisms is important for drug development. Here, we show that obesity-linked phosphorylation of SIRT1 inhibits its function and promotes pathological symptoms of NAFLD. In proteomic analysis, Ser-164 was identified as a major serine phosphorylation site in SIRT1 in obese, but not lean, mice, and this phosphorylation was catalyzed by casein kinase 2 (CK2), the levels of which were dramatically elevated in obesity. Mechanistically, phosphorylation of SIRT1 at Ser-164 substantially inhibited its nuclear localization and modestly affected its deacetylase activity. Adenovirus-mediated liver-specific expression of SIRT1 or a phosphor-defective S164A-SIRT1 mutant promoted fatty acid oxidation and ameliorated liver steatosis and glucose intolerance in diet-induced obese mice, but these beneficial effects were not observed in mice expressing a phosphor-mimic S164D-SIRT1 mutant. Remarkably, phosphorylated S164-SIRT1 and CK2 levels were also highly elevated in liver samples of NAFLD patients and correlated with disease severity. Thus, inhibition of phosphorylation of SIRT1 by CK2 may serve as a new therapeutic approach for treatment of NAFLD and other obesity-related diseases.
Collapse
|
32
|
Sakuma S, D'Angelo MA. The roles of the nuclear pore complex in cellular dysfunction, aging and disease. Semin Cell Dev Biol 2017; 68:72-84. [PMID: 28506892 DOI: 10.1016/j.semcdb.2017.05.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 05/11/2017] [Indexed: 12/19/2022]
Abstract
The study of the Nuclear Pore Complex (NPC), the proteins that compose it (nucleoporins), and the nucleocytoplasmic transport that it controls have revealed an unexpected layer to pathogenic disease onset and progression. Recent advances in the study of the regulation of NPC composition and function suggest that the precise control of this structure is necessary to prevent diseases from arising or progressing. Here we discuss the role of nucleoporins in a diverse set of diseases, many of which directly or indirectly increase in occurrence and severity as we age, and often shorten the human lifespan. NPC biology has been shown to play a direct role in these diseases and therefore in the process of healthy aging.
Collapse
Affiliation(s)
- Stephen Sakuma
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A D'Angelo
- Development, Aging and Regeneration Program (DARe), Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
33
|
Byun S, Kim YC, Zhang Y, Kong B, Guo G, Sadoshima J, Ma J, Kemper B, Kemper JK. A postprandial FGF19-SHP-LSD1 regulatory axis mediates epigenetic repression of hepatic autophagy. EMBO J 2017; 36:1755-1769. [PMID: 28446510 DOI: 10.15252/embj.201695500] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 12/19/2022] Open
Abstract
Lysosome-mediated autophagy is essential for cellular survival and homeostasis upon nutrient deprivation, but is repressed after feeding. Despite the emerging importance of transcriptional regulation of autophagy by nutrient-sensing factors, the role for epigenetic control is largely unexplored. Here, we show that Small Heterodimer Partner (SHP) mediates postprandial epigenetic repression of hepatic autophagy by recruiting histone demethylase LSD1 in response to a late fed-state hormone, FGF19 (hFGF19, mFGF15). FGF19 treatment or feeding inhibits macroautophagy, including lipophagy, but these effects are blunted in SHP-null mice or LSD1-depleted mice. In addition, feeding-mediated autophagy inhibition is attenuated in FGF15-null mice. Upon FGF19 treatment or feeding, SHP recruits LSD1 to CREB-bound autophagy genes, including Tfeb, resulting in dissociation of CRTC2, LSD1-mediated demethylation of gene-activation histone marks H3K4-me2/3, and subsequent accumulation of repressive histone modifications. Both FXR and SHP inhibit hepatic autophagy interdependently, but while FXR acts early, SHP acts relatively late after feeding, which effectively sustains postprandial inhibition of autophagy. This study demonstrates that the FGF19-SHP-LSD1 axis maintains homeostasis by suppressing unnecessary autophagic breakdown of cellular components, including lipids, under nutrient-rich postprandial conditions.
Collapse
Affiliation(s)
- Sangwon Byun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Young-Chae Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yang Zhang
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bo Kong
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Grace Guo
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Jian Ma
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Byron Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|