1
|
Sun J, An X, Wang Y, Duan X, Pei Z, Lu Y, Pei Y. A hyaluronic acid modified copper-based metal-organic framework overcomes multidrug resistance via two-way redox dyshomeostasis under hypoxia. Int J Biol Macromol 2025; 300:140148. [PMID: 39848376 DOI: 10.1016/j.ijbiomac.2025.140148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanoscale system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia. HA-CuMOF@DOX is a spherical glutathione (GSH) responsive nanoparticle with a drug loading capacity of 20.69 %, which could deplete GSH through Cu2+ and electrophilic ligands, and generate •OH via a Fenton-like reaction. In vitro experiments suggested that the nanoparticles had good targetability to cancer cells and biocompatibility to normal cells. HA-CuMOF@DOX was successfully internalized by drug-resistant human hepatoma carcinoma cell line (HepG2-ADR). It aggravated redox dyshomeostasis via dual regulation, inducing mitochondrial damage, reducing intracellular adenosine triphosphate (ATP) levels, and downregulating P-gp to overcome HepG2-ADR drug resistance. More importantly, in vivo experiments demonstrated an 80.69 % tumor growth inhibition in nude mice bearing HepG2-ADR cells. This work represents a significant advancement in the development of effective treatments for drug-resistant tumors.
Collapse
Affiliation(s)
- Jiajia Sun
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xingwang An
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xiao Duan
- School of Pharmacy, Changzhi Medical College, Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, Changzhi, Shanxi 046000, PR China
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yuchao Lu
- School of Pharmacy, Changzhi Medical College, Shanxi Provincial Department-Municipal Key Laboratory Cultivation Base for Quality Enhancement and Utilization of Shangdang Chinese Medicinal Materials, Changzhi, Shanxi 046000, PR China.
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
2
|
He J, Chen Y, Zhao H, Li Y. The interplay between gut bacteria and targeted therapies: implications for future cancer treatments. Mol Med 2025; 31:58. [PMID: 39948481 PMCID: PMC11827328 DOI: 10.1186/s10020-025-01108-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Targeted therapy represents a form of cancer treatment that specifically focuses on molecular markers regulating the growth, division, and dissemination of cancer cells. It serves as the cornerstone of precision medicine and is associated with fewer adverse effects compared to conventional chemotherapy, thus enhancing the quality of patient survival. These make targeted therapy as a vital component of contemporary anti-cancer strategies. Although targeted therapy has achieved excellent anti-cancer results, there are still many factors affecting its efficacy. Among the numerous factors affecting anti-cancer treatment, the role of intestinal bacteria and its metabolites are becoming increasingly prominent, particularly in immunotherapy. However, their effects on anticancer targeted therapy have not been systematically reviewed. Herein, we discuss the crosstalk between gut bacteria and anticancer targeted therapies, while also highlighting potential therapeutic strategies and future research directions.
Collapse
Affiliation(s)
- Juan He
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, 181 Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
3
|
Ha S, Kim J, Seo HW, Kim L, Yi YS, Seo SE, Kim KH, Kim S, An JE, Kim GJ, Ko KC, Jun S, Ryu CM, Kwon OS. Siderophore-Functionalized Nanodrug for Treating Antibiotic-Resistant Bacteria. ACS NANO 2025; 19:5131-5145. [PMID: 39893588 DOI: 10.1021/acsnano.4c06501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The development of nanodrugs targeting multidrug-resistant bacteria, while sparing the beneficial constituents of the microbiome, has emerged as a promising approach to combat disease and curb the rise of antimicrobial resistance. In this investigation, we devised a siderophore-functionalized nanodrug based on a gold nanoparticle construct (AuNP-NSC; Gold nanoparticle_N-heterocyclic_Siderophore_Cyanine7), offering an innovative treatment modality against drug-resistant bacterial pathogens. As a proof of concept, the efficacy of this nanodrug delivery and antimicrobial therapy was evaluated against the notoriously resistant bacterium P. aeruginosa. N-Heterocyclic carbenes (NHCs) exhibit a strong affinity for transition metals, forming highly stable complexes resistant to ligand displacement. The entry of siderophore-conjugated nanodrugs into bacteria is facilitated through specific receptors on the outer membrane. In our study, AuNP-NSC was specifically targeted and imported into resistant Gram-negative P. aeruginosa via binding with ferric iron. Treatment with the developed nanodrug significantly inhibited the proliferation of antibiotic-resistant P. aeruginosa, reducing bacterial counts by more than 95% and mitigating drug resistance. Furthermore, AuNP-NSC markedly diminished P. aeruginosa-induced skin lesions and forestalled systemic organ failure triggered by secondary sepsis in mouse models. These findings underscore the potential of nanodrugs as specialized therapeutic agents for the management of antibiotic-resistant bacterial infections.
Collapse
Affiliation(s)
- Siyoung Ha
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, Maryland 21853, United States
| | - Jinyeong Kim
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Hwi Won Seo
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Functional Genomics Program, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Lina Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Yoon-Sun Yi
- Korea Basic Science Institute (KBSI), Center for Bio-imaging and Translational Research, Cheongju-si 28119, Republic of Korea
| | - Sung Eun Seo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Kyung Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Soomin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jai Eun An
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Gyeong-Ji Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
| | - Kyong-Cheol Ko
- Korea Preclinical Evaluation Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Sangmi Jun
- Korea Basic Science Institute (KBSI), Center for Bio-imaging and Translational Research, Cheongju-si 28119, Republic of Korea
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
- Department of Biosystems and Bioengineering Program, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Oh Seok Kwon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon 16419, Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
4
|
Yan S, Gan Y, Xu H, Piao H. Bacterial carrier-mediated drug delivery systems: a promising strategy in cancer therapy. Front Bioeng Biotechnol 2025; 12:1526612. [PMID: 39845371 PMCID: PMC11750792 DOI: 10.3389/fbioe.2024.1526612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 01/24/2025] Open
Abstract
Cancer is a major killer threatening modern human health and a leading cause of death worldwide. Due to the heterogeneity and complexity of cancer, traditional treatments have limited effectiveness. To address this problem, an increasing number of researchers and medical professionals are working to develop new ways to treat cancer. Bacteria have chemotaxis that can target and colonize tumor tissue, as well as activate anti-tumor immune responses, which makes them ideal for biomedical applications. With the rapid development of nanomedicine and synthetic biology technologies, bacteria are extensively used as carriers for drug delivery to treat tumors, which holds the promise of overcoming the limitations of conventional cancer treatment regimens. This paper summarizes examples of anti-cancer drugs delivered by bacterial carriers, and their strengths and weaknesses. Further, we emphasize the promise of bacterial carrier delivery systems in clinical translation.
Collapse
Affiliation(s)
- Sizuo Yan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Yu Gan
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
- Central Laboratory, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Shenyang, China
- Institute of Cancer Medicine, Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, Tan Q, Guo B. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnology 2024; 22:510. [PMID: 39182109 PMCID: PMC11344338 DOI: 10.1186/s12951-024-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is measured as a major threat to human life and is a leading cause of death. Millions of cancer patients die every year, although a burgeoning number of researchers have been making tremendous efforts to develop cancer medicine to fight against cancer. Owing to the complexity and heterogeneity of cancer, lack of ability to treat deep tumor tissues, and high toxicity to the normal cells, it complicates the therapy of cancer. However, bacterial derivative-mediated drug delivery has raised the interest of researchers in overcoming the restrictions of conventional cancer chemotherapy. In this review, we show various examples of tumor-targeting bacteria and bacterial derivatives for the delivery of anticancer drugs. This review also describes the advantages and limitations of delivering anticancer treatment drugs under regulated conditions employing these tumor-targeting bacteria and their membrane vesicles. This study highlights the substantial potential for clinical translation of bacterial-based drug carriers, improve their ability to work with other treatment modalities, and provide a more powerful, dependable, and distinctive tumor therapy.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Tamoor Hamid Chaudhry
- Antimicrobial Resistance (AMR) Containment & Infection Prevention & Control (IPC) Program, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Rui Huang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Lan Zhang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziwei Hu
- Institute of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, China.
| | - Qingqin Tan
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Zhao WB, Wang Y, Li FK, Guo R, Jiao FH, Song SY, Chang SL, Dong L, Liu KK, Shan CX. Highly Antibacterial and Antioxidative Carbon Nanodots/Silk Fibroin Films for Fruit Preservation. NANO LETTERS 2023; 23:11755-11762. [PMID: 38091579 DOI: 10.1021/acs.nanolett.3c03621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The issues of fruit waste and safety resulting from rot have spurred a demand for improved packaging systems. Herein, we present highly antibacterial and antioxidative carbon nanodot/silk fibroin (CD/SF) films for fruit preservation. The films are composed of CDs and SF together with a small amount of glycerol via hydrogen bonding, exhibiting outstanding biosafety, transparency, and stretchability. The films effectively integrate key functionalities (atmosphere control, resistance to food-borne pathogens, and antioxidation properties) and can be manufactured in large sizes (about 20 × 30 cm), boasting a transmission rate of 13 183 cm3/m2·day for oxygen and 2860 g/m2·day for water vapor, favoring the preservation of fresh fruits. A convenient dip-coating method enables in situ fabrication of films with a thickness of approximately 14 μm directly on the fruits' surface providing comprehensive protection. Importantly, the films are washable and biodegradable. This work presents a promising technology to produce multifunctional and eco-friendly antibacterial packaging systems.
Collapse
Affiliation(s)
- Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Kui Li
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Rui Guo
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fu-Hang Jiao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shi-Yu Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Shu-Long Chang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
7
|
Mi Z, Yao Q, Qi Y, Zheng J, Liu J, Liu Z, Tan H, Ma X, Zhou W, Rong P. Salmonella-mediated blood‒brain barrier penetration, tumor homing and tumor microenvironment regulation for enhanced chemo/bacterial glioma therapy. Acta Pharm Sin B 2023; 13:819-833. [PMID: 36873179 PMCID: PMC9978951 DOI: 10.1016/j.apsb.2022.09.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/26/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Chemotherapy is an important adjuvant treatment of glioma, while the efficacy is far from satisfactory, due not only to the biological barriers of blood‒brain barrier (BBB) and blood‒tumor barrier (BTB) but also to the intrinsic resistance of glioma cells via multiple survival mechanisms such as up-regulation of P-glycoprotein (P-gp). To address these limitations, we report a bacteria-based drug delivery strategy for BBB/BTB transportation, glioma targeting, and chemo-sensitization. Bacteria selectively colonized into hypoxic tumor region and modulated tumor microenvironment, including macrophages repolarization and neutrophils infiltration. Specifically, tumor migration of neutrophils was employed as hitchhiking delivery of doxorubicin (DOX)-loaded bacterial outer membrane vesicles (OMVs/DOX). By virtue of the surface pathogen-associated molecular patterns derived from native bacteria, OMVs/DOX could be selectively recognized by neutrophils, thus facilitating glioma targeted delivery of drug with significantly enhanced tumor accumulation by 18-fold as compared to the classical passive targeting effect. Moreover, the P-gp expression on tumor cells was silenced by bacteria type III secretion effector to sensitize the efficacy of DOX, resulting in complete tumor eradication with 100% survival of all treated mice. In addition, the colonized bacteria were finally cleared by anti-bacterial activity of DOX to minimize the potential infection risk, and cardiotoxicity of DOX was also avoided, achieving excellent compatibility. This work provides an efficient trans-BBB/BTB drug delivery strategy via cell hitchhiking for enhanced glioma therapy.
Collapse
Affiliation(s)
- Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qing Yao
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.,Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi 832003, China.,Department of Pathology, Cangzhou Central Hospital & the Affiliated to Hebei Medical University, Cangzhou 062650, China
| | - Yan Qi
- Department of Pathology, Shihezi University School of Medicine and the First Affiliated Hospital to Shihezi University School of Medicine, Shihezi 832003, China
| | - Jinhai Zheng
- School of Biomedical Sciences, Hunan University, Changsha 410082, China
| | - Jiahao Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhenguo Liu
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hongpei Tan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xiaoqian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wenhu Zhou
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.,Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410082, China
| | - Pengfei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha 410013, China.,Key Laboratory of Biological Nanotechnology of National Health Commission, Changsha 410082, China
| |
Collapse
|
8
|
Xue K, Wang L, Liu J. Surface Modification of Bacteria to Optimize Immunomodulation for Advanced Immunotherapy. ChemMedChem 2023; 18:e202200574. [PMID: 36376260 DOI: 10.1002/cmdc.202200574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Bacteria have been widely exploited as therapeutic agents for immunotherapy due to their native immunogenicity, living characteristic, and genetic manipulability. However, conventional bacteria-based immunotherapy often suffers from dose-dependent safety issues and poor treatment efficacy. Harnessing surface modification of bacteria to carry additional immune modulators has emerged as a promising strategy to reduce bacterial dose and synergistically enhance the activation of immune responses. In this paper, bacteria-mediated immunomodulation and the underlying mechanisms are introduced, followed by a summarization on the concept of using surface-modification approaches including physical encapsulation, chemical conjugation, and metabolic labelling to combine diverse immune functions. The applications of modified bacteria as therapeutics for immunotherapy toward cancer and inflammatory bowel disease have been expounded further. Both challenges and future perspectives regarding the utilization of surface-modified bacteria for immunomodulation are also proposed. This work offers unique insights into developing safe yet potent bacteria-based therapeutics for advanced immunotherapy.
Collapse
Affiliation(s)
- Kaikai Xue
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
9
|
Li H, Li J, Wang M, Feng W, Gao F, Han Y, Shi Y, Du Z, Yuan Q, Cao P, Wang X, Gao X, Cao K, Gao L. Clusterbody Enables Flow Sorting-Assisted Single-Cell Mass Spectrometry Analysis for Identifying Reversal Agent of Chemoresistance. Anal Chem 2023; 95:560-564. [PMID: 36563048 DOI: 10.1021/acs.analchem.2c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identifying effective reversal agents overcoming multidrug resistance with causal mechanisms from an efflux pump protein is of vital importance for enhanced tumor chemotherapy in clinic. To achieve this end, we construct a metal cluster-based probe, named clusterbody, to develop flow sorting-assisted single-cell mass spectrometry analysis. This clusterbody synthesized by biomimetic mineralization possesses an antibody-like property to selectively recognize an efflux pump protein. The intrinsic red fluorescence emission of the clusterbody facilitates fluorescence-activated high-throughput cell sorting of subpopulations with different multidrug resistance levels. Furthermore, based on the accurate formula of the clusterbody, the corresponding protein abundance at the single-cell level is determined through detecting gold content via precise signal amplification by laser ablation inductively coupled plasma mass spectrometry. Therefore, the effect of reversal agent treatment overcoming multidrug resistance is evaluated in a quantitative manner. This work opens a new avenue to identify reversal agents, shedding light on developing combined or synergetic tumor therapy.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jiaojiao Li
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yijie Shi
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Zhongying Du
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Peng Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
10
|
Grebel H, Yu S, Zhang Y. Active carbon based supercapacitors with Au colloids: the case of placing the colloids in close proximity to the electrode interface. NANOSCALE ADVANCES 2022; 5:179-190. [PMID: 36605810 PMCID: PMC9765521 DOI: 10.1039/d2na00794k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Supercapacitors (SCs) are short-term energy storage elements that find many applications, e.g., electronic charging devices and suppressors of power fluctuations in grids that are interfaced with sustainable sources. The capacitance of an ordinary capacitor increases when dispersing metallic colloids in its dielectric. A similar strategy for SCs means deployment of nano-scale metal colloids (in our case, Au nanoparticles, or AuNPs) at the very narrow interface between an electrolyte and a porous electrode (here, active carbon film, AC, on a grafoil current collector). Unlike previous studies, here we placed AuNPs at a small distance from the electrode. This was achieved by coating the AuNPs with a negatively charged ligand that also enables strong adhesion to the electrode. A very large specific capacitance amplification was demonstrated: for example, C-V data at a scan rate of 20 mV s-1 indicated a specific capacitance amplification of more than 10 when 30 μg of AuNPs was incorporated with 200 mg of active carbon while using a 1 M Na2SO4 electrolyte and a 5% cellulose acetate butyrate binder. Upon replacing the 1 M Na2SO4 electrolyte with 1 M KOH, and keeping the same set of electrodes, the amplification factor decreased but remained large, ∼3, as determined using C-V traces at the same scan rate. This proves that the AuNPs adhered well to the AC electrodes. Simulations indicated the importance of keeping the AuNPs in close proximity to the electrodes, but not in direct contact with them, in order to maintain a substantial amplified polarization effect. Unlike semiconductor embedded electrodes, optical effects were found to be minimal.
Collapse
Affiliation(s)
- H Grebel
- Center for Energy Efficiency, Resilience and Innovation (CEERI), The ECE Department at the New Jersey Institute of Technology Newark NJ 07102 USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science at the New Jersey Institute of Technology Newark NJ 07102 USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science at the New Jersey Institute of Technology Newark NJ 07102 USA
| |
Collapse
|
11
|
Diwan D, Cheng L, Usmani Z, Sharma M, Holden N, Willoughby N, Sangwan N, Baadhe RR, Liu C, Gupta VK. Microbial cancer therapeutics: A promising approach. Semin Cancer Biol 2022; 86:931-950. [PMID: 33979677 DOI: 10.1016/j.semcancer.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 01/27/2023]
Abstract
The success of conventional cancer therapeutics is hindered by associated dreadful side-effects of antibiotic resistance and the dearth of antitumor drugs' selectivity and specificity. Hence, the conceptual evolution of anti-cancerous therapeutic agents that selectively target cancer cells without impacting the healthy cells or tissues, has led to a new wave of scientific interest in microbial-derived bioactive molecules. Such strategic solutions may pave the way to surmount the shortcomings of conventional therapies and raise the potential and hope for the cure of wide range of cancer in a selective manner. This review aims to provide a comprehensive summary of anti-carcinogenic properties and underlying mechanisms of bioactive molecules of microbial origin, and discuss the current challenges and effective therapeutic application of combinatorial strategies to attain minimal systemic side-effects.
Collapse
Affiliation(s)
- Deepti Diwan
- Washington University, School of Medicine, Saint Louis, MO, USA
| | - Lei Cheng
- Department of Pulmonary, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 230032, China
| | - Zeba Usmani
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618, Tallinn, Estonia
| | - Minaxi Sharma
- Department of Food Technology, Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Nicola Holden
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Nicholas Willoughby
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Neelam Sangwan
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, 123031, India
| | - Rama Raju Baadhe
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, 506004, India
| | - Chenchen Liu
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
12
|
Kotlyarov S, Kotlyarova A. Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. MEMBRANES 2022; 12:1083. [PMID: 36363640 PMCID: PMC9698216 DOI: 10.3390/membranes12111083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
ABC transporters are a large family of proteins that transport a variety of substrates across cell plasma membranes. Because of this, they are involved in many physiological processes. It is of interest to note that many ABC transporters are involved in the transport of various lipids. In addition, this function may be related to the innate immune system. The evidence that ABC transporters are involved in the regulation of the innate immune system through the transport of various substances greatly enhances the understanding of their clinical significance. ABC transporters are involved in the cellular homeostasis of cholesterol as well as in the regulation of its content in lipid rafts. Through these mechanisms, they can regulate the function of membrane proteins, including receptors of the innate immune system. By regulating lipid transport, some members of ABC transporters are involved in phagocytosis. In addition, ABC transporters are involved in the transport of lipopolysaccharide, lipid mediators of inflammation, and perform other functions in the innate immune system.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
13
|
Hu J, Tian J, Yuan T, Yin Q, Yin J. The critical role of nanoparticle sizes in the interactions between gold nanoparticles and ABC transporters in zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 251:106286. [PMID: 36084499 DOI: 10.1016/j.aquatox.2022.106286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Despite the increasing evidences for adenosine triphosphate-binding cassette (ABC transporters)-mediated efflux of nanoparticles, the universality of these phenomena and the determining factors for the process remained to be clarified. This paper aimed to systemically investigate the role of nanoparticle size in the interactions between adenosine triphosphate-binding cassette (ABC transporters) and gold nanoparticles (AuNPs, 3 nm, 19 nm, and 84 nm, named as Au-3, Au-19, and Au-84) in zebrafish embryos. The results showed that all the three AuNPs induced significant toxicity as reflected by delayed hatching of embryos, decreased glutathione (GSH) contents, and increased reactive oxygen species (ROS) levels. Under the hindrance of embryo chorions, smaller AuNPs could more easily accumulate in the embryos, causing higher toxicity. Addition of transporter inhibitors enhanced the accumulation and toxicity of Au-3 and Au-19, and these nanoparticles induced the expressions of abcc2 and abcb4, indicating a fact that Au-3 and Au-19 were the potential substrates of ABC transporters, but these phenomena were barely found for Au-84. On the contrary, Au-84 suppressed the gene expressions of various ABC transporters like abcc1, abcg5, and abcg8. With specific suppressors, transcription factors like nuclear factor-erythroid 2-related factor-2 (Nrf2) and pregnane X receptor (Pxr) were found to be important in the induction of ABC transporters by AuNPs. After all, these results revealed a vital role of nanoparticle sizes in the interactions between ABC transporters and AuNPs in zebrafish embryos, and the critical size could be around 19 nm. Such information would be beneficial in assessing the environmental risk of nanoparticles, as well as their interactions with other chemical toxicants.
Collapse
Affiliation(s)
- Jia Hu
- School of Biology & Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingjing Tian
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China
| | - Tongkuo Yuan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Jian Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guo Ke Medical Technology Development Co. Ltd., Jinan, China.
| |
Collapse
|
14
|
Salmonella as a Promising Curative Tool against Cancer. Pharmaceutics 2022; 14:pharmaceutics14102100. [PMID: 36297535 PMCID: PMC9609134 DOI: 10.3390/pharmaceutics14102100] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/28/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bacteria-mediated cancer therapy has become a topic of interest under the broad umbrella of oncotherapy. Among many bacterial species, Salmonella remains at the forefront due to its ability to localize and proliferate inside tumor microenvironments and often suppress tumor growth. Salmonella Typhimurium is one of the most promising mediators, with engineering plasticity and cancer specificity. It can be used to deliver toxins that induce cell death in cancer cells specifically, and also as a cancer-specific instrument for immunotherapy by delivering tumor antigens and exposing the tumor environment to the host immune system. Salmonella can be used to deliver prodrug converting enzymes unambiguously against cancer. Though positive responses in Salmonella-mediated cancer treatments are still at a preliminary level, they have paved the way for developing combinatorial therapy with conventional chemotherapy, radiotherapy, and surgery, and can be used synergistically to combat multi-drug resistant and higher-stage cancers. With this background, Salmonella-mediated cancer therapy was approved for clinical trials by U.S. Food and Drug Administration, but the results were not satisfactory and more pre-clinical investigation is needed. This review summarizes the recent advancements in Salmonella-mediated oncotherapy in the fight against cancer. The present article emphasizes the demand for Salmonella mutants with high stringency toward cancer and with amenable elements of safety by virulence deletions.
Collapse
|
15
|
Huang X, Guo H, Wang L, Shao Z. Engineered microorganism-based delivery systems for targeted cancer therapy: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:201-212. [PMID: 36654778 PMCID: PMC9840089 DOI: 10.12336/biomatertransl.2022.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 01/20/2023]
Abstract
Microorganisms with innate and artificial advantages have been regarded as intelligent drug delivery systems for cancer therapy with the help of engineering technology. Although numerous studies have confirmed the promising prospects of microorganisms in cancer, several problems such as immunogenicity and toxicity should be addressed before further clinical applications. This review aims to investigate the development of engineered microorganism-based delivery systems for targeted cancer therapy. The main types of microorganisms such as bacteria, viruses, fungi, microalgae, and their components and characteristics are introduced in detail. Moreover, the engineering strategies and biomaterials design of microorganisms are further discussed. Most importantly, we discuss the innovative attempts and therapeutic effects of engineered microorganisms in cancer. Taken together, engineered microorganism-based delivery systems hold tremendous promise for biomedical applications in targeted cancer therapy.
Collapse
Affiliation(s)
- Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Haoyu Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Lutong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China,Corresponding author: Zengwu Shao,
| |
Collapse
|
16
|
Becerra-Báez EI, Meza-Toledo SE, Muñoz-López P, Flores-Martínez LF, Fraga-Pérez K, Magaño-Bocanegra KJ, Juárez-Hernández U, Mateos-Chávez AA, Luria-Pérez R. Recombinant Attenuated Salmonella enterica as a Delivery System of Heterologous Molecules in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14174224. [PMID: 36077761 PMCID: PMC9454573 DOI: 10.3390/cancers14174224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Cancer is among the main causes of death of millions of individuals worldwide. Although survival has improved with conventional treatments, the appearance of resistant cancer cells leads to patient relapses. It is, therefore, necessary to find new antitumor therapies that can completely eradicate transformed cells. Bacteria-based tumor therapy represents a promising alternative treatment, particularly the use of live-attenuated Salmonella enterica, with its potential use as a delivery system of antitumor heterologous molecules such as tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, nucleic acids, and nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer. Abstract Over a century ago, bacterial extracts were found to be useful in cancer therapy, but this treatment modality was obviated for decades. Currently, in spite of the development and advances in chemotherapies and radiotherapy, failure of these conventional treatments still represents a major issue in the complete eradication of tumor cells and has led to renewed approaches with bacteria-based tumor therapy as an alternative treatment. In this context, live-attenuated bacteria, particularly Salmonella enterica, have demonstrated tumor selectivity, intrinsic oncolytic activity, and the ability to induce innate or specific antitumor immune responses. Moreover, Salmonella enterica also has strong potential as a delivery system of tumor-associated antigens, cytotoxic molecules, immunomodulatory molecules, pro-apoptotic proteins, and nucleic acids into eukaryotic cells, in a process known as bactofection and antitumor nanoparticles. In this review, we present the state of the art of current preclinical and clinical research on the use of Salmonella enterica as a potential therapeutic ally in the war against cancer.
Collapse
Affiliation(s)
- Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Sergio Enrique Meza-Toledo
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Kevin Jorge Magaño-Bocanegra
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Uriel Juárez-Hernández
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-55-52289917 (ext. 4401)
| |
Collapse
|
17
|
Nanodrug-loaded Bifidobacterium bifidum conjugated with anti-death receptor antibody for tumor-targeted photodynamic and sonodynamic synergistic therapy. Acta Biomater 2022; 146:341-356. [PMID: 35580829 DOI: 10.1016/j.actbio.2022.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Using bacteria for tumor-targeted therapy has attracted much attention in recent years. However, how to improve the targeted delivery and cancer therapy efficacy is an important but challenging scientific issue. Herein, a drug delivery system using a probiotic as a carrier was developed for tumor-targeted photodynamic and sonodynamic synergistic therapy. In this system, chlorin e6 (Ce6) nanoparticles (NPs) were prepared and incorporated into B. bifidum, followed by the conjugation of anti-death receptor 5 antibody (anti-DR5 Ab). Interestingly, B. bifidum under 671 nm laser or ultrasound (US) irradiation could generate reactive oxygen species (ROS), and Ce6-B. bifidum-anti-DR5 Ab obtained could target hypoxic regions in tumor with high efficiency after intravenous injection. The ROS level generated by Ce6-B. bifidum-anti-DR5 Ab under both laser and US irradiation was much higher than the combined ROS generated separately using a laser and US for the same probiotics. The cytotoxicity and laryngeal tumor growth-inhibiting efficiency of Ce6-B. bifidum-anti-DR5 Ab under both laser and US irradiation were significant higher than the values obtained using laser or US irradiation alone, which demonstrated the synergistic effect on tumor growth. B. bifidum could be eliminated from the body without exerting harmful effects on mouse health. This strategy is a platform that can be extended to treat other solid tumors. STATEMENT OF SIGNIFICANCE: Using bacteria as drug delivery carriers will show unique advantages. However, how to improve the targeted delivery efficiency and tumor inhibiting capacity is a challenging scientific issue. Herein, a delivery system using a probiotic as carrier was developed for tumor-targeted therapy. In this delivery system, chlorin e6 nanoparticles were prepared and then incorporated into living Bifidobacterium bifidum (B.bifidum), followed by the conjugation of anti-death receptor 5 antibody. This delivery system could efficiently target to mouse tumors, accumulate the hypoxic areas and inhibit the tumor growth through the photodynamic and sonodynamic synergistic effect. Our results will provide a platform for B.bifidum-mediated tumor targeted therapy.
Collapse
|
18
|
Tessaro L, Aquino A, de Almeida Rodrigues P, Joshi N, Ferrari RG, Conte-Junior CA. Nucleic Acid-Based Nanobiosensor (NAB) Used for Salmonella Detection in Foods: A Systematic Review. NANOMATERIALS 2022; 12:nano12050821. [PMID: 35269310 PMCID: PMC8912873 DOI: 10.3390/nano12050821] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
Salmonella bacteria is a foodborne pathogen found mainly in food products causing severe symptoms in the individual, such as diarrhea, fever, and abdominal cramps after consuming the infected food, which can be fatal in some severe cases. Rapid and selective methods to detect Salmonella bacteria can prevent outbreaks when ingesting contaminated food. Nanobiosensors are a highly sensitive, simple, faster, and lower cost method for the rapid detection of Salmonella, an alternative to conventional enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) techniques. This study systematically searched and analyzed literature data related to nucleic acid-based nanobiosensors (NABs) with nanomaterials to detect Salmonella in food, retrieved from three databases, published between 2010 and 2021. We extracted data and critically analyzed the effect of nanomaterial functionalized with aptamer or DNA at the limit of detection (LOD). Among the nanomaterials, gold nanoparticles (AuNPs) were the most used nanomaterial in studies due to their unique optical properties of the metal, followed by magnetic nanoparticles (MNPs) of Fe3O4, copper nanoparticles (CuNPs), and also hybrid nanomaterials multiwalled carbon nanotubes (c-MWCNT/AuNP), QD/UCNP-MB (quantum dotes upconverting nanoparticle of magnetic beads), and cadmium telluride quantum dots (CdTe QDs@MNPs) showed excellent LOD values. The transducers used for detection also varied from electrochemical, fluorescent, surface-enhanced Raman spectroscopy (SERS), RAMAN spectroscopy, and mainly colorimetric due to the possibility of visualizing the detection result with the naked eye. Furthermore, we show the magnetic separation system capable of detecting the target amplification of the genetic material. Finally, we present perspectives, future research, and opportunities to use point-of-care (POC) diagnostic devices as a faster and lower cost approach for detecting Salmonella in food as they prove to be viable for resource-constrained environments such as field-based or economically limited conditions.
Collapse
Affiliation(s)
- Leticia Tessaro
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Adriano Aquino
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Paloma de Almeida Rodrigues
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Post-Graduation Program of Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
| | - Nirav Joshi
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Physics Department, Federal University of ABC, Campus Santo André, Santo André 09210-580, SP, Brazil
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil; (L.T.); (A.A.); (P.d.A.R.); (N.J.); (R.G.F.)
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, RJ, Brazil
- Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro 20020-000, RJ, Brazil
- Post-Graduation Program of Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
- Post-Graduation Program of Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói 24230-340, RJ, Brazil
- Correspondence:
| |
Collapse
|
19
|
Johnson AP, Sabu C, Nivitha K, Sankar R, Shirin VA, Henna T, Raphey V, Gangadharappa H, Kotta S, Pramod K. Bioinspired and biomimetic micro- and nanostructures in biomedicine. J Control Release 2022; 343:724-754. [DOI: 10.1016/j.jconrel.2022.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
|
20
|
Sun M, Ye H, Shi Q, Xie J, Yu X, Ling H, You S, He Z, Qin B, Sun J. Both-In-One Hybrid Bacteria Suppress the Tumor Metastasis and Relapse via Tandem-Amplifying Reactive Oxygen Species-Immunity Responses. Adv Healthc Mater 2021; 10:e2100950. [PMID: 34541825 DOI: 10.1002/adhm.202100950] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/24/2021] [Indexed: 12/22/2022]
Abstract
Bacterial therapy, which targets the tumor site and aims at exerting an antitumor immune response, has displayed a great potential against malignant tumors. However, failure of the phase I clinical trial of Salmonella strain VNP20009 alone demonstrates that bacterial treatment alone can unsatisfy the requirements of high efficiency and biosafety. Herein, a strategy of both-in-one hybrid bacteria is proposed, wherein the chemotherapeutic drug doxorubicin (DOX) is integrated onto the surface of glucose dehydrogenase (GDH)-overexpressed non-pathogenic Escherichia coli (E. coli) strain, to potentiate the antitumor efficacy. Nicotinamide adenine dinucleotide phosphate (NADPH), which is produced by GDH from E. coli, promotes the generation of toxic reactive oxygen species (ROS) within the tumor, and ROS is then catalyzed by the DOX-activated NADPH oxidases. Importantly, the hybrid bacteria enhance stimulated systemic antitumor immune responses, thereby leading to effective tumor eradication. When this strategy is applied in four different tumor models, the hybrid bacteria significantly inhibited tumor metastasis, postsurgical regrowth, and primary/distal tumor relapse. The both-in-one ROS-immunity-boosted hybrid bacteria strategy provides knowledge for the rational design of bacteria-based synergistic cancer therapy.
Collapse
Affiliation(s)
- Mengchi Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Hao Ye
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Qinghua Shi
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Jun Xie
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Xiang Yu
- Department of Radiation Oncology Huzhou Central Hospital Affiliated Huzhou Hospital Zhejiang University School of Medicine Affiliated Central Hospital Huzhou University Huzhou Zhejiang 313000 China
| | - Hao Ling
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Song You
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Zhonggui He
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Bin Qin
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| | - Jin Sun
- Department of Pharmaceutics Wuya College of Innovation Shenyang Pharmaceutical University Shenyang Liaoning 110016 China
| |
Collapse
|
21
|
Foley SE, Loew EB, McCormick BA. Recent advances in understanding microbial regulation of host multi-drug resistance transporters. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2021.100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Foley SE, Tuohy C, Dunford M, Grey MJ, De Luca H, Cawley C, Szabady RL, Maldonado-Contreras A, Houghton JM, Ward DV, Mrsny RJ, McCormick BA. Gut microbiota regulation of P-glycoprotein in the intestinal epithelium in maintenance of homeostasis. MICROBIOME 2021; 9:183. [PMID: 34493329 PMCID: PMC8425172 DOI: 10.1186/s40168-021-01137-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/17/2021] [Indexed: 05/29/2023]
Abstract
BACKGROUND P-glycoprotein (P-gp) plays a critical role in protection of the intestinal epithelia by mediating efflux of drugs/xenobiotics from the intestinal mucosa into the gut lumen. Recent studies bring to light that P-gp also confers a critical link in communication between intestinal mucosal barrier function and the innate immune system. Yet, despite knowledge for over 10 years that P-gp plays a central role in gastrointestinal homeostasis, the precise molecular mechanism that controls its functional expression and regulation remains unclear. Here, we assessed how the intestinal microbiome drives P-gp expression and function. RESULTS We have identified a "functional core" microbiome of the intestinal gut community, specifically genera within the Clostridia and Bacilli classes, that is necessary and sufficient for P-gp induction in the intestinal epithelium in mouse models. Metagenomic analysis of this core microbial community revealed that short-chain fatty acid and secondary bile acid production positively associate with P-gp expression. We have further shown these two classes of microbiota-derived metabolites synergistically upregulate P-gp expression and function in vitro and in vivo. Moreover, in patients suffering from ulcerative colitis (UC), we find diminished P-gp expression coupled to the reduction of epithelial-derived anti-inflammatory endocannabinoids and luminal content (e.g., microbes or their metabolites) with a reduced capability to induce P-gp expression. CONCLUSION Overall, by means of both in vitro and in vivo studies as well as human subject sample analysis, we identify a mechanistic link between cooperative functional outputs of the complex microbial community and modulation of P-gp, an epithelial component, that functions to suppress overactive inflammation to maintain intestinal homeostasis. Hence, our data support a new cross-talk paradigm in microbiome regulation of mucosal inflammation. Video abstract.
Collapse
Affiliation(s)
- Sage E. Foley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Christine Tuohy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Graduate School of Nursing, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Merran Dunford
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Michael J. Grey
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Heidi De Luca
- Division of Gastroenterology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Caitlin Cawley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Rose L. Szabady
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Ferring Pharmaceuticals, San Diego, CA 92121 USA
| | - Ana Maldonado-Contreras
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Jean Marie Houghton
- Division of Gastroenterology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Doyle V. Ward
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Randall J. Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath, BA2 7AY UK
| | - Beth A. McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605 USA
- Program in Microbiome Dynamics, University of Massachusetts Medical School, Worcester, MA 01605 USA
| |
Collapse
|
23
|
Al-Saafeen BH, Fernandez-Cabezudo MJ, al-Ramadi BK. Integration of Salmonella into Combination Cancer Therapy. Cancers (Basel) 2021; 13:cancers13133228. [PMID: 34203478 PMCID: PMC8269432 DOI: 10.3390/cancers13133228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Despite significant advances in the development of new treatments, cancer continues to be a major public health concern due to the high mortality associated with the disease. The introduction of immunotherapy as a new modality for cancer treatment has led to unprecedented clinical responses, even in terminal cancer patients. However, for reasons that remain largely unknown, the percentage of patients who respond to this treatment remains rather modest. In the present article, we highlight the potential of using attenuated Salmonella strains in cancer treatment, particularly as a means to enhance therapeutic efficacy of other cancer treatments, including immunotherapy, chemotherapy, and radiotherapy. The challenges associated with the clinical application of Salmonella in cancer therapy are discussed. An increased understanding of the potential of Salmonella bacteria in combination cancer therapy may usher in a major breakthrough in its clinical application, resulting in more favorable and durable outcomes. Abstract Current modalities of cancer treatment have limitations related to poor target selectivity, resistance to treatment, and low response rates in patients. Accumulating evidence over the past few decades has demonstrated the capacity of several strains of bacteria to exert anti-tumor activities. Salmonella is the most extensively studied entity in bacterial-mediated cancer therapy, and has a good potential to induce direct tumor cell killing and manipulate the immune components of the tumor microenvironment in favor of tumor inhibition. In addition, Salmonella possesses some advantages over other approaches of cancer therapy, including high tumor specificity, deep tissue penetration, and engineering plasticity. These aspects underscore the potential of utilizing Salmonella in combination with other cancer therapeutics to improve treatment effectiveness. Herein, we describe the advantages that make Salmonella a good candidate for combination cancer therapy and summarize the findings of representative studies that aimed to investigate the therapeutic outcome of combination therapies involving Salmonella. We also highlight issues associated with their application in clinical use.
Collapse
Affiliation(s)
- Besan H. Al-Saafeen
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Maria J. Fernandez-Cabezudo
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
| | - Basel K. al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
- Correspondence:
| |
Collapse
|
24
|
Gong TT, He XH, Gao S, Wu QJ. Application of machine learning in prediction of Chemotherapy resistant of Ovarian Cancer based on Gut Microbiota. J Cancer 2021; 12:2877-2885. [PMID: 33854588 PMCID: PMC8040891 DOI: 10.7150/jca.46621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/03/2021] [Indexed: 01/04/2023] Open
Abstract
Background: Ovarian cancer (OC) has the highest mortality among gynecological malignancies, and resistance to chemotherapy drugs is common. We aim to develop a machine learning approach based on gut microbiota to predict the chemotherapy resistance of OC. Methods: The study included patients diagnosed with OC by pathology and treated with platinum and paclitaxel in Shengjing Hospital of China Medical University between 2017 and 2018. Fecal samples were collected from patients, and 16S rRNA sequencing was used to analyze the differences in gut microbiota between OC patients with and without chemotherapy resistance. Nine machine learning classifiers were used to derive the chemotherapy resistance of OC from gut microbiota. Results: A total of 77 chemoresistant OC patients and 97 chemosensitive OC patients were enrolled. The gut microbiota diversity was higher in OC patients with chemotherapy resistance. There were statistically significant differences between the two groups in Shannon indexes (P <0.05) and Simpson indexes (P <0.05). Machine learning techniques can predict the chemoresistance of OC, and the random forest showed the best performance among all models. The area under the ROC curve for RF model was 0.909. Conclusions: The diversity of gut microbiota was higher in OC patients with chemotherapy resistance. Further studies are warranted to validate our findings based on machine learning techniques.
Collapse
Affiliation(s)
- Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xin-Hui He
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Wang D, Wei X, Kalvakolanu DV, Guo B, Zhang L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front Immunol 2021; 12:615930. [PMID: 33717106 PMCID: PMC7949470 DOI: 10.3389/fimmu.2021.615930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Since the first reported spontaneous regression of tumors in patients with streptococcus infection, cancer biological therapy was born and it evolved into today's immunotherapy over the last century. Although the original strategy was unable to impart maximal therapeutic benefit at the beginning, it laid the foundations for the development of immune checkpoint blockade and CAR-T which are currently used for cancer treatment in the clinics. However, clinical applications have shown that current cancer immunotherapy can cause a series of adverse reactions and are captious for patients with preexisting autoimmune disorders. Salmonellae was first reported to exert antitumor effect in 1935. Until now, numerous studies have proved its potency as an antitumor agent in the near future. In this review, we summarize the currently available data on the antitumor effects of Salmonella, and discussed a possibility of integrating Salmonella into cancer immunotherapy to overcome current obstacles.
Collapse
Affiliation(s)
- Ding Wang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xiaodong Wei
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dhan V. Kalvakolanu
- Department of Microbiology and Immunology and Greenebaum Comprehensive Cancer Center, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Ling Zhang
- Department of Pathophysiology and Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
26
|
Wang Z, Wang Q, Xu G, Meng N, Huang X, Jiang Z, Chen C, Zhang Y, Chen J, Li A, Li N, Zou X, Zhou J, Ding Q, Wang S. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol 2020; 17:1576-1589. [PMID: 31885317 PMCID: PMC7567514 DOI: 10.1080/15476286.2019.1709296] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence has suggested that long noncoding RNAs (lncRNAs) play an essential role in the tumorigenesis of multiple types of cancer including gastric cancer (GC). However, the potential biological roles and regulatory mechanisms of lncRNA in response to cisplatin, which may be involved in cisplatin resistance, have not been fully elucidated. In this study, we identified a novel lncRNA, cisplatin resistance-associated lncRNA (CRAL), that was downregulated in cisplatin-resistant GC cells, impaired cisplatin-induced DNA damage and cell apoptosis and thus contributed to cisplatin resistance in GC cells. Furthermore, the results indicated that CRAL mainly resided in the cytoplasm and could sponge endogenous miR-505 to upregulate cylindromatosis (CYLD) expression, which further suppressed AKT activation and led to an increase in the sensitivity of gastric cancer cells to cisplatin in vitro and in preclinical models. Moreover, a specific small molecule inhibitor of AKT activation, MK2206, effectively reversed the cisplatin resistance in GC caused by CRAL deficiency. In conclusion, we provide the first evidence that a novel lncRNA, CRAL, could function as a competing endogenous RNA (ceRNA) to reverse GC cisplatin resistance via the miR-505/CYLD/AKT axis, which suggests that CRAL could be considered a potential predictive biomarker and therapeutic target for cisplatin resistance in gastric cancer.
Collapse
Affiliation(s)
- Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Guifang Xu
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Na Meng
- Department of Medical Records and Statistics, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xinli Huang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Zerun Jiang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Chen Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Yan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Junjie Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Aiping Li
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Nan Li
- Department of Gastroenterology, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Xiaoping Zou
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Qingqing Ding
- Department of Geriatric Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, Jiangsu Province, People’s Republic of China
| |
Collapse
|
27
|
Cao Z, Liu J. Bacteria and bacterial derivatives as drug carriers for cancer therapy. J Control Release 2020; 326:396-407. [PMID: 32681947 DOI: 10.1016/j.jconrel.2020.07.009] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 01/21/2023]
Abstract
The application of bacteria and bacteria-derived membrane vesicles (MVs) has promising potential to make a great impact on the development of controllable targeted drug delivery for combatting cancer. Comparing to most other traditional drug delivery systems, bacteria and their MVs have unique capabilities as drug carriers for cancer treatment. They can overcome physical barriers to target and accumulate in tumor tissues and initiate antitumor immune responses. Furtherly, they are able to be modified both genetically and chemically, to produce and transport anticancer agents into tumor tissues with improved safety and efficacy of cancer treatment but decreased cytotoxic effects to normal cells. In this review, we present some examples of tumor-targeting bacteria and bacteria-derived MVs for the delivery of anticancer drugs, including chemo-therapeutic, radio-therapeutic, photothermal-therapeutic, and immuno-therapeutic agents. We also discuss the advantages as well as the limitations of these tumor-targeting bacteria and their MVs used as platforms for controlled delivery of anticancer therapeutic agents, and further highlight their great potential on clinical translation.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
28
|
Chen Q, Bai H, Wu W, Huang G, Li Y, Wu M, Tang G, Ping Y. Bioengineering Bacterial Vesicle-Coated Polymeric Nanomedicine for Enhanced Cancer Immunotherapy and Metastasis Prevention. NANO LETTERS 2020; 20:11-21. [PMID: 31858807 DOI: 10.1021/acs.nanolett.9b02182] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We herein propose a bioengineering approach where bacterial outer membrane vesicles (OMVs) were coated on drug-loaded polymeric micelles to generate an innovative nanomedicine for effective cancer immunotherapy and metastasis prevention. Whereas OMVs could activate the host immune response for cancer immunotherapy, the loaded drug within polymeric micelles would exert both chemotherapeutic and immunomodulatory roles to sensitize cancer cells to cytotoxic T lymphocytes (CTLs) and to kill cancer cells directly. We demonstrated that the systemic injection of such a bioinspired immunotherapeutic agent would not only provide effective protective immunity against melanoma occurrence but also significantly inhibited tumor growth in vivo and extended the survival rate of melanoma mice. Importantly, the nanomedicine could also effectively inhibit tumor metastasis to the lung. The bioinspired immunomodulatory nanomedicine we have developed repurposes the bacterial-based formulation for cancer immunotherapy, which also defines a useful bioengineering strategy to the improve current cancer immunotherapeutic agents and delivery systems.
Collapse
Affiliation(s)
- Qi Chen
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Hongzhen Bai
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Wangteng Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Guojun Huang
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Yang Li
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Min Wu
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Guping Tang
- Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310028 , People's Republic of China
| | - Yuan Ping
- College of Pharmaceutical Science , Zhejiang University , Hangzhou 310013 , People's Republic of China
| |
Collapse
|
29
|
Broadway KM, Scharf BE. Salmonella Typhimurium as an Anticancer Therapy: Recent Advances and Perspectives. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019. [DOI: 10.1007/s40588-019-00132-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Chen Y, Ren J, Tian D, Li Y, Jiang H, Zhu J. Polymer–Upconverting Nanoparticle Hybrid Micelles for Enhanced Synergistic Chemo–Photodynamic Therapy: Effects of Emission–Absorption Spectral Match. Biomacromolecules 2019; 20:4044-4052. [DOI: 10.1021/acs.biomac.9b01211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Chen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jingli Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Di Tian
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuce Li
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Hao Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (HUST) of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
31
|
Li A, Zhao J, Fu J, Cai J, Zhang P. Recent advances of biomimetic nano-systems in the diagnosis and treatment of tumor. Asian J Pharm Sci 2019; 16:161-174. [PMID: 33995611 PMCID: PMC8105416 DOI: 10.1016/j.ajps.2019.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022] Open
Abstract
The lack of effective methods of diagnosis and treatment presents a major barrier to combat against tumor. The biomimetic concept is an emerging field that expresses great application potential in tumor fighting. Strategy for combining nano-systems with biomimetic technology has gained increasing attention that is proved bioinspired, environmentally benign, and promising. Herein, we provide an up-to-date review of biomimetic nano-systems as well as their applications in tumor therapy. In addition, the challenges and future directions of biomimetic nano-systems to achieve clinical translation are also pointed out.
Collapse
Affiliation(s)
- Anning Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiawei Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingru Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jia Cai
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
32
|
Zhang L, Wu C, Mu S, Xue W, Ma D. A chemotherapeutic self-sensibilized drug carrier delivering paclitaxel for the enhanced chemotherapy to human breast MDA-MB-231 cells. Colloids Surf B Biointerfaces 2019; 181:902-909. [DOI: 10.1016/j.colsurfb.2019.06.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 06/22/2019] [Indexed: 01/31/2023]
|
33
|
Mi Z, Feng ZC, Li C, Yang X, Ma MT, Rong PF. Salmonella-Mediated Cancer Therapy: An Innovative Therapeutic Strategy. J Cancer 2019; 10:4765-4776. [PMID: 31598148 PMCID: PMC6775532 DOI: 10.7150/jca.32650] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Bacterial-mediated cancer therapy (BMCT) has become a hot topic in the area of antitumor treatment. Salmonella has been recommended to specifically colonize and proliferate inside tumors and even inhibit tumor growth. Salmonella typhimurium (S. typhimurium) is one of the most promising mediators, which can be easily manipulated. S. typhimurium has been engineered and designed as cancer-targeting therapeutics, and can be improved by combining with other therapeutic methods, e.g. chemotherapy and radiotherapy, which regulate the tumor microenvironment synergistically. In view of all these strengths, the engineered attenuated strains have significant advantages for tumor diagnosis and treatment. This treatment has also been approved by the FDA for clinical trial. In this review, we summarized the recent progress and research in the field of Salmonella -mediated cancer therapy.
Collapse
Affiliation(s)
- Ze Mi
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Zhi-Chao Feng
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Cheng Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Xiao Yang
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Meng-Tian Ma
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Peng-Fei Rong
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
34
|
Jazeela K, Chakraborty A, Karunasagar I, Deekshit VK. Nontyphoidal Salmonella: a potential anticancer agent. J Appl Microbiol 2019; 128:2-14. [PMID: 31038778 DOI: 10.1111/jam.14297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
Use of bacteria in cancer therapy, despite being considered as a potent strategy, has not really picked up the way other methods of cancer therapies have evolved. However, in recent years, the interest on use of bacteria to kill cancer cells has renewed considerably. The standard and widely followed strategies of cancer treatment often fail either due to the complexity of tumour biology or because of the accompanying side effects. In contrast, these limitations can be easily overcome in a bacteria-mediated approach. Salmonella is a bacterium, which is known for its ability to colonize solid or semisolid tumours more efficiently than any other bacteria. Among more than 2500 serovars of Salmonella, S. Typhimurium has been widely studied for its antagonistic effects on cancer cells. Here in, we review the current status of the preclinical and the clinical studies with a focus on the mechanisms that attribute the anticancer properties to nontyphoidal Salmonella.
Collapse
Affiliation(s)
- K Jazeela
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - A Chakraborty
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - I Karunasagar
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| | - V K Deekshit
- Nitte University Center for Science Education and Research, Nitte (Deemed to be University), Deralakatte, Mangaluru, Karnataka, India
| |
Collapse
|
35
|
Ma X, Bai S, Zhang X, Ma X, Jia D, Shi X, Shao J, Xue P, Kang Y, Xu Z. Enhanced Tumor Penetration and Chemotherapy Efficiency by Covalent Self-Assembled Nanomicelle Responsive to Tumor Microenvironment. Biomacromolecules 2019; 20:2637-2648. [PMID: 31141665 DOI: 10.1021/acs.biomac.9b00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The physicochemical properties of nanomedicine can be altered with a tumor microenvironment, which influence the precise delivery of drug molecules to the lesion. Thus, the therapeutic efficiency is restrained. Here, a covalent self-assembled nanomicelle (CSNM) based starburst polyprodrug was constructed with the unimolecular micelle-templated self-assembly method and was expected to overcome biological barriers. It aimed to enhance the tumor penetration and chemotherapy efficiency of drugs. In CSNM, a hydrophilic copolymer was glued around a camptothecin (CPT) linked starburst polymeric prodrug [β-CD-P (CPT- co-NH2)] for protecting the positive charge of the prodrug with a reduction-triggered reversibility in conjugation and activity. Then, the complex was tracelessly delivered into a negatively charged cell membrane, leading to enhanced cellular uptake. Finally, the disulfide bond in the CPT prodrug can be broken under the reductive microenvironment within tumor cells and liberated the CPT molecules. Both in vitro and in vivo results demonstrated the benefits of our CSNM system, including high drug loading, controllable drug release, excellent uptake by tumor cells and remarkable antitumor efficiency. In essence, our findings suggested CSNM as an innovative strategy for drug delivery in chemotherapy, producing a competitive versatility in the development of biomedicine.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Shuang Bai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Xiaoli Zhang
- Department of Hematology and Oncology , Shenzhen Children's Hospital , Shenzhen , Guangdong 518038 , People's Republic of China
| | - Xianbin Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Die Jia
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Xiaoxiao Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , People's Republic of China
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| |
Collapse
|
36
|
Mármol I, Quero J, Rodríguez-Yoldi MJ, Cerrada E. Gold as a Possible Alternative to Platinum-Based Chemotherapy for Colon Cancer Treatment. Cancers (Basel) 2019; 11:cancers11060780. [PMID: 31195711 PMCID: PMC6628079 DOI: 10.3390/cancers11060780] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Due to the increasing incidence and high mortality associated with colorectal cancer (CRC), novel therapeutic strategies are urgently needed. Classic chemotherapy against CRC is based on oxaliplatin and other cisplatin analogues; however, platinum-based therapy lacks selectivity to cancer cells and leads to deleterious side effects. In addition, tumor resistance to oxaliplatin is related to chemotherapy failure. Gold(I) derivatives are a promising alternative to platinum complexes, since instead of interacting with DNA, they target proteins overexpressed on tumor cells, thus leading to less side effects than, but a comparable antitumor effect to, platinum derivatives. Moreover, given the huge potential of gold nanoparticles, the role of gold in CRC chemotherapy is not limited to gold(I) complexes. Gold nanoparticles have been found to be able to overcome multidrug resistance along with reduced side effects due to a more efficient uptake of classic drugs. Moreover, the use of gold nanoparticles has enhanced the effect of traditional therapies such as radiotherapy, photothermal therapy, or photodynamic therapy, and has displayed a potential role in diagnosis as a consequence of their optic properties. Herein, we have reviewed the most recent advances in the use of gold(I) derivatives and gold nanoparticles in CRC therapy.
Collapse
Affiliation(s)
- Inés Mármol
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Javier Quero
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - María Jesús Rodríguez-Yoldi
- Department of Pharmacology and Physiology, University of Zaragoza, CIBERobn, IIS Aragón IA2, 50013 Zaragoza, Spain.
| | - Elena Cerrada
- Deparment of Inorganic Chemistry, University of Zaragoza, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, University of Zaragoza-CSIC, 50009 Zaragoza, Spain.
| |
Collapse
|
37
|
Pangilinan CR, Lee CH. Salmonella-Based Targeted Cancer Therapy: Updates on A Promising and Innovative Tumor Immunotherapeutic Strategy. Biomedicines 2019; 7:biomedicines7020036. [PMID: 31052558 PMCID: PMC6630963 DOI: 10.3390/biomedicines7020036] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 12/27/2022] Open
Abstract
Presently, cancer is one of the leading causes of death in the world, primarily due to tumor heterogeneity associated with high-grade malignancy. Tumor heterogeneity poses a tremendous challenge, especially with the emergence of resistance not only to chemo- and radiation- therapies, but also to immunotherapy using monoclonal antibodies. The use of Salmonella, as a highly selective and penetrative antitumor agent, has shown convincing results, thus meriting further investigation. In this review, the mechanisms used by Salmonella in combating cancer are carefully explained. In essence, Salmonella overcomes the suppressive nature of the tumor microenvironment and coaxes the activation of tumor-specific immune cells to induce cell death by apoptosis and autophagy. Furthermore, Salmonella treatment suppresses tumor aggressive behavior via inhibition of angiogenesis and delay of metastatic activity. Thus, harnessing the natural potential of Salmonella in eliminating tumors will provide an avenue for the development of a promising micro-based therapeutic agent that could be further enhanced to address a wide range of tumor types.
Collapse
Affiliation(s)
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
38
|
Fu FF, Zhou BQ, Ouyang ZJ, Wu YL, Zhu JY, Shen MW, Xia JD, Shi XY. Multifunctional Cholesterol-modified Dendrimers for Targeted Drug Delivery to Cancer Cells Expressing Folate Receptors. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2172-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
39
|
Szabady RL, Louissaint C, Lubben A, Xie B, Reeksting S, Tuohy C, Demma Z, Foley SE, Faherty CS, Llanos-Chea A, Olive AJ, Mrsny RJ, McCormick BA. Intestinal P-glycoprotein exports endocannabinoids to prevent inflammation and maintain homeostasis. J Clin Invest 2018; 128:4044-4056. [PMID: 30102254 DOI: 10.1172/jci96817] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 06/19/2018] [Indexed: 01/09/2023] Open
Abstract
Neutrophil influx into the intestinal lumen is a critical response to infectious agents, but is also associated with severe intestinal damage observed in idiopathic inflammatory bowel disease. The chemoattractant hepoxilin A3, an eicosanoid secreted from intestinal epithelial cells by the apically restricted efflux pump multidrug resistance protein 2 (MRP2), mediates this neutrophil influx. Information about a possible counterbalance pathway that could signal the lack of or resolution of an apical inflammatory signal, however, has yet to be described. We now report a system with such hallmarks. Specifically, we identify endocannabinoids as the first known endogenous substrates of the apically restricted multidrug resistance transporter P-glycoprotein (P-gp) and reveal a mechanism, which we believe is novel, for endocannabinoid secretion into the intestinal lumen. Knockdown or inhibition of P-gp reduced luminal secretion levels of N-acyl ethanolamine-type endocannabinoids, which correlated with increased neutrophil transmigration in vitro and in vivo. Additionally, loss of CB2, the peripheral cannabinoid receptor, led to increased pathology and neutrophil influx in models of acute intestinal inflammation. These results define a key role for epithelial cells in balancing the constitutive secretion of antiinflammatory lipids with the stimulated secretion of proinflammatory lipids via surface efflux pumps in order to control neutrophil infiltration into the intestinal lumen and maintain homeostasis in the healthy intestine.
Collapse
Affiliation(s)
- Rose L Szabady
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher Louissaint
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anneke Lubben
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Bailu Xie
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Shaun Reeksting
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Christine Tuohy
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Zachary Demma
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sage E Foley
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christina S Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Alejandro Llanos-Chea
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Randall J Mrsny
- Department of Pharmacy and Pharmacology, University of Bath, Bath, United Kingdom
| | - Beth A McCormick
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
40
|
Xie L, Zhi X, Xiao N, Fang CJ, Yan CH. Constraining the conformation of peptides with Au nanorods to construct multifunctional therapeutic agents with targeting, imaging, and photothermal abilities. RSC Adv 2018; 8:26517-26522. [PMID: 35541046 PMCID: PMC9083084 DOI: 10.1039/c8ra04379e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
We demonstrated an easy-to-use strategy, instead of the tedious cyclization of the peptide backbone, to constrain the freedom of an RGD (arginine, glycine, aspartic acid) sequence with gold nanorods. We further constructed a multifunctional therapeutic agent which showed targeting, application in two-photon photoluminescence imaging, and near-infrared photothermal ability, suggesting the potential of this novel strategy in the development of RGD-containing drugs for biomedical applications.
Collapse
Affiliation(s)
- Linlin Xie
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Xiaomin Zhi
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Chen-Jie Fang
- School of Pharmaceutical Sciences, Capital Medical University Beijing 100069 China
| | - Chun-Hua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
41
|
Zhou B, Xiong Z, Wang P, Peng C, Shen M, Shi X. Acetylated Polyethylenimine-Entrapped Gold Nanoparticles Enable Negative Computed Tomography Imaging of Orthotopic Hepatic Carcinoma. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8701-8707. [PMID: 29958496 DOI: 10.1021/acs.langmuir.8b01669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing an effective computed tomography (CT) contrast agent is still a challenging task for precise diagnosis of hepatic carcinoma (HCC). Here, we present the use of acetylated polyethylenimine (PEI)-entrapped gold nanoparticles (Ac-PE-AuNPs) without antifouling modification for negative CT imaging of HCC. PEI was first linked to fluorescein isothiocyanate (FI) and then utilized as a vehicle for the entrapment of AuNPs. The particles were then acetylated to reduce its positive surface potential. The designed Ac-PE-AuNPs were characterized by various techniques. We find that the Ac-PE-AuNPs with a uniform size distribution (mean diameter = 2.3 nm) are colloidally stable and possess low toxicity in the studied range of concentration. Owing to the fact that the particles without additional antifouling modification were mainly gathered in liver, the Ac-PE-AuNPs could greatly improve the CT contrast enhancement of normal liver, whereas poor CT contrast enhancement appeared in liver necrosis region caused by HCC. As a result, HCC could be easily and precisely diagnosed. The designed Ac-PE-AuNPs were demonstrated to have biocompatibility through in vivo biodistribution and histological studies, hence holding an enormous potential to be adopted as an effective negative CT contrast agent for diagnosis of hepatoma carcinoma.
Collapse
Affiliation(s)
- Benqing Zhou
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Zhijuan Xiong
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Peng Wang
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Chen Peng
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
| | - Mingwu Shen
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Xiangyang Shi
- Department of Radiology, Shanghai Tenth People's Hospital , Tongji University School of Medicine , Shanghai 200072 , P. R. China
- College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
- CQM-Centro de Química da Madeira , Universidade da Madeira , Campus da Penteada , 9020-105 Funchal , Portugal
| |
Collapse
|
42
|
Wang W, Huang S, Yuan J, Xu X, Li H, Lv Z, Yu W, Duan S, Hu Y. Reverse Multidrug Resistance in Human HepG2/ADR by Anti-miR-21 Combined with Hyperthermia Mediated by Functionalized Gold Nanocages. Mol Pharm 2018; 15:3767-3776. [DOI: 10.1021/acs.molpharmaceut.8b00046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Weiping Wang
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Shengnan Huang
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Jinxiu Yuan
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Xin Xu
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Huili Li
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Zhanwei Lv
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yu
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| | - Shaofeng Duan
- College of Pharmacy, Henan University, Jin Ming Avenue, Kaifeng, Henan 475004, P. R. China
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, 1 Construction Road, Zhengzhou 450052, P. R. China
| | - Yurong Hu
- Henan Province Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
- Key Laboratory of Key Technology of Drug Preparation, Ministry of Education, Institute of Drug Discovery & Development, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
43
|
Sun A, Ban Z, Mu L, Hu X. Screening Small Metabolites from Cells as Multifunctional Coatings Simultaneously Improves Nanomaterial Biocompatibility and Functionality. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800341. [PMID: 30027060 PMCID: PMC6051401 DOI: 10.1002/advs.201800341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 04/04/2018] [Indexed: 05/05/2023]
Abstract
Currently, nanomaterials face a dilemma due to their advantageous properties and potential risks to human health. Here, a strategy to improve both nanomaterial biocompatibility and functionality is established by screening small metabolites from cells as nanomaterial coatings. A metabolomics analysis of cells exposed to nanosilver (nAg) integrates volcano plots (t-tests and fold change analysis), partial least squares-discriminant analysis (PLS-DA), and significance analysis of microarrays (SAM) and identifies six metabolites (l-aspartic acid, l-malic acid, myoinositol, d-sorbitol, citric acid, and l-cysteine). The further analysis of cell viability, oxidative stress, and cell apoptosis reveals that d-sorbitol markedly reduces nAg cytotoxicity. Subsequently, small molecule loading, surface oxidation, and ionic release experiments support d-sorbitol as the optimal coating for nAg. Importantly, d-sorbitol loading improves the duration of the antibacterial activity of nAg against Escherichia coli and Staphylococcus aureus. The biocidal persistence of nAg-sorbitol is extended beyond 9 h, and the biocidal effects at 12 h are significantly higher than those of naked nAg. This work proposes a new strategy to improve the biocompatibility and functionality of nAg simultaneously by screening small metabolites from cells as nanomaterial functional coatings, a method that can be applied to mitigate the side effects of other nanomaterials.
Collapse
Affiliation(s)
- Anqi Sun
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution ControlCollege of Environmental Science and EngineeringNankai UniversityTianjin300071China
| | - Zhan Ban
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution ControlCollege of Environmental Science and EngineeringNankai UniversityTianjin300071China
| | - Li Mu
- Tianjin Key Laboratory of Agro‐environment and Safe‐productKey Laboratory for Environmental Factors Control of Agro‐product Quality Safety (Ministry of Agriculture)Institute of Agro‐environmental ProtectionMinistry of AgricultureTianjin300191China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution ControlCollege of Environmental Science and EngineeringNankai UniversityTianjin300071China
| |
Collapse
|
44
|
Upconversion nanocomposite for programming combination cancer therapy by precise control of microscopic temperature. Nat Commun 2018; 9:2176. [PMID: 29872036 PMCID: PMC5988832 DOI: 10.1038/s41467-018-04571-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 05/03/2018] [Indexed: 12/23/2022] Open
Abstract
Combinational administration of chemotherapy (CT) and photothermal therapy (PTT) has been widely used to treat cancer. However, the scheduling of CT and PTT and how it will affect the therapeutic efficacy has not been thoroughly investigated. The challenge is to realize the sequence control of these two therapeutic modes. Herein, we design a temperature sensitive upconversion nanocomposite for CT-PTT combination therapy. By monitoring the microscopic temperature of the nanocomposite with upconversion luminescence, photothermal effect can be adjusted to achieve thermally triggered combination therapy with a sequence of CT, followed by PTT. We find that CT administered before PTT results in better therapeutic effect than other administration sequences when the dosages of chemodrug and heat are kept at the same level. This work proposes a programmed method to arrange the process of combination cancer therapy, which takes full advantage of each therapeutic mode and contributes to the development of new cancer therapy strategies. The combination of chemo and photothermal therapy is widely used to treat cancer but control of chemo and thermal effects is needed for optimized treatment. Here, the authors describe an upconversion nanoparticle which can be used for controlled sequential treatment by controlling laser power.
Collapse
|
45
|
Huang Y, Fuksman L, Zheng J. Luminescence mechanisms of ultrasmall gold nanoparticles. Dalton Trans 2018; 47:6267-6273. [PMID: 29594274 DOI: 10.1039/c8dt00420j] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The past decade has witnessed a burst of study on ultrasmall gold nanoparticles. Unlike semiconductor quantum dots, ultrasmall gold nanoparticles have very diverse emission mechanisms, which are often involved in many structural factors such as size, valence state, surface ligands and crystallinity. In this frontier, we summarize our latest advancement in the fundamental understanding of emission mechanisms of ultrasmall gold nanoparticles, which are expected to help us more precisely control their emissions and broaden their applications from energy technologies to disease detection.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA.
| | | | | |
Collapse
|
46
|
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700513. [PMID: 29721408 PMCID: PMC5908359 DOI: 10.1002/advs.201700513] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/19/2017] [Indexed: 05/08/2023]
Abstract
Polysaccharides or polymeric carbohydrate molecules are long chains of monosaccharides that are linked by glycosidic bonds. The naturally based structural materials are widely applied in biomedical applications. This article covers four different types of polysaccharides (i.e., alginate, chitosan, hyaluronic acid, and dextran) and emphasizes their chemical modification, preparation approaches, preclinical studies, and clinical translations. Different cargo fabrication techniques are also presented in the third section. Recent progresses in preclinical applications are then discussed, including tissue engineering and treatment of diseases in both therapeutic and monitoring aspects. Finally, clinical translational studies with ongoing clinical trials are summarized and reviewed. The promise of new development in nanotechnology and polysaccharide chemistry helps clinical translation of polysaccharide-based drug delivery systems.
Collapse
Affiliation(s)
- Tianxin Miao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- School of Chemical & Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Collaborative Innovation Center of Guangxi Biological Medicine and theMedical and Scientific Research CenterGuangxi Medical UniversityNanning530021China
| | - Yun Zeng
- Department of PharmacologyXiamen Medical CollegeXiamen361008China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell BiologySchool of Life SciencesXiamen UniversityXiamen361102China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and The MOE Key Laboratory of Spectrochemical Analysis & InstrumentationCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and NanomedicineNational Institute of Biomedical Imaging and BioengineeringNational Institutes of HealthBethesdaMD20892USA
| |
Collapse
|
47
|
Yang CJ, Chang WW, Lin ST, Chen MC, Lee CH. Salmonella Overcomes Drug Resistance in Tumor through P-glycoprotein Downregulation. Int J Med Sci 2018; 15:574-579. [PMID: 29725247 PMCID: PMC5930458 DOI: 10.7150/ijms.23285] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023] Open
Abstract
Chemotherapy is one of effective methods for the treatment of tumor. Patients often develop drug resistance after chemotherapic cycles. Salmonella has potential as antitumor agent. Salmonella used in tandem with chemotherapy had additive effects, providing a rationale for using tumor-targeting Salmonella in combination with conventional chemotherapy. To improve the efficacy and safety of Salmonella, a further understanding of Salmonella interactions with the tumor microenvironment is required. The presence of plasma membrane multidrug resistance protein P-glycoprotein (P-gp) is highly relevant for the success of chemotherapy. Following Salmonella infection, dose-dependent downregulation of P-gp expressions were examined. Salmonella significantly decreased the efflux capabilities of P-gp, as based on the influx of Rhodamine 123 assay. In addition, Salmonella significant reduced the protein express the expression levels of phosph-protein kinase B (P-AKT), phosph-mammalian targets of rapamycin (P-mTOR), and phosph-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells. The Salmonella-induced downregulation of P-gp was rescued by transfection of cells with active P-AKT. Our results demonstrate that Salmonella in tumor sites leads to decrease the expression of P-gp and enhances the combination of Salmonella and 5-Fluorouracil therapeutic effects.
Collapse
Affiliation(s)
- Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Taiwan
| | - Wen-Wei Chang
- Department of Biomedical Sciences, College of Medical Science and Technology, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Song-Tao Lin
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Man-Chin Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
48
|
Lan C, Zhao S. Self-assembled nanomaterials for synergistic antitumour therapy. J Mater Chem B 2018; 6:6685-6704. [DOI: 10.1039/c8tb01978a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent progress on self-assembled nanodrugs for anticancer treatment was discussed.
Collapse
Affiliation(s)
- Chuanqing Lan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- Guangxi Normal University
- Guilin
- China
| |
Collapse
|
49
|
Felgner S, Kocijancic D, Frahm M, Heise U, Rohde M, Zimmermann K, Falk C, Erhardt M, Weiss S. Engineered Salmonella enterica serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncoimmunology 2017; 7:e1382791. [PMID: 29308303 PMCID: PMC5749626 DOI: 10.1080/2162402x.2017.1382791] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 01/19/2023] Open
Abstract
Cancer is one of the leading causes of death in the industrialized world and represents a tremendous social and economic burden. As conventional therapies fail to provide a sustainable cure for most cancer patients, the emerging unique immune therapeutic approach of bacteria-mediated tumor therapy (BMTT) is marching towards a feasible solution. Although promising results have been obtained with BMTT using various preclinical tumor models, for advancement a major concern is immunity against the bacterial vector itself. Pre-exposure to the therapeutic agent under field conditions is a reasonable expectation and may limit the therapeutic efficacy of BMTT. In the present study, we investigated the therapeutic potential of Salmonella and E. coli vector strains in naïve and immunized tumor bearing mice. Pre-exposure to the therapeutic agent caused a significant aberrant phenotype of the microenvironment of colonized tumors and limited the in vivo efficacy of established BMTT vector strains Salmonella SL7207 and E. coli Symbioflor-2. Using targeted genetic engineering, we generated the optimized auxotrophic Salmonella vector strain SF200 (ΔlpxR9 ΔpagL7 ΔpagP8 ΔaroA ΔydiV ΔfliF) harboring modifications in Lipid A and flagella synthesis. This combination of mutations resulted in an increased immune-stimulatory capacity and as such the strain was able to overcome the efficacy-limiting effects of pre-exposure. Thus, we conclude that any limitations of BMTT concerning anti-bacterial immunity may be countered by strategies that optimize the immune-stimulatory capacity of the attenuated vector strains.
Collapse
Affiliation(s)
- Sebastian Felgner
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Dino Kocijancic
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Michael Frahm
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Ulrike Heise
- Mouse-Pathology Service Unit, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | | | - Christine Falk
- Institute of Transplant Immunology, Medical School Hannover, Hannover, Hessia, Germany
| | - Marc Erhardt
- Infection Biology of Salmonella, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Lower Saxony, Germany
- Institute of Immunology, Medical School Hannover, Hannover, Lower Saxony, Germany
| |
Collapse
|
50
|
Xiang D, Shigdar S, Bean AG, Bruce M, Yang W, Mathesh M, Wang T, Yin W, Tran PHL, Shamaileh HA, Barrero RA, Zhang PZ, Li Y, Kong L, Liu K, Zhou SF, Hou Y, He A, Duan W. Transforming doxorubicin into a cancer stem cell killer via EpCAM aptamer-mediated delivery. Am J Cancer Res 2017; 7:4071-4086. [PMID: 29158811 PMCID: PMC5694998 DOI: 10.7150/thno.20168] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/25/2017] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy-resistant cancer stem cells (CSCs) are a major obstacle to the effective treatment of many forms of cancer. To overcome CSC chemo-resistance, we developed a novel system by conjugating a CSC-targeting EpCAM aptamer with doxorubicin (Apt-DOX) to eliminate CSCs. Incubation of Apt-DOX with colorectal cancer cells resulted in high concentration and prolonged retention of DOX in the nuclei. Treatment of tumour-bearing xenograft mice with Apt-DOX resulted in at least 3-fold more inhibition of tumour growth and longer survival as well as a 30-fold lower frequency of CSC and a prolonged longer tumourigenic latency compared with those receiving the same dose of free DOX. Our data demonstrate that a CSC-targeting aptamer is able to transform a conventional chemotherapeutic agent into a CSC-killer to overcome drug resistance in solid tumours.
Collapse
|