1
|
Zhu M, Wang X, Zhao H, Wang Z. Update on R-loops in genomic integrity: Formation, functions, and implications for human diseases. Genes Dis 2025; 12:101401. [PMID: 40271193 PMCID: PMC12017992 DOI: 10.1016/j.gendis.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 04/25/2025] Open
Abstract
R-loops, three-strand nucleic acid structures, have emerged as crucial players in various physiological processes, including the regulation of gene expression, DNA replication, and class switch recombination. However, their presence also poses a significant threat to genome stability. A particularly challenging aspect is understanding the dynamic balance between R-loops' "light" and "dark" sites, especially concerning maintaining genome integrity. The complex and multifaceted roles of R-loops in genome stability necessitate a deeper understanding. This review offers a comprehensive exploration of the formation, resolution, and implications of R-loops, particularly in the context of DNA damage and human disease. We delve into the dualistic nature of R-loops, highlighting their role in DNA damage response and repair, and discuss the therapeutic potential arising from our evolving understanding of these enigmatic entities. Emphasizing recent advancements and unresolved questions, this review aims to provide a cohesive overview of R-loops, inviting further inquiry and investigation into their complex biological significance.
Collapse
Affiliation(s)
- Min Zhu
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xinyu Wang
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hongchang Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| |
Collapse
|
2
|
Khalife M, Jia T, Caron P, Shreim A, Genoux A, Cristini A, Pucciarelli A, Leverve M, Lepeltier N, García-Rodríguez N, Dalonneau F, Ramachandran S, Fernandez Martinez L, Marcion G, Lemaitre N, Brambilla E, Garrido C, Hammond E, Huertas P, Gazzeri S, Sordet O, Eymin B. SRSF2 overexpression induces transcription-/replication-dependent DNA double-strand breaks and interferes with DNA repair pathways to promote lung tumor progression. NAR Cancer 2025; 7:zcaf011. [PMID: 40181846 PMCID: PMC11963763 DOI: 10.1093/narcan/zcaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 02/04/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
SRSF2 (serine/arginine-rich splicing factor 2) is a critical regulator of pre-messenger RNA splicing, which also plays noncanonical functions in transcription initiation and elongation. Although elevated levels of SRSF2 are associated with advanced stages of lung adenocarcinoma (LUAD), the mechanisms connecting SRSF2 to lung tumor progression remain unknown. We show that SRSF2 overexpression increases global transcription and replicative stress in LUAD cells, which correlates with the production of DNA damage, notably double-strand breaks (DSBs), likely resulting from conflicts between transcription and replication. Moreover, SRSF2 regulates DNA repair pathways by promoting homologous recombination and inhibiting nonhomologous end joining. Mechanistically, SRSF2 interacts with and enhances MRE11 (meiotic recombination 11) recruitment to chromatin, while downregulating 53BP1 messenger RNA and protein levels. Both events are likely contributing to SRSF2-mediated DNA repair process rerouting. Lastly, we show that SRSF2 and MRE11 expression is commonly elevated in LUAD and predicts poor outcome of patients. Altogether, our results identify a mechanism by which SRSF2 overexpression promotes lung cancer progression through a fine control of both DSB production and repair. Finally, we show that SRSF2 knockdown impairs late repair of ionizing radiation-induced DSBs, suggesting a more global function of SRSF2 in DSB repair by homologous recombination.
Collapse
Affiliation(s)
- Manal Khalife
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Tao Jia
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Pierre Caron
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Amani Shreim
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Aurelie Genoux
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Agnese Cristini
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Amelie Pucciarelli
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Marie Leverve
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Nina Lepeltier
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Néstor García-Rodríguez
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla 41092, Spain
| | - Fabien Dalonneau
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Shaliny Ramachandran
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Lara Fernandez Martinez
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Guillaume Marcion
- INSERM, UMR1231, Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon F21000, France
| | - Nicolas Lemaitre
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Team Tumor Molecular Pathology and Biomarkers, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Elisabeth Brambilla
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Team Tumor Molecular Pathology and Biomarkers, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Carmen Garrido
- INSERM, UMR1231, Faculty of Medicine and Pharmacy, Université de Bourgogne Franche-Comté, Dijon F21000, France
| | - Ester M Hammond
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Pablo Huertas
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Sevilla 41080, Spain; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla/CSIC, Sevilla 41092, Spain
| | - Sylvie Gazzeri
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| | - Olivier Sordet
- Cancer Research Center of Toulouse (CRCT), INSERM, Université de Toulouse, CNRS, Toulouse 31037, France
| | - Beatrice Eymin
- University Grenoble Alpes, INSERM U1209, CNRS UMR5309, Team RNA Splicing, Cell Signaling and Response to Therapies, Institute for Advanced Biosciences, Grenoble F38000, France
| |
Collapse
|
3
|
Smith SJ, Meng F, Lingeman RG, Li CM, Li M, Boneh G, Seppälä TT, Phan T, Li H, Burkhart RA, Parekh V, Rahmanuddin S, Melstrom LG, Hickey RJ, Chung V, Liu Y, Malkas LH, Raoof M. Therapeutic Targeting of Oncogene-induced Transcription-Replication Conflicts in Pancreatic Ductal Adenocarcinoma. Gastroenterology 2025:S0016-5085(25)00533-5. [PMID: 40209809 DOI: 10.1053/j.gastro.2025.02.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND AND AIMS Transcription-replication conflicts (TRCs) are a key source of replication stress in cancer, with pancreatic ductal adenocarcinoma (PDAC) showing uniquely high levels. This study investigated the mechanism, oncogene dependency, subtype specificity, and preclinical activity of the TRC-targeting molecule AOH1996 in PDAC models. Initial clinical evidence of AOH1996 activity in patients with PDAC is also provided. METHODS The oncogene-dependent toxicity of AOH1996 was studied in KRAS(G12D)-inducible systems. Its effects on replication fork progression, TRCs, DNA damage, cell cycle, and apoptosis were assessed in PDAC cell lines. Subtype-specific responses were tested in organoids, and in vivo efficacy was evaluated using murine and patient-derived xenografts. Clinical activity was measured through radiographic response and progression-free survival in patients. RESULTS AOH1996 exhibited dose-dependent cytotoxicity reliant on KRAS(G12D) induction (average half maximal inhibitory concentration: 0.93 μM). It inhibited replication fork progression and induced TRCs by enhancing interactions between RNA Polymerase II and proliferating cell nuclear antigen, causing transcription-dependent DNA damage and transcription shutdown. Organoids with high replication stress were most sensitive (half maximal inhibitory concentration: 406 nM-2 μM). In mouse models, AOH1996 reduced tumor growth, induced tumor-selective DNA damage, and prolonged survival (median 14 vs 21 days, P = .04) without toxicity. Two patients with chemotherapy-refractory PDAC treated with AOH1996 showed up to 49% tumor shrinkage in hepatic metastases. CONCLUSIONS AOH1996 safely and effectively targets TRCs in preclinical PDAC models, with initial clinical evidence supporting its potential for treating chemotherapy-refractory PDAC. Further clinical development is warranted.
Collapse
Affiliation(s)
- Shanna J Smith
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| | - Fan Meng
- Department of Surgery, City of Hope Cancer Center, Duarte, California
| | - Robert G Lingeman
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| | - Caroline M Li
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| | - Min Li
- Department of Cancer Genetics and Epigenetics, City of Hope Cancer Center, Duarte, California
| | - Galyah Boneh
- Department of Surgery, City of Hope Cancer Center, Duarte, California
| | - Toni T Seppälä
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gastroenterology and Alimentary Tract Surgery and TAYS Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Thuy Phan
- Department of Surgery, City of Hope Cancer Center, Duarte, California
| | - Haiqing Li
- Integrative Genomic Core, Beckman Research Institute of City of Hope, Duarte, California
| | - Richard A Burkhart
- Division of Hepatobiliary and Pancreatic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Vishwas Parekh
- Department of Pathology, City of Hope Cancer Center, Duarte, California
| | - Syed Rahmanuddin
- Department of Radiology, City of Hope Cancer Center, Duarte, California
| | - Laleh G Melstrom
- Department of Surgery, City of Hope Cancer Center, Duarte, California
| | - Robert J Hickey
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California
| | - Vincent Chung
- Department of Medical Oncology, City of Hope Cancer Center, Duarte, California
| | - Yilun Liu
- Department of Cancer Genetics and Epigenetics, City of Hope Cancer Center, Duarte, California
| | - Linda H Malkas
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California
| | - Mustafa Raoof
- Department of Surgery, City of Hope Cancer Center, Duarte, California; Department of Cancer Genetics and Epigenetics, City of Hope Cancer Center, Duarte, California.
| |
Collapse
|
4
|
Helleux A, Davidson G, Lallement A, Hourani FA, Haller A, Michel I, Fadloun A, Thibault-Carpentier C, Su X, Lindner V, Tricard T, Lang H, Tannir NM, Davidson I, Malouf GG. TFE3 fusions drive oxidative metabolism and ferroptosis resistance in translocation renal cell carcinoma. EMBO Mol Med 2025:10.1038/s44321-025-00221-7. [PMID: 40148585 DOI: 10.1038/s44321-025-00221-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
The oncogenic mechanisms by which TFE3 fusion proteins drive translocation renal cell carcinoma (tRCC) are poorly characterized. Here, we integrated loss and gain of function experiments with multi-omics analyses in tRCC cell lines and patient tumors. High nuclear accumulation of NONO-TFE3 or PRCC-TFE3 fusion proteins promotes their broad binding across the genome at H3K27ac-marked active chromatin, engaging a core set of M/E-box-containing regulatory elements to activate specific gene expression programs as well as promiscuous binding to active promoters to stimulate mRNA synthesis. Within the core program, TFE3 fusions directly regulate genes involved in ferroptosis resistance and oxidative phosphorylation metabolism (OxPhos). Consequently, human tRCC tumors display high OxPhos scores that persist during their epithelial to mesenchymal transition (EMT). We further show that tRCC tumor aggressiveness is related to their EMT and their associated enrichment in myofibroblast cancer-associated fibroblasts (myCAFs) that are both hallmarks of poor prognostic outcomes. We define tRCC as a novel metabolic subtype of renal cancer and provide unique insights into how broad genomic binding of TFE3 fusion proteins regulates OxPhos and ferroptosis resistance.
Collapse
Affiliation(s)
- Alexandra Helleux
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Guillaume Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Antonin Lallement
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Fatima Al Hourani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Alexandre Haller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Isabelle Michel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Anas Fadloun
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Christelle Thibault-Carpentier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Xiaoping Su
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Véronique Lindner
- Department of Pathology, Strasbourg University Hospital, Strasbourg, France
| | - Thibault Tricard
- Department of Urology, Strasbourg University Hospital, Strasbourg, France
| | - Hervé Lang
- Department of Urology, Strasbourg University Hospital, Strasbourg, France
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center Houston, Houston, TX, USA
| | - Irwin Davidson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| | - Gabriel G Malouf
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, BP 163, 67404, Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
- Department of Medical Oncology, Institut de Cancérologie de Strasbourg-Europe, Strasbourg, France.
| |
Collapse
|
5
|
Uchibori Y, Suekuni M, Kokaji Y, Yoshida K, Kiyono T, Kasahara Y, Fujita M. AmNA-Modified Antisense Oligonucleotide Targeting MCM8 as a Cancer-Specific Chemosensitizer for Platinum Compounds. Cancer Sci 2025. [PMID: 40098305 DOI: 10.1111/cas.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 03/19/2025] Open
Abstract
MCM8 and MCM9 participate in homologous recombination with long-tract gene conversion to repair double-strand breaks caused by replication stress, which is generally higher in cancer cells than in normal cells. MCM8 is highly expressed in certain cancer cells, where it is necessary for maintaining cell growth, migration, and invasion, although the molecular mechanisms remain unclear. Knockdown with siRNAs or knockout of MCM8 or MCM9 selectively sensitizes cancer cells to cisplatin. Thus, drugs inhibiting MCM8 or MCM9 could serve as novel anti-neoplastic agents and/or chemosensitizers that selectively sensitize cancer cells to platinum compounds. The present study describes the development of an amido-bridged nucleic acid (AmNA)-modified gapmer antisense oligonucleotide (ASO) targeting MCM8, called ASO 8-3419. In vitro, ASO 8-3419 inhibited MCM8 expression in several human cell lines and selectively sensitized cancer cells to cisplatin. Moreover, ASO 8-3419 modestly suppressed the growth of several cancer cell lines whose proliferation has been reported to depend on MCM8. In vivo, ASO 8-3419 inhibited the expression of MCM8 in xenografted tumors of colon cancer-derived HCT116 cells in nude mice and increased tumor sensitivity to cisplatin with minimal toxicity. These findings suggest that AmNA-modified, MCM8-specific ASOs hold promise as novel anti-cancer agents.
Collapse
Affiliation(s)
- Yuki Uchibori
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Masaki Suekuni
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yuko Kokaji
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-Related Cancer, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa, Chiba, Japan
| | - Yuuya Kasahara
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
6
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Werner M, Trauner M, Schauer T, Ummethum H, Márquez-Gómez E, Lalonde M, Lee CSK, Tsirkas I, Sajid A, Murriello AC, Längst G, Hamperl S. Transcription-replication conflicts drive R-loop-dependent nucleosome eviction and require DOT1L activity for transcription recovery. Nucleic Acids Res 2025; 53:gkaf109. [PMID: 39988315 PMCID: PMC11840560 DOI: 10.1093/nar/gkaf109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/31/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025] Open
Abstract
Progressing transcription and replication machineries profoundly impact their underlying chromatin template. Consequently, transcription-replication conflict (TRC) sites are vulnerable to chromatin and epigenome alterations, provoking genome instability. Here, we engineered an inducible TRC reporter system using a genome-integrated R-loop-prone sequence and characterized the dynamic changes of the local chromatin structure inflicted by TRCs, leading to reduced nucleosome occupancy and replication fork blockage. Strikingly, inducing a small number of TRCs on the genome results in a measurable global replication stress response. Furthermore, we find a TRC-dependent increase in H3K79 methylation specifically at the R-loop forming TRC site. Accordingly, inhibition of the H3K79 methyltransferase DOT1L leads to reduced transcriptional output and an exacerbated DNA damage response, suggesting that deposition of this mark is required for effective transcription recovery and resolution of TRCs. Our work shows the molecular dynamics and reveals a specific epigenetic modifier bookmarking TRC sites, relevant to cancer and other diseases.
Collapse
Affiliation(s)
- Marcel Werner
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Manuel Trauner
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Tamas Schauer
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Henning Ummethum
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Elizabeth Márquez-Gómez
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Maxime Lalonde
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Ioannis Tsirkas
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Atiqa Sajid
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Augusto C Murriello
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| | - Gernot Längst
- Biochemistry Center Regensburg, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Munich, Feodor-Lynen-Strasse 21, 81377 München, Germany
| |
Collapse
|
8
|
Reinschmidt A, Solano L, Chavez Y, Hulsy WD, Nikolaidis N. Transcriptomics Unveil Canonical and Non-Canonical Heat Shock-Induced Pathways in Human Cell Lines. Int J Mol Sci 2025; 26:1057. [PMID: 39940831 PMCID: PMC11816735 DOI: 10.3390/ijms26031057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/20/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
The cellular stress response (CSR) is a conserved mechanism that protects cells from -environmental and physiological stressors. The heat shock response (HSR), a critical component of the CSR, utilizes molecular chaperones to mitigate proteotoxic stress caused by elevated temperatures. We hypothesized that while the canonical HSR pathways are conserved across cell types, specific cell lines may exhibit unique transcriptional responses to heat shock. To test this, we compared the transcriptomic responses of HEK293, HepG2, and HeLa cells under control conditions immediately following heat shock and after an 8-h recovery period. RNA sequencing revealed the conserved activation of canonical HSR pathways, including the unfolded protein response, alongside the -enrichment of the non-canonical "Receptor Ligand Activity" pathway across all cell lines. Cell-line-specific variations were observed, with HepG2 cells exhibiting significantly higher ex-pression levels of certain genes compared to other cell lines under stress conditions, as well as greater fold changes in gene expression relative to its control conditions. Validation by qPCR confirmed the activation of key genes within the "Receptor Ligand Activity" pathway across time points. These findings provide insights into conserved and context-specific aspects of the HSR, contributing to a more comprehensive understanding of stress response mechanisms across mammalian cells.
Collapse
Affiliation(s)
- Andrew Reinschmidt
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (A.R.); (L.S.); (Y.C.); (W.D.H.)
| | - Luis Solano
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (A.R.); (L.S.); (Y.C.); (W.D.H.)
| | - Yonny Chavez
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (A.R.); (L.S.); (Y.C.); (W.D.H.)
| | - William Drew Hulsy
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (A.R.); (L.S.); (Y.C.); (W.D.H.)
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, and Center for Computational and Applied Mathematics, California State University Fullerton, Fullerton, CA 92831, USA; (A.R.); (L.S.); (Y.C.); (W.D.H.)
| |
Collapse
|
9
|
Das S, Samaddar S. Recent Advances in the Clinical Translation of Small-Cell Lung Cancer Therapeutics. Cancers (Basel) 2025; 17:255. [PMID: 39858036 PMCID: PMC11764476 DOI: 10.3390/cancers17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Small-cell lung cancer (SCLC) is a recalcitrant form of cancer, representing 15% of lung cancer cases globally. SCLC is classified within the range of neuroendocrine pulmonary neoplasms, exhibiting shared morphologic, ultrastructural, immunohistochemical, and molecular genomic features. It is marked by rapid proliferation, a propensity for early metastasis, and an overall poor prognosis. The current conventional therapies involve platinum-etoposide-based chemotherapy in combination with immunotherapy. Nonetheless, the rapid emergence of therapeutic resistance continues to pose substantial difficulties. The genomic profiling of SCLC uncovers significant chromosomal rearrangements along with a considerable mutation burden, typically involving the functional inactivation of the tumor suppressor genes TP53 and RB1. Identifying biomarkers and evaluating new treatments is crucial for enhancing outcomes in patients with SCLC. Targeted therapies such as topoisomerase inhibitors, DLL3 inhibitors, HDAC inhibitors, PARP inhibitors, Chk1 inhibitors, etc., have introduced new therapeutic options for future applications. In this current review, we will attempt to outline the key molecular pathways that play a role in the development and progression of SCLC, together with a comprehensive overview of the most recent advancements in the development of novel targeted treatment strategies, as well as some ongoing clinical trials against SCLC, with the goal of improving patient outcomes.
Collapse
Affiliation(s)
- Subhadeep Das
- Department of Biochemistry, Purdue University, BCHM A343, 175 S. University Street, West Lafayette, IN 47907, USA
- Purdue University Institute for Cancer Research, Purdue University, Hansen Life Sciences Research Building, Room 141, 201 S. University Street, West Lafayette, IN 47907, USA
| | | |
Collapse
|
10
|
Kawai-Kawachi A, Lenormand MM, Astier C, Herbel N, Cutrona MB, Ngo C, Garrido M, Eychenne T, Dorvault N, Bordelet L, Song F, Bouyakoub R, Loktev A, Romo-Morales A, Henon C, Colmet-Daage L, Vibert J, Drac M, Brough R, Schwob E, Martella O, Pinna G, Shipley JM, Mittnacht S, Zimmermann A, Gulati A, Mir O, Le Cesne A, Faron M, Honoré C, Lord CJ, Chabanon RM, Postel-Vinay S. Replication Stress Is an Actionable Genetic Vulnerability in Desmoplastic Small Round Cell Tumors. Cancer Res 2025; 85:154-170. [PMID: 39412947 DOI: 10.1158/0008-5472.can-23-3603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 07/10/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024]
Abstract
Desmoplastic small round cell tumor (DSRCT) is an aggressive sarcoma subtype that is driven by the EWS-WT1 chimeric transcription factor. The prognosis for DSRCT is poor, and major advances in treating DSRCT have not occurred for over two decades. To identify effective therapeutic approaches to target DSRCT, we conducted a high-throughput drug sensitivity screen in a DSRCT cell line assessing chemosensitivity profiles for 79 small-molecule inhibitors. DSRCT cells were sensitive to PARP inhibitors (PARPi) and ataxia-telangiectasia and Rad3-related inhibitors (ATRi), as monotherapies and in combination. These effects were recapitulated using multiple clinical PARPi and ATRi in three biologically distinct, clinically relevant models of DSRCT, including cell lines, a patient-derived xenograft-derived organoid model, and a cell line-derived xenograft mouse model. Mechanistically, exposure to a combination of PARPi and ATRi caused increased DNA damage, G2-M checkpoint activation, micronuclei accumulation, replication stress, and R-loop formation. EWS-WT1 silencing abrogated these phenotypes and was epistatic with exogenous expression of the R-loop resolution enzyme RNase H1 in reversing sensitivity to PARPi and ATRi monotherapies. The combination of PARPi and ATRi also induced EWS-WT1-dependent cell-autonomous activation of the cyclic GMP-AMP synthase-stimulator of IFN genes innate immune pathway and cell-surface expression of PD-L1. Taken together, these findings point toward a role for EWS-WT1 in generating R-loop-dependent replication stress that leads to a targetable vulnerability, providing a rationale for the clinical assessment of PARPi and ATRi in DSRCT. Significance: EWS-WT1, the unique oncogenic driver of desmoplastic small round cell tumors, confers sensitivity to PARP and ATR inhibitors, supporting the potential of these drugs in treating patients with this aggressive sarcoma subtype.
Collapse
Affiliation(s)
- Asuka Kawai-Kawachi
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Cancer RNA Research Unit, National Cancer Center Research Institute, Tokyo, Japan
| | - Madison M Lenormand
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Department of Genomes and Genetics, Institut Pasteur, CNRS UMR3525, Paris, France
| | - Clémence Astier
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Noé Herbel
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- Viroxis SAS Biotech, Gustave Roussy, Villejuif, France
| | | | - Carine Ngo
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Thomas Eychenne
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Nicolas Dorvault
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Laetitia Bordelet
- Experimental and Translational Pathology (PETRA) Platform, AMMICa Unit (CNRS Unit UMS 3655, Inserm Unit US 23), Gustave Roussy, Villejuif, France
| | - Feifei Song
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Ryme Bouyakoub
- Organoid Core Facility, Gustave Roussy, Villejuif, France
| | - Anastasia Loktev
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Antonio Romo-Morales
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Henon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Julien Vibert
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Marjorie Drac
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | - Rachel Brough
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Etienne Schwob
- Institute of Molecular Genetics, CNRS Unit UMR 5535, Université de Montpellier, Montpellier, France
| | | | - Guillaume Pinna
- RNA Interference Platform PARi, IRCM/IBFJ/CEA UMRE008, Fontenay-aux-Roses, France
| | - Janet M Shipley
- Sarcoma Molecular Pathology Team, Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom
| | - Sibylle Mittnacht
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Astrid Zimmermann
- Research Unit Oncology, The Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Aditi Gulati
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Olivier Mir
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | - Axel Le Cesne
- Sarcoma Committee, Gustave Roussy, Villejuif, France
| | | | | | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Roman M Chabanon
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Sophie Postel-Vinay
- The ATIP-Avenir Inserm and ERC StG (Epi)genetic Vulnerabilities in Solid Tumors and Sarcoma Laboratory, Inserm Unit UMR 981, Université Paris-Saclay, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, Université Paris-Sud XI, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
- Sarcoma Committee, Gustave Roussy, Villejuif, France
- UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Ouyang J. Transcription as a double-edged sword in genome maintenance. FEBS Lett 2025; 599:147-156. [PMID: 39704019 DOI: 10.1002/1873-3468.15080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/21/2024]
Abstract
Genome maintenance is essential for the integrity of the genetic blueprint, of which only a small fraction is transcribed in higher eukaryotes. DNA lesions occurring in the transcribed genome trigger transcription pausing and transcription-coupled DNA repair. There are two major transcription-coupled DNA repair pathways. The transcription-coupled nucleotide excision repair (TC-NER) pathway has been well studied for decades, while the transcription-coupled homologous recombination repair (TC-HR) pathway has recently gained attention. Importantly, recent studies have uncovered crucial roles of RNA transcripts in TC-HR, opening exciting directions for future research. Transcription also plays pivotal roles in regulating the stability of highly specialized genomic structures such as telomeres, centromeres, and fragile sites. Despite their positive function in genome maintenance, transcription and RNA transcripts can also be the sources of genomic instability, especially when colliding with DNA replication and forming unscheduled pathological RNA:DNA hybrids (R-loops), respectively. Pathological R-loops can result from transcriptional stress, which may be induced by transcription dysregulation. Future investigation into the interplay between transcription and DNA repair will reveal novel molecular bases for genome maintenance and transcriptional stress-associated genomic instability, providing therapeutic targets for human disease intervention.
Collapse
Affiliation(s)
- Jian Ouyang
- Department of Biochemistry and Molecular Biology
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
12
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
13
|
Chen YY, Sullivan J, Hanley S, Price J, Tariq MA, McIlvenna LC, Whitham M, Sharma-Oates A, Harrison P, Lord JM, Hazeldine J. Impact of Senescent Cell-Derived Extracellular Vesicles on Innate Immune Cell Function. Adv Biol (Weinh) 2024; 8:e2400265. [PMID: 39441562 DOI: 10.1002/adbi.202400265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/10/2024] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are components of the senescence-associated secretory phenotype (SASP) that influence cellular functions via their cargo. Here, the interaction between EVs derived from senescent (SEVs) and non-senescent (N-SEVs) fibroblasts and the immune system is investigated. Via endocytosis, SEVs are phagocytosed by monocytes, neutrophils, and B cells. Studies with the monocytic THP-1 cell line find that pretreatment with SEVs results in a 32% (p < 0.0001) and 66% (p < 0.0001) increase in lipopolysaccharide (LPS)-induced tumor necrosis factor-alpha (TNF-α) production when compared to vehicle control or N-SEVs respectively. Interestingly, relative to vehicle control, THP-1 cells exposed to N-SEVs exhibit a 20% decrease in TNF-α secretion (p < 0.05). RNA sequencing reveals significant differences in gene expression in THP-1 cells treated with SEVs or N-SEVs, with vesicle-mediated transport and cell cycle regulation pathways featuring predominantly with N-SEV treatment, while pathways relating to SLITS/ROBO signaling, cell metabolism, and cell cycle regulation are enriched in THP-1 cells treated with SEVs. Proteomic analysis also reveals significant differences between SEV and N-SEV cargo. These results demonstrate that phagocytes and B cells uptake SEVs and drive monocytes toward a more proinflammatory phenotype upon LPS stimulation. SEVs may therefore contribute to the more proinflammatory immune response seen with aging.
Collapse
Affiliation(s)
- Yung-Yi Chen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jack Sullivan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| | - Shaun Hanley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Joshua Price
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mohammad A Tariq
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke C McIlvenna
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
| | - Martin Whitham
- School of Sport, Exercise and Rehabilitation Science, University of Birmingham, Birmingham, B15 2TT, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Janet M Lord
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, B15 2TT, UK
- NIHR Birmingham Biomedical Research Centre, University Hospital Birmingham and University of Birmingham, Birmingham, B15 2TH, UK
| | - Jon Hazeldine
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
- Scar Free Foundation Centre for Conflict Wound Research, University Hospitals Birmingham, Birmingham, B15 2GW, UK
| |
Collapse
|
14
|
Técher H, Kemiha S, Aobuli X, Kolinjivadi AM. Oncogenic RAS in Cancers from the DNA Replication Stress and Senescence Perspective. Cancers (Basel) 2024; 16:3993. [PMID: 39682179 DOI: 10.3390/cancers16233993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Rat Sarcoma (RAS)-driven cancers have been one of the main foci in the field of cancer science for over four decades. Despite significant improvement in understanding the biology of RAS oncogene, the method to target RAS-mutated cancers is still unclear. In recent years, the role for RAS beyond its hyperproliferation has been extensively documented. In this review, we systematically address and dwell on the details of the mechanisms of RAS oncogene-mediated alteration in the DNA replication and DNA damage response (DDR) pathways, focusing on lung cancers. We further extend this molecular connection towards cytosolic DNA accumulation, innate immune activation and senescence in RAS-addicted cancers. At the end, we briefly speculate on the potential strategies for targeting RAS mutated lung cancers, considering various approaches targeting DNA replication, DNA repair and the cGAS-STING pro-inflammatory pathway. These new lines of therapy, especially when used in combinations, may enhance treatment efficacy and overcome the challenges associated with these mutations.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice-IRCAN, CNRS, INSERM, 06100 Nice, France
| | - Samira Kemiha
- Université Côte d'Azur, Institute for Research on Cancer and Aging of Nice-IRCAN, CNRS, INSERM, 06100 Nice, France
| | - Xieraili Aobuli
- Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612, USA
| | - Arun Mouli Kolinjivadi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
15
|
Zhang X, Liang SB, Yi Z, Qiao Z, Xu B, Geng H, Wang H, Yin X, Tang M, Ge W, Xu YZ, Liang K, Fan YJ, Chen L. Global coupling of R-loop dynamics with RNA polymerase II modulates gene expression and early development of Drosophila. Nucleic Acids Res 2024; 52:13110-13127. [PMID: 39470713 PMCID: PMC11602159 DOI: 10.1093/nar/gkae933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024] Open
Abstract
R-loops are involved in many biological processes in cells, yet the regulatory principles for R-loops in vivo and their impact on development remain to be explored. Here, we modified the CUT&Tag strategy to profile R-loops in Drosophila at multiple developmental stages. While high GC content promotes R-loop formation in mammalian cells, it is not required in Drosophila. In contrast, RNAPII abundance appears to be a universal inducing factor for R-loop formation, including active promoters and enhancers, and H3K27me3 decorated repressive regions and intergenic repeat sequences. Importantly, such a regulatory relationship is dynamically maintained throughout development, and development-related transcription factors may regulate RNAPII activation and R-loop dynamics. By ablating Spt6, we further showed the global R-loop induction coupled with RNAPII pausing. Importantly, depending on the gene length, genes underwent up- or down-regulation, both of which were largely reversed by rnh1 overexpression, suggesting that R-loops play a significant role in the divergent regulation of transcription by Spt6 ablation. DNA damage, defects in survival, and cuticle development were similarly alleviated by rnh1 overexpression. Altogether, our findings indicate that dynamic R-loop regulation is dictated by RNAPII pausing and transcription activity, and plays a feedback role in gene regulation, genome stability maintenance, and Drosophila development.
Collapse
Affiliation(s)
- Xianhong Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shao-Bo Liang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhuoyun Yi
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaohui Qiao
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Huichao Geng
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Honghong Wang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinhua Yin
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Mingliang Tang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yong-Zhen Xu
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Kaiwei Liang
- Department of Pathophysiology, Hubei Province Key Laboratory of Allergy and Immunology, Research Center for Medicine and Structural Biology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yu-Jie Fan
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
16
|
Beitz A, Teves J, Oakes C, Johnstone C, Wang N, Brickman JM, Galloway KE. Cells transit through a quiescent-like state to convert to neurons at high rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624928. [PMID: 39651159 PMCID: PMC11623504 DOI: 10.1101/2024.11.22.624928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While transcription factors (TFs) provide essential cues for directing and redirecting cell fate, TFs alone are insufficient to drive cells to adopt alternative fates. Rather, transcription factors rely on receptive cell states to induce novel identities. Cell state emerges from and is shaped by cellular history and the activity of diverse processes. Here, we define the cellular and molecular properties of a highly receptive state amenable to transcription factor-mediated direct conversion from fibroblasts to induced motor neurons. Using a well-defined model of direct conversion to a post-mitotic fate, we identify the highly proliferative, receptive state that transiently emerges during conversion. Through examining chromatin accessibility, histone marks, and nuclear features, we find that cells reprogram from a state characterized by global reductions in nuclear size and transcriptional activity. Supported by globally increased levels of H3K27me3, cells enter a quiescent-like state of reduced RNA metabolism and elevated expression of REST and p27, markers of quiescent neural stem cells. From this transient state, cells convert to neurons at high rates. Inhibition of Ezh2, the catalytic subunit of PRC2 that deposits H3K27me3, abolishes conversion. Our work offers a roadmap to identify global changes in cellular processes that define cells with different conversion potentials that may generalize to other cell-fate transitions. Highlights Proliferation drives cells to a compact nuclear state that is receptive to TF-mediated conversion.Increased receptivity to TFs corresponds to reduced nuclear volumes.Reprogrammable cells display global, genome-wide increases in H3K27me3.High levels of H3K27me3 support cells' transits through a state of altered RNA metabolism.Inhibition of Ezh2 increases nuclear size, reduces the expression of the quiescence marker p27.Acute inhibition of Ezh2 abolishes motor neuron conversion. One Sentence Summary Cells transit through a quiescent-like state characterized by global reductions in nuclear size and transcriptional activity to convert to neurons at high rates.
Collapse
|
17
|
Tokuyama S, Kato H, Takahashi H, Ueda K, Arita A, Ueda R, Seto H, Sekido Y, Hata T, Hamabe A, Ogino T, Miyoshi N, Uemura M, Matsuoka K, Tsukamoto O, Yamamoto H, Doki Y, Eguchi H, Takashima S. BRAF V600E-induced distinct DNA damage response defines the therapeutic potential of p53 activation for TP53 wild-type colorectal cancer. Carcinogenesis 2024; 45:857-867. [PMID: 38868979 DOI: 10.1093/carcin/bgae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
BRAF V600E, one of the most frequent mutations in the MAPK pathway, confers poor prognosis to colorectal cancers (CRCs), partly because of chemotherapeutic resistance. Oncogene-induced DNA damage responses (DDRs) that primarily activate p53 are important mechanistic barriers to the malignant transformation of cells; however, the mechanism underlying this impairment in cancer remains unknown. Here, we evaluated the responses of BRAFV600E-induced DDRs in two CRC cell lines, SW48 and LIM1215, both of which harbor wild-type TP53, KRAS, and BRAF. BRAFV600E transduction exhibited distinct phenotypes in these cells: SW48 cell proliferation markedly decreased, whereas that of LIM1215 increased. BRAFV600E expression induced the activation of oncogene-induced DDR signaling in SW48 cells, but not in LIM1215 cells, whereas chemotherapeutic agents similarly activated DDRs in both cell lines. Knockdown experiments revealed that these responses in SW48 cells were mediated by p53-p21 pathway activation. Comet assay (both alkaline and neutral) revealed that BRAFV600E increased single-strand breaks to the same extent in both cell lines; however, in the case of LIM1215 cells, it only facilitated double-strand breaks. Furthermore, the proliferation of LIM1215 cells, wherein no oncogene-induced DDRs occurred, was synergistically inhibited upon MDM2 inhibitor-mediated p53 activation combined with MEK inhibition. Taken together, these distinct DDR signaling responses highlight the novel characteristics of BRAFV600E-mutated CRC cells and define the therapeutic potential of p53 activation combined with MAPK inhibition against TP53 wild-type CRC harboring a BRAFV600E mutation.
Collapse
Affiliation(s)
- Shinji Tokuyama
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyoko Ueda
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Asami Arita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryuta Ueda
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroto Seto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Sekido
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tsuyoshi Hata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Atsushi Hamabe
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mamoru Uemura
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Frontier Biosciences, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- The Osaka Medical Research Foundation for Intractable Diseases, 2-6-29 Abikohigashi, Sumiyoshi-ku, Osaka 558-0013, Japan
| |
Collapse
|
18
|
Heinst L, Lee KS, Berthold R, Isfort I, Wosnig S, Kuntze A, Hafner S, Altvater B, Rossig C, Åman P, Wardelmann E, Scholl C, Hartmann W, Fröhling S, Trautmann M. Exploiting WEE1 Kinase Activity as FUS::DDIT3-Dependent Therapeutic Vulnerability in Myxoid Liposarcoma. Clin Cancer Res 2024; 30:4974-4986. [PMID: 39207225 DOI: 10.1158/1078-0432.ccr-24-1152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE The pathognomonic FUS::DDIT3 fusion protein drives myxoid liposarcoma (MLS) tumorigenesis via aberrant transcriptional activation of oncogenic signaling. As FUS::DDIT3 has so far not been pharmacologically tractable to selectively target MLS cells, this study investigated the functional role of the cell cycle regulator WEE1 as novel FUS::DDIT3-dependent therapeutic vulnerability in MLS. EXPERIMENTAL DESIGN Immunohistochemical evaluation of the cell cycle regulator WEE1 was performed in a large cohort of MLS specimens. FUS::DDIT3 dependency and biological function of the G1/S cell cycle checkpoint were analyzed in a mesenchymal stem cell model and liposarcoma cell lines in vitro. WEE1 activity was modulated by RNAi-mediated knockdown and the small molecule inhibitor MK-1775 (adavosertib). An established MLS cell line-based chicken chorioallantoic membrane model was employed for in vivo confirmation. RESULTS We demonstrate that enhanced WEE1 pathway activity represents a hallmark of FUS::DDIT3-expressing cell lines as well as MLS tissue specimens and that WEE1 is required for MLS cellular survival in vitro and in vivo. Pharmacologic inhibition of WEE1 activity results in DNA damage accumulation and cell cycle progression forcing cells to undergo apoptotic cell death. In addition, our results uncover FUS::DDIT3-dependent WEE1 expression as an oncogenic survival mechanism to tolerate high proliferation and resulting replication stress in MLS. Fusion protein-driven G1/S cell cycle checkpoint deregulation via overactive Cyclin E/CDK2 complexes thereby contributes to enhanced WEE1 inhibitor sensitivity in MLS. CONCLUSIONS Our preclinical study identifies WEE1-mediated replication stress tolerance as molecular vulnerability in FUS::DDIT3-driven MLS tumorigenesis that could represent a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Lorena Heinst
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Kwang Seok Lee
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ruth Berthold
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Ilka Isfort
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Svenja Wosnig
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Anna Kuntze
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Susanne Hafner
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Hospital, Ulm, Germany
| | - Bianca Altvater
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
- Cells in Motion Cluster of Excellence, University of Münster, Münster, Germany
| | - Pierre Åman
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Eva Wardelmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Hartmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Stefan Fröhling
- Division of Translational Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Marcel Trautmann
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| |
Collapse
|
19
|
Yadav C, Yadav R, Nanda S, Ranga S, Ahuja P. The hidden architects of the genome: a comprehensive review of R-loops. Mol Biol Rep 2024; 51:1095. [PMID: 39460836 DOI: 10.1007/s11033-024-10025-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
Three-stranded DNA: RNA hybrids known as R-loops form when the non-template DNA strand is displaced and the mRNA transcript anneals to its template strand. Although R-loop formation controls DNA damage response, mitochondrial and genomic transcription, and physiological R-loop formation, imbalanced formation of R-loop can jeopardize a cell's genomic integrity. Transcription regulation and immunoglobulin class switch recombination are two further specialized functions of genomic R-loops. R-loop formation has a dual role in the development of cancer and disturbed R-loop homeostasis as observed in several malignancies. R-loops transcribe at the telomeric and pericentromeric regions, develop in the space between long non-coding RNAs and telomeric repeats, and shield telomeres. In bacteria and archaea, R-loop development is a natural defence mechanism against viruses which also causes DNA degradation. Their emergence in the mammalian genome is controlled, suggesting that they were formed as an inevitable byproduct of RNA transcription but also co-opted for regulatory functions. R-loops may be engaged in cell physiology by regulating gene expression. R-loop biology is probably going to remain a fascinating field of study for a very long time as it offers many avenues for R-loop research.
Collapse
Affiliation(s)
- Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India.
| | - Smiti Nanda
- Department of Gynaecology and Obstetrics, Pt. B.D. Sharma, University of Health Sciences, Rohtak, Haryana, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| | - Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
| |
Collapse
|
20
|
Jia S, Wen X, Zhu M, Fu X. The pluripotent-to-totipotent state transition in mESCs activates the intrinsic apoptotic pathway through DUX-induced DNA replication stress. Cell Mol Life Sci 2024; 81:440. [PMID: 39460804 PMCID: PMC11512989 DOI: 10.1007/s00018-024-05465-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/11/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
The pluripotent mouse embryonic stem cell (mESCs) can transit into the totipotent-like state, and the transcription factor DUX is one of the master regulators of this transition. Intriguingly, this transition in mESCs is accompanied by massive cell death, which significantly impedes the establishment and maintenance of totipotent cells in vitro, yet the underlying mechanisms of this cell death remain largely elusive. In this study, we found that the totipotency transition in mESCs triggered cell death through the upregulation of DUX. Specifically, R-loops are accumulated upon DUX induction, which subsequently lead to DNA replication stress (RS) in mESCs. This RS further activates p53 and PMAIP1, ultimately leading to Caspase-9/7-dependent intrinsic apoptosis. Notably, inhibiting this intrinsic apoptosis not only mitigates cell death but also enhances the efficiency of the totipotency transition in mESCs. Our findings thus elucidate one of the mechanisms underlying cell apoptosis during the totipotency transition in mESCs and provide a strategy for optimizing the establishment and maintenance of totipotent cells in vitro.
Collapse
Affiliation(s)
- Shunze Jia
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinpeng Wen
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Minwei Zhu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xudong Fu
- First Affiliated Hospital, Zhejiang University School of Medicine, and Liangzhu Laboratory of Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
21
|
Meng F, Li T, Singh AK, Wang Y, Attiyeh M, Kohram F, Feng Q, Li YR, Shen B, Williams T, Liu Y, Raoof M. Base-excision repair pathway regulates transcription-replication conflicts in pancreatic ductal adenocarcinoma. Cell Rep 2024; 43:114820. [PMID: 39368091 DOI: 10.1016/j.celrep.2024.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 07/19/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Oncogenic mutations (such as in KRAS) can dysregulate transcription and replication, leading to transcription-replication conflicts (TRCs). Here, we demonstrate that TRCs are enriched in human pancreatic ductal adenocarcinoma (PDAC) compared to other common solid tumors or normal cells. Several orthogonal approaches demonstrated that TRCs are oncogene dependent. A small interfering RNA (siRNA) screen identified several factors in the base-excision repair (BER) pathway as main regulators of TRCs in PDAC cells. Inhibitors of BER pathway (methoxyamine and CRT) enhanced TRCs. Mechanistically, BER pathway inhibition severely altered RNA polymerase II (RNAPII) and R-loop dynamics at nascent DNA, causing RNAPII trapping and contributing to enhanced TRCs. The ensuing DNA damage activated the ATR-Chk1 pathway. Co-treatment with ATR inhibitor (VX970) and BER inhibitor (methoxyamine) at clinically relevant doses synergistically enhanced DNA damage and reduced cell proliferation in PDAC cells. The study provides mechanistic insights into the regulation of TRCs in PDAC by the BER pathway, which has biologic and therapeutic implications.
Collapse
Affiliation(s)
- Fan Meng
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Tiane Li
- Irell & Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | | | - Yingying Wang
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Marc Attiyeh
- Department of Surgery, Cedars Sinai, Los Angeles, CA, USA
| | - Fatemeh Kohram
- Department of Child Health, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Qianhua Feng
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yun R Li
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Binghui Shen
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Terence Williams
- Department of Radiation Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Yilun Liu
- Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA
| | - Mustafa Raoof
- Department of Surgery, City of Hope National Medical Center, Duarte, CA, USA; Department of Cancer Genetic & Epigenetics, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
22
|
Igarashi T, Yano K, Endo S, Shiotani B. Tolerance of Oncogene-Induced Replication Stress: A Fuel for Genomic Instability. Cancers (Basel) 2024; 16:3507. [PMID: 39456601 PMCID: PMC11506635 DOI: 10.3390/cancers16203507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Activation of oncogenes disturbs a wide variety of cellular processes and induces physiological dysregulation of DNA replication, widely referred to as replication stress (RS). Oncogene-induced RS can cause replication forks to stall or collapse, thereby leading to DNA damage. While the DNA damage response (DDR) can provoke an anti-tumor barrier to prevent the development of cancer, a small subset of cells triggers replication stress tolerance (RST), allowing precancerous cells to survive, thereby promoting clonal expansion and genomic instability (GIN). Genomic instability (GIN) is a hallmark of cancer, driving genetic alterations ranging from nucleotide changes to aneuploidy. These alterations increase the probability of oncogenic events and create a heterogeneous cell population with an enhanced ability to evolve. This review explores how major oncogenes such as RAS, cyclin E, and MYC induce RS through diverse mechanisms. Additionally, we delve into the strategies employed by normal and cancer cells to tolerate RS and promote GIN. Understanding the intricate relationship between oncogene activation, RS, and GIN is crucial to better understand how cancer cells emerge and to develop potential cancer therapies that target these vulnerabilities.
Collapse
Affiliation(s)
- Taichi Igarashi
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Biosciences, School of Science, Kitasato University, Minami-ku, Sagamihara-city, Kanagawa 252-0373, Japan
| | - Kimiyoshi Yano
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
| | - Syoju Endo
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of NCC Cancer Science, Division of Integrative Molecular Biomedicine, Biomedical Sciences and Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Bunsyo Shiotani
- Laboratory of Genome Stress Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045, Japan; (T.I.); (K.Y.); (S.E.)
- Department of Genome Stress Signaling, Institute of Medical Science, Tokyo Medical University, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
23
|
Stoyanov M, Martinikova AS, Matejkova K, Horackova K, Zemankova P, Burdova K, Zemanova Z, Kleiblova P, Kleibl Z, Macurek L. PPM1D activity promotes cellular transformation by preventing senescence and cell death. Oncogene 2024; 43:3081-3093. [PMID: 39237765 PMCID: PMC11473410 DOI: 10.1038/s41388-024-03149-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Cell cycle checkpoints, oncogene-induced senescence and programmed cell death represent intrinsic barriers to tumorigenesis. Protein phosphatase magnesium-dependent 1 (PPM1D) is a negative regulator of the tumour suppressor p53 and has been implicated in termination of the DNA damage response. Here, we addressed the consequences of increased PPM1D activity resulting from the gain-of-function truncating mutations in exon 6 of the PPM1D. We show that while control cells permanently exit the cell cycle and reside in senescence in the presence of DNA damage caused by ionising radiation or replication stress induced by the active RAS oncogene, RPE1-hTERT and BJ-hTERT cells carrying the truncated PPM1D continue proliferation in the presence of DNA damage, form micronuclei and accumulate genomic rearrangements revealed by karyotyping. Further, we show that increased PPM1D activity promotes cell growth in the soft agar and formation of tumours in xenograft models. Finally, expression profiling of the transformed clones revealed dysregulation of several oncogenic and tumour suppressor pathways. Our data support the oncogenic potential of PPM1D in the context of exposure to ionising radiation and oncogene-induced replication stress.
Collapse
Affiliation(s)
- Miroslav Stoyanov
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Andra S Martinikova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Katerina Matejkova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Klara Horackova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Zemankova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Kamila Burdova
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Zemanova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Petra Kleiblova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdenek Kleibl
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Libor Macurek
- Cancer Cell Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
24
|
Li L. Transcription reprogramming and endogenous DNA damage. DNA Repair (Amst) 2024; 142:103754. [PMID: 39232366 DOI: 10.1016/j.dnarep.2024.103754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/18/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Transcription reprogramming is essential to carry out a variety of cell dynamics such as differentiation and stress response. During reprogramming of transcription, a number of adverse effects occur and potentially compromise genomic stability. Formaldehyde as an obligatory byproduct is generated in the nucleus via oxidative protein demethylation at regulatory regions, leading to the formation of DNA crosslinking damage. Elevated levels of transcription activities can result in the accumulation of unscheduled R-loop. DNA strand breaks can form if processed 5-methylcytosines are exercised by DNA glycosylase during imprint reversal. When cellular differentiation involves a large number of genes undergoing transcription reprogramming, these endogenous DNA lesions and damage-prone structures may pose a significant threat to genome stability. In this review, we discuss how DNA damage is formed during cellular differentiation, cellular mechanisms for their removal, and diseases associated with transcription reprogramming.
Collapse
Affiliation(s)
- Lei Li
- Life Sciences Institute, Zhejiang University, Hangzhou, China; Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, China; Center for Life Sciences, Shaoxing Institute, Zhejiang University, Shaoxing, China.
| |
Collapse
|
25
|
Ivanov MP, Zecchini H, Hamerlik P. Simultaneous Visualization of R-Loops/RNA:DNA Hybrids and Replication Forks in a DNA Combing Assay. Genes (Basel) 2024; 15:1161. [PMID: 39336752 PMCID: PMC11430951 DOI: 10.3390/genes15091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
R-loops, structures that play a crucial role in various biological processes, are integral to gene expression, the maintenance of genome stability, and the formation of epigenomic signatures. When these R-loops are deregulated, they can contribute to the development of serious health conditions, including cancer and neurodegenerative diseases. The detection of R-loops is a complex process that involves several approaches. These include S9.6 antibody- or RNAse H-based immunoprecipitation, non-denaturing bisulfite footprinting, gel electrophoresis, and electron microscopy. Each of these methods offers unique insights into the nature and behavior of R-loops. In our study, we introduce a novel protocol that has been developed based on a single-molecule DNA combing assay. This innovative approach allows for the direct and simultaneous visualization of RNA:DNA hybrids and replication forks, providing a more comprehensive understanding of these structures. Our findings confirm the transcriptional origin of the hybrids, adding to the body of knowledge about their formation. Furthermore, we demonstrate that these hybrids have an inhibitory effect on the progression of replication forks, highlighting their potential impact on DNA replication and cellular function.
Collapse
Affiliation(s)
- Miroslav Penchev Ivanov
- Early Oncology Bioscience, AstraZeneca, Cambridge CB2 0AA, UK;
- The Francis Crick Institute, London NW1 1AT, UK
| | - Heather Zecchini
- Light Microscopy Facility, University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge CB2 0RE, UK;
| | - Petra Hamerlik
- Early Oncology Bioscience, AstraZeneca, Cambridge CB2 0AA, UK;
- Division of Cancer Sciences, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
26
|
Kurashima K, Kamikawa Y, Tsubouchi T. Embryonic stem cells maintain high origin activity and slow forks to coordinate replication with cell cycle progression. EMBO Rep 2024; 25:3757-3776. [PMID: 39054377 PMCID: PMC11387781 DOI: 10.1038/s44319-024-00207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/27/2024] Open
Abstract
Embryonic stem (ES) cells are pluripotent stem cells that can produce all cell types of an organism. ES cells proliferate rapidly and are thought to experience high levels of intrinsic replication stress. Here, by investigating replication fork dynamics in substages of S phase, we show that mammalian pluripotent stem cells maintain a slow fork speed and high active origin density throughout the S phase, with little sign of fork pausing. In contrast, the fork speed of non-pluripotent cells is slow at the beginning of S phase, accompanied by increased fork pausing, but thereafter fork pausing rates decline and fork speed rates accelerate in an ATR-dependent manner. Thus, replication fork dynamics within the S phase are distinct between ES and non-ES cells. Nucleoside addition can accelerate fork speed and reduce origin density. However, this causes miscoordination between the completion of DNA replication and cell cycle progression, leading to genome instability. Our study indicates that fork slowing in the pluripotent stem cells is an integral aspect of DNA replication.
Collapse
Affiliation(s)
- Kiminori Kurashima
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Yasunao Kamikawa
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Tomomi Tsubouchi
- Laboratory of Stem Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan.
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan.
| |
Collapse
|
27
|
Templeton CW, Laimins LA. HPV induced R-loop formation represses innate immune gene expression while activating DNA damage repair pathways. PLoS Pathog 2024; 20:e1012454. [PMID: 39178326 PMCID: PMC11376575 DOI: 10.1371/journal.ppat.1012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/05/2024] [Accepted: 07/28/2024] [Indexed: 08/25/2024] Open
Abstract
R-loops are trimeric nucleic acid structures that form when an RNA molecule hybridizes with its complementary DNA strand, displacing the opposite strand. These structures regulate transcription as well as replication, but aberrant R-loops can form, leading to DNA breaks and genomic instability if unresolved. R-loop levels are elevated in many cancers as well as cells that maintain high-risk human papillomaviruses. We investigated how the distribution as well as function of R-loops changed between normal keratinocytes and HPV positive cells derived from a precancerous lesion of the cervix (CIN I). The levels of R-loops associated with cellular genes were found to be up to 10-fold higher in HPV positive cells than in normal keratinocytes while increases at ALU1 elements increased by up to 500-fold. The presence of enhanced R-loops resulted in altered levels of gene transcription, with equal numbers increased as decreased. While no uniform global effects on transcription due to the enhanced levels of R-loops were detected, genes in several pathways were coordinately increased or decreased in expression only in the HPV positive cells. This included the downregulation of genes in the innate immune pathway, such as DDX58, IL-6, STAT1, IFN-β, and NLRP3. All differentially expressed innate immune genes dependent on R-loops were also associated with H3K36me3 modified histones. Genes that were upregulated by the presence of R-loops in HPV positive cells included those in the DNA damage repair such as ATM, ATRX, and members of the Fanconi Anemia pathway. These genes exhibited a linkage between R-loops and H3K36me3 as well as γH2AX histone marks only in HPV positive cells. These studies identify a potential link in HPV positive cells between DNA damage repair as well as innate immune regulatory pathways with R-loops and γH2AX/H3K36me3 histone marks that may contribute to regulating important functions for HPV pathogenesis.
Collapse
Affiliation(s)
- Conor W Templeton
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Laimonis A Laimins
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
28
|
Peng X, Huang X, Zhang S, Zhang N, Huang S, Wang Y, Zhong Z, Zhu S, Gao H, Yu Z, Yan X, Tao Z, Dai Y, Zhang Z, Chen X, Wang F, Claret FX, Elkabets M, Ji N, Zhong Y, Kong D. Sequential Inhibition of PARP and BET as a Rational Therapeutic Strategy for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307747. [PMID: 38896791 PMCID: PMC11321613 DOI: 10.1002/advs.202307747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 05/20/2024] [Indexed: 06/21/2024]
Abstract
PARP inhibitors (PARPi) hold substantial promise in treating glioblastoma (GBM). However, the adverse effects have restricted their broad application. Through unbiased transcriptomic and proteomic sequencing, it is discovered that the BET inhibitor (BETi) Birabresib profoundly alters the processes of DNA replication and cell cycle progression in GBM cells, beyond the previously reported impact of BET inhibition on homologous recombination repair. Through in vitro experiments using established GBM cell lines and patient-derived primary GBM cells, as well as in vivo orthotopic transplantation tumor experiments in zebrafish and nude mice, it is demonstrated that the concurrent administration of PARPi and BETi can synergistically inhibit GBM. Intriguingly, it is observed that DNA damage lingers after discontinuation of PARPi monotherapy, implying that sequential administration of PARPi followed by BETi can maintain antitumor efficacy while reducing toxicity. In GBM cells with elevated baseline replication stress, the sequential regimen exhibits comparable efficacy to concurrent treatment, protecting normal glial cells with lower baseline replication stress from DNA toxicity and subsequent death. This study provides compelling preclinical evidence supporting the development of innovative drug administration strategies focusing on PARPi for GBM therapy.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Xin Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shaolu Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Naixin Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shengfan Huang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Yingying Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhenxing Zhong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Shan Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Haiwang Gao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zixiang Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xiaotong Yan
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Zhennan Tao
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Yuxiang Dai
- Department of Neurosurgerythe Affiliated Drum Tower HospitalSchool of MedicineNanjing UniversityNanjing210008China
| | - Zhe Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
| | - Xi Chen
- Tianjin Key Laboratory of Ophthalmology and Visual ScienceTianjin Eye InstituteTianjin Eye HospitalTianjin300020China
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjin300071China
| | - Feng Wang
- Department of GeneticsSchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Francois X. Claret
- Department of Systems Biologythe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Moshe Elkabets
- The Shraga Segal Department of MicrobiologyImmunology and GeneticsFaculty of Health SciencesBen‐Gurion University of the NegevBeer‐Sheva84105Israel
| | - Ning Ji
- National Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjin Medical University Cancer Institute and HospitalTianjin300060China
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850China
| | - Dexin Kong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and DiagnosticsSchool of PharmacyTianjin Medical UniversityTianjin300070China
- Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education)International Joint Laboratory of Ocular Diseases (Ministry of Education)Tianjin Medical UniversityTianjin300070China
- Department of PharmacyTianjin Medical University General HospitalTianjin300052China
| |
Collapse
|
29
|
Stavgiannoudaki I, Goulielmaki E, Garinis GA. Broken strands, broken minds: Exploring the nexus of DNA damage and neurodegeneration. DNA Repair (Amst) 2024; 140:103699. [PMID: 38852477 DOI: 10.1016/j.dnarep.2024.103699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
Neurodegenerative disorders are primarily characterized by neuron loss progressively leading to cognitive decline and the manifestation of incurable and debilitating conditions, such as Alzheimer's, Parkinson's, and Huntington's diseases. Loss of genome maintenance causally contributes to age-related neurodegeneration, as exemplified by the premature appearance of neurodegenerative features in a growing family of human syndromes and mice harbouring inborn defects in DNA repair. Here, we discuss the relevance of persistent DNA damage, key DNA repair mechanisms and compromised genome integrity in age-related neurodegeneration highlighting the significance of investigating these connections to pave the way for the development of rationalized intervention strategies aimed at delaying the onset of neurodegenerative disorders and promoting healthy aging.
Collapse
Affiliation(s)
- Ioanna Stavgiannoudaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece
| | - Evi Goulielmaki
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas, Crete, Heraklion, Greece; Department of Biology, University of Crete, Crete, Heraklion, Greece.
| |
Collapse
|
30
|
Técher H. T-Rex escaped from the cytosolic park: Re-thinking the impact of TREX1 exonuclease deficiencies on genomic stability. Bioessays 2024; 46:e2400066. [PMID: 38837436 DOI: 10.1002/bies.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
The Three Prime Repair Exonuclease 1 (TREX1) has been implicated in several pathologies characterized by chronic and inborn inflammation. Aberrant innate immunity caused by DNA sensing through the cGAS-STING pathway has been proposed to play a major role in the etiology of these interferonopathies. However, the molecular source of this DNA sensing and the possible involvement of TREX1 in genome (in)stability remains poorly understood. Recent findings reignite the debate about the cellular functions performed by TREX1 nuclease, notably in chromosome biology and stability. Here I put into perspective recent findings that suggest that TREX1 is at the crossroads of DNA damage response and inflammation in different pathological contexts.
Collapse
Affiliation(s)
- Hervé Técher
- Université Côte d'Azur, CNRS, INSERM, Institute for Research on Cancer and Aging of Nice - IRCAN, Nice, France
| |
Collapse
|
31
|
Safari M, Scotto L, Basseville A, Litman T, Xue H, Petrukhin L, Zhou P, Morales DV, Damoci C, Zhu M, Hull K, Olive KP, Fojo T, Romo D, Bates SE. Combined HDAC and eIF4A inhibition: A novel epigenetic therapy for pancreatic adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.600495. [PMID: 39005268 PMCID: PMC11244854 DOI: 10.1101/2024.06.30.600495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Pancreatic ductal adenocarcinoma-(PDAC) needs innovative approaches due to its 12% 5-year survival despite current therapies. We show marked sensitivity of pancreatic cancer cells to the combination of a novel eIF4A inhibitor, des-methyl pateamine A (DMPatA), and a histone deacetylase inhibitor, romidepsin, inducing epigenetic reprogramming as an innovative therapeutic strategy. Exploring the mechanistic activity of this combination showed that with a short duration of romidepsin at low doses, robust acetylation persisted up to 48h with the combination, while histone acetylation rapidly faded with monotherapy. This represents an unexpected mechanism of action against PDAC cells that triggers transcriptional overload, metabolic stress, and augmented DNA damage. Structurally different class I HDAC inhibitors exhibit the same hyperacetylation patterns when co-administered with DMPatA, suggesting a class effect. We show efficacy of this combination regimen against tumor growth in a MIA PaCa-2 xenograft model of PDAC with persistent hyperacetylation confirmed in tumor samples. STATEMENT OF SIGNIFICANCE Pancreatic ductal adenocarcinoma, a significant clinical challenge, could benefit from the latent potential of epigenetic therapies like HDAC inhibitors-(HDIs), typically limited to hematological malignancies. Our study shows that a synergistic low dose combination of HDIs with an eIF4A-inhibitor in pancreatic cancer models results in marked pre-clinical efficacy, offering a promising new treatment strategy.
Collapse
|
32
|
Técher H, Gopaul D, Heuzé J, Bouzalmad N, Leray B, Vernet A, Mettling C, Moreaux J, Pasero P, Lin YL. MRE11 and TREX1 control senescence by coordinating replication stress and interferon signaling. Nat Commun 2024; 15:5423. [PMID: 38926338 PMCID: PMC11208572 DOI: 10.1038/s41467-024-49740-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Oncogene-induced senescence (OIS) arrests cell proliferation in response to replication stress (RS) induced by oncogenes. OIS depends on the DNA damage response (DDR), but also on the cGAS-STING pathway, which detects cytosolic DNA and induces type I interferons (IFNs). Whether and how RS and IFN responses cooperate to promote OIS remains unknown. Here, we show that the induction of OIS by the H-RASV12 oncogene in immortalized human fibroblasts depends on the MRE11 nuclease. Indeed, treatment with the MRE11 inhibitor Mirin prevented RS, micronuclei formation and IFN response induced by RASV12. Overexpression of the cytosolic nuclease TREX1 also prevented OIS. Conversely, overexpression of a dominant negative mutant of TREX1 or treatment with IFN-β was sufficient to induce RS and DNA damage, independent of RASV12 induction. These data suggest that the IFN response acts as a positive feedback loop to amplify DDR in OIS through a process regulated by MRE11 and TREX1.
Collapse
Affiliation(s)
- Hervé Técher
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Université Côte d'Azur, CNRS UMR7284 - INSERM U1081, Nice, France
| | - Diyavarshini Gopaul
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
- Biotech Research and Innovation Centre, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | - Jonathan Heuzé
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Nail Bouzalmad
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Baptiste Leray
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Audrey Vernet
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France
| | - Clément Mettling
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Jérôme Moreaux
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Department of Biological Hematology, CHU Montpellier, Montpellier, France
- University of Montpellier, UFR Medicine, Montpellier, France
| | - Philippe Pasero
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| | - Yea-Lih Lin
- Institut de Génétique Humaine, University of Montpellier, CNRS, Equipe Labellisée Ligue contre le Cancer, Montpellier, France.
| |
Collapse
|
33
|
Su X, Feng Y, Chen R, Duan S. CircR-loop: a novel RNA:DNA interaction on genome instability. Cell Mol Biol Lett 2024; 29:89. [PMID: 38877420 PMCID: PMC11177446 DOI: 10.1186/s11658-024-00606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
CircR-loop, a recently unearthed regulatory mechanism situated at the crossroads of circular RNA and DNA interactions, constitute a subset of R-loop. This circR-loop have emerged as a crucial player in pivotal regulatory functions within both animal and plant systems. The journey into the realm of circR-loop commenced with their discovery within the human mitochondrial genome, where they serve as critical directors of mitochondrial DNA replication. In the plant kingdom, circR-loop wield influence over processes such as alternative splicing and centromere organization, impacting the intricacies of floral development and genome stability, respectively. Their significance extends to the animal domain, where circR-loop has captured attention for their roles in cancer-related phenomena, exerting control over transcription, chromatin architecture, and orchestrating responses to DNA damage. Moreover, their involvement in nuclear export anomalies further underscores their prominence in cellular regulation. This article summarizes the important regulatory mechanisms and physiological roles of circR-loop in plants and animals, and offers a comprehensive exploration of the methodologies employed for the identification, characterization, and functional analysis of circR-loop, underscoring the pressing need for innovative approaches that can effectively distinguish them from their linear RNA counterparts while elucidating their precise functions. Lastly, the article sheds light on the challenges and opportunities that lie ahead in the field of circR-loop research, emphasizing the vital importance of continued investigations to uncover their regulatory roles and potential applications in the realm of biology. In summary, circR-loop represents a captivating and novel regulatory mechanism with broad-reaching implications spanning the realms of genetics, epigenetics, and disease biology. Their exploration opens new avenues for comprehending gene regulation and holds significant promise for future therapeutic interventions.
Collapse
Affiliation(s)
- Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yaojie Feng
- Department of Nursing, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Ruixiu Chen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
- Department of Clinical Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
34
|
Hindul NL, Abbott LR, Adan SMD, Straatman KR, Fry AM, Hirota K, Tanaka K. Endogenous oncogenic KRAS expression increases cell proliferation and motility in near-diploid hTERT RPE-1 cells. J Biol Chem 2024; 300:107409. [PMID: 38796063 PMCID: PMC11234024 DOI: 10.1016/j.jbc.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024] Open
Abstract
About 18% of all human cancers carry a mutation in the KRAS gene making it among the most sought-after anticancer targets. However, mutant KRas protein has proved remarkably undruggable. The recent approval of the first generation of RAS inhibitors therefore marks a seminal milestone in the history of cancer research. It also raises the predictable challenges of limited drug efficacies and acquired resistance. Hence, new approaches that improve our understanding of the tumorigenic mechanisms of oncogenic RAS within more physiological settings continue to be essential. Here, we have used the near-diploid hTERT RPE-1 cells to generate isogenic cell lines in which one of the endogenous KRAS alleles carries an oncogenic KRAS mutation at glycine 12. Cells with a KRASG12V/+, KRASG12C/+, or KRASG12D/+ genotype, together with WT KRASG12G(WT)/+ cells, reveal that oncogenic KRAS.G12X mutations increase cell proliferation rate and cell motility and reduced focal adhesions in KRASG12V/+ cells. Epidermal growth factor -induced phosphorylation of ERK and AKT was comparable between KRASG12V/+, KRASG12C/+, KRASG12D/+, and KRASG12G(WT)/+ cells. Interestingly, KRASG12X/+ cells showed varying responses to distinct inhibitors with the KRASG12V/+ and KRASG12D/+ cells more sensitive to hydroxyurea and MEK inhibitors, U0126 and trametinib, but more resistant to PI3K inhibitor, PIK-90, than the KRASG12G(WT)/+ cells. A combination of low doses of hydroxyurea and U0126 showed an additive inhibition on growth rate that was greater in KRASG12V/+ than WT cells. Collectively, these cell lines will be a valuable resource for studying oncogenic RAS signaling and developing effective anti-KRAS reagents with minimum cytotoxicity on WT cells.
Collapse
Affiliation(s)
- Naushin L Hindul
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Lauren R Abbott
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Sumaya M D Adan
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | | | - Andrew M Fry
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Japan
| | - Kayoko Tanaka
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
35
|
Rojas P, Wang J, Guglielmi G, Sadurnì MM, Pavlou L, Leung GHD, Rajagopal V, Spill F, Saponaro M. Genome-wide identification of replication fork stalling/pausing sites and the interplay between RNA Pol II transcription and DNA replication progression. Genome Biol 2024; 25:126. [PMID: 38773641 PMCID: PMC11106976 DOI: 10.1186/s13059-024-03278-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/14/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND DNA replication progression can be affected by the presence of physical barriers like the RNA polymerases, leading to replication stress and DNA damage. Nonetheless, we do not know how transcription influences overall DNA replication progression. RESULTS To characterize sites where DNA replication forks stall and pause, we establish a genome-wide approach to identify them. This approach uses multiple timepoints during S-phase to identify replication fork/stalling hotspots as replication progresses through the genome. These sites are typically associated with increased DNA damage, overlapped with fragile sites and with breakpoints of rearrangements identified in cancers but do not overlap with replication origins. Overlaying these sites with a genome-wide analysis of RNA polymerase II transcription, we find that replication fork stalling/pausing sites inside genes are directly related to transcription progression and activity. Indeed, we find that slowing down transcription elongation slows down directly replication progression through genes. This indicates that transcription and replication can coexist over the same regions. Importantly, rearrangements found in cancers overlapping transcription-replication collision sites are detected in non-transformed cells and increase following treatment with ATM and ATR inhibitors. At the same time, we find instances where transcription activity favors replication progression because it reduces histone density. CONCLUSIONS Altogether, our findings highlight how transcription and replication overlap during S-phase, with both positive and negative consequences for replication fork progression and genome stability by the coexistence of these two processes.
Collapse
Affiliation(s)
- Patricia Rojas
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Jianming Wang
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Giovanni Guglielmi
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Martina Mustè Sadurnì
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Lucas Pavlou
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Geoffrey Ho Duen Leung
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Fabian Spill
- School of Mathematics, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Marco Saponaro
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
36
|
Rombaut D, Lefèvre C, Rached T, Bondu S, Letessier A, Mangione RM, Farhat B, Lesieur-Pasquier A, Castillo-Guzman D, Boussaid I, Friedrich C, Tourville A, De Carvalho M, Levavasseur F, Leduc M, Le Gall M, Battault S, Temple M, Houy A, Bouscary D, Willems L, Park S, Raynaud S, Cluzeau T, Clappier E, Fenaux P, Adès L, Margueron R, Wassef M, Alsafadi S, Chapuis N, Kosmider O, Solary E, Constantinou A, Stern MH, Droin N, Palancade B, Miotto B, Chédin F, Fontenay M. Accelerated DNA replication fork speed due to loss of R-loops in myelodysplastic syndromes with SF3B1 mutation. Nat Commun 2024; 15:3016. [PMID: 38589367 PMCID: PMC11001894 DOI: 10.1038/s41467-024-46547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.
Collapse
Affiliation(s)
- David Rombaut
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Carine Lefèvre
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France
| | - Tony Rached
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Sabrina Bondu
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Anne Letessier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | | | - Batoul Farhat
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Auriane Lesieur-Pasquier
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Daisy Castillo-Guzman
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Ismael Boussaid
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Chloé Friedrich
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Aurore Tourville
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Magali De Carvalho
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Françoise Levavasseur
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marjorie Leduc
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Morgane Le Gall
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Platform Proteom'IC, Université Paris Cité, Institut Cochin, Paris, France
| | - Sarah Battault
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
| | - Marie Temple
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Alexandre Houy
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Didier Bouscary
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Lise Willems
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Clinical Department of Hematology, Paris, France
| | - Sophie Park
- Department of Hematology, Centre Hospitalier Universitaire, Université de Grenoble Alpes, Grenoble, France
| | - Sophie Raynaud
- Laboratory of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Thomas Cluzeau
- Clinical Department of Hematology, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France
| | - Emmanuelle Clappier
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Laboratory of Hematology, Paris, France
| | - Pierre Fenaux
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Lionel Adès
- Assistance Publique-Hôpitaux de Paris.Nord-Université Paris Cité, Saint-Louis Hospital, Service Hématologie Séniors, Paris, France
| | - Raphael Margueron
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Michel Wassef
- Institut Curie, Paris Sciences Lettres Research University, Sorbonne University, INSERM U934, UMR3215, Paris, France
| | - Samar Alsafadi
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nicolas Chapuis
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Olivier Kosmider
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France
| | - Eric Solary
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Angelos Constantinou
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique, Université de Montpellier, Montpellier, France
| | - Marc-Henri Stern
- Institut Curie, PSL Research University, Sorbonne University, INSERM U830, DNA repair and uveal melanoma, Equipe labellisée par la Ligue Nationale contre le Cancer, Paris, France
| | - Nathalie Droin
- Institut Gustave Roussy, INSERM 1287, Université Paris Saclay, Villejuif, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Miotto
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology and Genome Center, University of California, Davis, CA, USA
| | - Michaela Fontenay
- Université Paris Cité, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut Cochin, Paris, France.
- Equipe labellisée par la Fondation pour la Recherche Médicale, Paris, France.
- Laboratoire d'excellence du Globule Rouge GR-Ex, Université Paris Cité, Paris, France.
- Assistance Publique-Hôpitaux de Paris.Centre-Université Paris Cité, Hôpital Cochin, Laboratory of Hematology, Paris, France.
| |
Collapse
|
37
|
Peripolli S, Meneguello L, Perrod C, Singh T, Patel H, Rahman ST, Kiso K, Thorpe P, Calvanese V, Bertoli C, de Bruin RAM. Oncogenic c-Myc induces replication stress by increasing cohesins chromatin occupancy in a CTCF-dependent manner. Nat Commun 2024; 15:1579. [PMID: 38383676 PMCID: PMC10881979 DOI: 10.1038/s41467-024-45955-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Oncogene-induced replication stress is a crucial driver of genomic instability and one of the key events contributing to the onset and evolution of cancer. Despite its critical role in cancer, the mechanisms that generate oncogene-induced replication stress remain not fully understood. Here, we report that an oncogenic c-Myc-dependent increase in cohesins on DNA contributes to the induction of replication stress. Accumulation of cohesins on chromatin is not sufficient to cause replication stress, but also requires cohesins to accumulate at specific sites in a CTCF-dependent manner. We propose that the increased accumulation of cohesins at CTCF site interferes with the progression of replication forks, contributing to oncogene-induced replication stress. This is different from, and independent of, previously suggested mechanisms of oncogene-induced replication stress. This, together with the reported protective role of cohesins in preventing replication stress-induced DNA damage, supports a double-edge involvement of cohesins in causing and tolerating oncogene-induced replication stress.
Collapse
Affiliation(s)
- Silvia Peripolli
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Leticia Meneguello
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
- UCL Cancer Institute, University College London, Gower Street, London, UK
| | - Chiara Perrod
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Tanya Singh
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | | | - Sazia T Rahman
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Koshiro Kiso
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Peter Thorpe
- Queen Mary University, Mile End Road, London, UK
| | - Vincenzo Calvanese
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK
| | - Cosetta Bertoli
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK.
| | - Robertus A M de Bruin
- Laboratory Molecular Cell Biology, University College London, Gower Street, London, UK.
- UCL Cancer Institute, University College London, Gower Street, London, UK.
| |
Collapse
|
38
|
Ren S, Bai F, Schnell V, Stanko C, Ritsch M, Schenk T, Barth E, Marz M, Wang B, Pei XH, Bierhoff H. PAPAS promotes differentiation of mammary epithelial cells and suppresses breast carcinogenesis. Cell Rep 2024; 43:113644. [PMID: 38180837 DOI: 10.1016/j.celrep.2023.113644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/18/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
Extensive remodeling of the female mammary epithelium during development and pregnancy has been linked to cancer susceptibility. The faithful response of mammary epithelial cells (MECs) to hormone signaling is key to avoiding breast cancer development. Here, we show that lactogenic differentiation of murine MECs requires silencing of genes encoding ribosomal RNA (rRNA) by the antisense transcript PAPAS. Accordingly, knockdown of PAPAS derepresses rRNA genes, attenuates the response to lactogenic hormones, and induces malignant transformation. Restoring PAPAS levels in breast cancer cells reduces tumorigenicity and lung invasion and activates many interferon-regulated genes previously linked to metastasis suppression. Mechanistically, PAPAS transcription depends on R-loop formation at the 3' end of rRNA genes, which is repressed by RNase H1 and replication protein A (RPA) overexpression in breast cancer cells. Depletion of PAPAS and upregulation of RNase H1 and RPA in human breast cancer underpin the clinical relevance of our findings.
Collapse
Affiliation(s)
- Sijia Ren
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Feng Bai
- Department of Pathology, Shenzhen University Medical School, Shenzhen 518060, China
| | - Viviane Schnell
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Clara Stanko
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Muriel Ritsch
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Tino Schenk
- Department of Hematology and Medical Oncology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), Jena University Hospital, Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany
| | - Emanuel Barth
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Manja Marz
- Bioinformatics Core Facility Jena, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; RNA Bioinformatics/High Throughput Analysis, Faculty of Mathematics and Computer Science, Leutragraben 1, 07743 Jena, Germany
| | - Bin Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518060, China
| | - Xin-Hai Pei
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Anatomy and Histology, Shenzhen University Medical School, Shenzhen 518060, China.
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine (CMB), Friedrich Schiller University Jena, Hans-Knöll-Str. 2, 07745 Jena, Germany; Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany.
| |
Collapse
|
39
|
Khamidullina AI, Abramenko YE, Bruter AV, Tatarskiy VV. Key Proteins of Replication Stress Response and Cell Cycle Control as Cancer Therapy Targets. Int J Mol Sci 2024; 25:1263. [PMID: 38279263 PMCID: PMC10816012 DOI: 10.3390/ijms25021263] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Replication stress (RS) is a characteristic state of cancer cells as they tend to exchange precision of replication for fast proliferation and increased genomic instability. To overcome the consequences of improper replication control, malignant cells frequently inactivate parts of their DNA damage response (DDR) pathways (the ATM-CHK2-p53 pathway), while relying on other pathways which help to maintain replication fork stability (ATR-CHK1). This creates a dependency on the remaining DDR pathways, vulnerability to further destabilization of replication and synthetic lethality of DDR inhibitors with common oncogenic alterations such as mutations of TP53, RB1, ATM, amplifications of MYC, CCNE1 and others. The response to RS is normally limited by coordination of cell cycle, transcription and replication. Inhibition of WEE1 and PKMYT1 kinases, which prevent unscheduled mitosis entry, leads to fragility of under-replicated sites. Recent evidence also shows that inhibition of Cyclin-dependent kinases (CDKs), such as CDK4/6, CDK2, CDK8/19 and CDK12/13 can contribute to RS through disruption of DNA repair and replication control. Here, we review the main causes of RS in cancers as well as main therapeutic targets-ATR, CHK1, PARP and their inhibitors.
Collapse
Affiliation(s)
- Alvina I. Khamidullina
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Yaroslav E. Abramenko
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
| | - Alexandra V. Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| | - Victor V. Tatarskiy
- Laboratory of Molecular Oncobiology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia; (A.I.K.); (Y.E.A.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, 119334 Moscow, Russia
| |
Collapse
|
40
|
Milano L, Gautam A, Caldecott KW. DNA damage and transcription stress. Mol Cell 2024; 84:70-79. [PMID: 38103560 DOI: 10.1016/j.molcel.2023.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Genome damage and transcription are intimately linked. Tens to hundreds of thousands of DNA lesions arise in each cell each day, many of which can directly or indirectly impede transcription. Conversely, the process of gene expression is itself a source of endogenous DNA lesions as a result of the susceptibility of single-stranded DNA to damage, conflicts with the DNA replication machinery, and engagement by cells of topoisomerases and base excision repair enzymes to regulate the initiation and progression of gene transcription. Although such processes are tightly regulated and normally accurate, on occasion, they can become abortive and leave behind DNA breaks that can drive genome rearrangements, instability, or cell death.
Collapse
Affiliation(s)
- Larissa Milano
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Amit Gautam
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Keith W Caldecott
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
41
|
Kumar C, Remus D. Looping out of control: R-loops in transcription-replication conflict. Chromosoma 2024; 133:37-56. [PMID: 37419963 PMCID: PMC10771546 DOI: 10.1007/s00412-023-00804-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/09/2023]
Abstract
Transcription-replication conflict is a major cause of replication stress that arises when replication forks collide with the transcription machinery. Replication fork stalling at sites of transcription compromises chromosome replication fidelity and can induce DNA damage with potentially deleterious consequences for genome stability and organismal health. The block to DNA replication by the transcription machinery is complex and can involve stalled or elongating RNA polymerases, promoter-bound transcription factor complexes, or DNA topology constraints. In addition, studies over the past two decades have identified co-transcriptional R-loops as a major source for impairment of DNA replication forks at active genes. However, how R-loops impede DNA replication at the molecular level is incompletely understood. Current evidence suggests that RNA:DNA hybrids, DNA secondary structures, stalled RNA polymerases, and condensed chromatin states associated with R-loops contribute to the of fork progression. Moreover, since both R-loops and replication forks are intrinsically asymmetric structures, the outcome of R-loop-replisome collisions is influenced by collision orientation. Collectively, the data suggest that the impact of R-loops on DNA replication is highly dependent on their specific structural composition. Here, we will summarize our current understanding of the molecular basis for R-loop-induced replication fork progression defects.
Collapse
Affiliation(s)
- Charanya Kumar
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Dirk Remus
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
42
|
Lin P, Lourenco C, Cruickshank J, Palomero L, van Leeuwen JE, Tong AHY, Chan K, El Ghamrasni S, Pujana MA, Cescon DW, Moffat J, Penn LZ. Topoisomerase 1 Inhibition in MYC-Driven Cancer Promotes Aberrant R-Loop Accumulation to Induce Synthetic Lethality. Cancer Res 2023; 83:4015-4029. [PMID: 37987734 PMCID: PMC10722143 DOI: 10.1158/0008-5472.can-22-2948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 07/31/2023] [Accepted: 10/05/2023] [Indexed: 11/21/2023]
Abstract
UNLABELLED MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers. SIGNIFICANCE CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors.
Collapse
Affiliation(s)
- Peter Lin
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Corey Lourenco
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | - Luis Palomero
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - Jenna E. van Leeuwen
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | | | | | - Samah El Ghamrasni
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- CIBERES, Instituto de Salud Carlos III, Madrid, Spain
| | - David W. Cescon
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Linda Z. Penn
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
43
|
Abstract
Transcription and replication both require large macromolecular complexes to act on a DNA template, yet these machineries cannot simultaneously act on the same DNA sequence. Conflicts between the replication and transcription machineries (transcription-replication conflicts, or TRCs) are widespread in both prokaryotes and eukaryotes and have the capacity to both cause DNA damage and compromise complete, faithful replication of the genome. This review will highlight recent studies investigating the genomic locations of TRCs and the mechanisms by which they may be prevented, mitigated, or resolved. We address work from both model organisms and mammalian systems but predominantly focus on multicellular eukaryotes owing to the additional complexities inherent in the coordination of replication and transcription in the context of cell type-specific gene expression and higher-order chromatin organization.
Collapse
Affiliation(s)
- Liana Goehring
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Tony T Huang
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA;
| | - Duncan J Smith
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA;
| |
Collapse
|
44
|
Morita TY, Yu J, Kashima Y, Kamata R, Yamamoto G, Minamide T, Mashima C, Yoshiya M, Sakae Y, Yamauchi T, Hakozaki Y, Kageyama SI, Nakamura A, Lightcap E, Tanaka K, Niu H, Kannan K, Ohashi A. CDC7 inhibition induces replication stress-mediated aneuploid cells with an inflammatory phenotype sensitizing tumors to immune checkpoint blockade. Nat Commun 2023; 14:7490. [PMID: 37980406 PMCID: PMC10657413 DOI: 10.1038/s41467-023-43274-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
Serine/threonine kinase, cell division cycle 7 (CDC7) is critical for initiating DNA replication. TAK-931 is a specific CDC7 inhibitor, which is a next-generation replication stress (RS) inducer. This study preclinically investigates TAK-931 antitumor efficacy and immunity regulation. TAK-931 induce RS, generating senescence-like aneuploid cells, which highly expressed inflammatory cytokines and chemokines (senescence-associated secretory phenotype, SASP). In vivo multilayer-omics analyses in gene expression panel, immune panel, immunohistochemistry, RNA sequencing, and single-cell RNA sequencing reveal that the RS-mediated aneuploid cells generated by TAK-931 intensively activate inflammatory-related and senescence-associated pathways, resulting in accumulation of tumor-infiltrating immune cells and potent antitumor immunity and efficacy. Finally, the combination of TAK-931 and immune checkpoint inhibitors profoundly enhance antiproliferative activities. These findings suggest that TAK-931 has therapeutic antitumor properties and improved clinical benefits in combination with conventional immunotherapy.
Collapse
Affiliation(s)
- Tomoko Yamamori Morita
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Jie Yu
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA
| | - Yukie Kashima
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Ryo Kamata
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Gaku Yamamoto
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tatsunori Minamide
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Gastroenterology and Endoscopy, National Cancer Center Hospital East, Chiba, Japan
| | - Chiaki Mashima
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Miyuki Yoshiya
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Yuta Sakae
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Toyohiro Yamauchi
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yumi Hakozaki
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Akito Nakamura
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA
| | - Eric Lightcap
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA
| | - Kosuke Tanaka
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Huifeng Niu
- Oncology Translational Science., TDCA, Inc., Lexington, MA, USA
| | | | - Akihiro Ohashi
- Division of Translational Genomics, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba, Japan.
- Oncology Drug Discovery Unit, Takeda Development Center Americas (TDCA), Inc., Lexington, MA, USA.
- Department of Integrated Bioscience, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
45
|
Neil E, Paredes R, Pooley O, Rubin B, Kouskoff V. The oncogenic fusion protein TAZ::CAMTA1 promotes genomic instability and senescence through hypertranscription. Commun Biol 2023; 6:1174. [PMID: 37980390 PMCID: PMC10657451 DOI: 10.1038/s42003-023-05540-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/03/2023] [Indexed: 11/20/2023] Open
Abstract
TAZ::CAMTA1 is a fusion protein found in over 90% of Epithelioid Hemangioendothelioma (EHE), a rare vascular sarcoma with an unpredictable disease course. To date, how TAZ::CAMTA1 initiates tumour formation remains unexplained. To study the oncogenic mechanism leading to EHE initiation, we developed a model system whereby TAZ::CAMTA1 expression is induced by doxycycline in primary endothelial cells. Using this model, we establish that upon TAZ::CAMTA1 expression endothelial cells rapidly enter a hypertranscription state, triggering considerable DNA damage. As a result, TC-expressing cells become trapped in S phase. Additionally, TAZ::CAMTA1-expressing endothelial cells have impaired homologous recombination, as shown by reduced BRCA1 and RAD51 foci formation. Consequently, the DNA damage remains unrepaired and TAZ::CAMTA1-expressing cells enter senescence. Knockout of Cdkn2a, the most common secondary mutation found in EHE, allows senescence bypass and uncontrolled growth. Together, this provides a mechanistic explanation for the clinical course of EHE and offers novel insight into therapeutic options.
Collapse
Affiliation(s)
- Emily Neil
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Roberto Paredes
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Oscar Pooley
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK
| | - Brian Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Valerie Kouskoff
- Developmental Hematopoiesis Group, Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
46
|
Bhowmick R, Hickson ID, Liu Y. Completing genome replication outside of S phase. Mol Cell 2023; 83:3596-3607. [PMID: 37716351 DOI: 10.1016/j.molcel.2023.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/18/2023]
Abstract
Mitotic DNA synthesis (MiDAS) is an unusual form of DNA replication that occurs during mitosis. Initially, MiDAS was characterized as a process associated with intrinsically unstable loci known as common fragile sites that occurs after cells experience DNA replication stress (RS). However, it is now believed to be a more widespread "salvage" mechanism that is called upon to complete the duplication of any under-replicated genomic region. Emerging data suggest that MiDAS is a DNA repair process potentially involving two or more pathways working in parallel or sequentially. In this review, we introduce the causes of RS, regions of the human genome known to be especially vulnerable to RS, and the strategies used to complete DNA replication outside of S phase. Additionally, because MiDAS is a prominent feature of aneuploid cancer cells, we will discuss how targeting MiDAS might potentially lead to improvements in cancer therapy.
Collapse
Affiliation(s)
- Rahul Bhowmick
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Ian D Hickson
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| | - Ying Liu
- Center for Chromosome Stability and Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Panum Institute, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
47
|
Brunner A, Li Q, Fisicaro S, Kourtesakis A, Viiliäinen J, Johansson HJ, Pandey V, Mayank AK, Lehtiö J, Wohlschlegel JA, Spruck C, Rantala JK, Orre LM, Sangfelt O. FBXL12 degrades FANCD2 to regulate replication recovery and promote cancer cell survival under conditions of replication stress. Mol Cell 2023; 83:3720-3739.e8. [PMID: 37591242 PMCID: PMC10592106 DOI: 10.1016/j.molcel.2023.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 05/14/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Fanconi anemia (FA) signaling, a key genomic maintenance pathway, is activated in response to replication stress. Here, we report that phosphorylation of the pivotal pathway protein FANCD2 by CHK1 triggers its FBXL12-dependent proteasomal degradation, facilitating FANCD2 clearance at stalled replication forks. This promotes efficient DNA replication under conditions of CYCLIN E- and drug-induced replication stress. Reconstituting FANCD2-deficient fibroblasts with phosphodegron mutants failed to re-establish fork progression. In the absence of FBXL12, FANCD2 becomes trapped on chromatin, leading to replication stress and excessive DNA damage. In human cancers, FBXL12, CYCLIN E, and FA signaling are positively correlated, and FBXL12 upregulation is linked to reduced survival in patients with high CYCLIN E-expressing breast tumors. Finally, depletion of FBXL12 exacerbated oncogene-induced replication stress and sensitized cancer cells to drug-induced replication stress by WEE1 inhibition. Collectively, our results indicate that FBXL12 constitutes a vulnerability and a potential therapeutic target in CYCLIN E-overexpressing cancers.
Collapse
Affiliation(s)
- Andrä Brunner
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden.
| | - Qiuzhen Li
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Samuele Fisicaro
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Alexandros Kourtesakis
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Johanna Viiliäinen
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden
| | - Henrik J Johansson
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - Vijaya Pandey
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Adarsh K Mayank
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles 90095, CA, USA
| | - Charles Spruck
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla 92037, CA, USA
| | - Juha K Rantala
- Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2RX, South Yorkshire, UK; Misvik Biology, Turku 20520, Finland
| | - Lukas M Orre
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna 17165, Stockholms län, Sweden
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna 17165, Stockholms län, Sweden.
| |
Collapse
|
48
|
Li F, Zafar A, Luo L, Denning AM, Gu J, Bennett A, Yuan F, Zhang Y. R-Loops in Genome Instability and Cancer. Cancers (Basel) 2023; 15:4986. [PMID: 37894353 PMCID: PMC10605827 DOI: 10.3390/cancers15204986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
R-loops are unique, three-stranded nucleic acid structures that primarily form when an RNA molecule displaces one DNA strand and anneals to the complementary DNA strand in a double-stranded DNA molecule. R-loop formation can occur during natural processes, such as transcription, in which the nascent RNA molecule remains hybridized with the template DNA strand, while the non-template DNA strand is displaced. However, R-loops can also arise due to many non-natural processes, including DNA damage, dysregulation of RNA degradation pathways, and defects in RNA processing. Despite their prevalence throughout the whole genome, R-loops are predominantly found in actively transcribed gene regions, enabling R-loops to serve seemingly controversial roles. On one hand, the pathological accumulation of R-loops contributes to genome instability, a hallmark of cancer development that plays a role in tumorigenesis, cancer progression, and therapeutic resistance. On the other hand, R-loops play critical roles in regulating essential processes, such as gene expression, chromatin organization, class-switch recombination, mitochondrial DNA replication, and DNA repair. In this review, we summarize discoveries related to the formation, suppression, and removal of R-loops and their influence on genome instability, DNA repair, and oncogenic events. We have also discussed therapeutical opportunities by targeting pathological R-loops.
Collapse
Affiliation(s)
- Fang Li
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Alyan Zafar
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Liang Luo
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ariana Maria Denning
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Ansley Bennett
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
49
|
McCann JL, Cristini A, Law EK, Lee SY, Tellier M, Carpenter MA, Beghè C, Kim JJ, Sanchez A, Jarvis MC, Stefanovska B, Temiz NA, Bergstrom EN, Salamango DJ, Brown MR, Murphy S, Alexandrov LB, Miller KM, Gromak N, Harris RS. APOBEC3B regulates R-loops and promotes transcription-associated mutagenesis in cancer. Nat Genet 2023; 55:1721-1734. [PMID: 37735199 PMCID: PMC10562255 DOI: 10.1038/s41588-023-01504-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
The single-stranded DNA cytosine-to-uracil deaminase APOBEC3B is an antiviral protein implicated in cancer. However, its substrates in cells are not fully delineated. Here APOBEC3B proteomics reveal interactions with a surprising number of R-loop factors. Biochemical experiments show APOBEC3B binding to R-loops in cells and in vitro. Genetic experiments demonstrate R-loop increases in cells lacking APOBEC3B and decreases in cells overexpressing APOBEC3B. Genome-wide analyses show major changes in the overall landscape of physiological and stimulus-induced R-loops with thousands of differentially altered regions, as well as binding of APOBEC3B to many of these sites. APOBEC3 mutagenesis impacts genes overexpressed in tumors and splice factor mutant tumors preferentially, and APOBEC3-attributed kataegis are enriched in RTCW motifs consistent with APOBEC3B deamination. Taken together with the fact that APOBEC3B binds single-stranded DNA and RNA and preferentially deaminates DNA, these results support a mechanism in which APOBEC3B regulates R-loops and contributes to R-loop mutagenesis in cancer.
Collapse
Affiliation(s)
- Jennifer L McCann
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Agnese Cristini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Emily K Law
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Michael A Carpenter
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chiara Beghè
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jae Jin Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Anthony Sanchez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Matthew C Jarvis
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Bojana Stefanovska
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Nuri A Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Erik N Bergstrom
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Daniel J Salamango
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Margaret R Brown
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Department of Bioengineering, UC San Diego, La Jolla, CA, USA
- Moores Cancer Center, UC San Diego, La Jolla, CA, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Livestrong Cancer Institutes, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Reuben S Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA.
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
- Biochemistry and Structural Biology Department, University of Texas Health San Antonio, San Antonio, TX, USA.
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
50
|
Mukherjee S, Mukherjee SB, Frenkel-Morgenstern M. Functional and regulatory impact of chimeric RNAs in human normal and cancer cells. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1777. [PMID: 36633099 DOI: 10.1002/wrna.1777] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023]
Abstract
Fusions of two genes can lead to the generation of chimeric RNAs, which may have a distinct functional role from their original molecules. Chimeric RNAs could encode novel functional proteins or serve as novel long noncoding RNAs (lncRNAs). The appearance of chimeric RNAs in a cell could help to generate new functionality and phenotypic diversity that might facilitate this cell to survive against new environmental stress. Several recent studies have demonstrated the functional roles of various chimeric RNAs in cancer progression and are considered as biomarkers for cancer diagnosis and sometimes even drug targets. Further, the growing evidence demonstrated the potential functional association of chimeric RNAs with cancer heterogeneity and drug resistance cancer evolution. Recent studies highlighted that chimeric RNAs also have functional potentiality in normal physiological processes. Several functionally potential chimeric RNAs were discovered in human cancer and normal cells in the last two decades. This could indicate that chimeric RNAs are the hidden layer of the human transcriptome that should be explored from the functional insights to better understand the functional evolution of the genome and disease development that could facilitate clinical practice improvements. This review summarizes the current knowledge of chimeric RNAs and highlights their functional, regulatory, and evolutionary impact on different cancers and normal physiological processes. Further, we will discuss the potential functional roles of a recently discovered novel class of chimeric RNAs named sense-antisense/cross-strand chimeric RNAs generated by the fusion of the bi-directional transcripts of the same gene. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Computer Science, Ben-Gurion University, Beer-Sheva, Israel
- Cancer Data Science Laboratory (CDSL), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Sunanda Biswas Mukherjee
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Milana Frenkel-Morgenstern
- Cancer Genomics and BioComputing of Complex Diseases Lab, Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|