1
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
2
|
Hiepen C, Benamar M, Barrasa-Fano J, Condor M, Ilhan M, Münch J, Hastar N, Kerkhoff Y, Harms GS, Mielke T, Koenig B, Block S, Rocks O, Abdelilah-Seyfried S, Van Oosterwyck H, Knaus P. Endothelial tip-cell position, filopodia formation and biomechanics require BMPR2 expression and signaling. Commun Biol 2025; 8:21. [PMID: 39779836 PMCID: PMC11711618 DOI: 10.1038/s42003-024-07431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Blood vessel formation relies on biochemical and mechanical signals, particularly during sprouting angiogenesis when endothelial tip cells (TCs) guide sprouting through filopodia formation. The contribution of BMP receptors in defining tip-cell characteristics is poorly understood. Our study combines genetic, biochemical, and molecular methods together with 3D traction force microscopy, which reveals an essential role of BMPR2 for actin-driven filopodia formation and mechanical properties of endothelial cells (ECs). Targeting of Bmpr2 reduced sprouting angiogenesis in zebrafish and BMPR2-deficient human ECs formed fewer filopodia, affecting cell migration and actomyosin localization. Spheroid assays revealed a reduced sprouting of BMPR2-deficient ECs in fibrin gels. Even more strikingly, in mosaic spheroids, BMPR2-deficient ECs failed to acquire tip-cell positions. Yet, 3D traction force microscopy revealed that these distinct cell behaviors of BMPR2-deficient tip cells cannot be explained by differences in force-induced matrix deformations, even though these cells adopted distinct cone-shaped morphologies. Notably, BMPR2 positively regulates local CDC42 activity at the plasma membrane to promote filopodia formation. Our findings reveal that BMPR2 functions as a nexus integrating biochemical and biomechanical processes crucial for TCs during angiogenesis.
Collapse
Affiliation(s)
- Christian Hiepen
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
- Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany.
| | - Mounir Benamar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Jorge Barrasa-Fano
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mar Condor
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
| | - Mustafa Ilhan
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Berlin School of Integrative Oncology, Augustenburger Platz 1, D-13353, Berlin, Germany
| | - Juliane Münch
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Nurcan Hastar
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Yannic Kerkhoff
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Gregory S Harms
- Universitätsmedizin, Johannes Gutenberg-Universität Mainz, Cell Biology Unit, Imaging Core Facility and the Research Center for Immune Intervention, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Thorsten Mielke
- Max-Planck-Institute for Molecular Genetics, Microscopy & Cryo-Electron Microscopy, Ihnestraße 63-73, 14195, Berlin, Germany
| | - Benjamin Koenig
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Stephan Block
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany
| | - Oliver Rocks
- Charité - Universitätsmedizin Berlin, Systemic Cell Dynamics, Charitéplatz 1, 10117, Berlin, Germany
| | - Salim Abdelilah-Seyfried
- Universität Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Hans Van Oosterwyck
- KU Leuven, Department of Mechanical Engineering, Biomechanics section, Leuven, Celestijnenlaan 300 C, 3001, Leuven, Belgium
- KU Leuven, Prometheus Division of Skeletal Tissue Engineering, Leuven, Belgium
| | - Petra Knaus
- Freie Universität Berlin, Institute for Chemistry and Biochemistry, Thielallee 63, 14195, Berlin, Germany.
| |
Collapse
|
3
|
Daems M, Ponomarev LC, Simoes-Faria R, Nobis M, Scheele CLGJ, Luttun A, Ghesquière B, Zwijsen A, Jones EAV. Smad1/5 is acetylated in the dorsal aortae of the mouse embryo before the onset of blood flow, driving early arterial gene expression. Cardiovasc Res 2024; 120:2078-2091. [PMID: 39253943 DOI: 10.1093/cvr/cvae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 09/11/2024] Open
Abstract
AIMS During embryonic development, arteriovenous (AV) differentiation ensures proper blood vessel formation and maturation. Defects in arterial or venous identity cause inappropriate fusion of vessels, resulting in atypical shunts, so-called AV malformations (AVMs). Currently, the mechanism behind AVM formation remains unclear, and treatment options are fairly limited. Mammalian AV differentiation is initiated before the onset of blood flow in the embryo; however, this pre-flow mechanism is poorly understood. Here, we aimed to unravel the role of Smad1/5 signalling in pre-flow arterial identity and, in the process, uncovered an unexpected control mechanism of Smad1/5 signalling. METHODS AND RESULTS We establish that despite Notch1 being expressed in the pre-flow mouse embryo, it is not activated, nor is it necessary for the expression of the earliest arterial genes in the dorsal aortae (i.e. Hey1 and Gja4). Furthermore, interrupting blood flow by using the Ncx1 KO model completely prevents the activation of Notch1 signalling, suggesting a strong role of shear stress in maintaining arterial identity. We demonstrate that early expression of Hey1 and Gja4 requires SMAD1/5 signalling. Using embryo cultures, we show that Smad1/5 signalling is activated through the Alk1/Alk5/transforming growth factor (TGF)βR2 receptor complex, with TGFβ1 as a necessary ligand. Furthermore, our findings demonstrate that early arterial gene expression requires the acetylation of Smad1/5 proteins, rendering them more sensitive to TGFβ1 stimulation. Blocking acetyl-CoA production prevents pre-flow arterial expression of Hey1 and Gja4, while stabilizing acetylation rescues their expression. CONCLUSION Our findings highlight the importance of the acetyl-CoA production in the cell and provide a novel control mechanism of Smad1/5 signalling involving protein acetylation. As disturbed canonical Smad1/5 signalling is involved in several vascular conditions, our results offer new insights in treatment options for circumventing canonical Smad1/5 signalling.
Collapse
MESH Headings
- Animals
- Smad5 Protein/metabolism
- Smad5 Protein/genetics
- Smad1 Protein/metabolism
- Smad1 Protein/genetics
- Acetylation
- Gene Expression Regulation, Developmental
- Receptor, Notch1/metabolism
- Receptor, Notch1/genetics
- Mice, Knockout
- Regional Blood Flow
- Signal Transduction
- Aorta/metabolism
- Aorta/physiopathology
- Aorta/embryology
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Protein Processing, Post-Translational
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/genetics
- Mice, Inbred C57BL
- Receptors, Transforming Growth Factor beta/metabolism
- Receptors, Transforming Growth Factor beta/genetics
- Mice
- Sodium-Calcium Exchanger
Collapse
Affiliation(s)
- Margo Daems
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Ljuba C Ponomarev
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Rita Simoes-Faria
- Metabolomics Expertise Centre, VIB Centre for Cancer Biology, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, 3000 Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Centre, VIB Centre for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Colinda L G J Scheele
- Department of Oncology, Laboratory for Intravital Imaging and Dynamics of Tumour Progression, VIB Centre for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Centre, VIB Centre for Cancer Biology, 3000 Leuven, Belgium
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, 3000 Leuven, Belgium
| | - An Zwijsen
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
| | - Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, 3000 Leuven, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Pak B, Kim M, Han O, Lee HW, Dubrac A, Choi W, Yang JM, Boyé K, Cho H, Citrin KM, Kim I, Eichmann A, Bautch VL, Jin SW. ACVR1/ALK2-p21 signaling axis modulates proliferation of the venous endothelium in the retinal vasculature. Angiogenesis 2024; 27:765-777. [PMID: 38955953 DOI: 10.1007/s10456-024-09936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024]
Abstract
The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells. We show that ACVR1/ALK2 is a key modulator for the proliferation of endothelium in the retinal vessels. Loss of endothelial ALK2 leads to a significant reduction in endothelial proliferation and results in fewer branches/endothelial cells in the retinal vessels. Interestingly, venous endothelium appears to be more susceptible to ALK2 deletion. Mechanistically, ACVR1/ALK2 inhibits the expression of CDKN1A/p21, a critical negative regulator of cell cycle progression, in a SMAD1/5-dependent manner, thereby enabling the venous endothelium to undergo active proliferation by suppressing CDKN1A/p21. Taken together, our findings show that BMP signaling mediated by ACVR1/ALK2 provides a critical yet previously underappreciated input to modulate the proliferation of venous endothelium, thereby fine-tuning the context of angiogenesis in health and disease.
Collapse
Affiliation(s)
- Boryeong Pak
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Minjung Kim
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Orjin Han
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Heon-Woo Lee
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacy, Chosun University, Gwangju, Korea
| | - Alexandre Dubrac
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
- CHU Sainte-Justine Research Center, and Department of Pathology and Cellular Biology, Université de Montréal, Montréal, QC, Canada
| | - Woosoung Choi
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Jee Myung Yang
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Kevin Boyé
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Heewon Cho
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea
| | - Kathryn M Citrin
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Injune Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Anne Eichmann
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Victoria L Bautch
- Department of Biology and McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Suk-Won Jin
- School of Life Sciences and Cell Logistics Research Center, Gwangju Institute of Science and Technology (GIST), Gwangju, Korea.
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Liu Z, Tanke NT, Neal A, Yu T, Branch T, Sharma A, Cook JG, Bautch VL. Differential endothelial cell cycle status in postnatal retinal vessels revealed using a novel PIP-FUCCI reporter and zonation analysis. Angiogenesis 2024; 27:681-689. [PMID: 38795286 PMCID: PMC11564245 DOI: 10.1007/s10456-024-09920-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/15/2024] [Indexed: 05/27/2024]
Abstract
Cell cycle regulation is critical to blood vessel formation and function, but how the endothelial cell cycle integrates with vascular regulation is not well-understood, and available dynamic cell cycle reporters do not precisely distinguish all cell cycle stage transitions in vivo. Here we characterized a recently developed improved cell cycle reporter (PIP-FUCCI) that precisely delineates S phase and the S/G2 transition. Live image analysis of primary endothelial cells revealed predicted temporal changes and well-defined stage transitions. A new inducible mouse cell cycle reporter allele was selectively expressed in postnatal retinal endothelial cells upon Cre-mediated activation and predicted endothelial cell cycle status. We developed a semi-automated zonation program to define endothelial cell cycle status in spatially defined and developmentally distinct retinal areas and found predicted cell cycle stage differences in arteries, veins, and remodeled and angiogenic capillaries. Surprisingly, the predicted dearth of S-phase proliferative tip cells relative to stalk cells at the vascular front was accompanied by an unexpected enrichment for endothelial tip and stalk cells in G2, suggesting G2 stalling as a contribution to tip-cell arrest and dynamics at the front. Thus, this improved reporter precisely defines endothelial cell cycle status in vivo and reveals novel G2 regulation that may contribute to unique aspects of blood vessel network expansion.
Collapse
Affiliation(s)
- Ziqing Liu
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA
| | - Alexandra Neal
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tianji Yu
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tershona Branch
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Arya Sharma
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jean G Cook
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC, USA
| | - Victoria L Bautch
- Department of Biology, CB 3280, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC, USA.
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Jeong JY, Bafor AE, Freeman BH, Chen PR, Park ES, Kim E. Pathophysiology in Brain Arteriovenous Malformations: Focus on Endothelial Dysfunctions and Endothelial-to-Mesenchymal Transition. Biomedicines 2024; 12:1795. [PMID: 39200259 PMCID: PMC11351371 DOI: 10.3390/biomedicines12081795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) substantially increase the risk for intracerebral hemorrhage (ICH), which is associated with significant morbidity and mortality. However, the treatment options for bAVMs are severely limited, primarily relying on invasive methods that carry their own risks for intraoperative hemorrhage or even death. Currently, there are no pharmaceutical agents shown to treat this condition, primarily due to a poor understanding of bAVM pathophysiology. For the last decade, bAVM research has made significant advances, including the identification of novel genetic mutations and relevant signaling in bAVM development. However, bAVM pathophysiology is still largely unclear. Further investigation is required to understand the detailed cellular and molecular mechanisms involved, which will enable the development of safer and more effective treatment options. Endothelial cells (ECs), the cells that line the vascular lumen, are integral to the pathogenesis of bAVMs. Understanding the fundamental role of ECs in pathological conditions is crucial to unraveling bAVM pathophysiology. This review focuses on the current knowledge of bAVM-relevant signaling pathways and dysfunctions in ECs, particularly the endothelial-to-mesenchymal transition (EndMT).
Collapse
Affiliation(s)
| | | | | | | | | | - Eunhee Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA; (J.Y.J.); (A.E.B.); (B.H.F.); (P.R.C.); (E.S.P.)
| |
Collapse
|
7
|
Sun L, Rao S, Kerim K, Lu J, Li H, Zhao S, Shen P, Sun W. A chemically adjustable BMP6-IL6 axis in mesenchymal stem cells drives acute myeloid leukemia cell differentiation. Biochem Pharmacol 2024; 225:116262. [PMID: 38705535 DOI: 10.1016/j.bcp.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Chemotherapy alone or in combination with allogeneic stem cell transplantation has been the standard of care for acute myeloid leukemia (AML) for decades. Leukemia relapse with limited treatment options remains the main cause of treatment failure. Therefore, an effective and safe approach to improve treatment outcomes is urgently needed for most AML patients. Mesenchymal stem cells (MSCs) have been reported to efficiently induce apoptosis and shape the fate of acute myeloid leukemia cells. Here, we identified LG190155 as a potent compound that enhances the antileukemia efficiency of MSCs. Pretreatment of MSCs with LG190155 significantly provoked differentiation in both AML patient-derived primary leukemia cells and AML cell lines and reduced the tumor burden in the AML mouse model. Using the quantitative proteomic technique, we discovered a pivotal mechanism that mediates AML cell differentiation, in which autocrine bone morphogenetic protein 6 (BMP6) in MSCs boosted IL-6 secretion and further acted on leukemic cells to trigger differentiation. Furthermore, the activity of the BMP6-IL6 axis was dramatically enhanced by activating vitamin D receptor (VDR) in MSCs. Our data illustrated an effective preactivated approach to reinforcing the antileukemia effect of MSCs, which could serve as an effective therapeutic strategy for AML.
Collapse
Affiliation(s)
- Luchen Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shangrui Rao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kamran Kerim
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jianhua Lu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hongzheng Li
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shengsheng Zhao
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Pingping Shen
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Shenzhen Research Institute of NanJing University, Shenzhen 518000, China.
| | - Weijian Sun
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
8
|
Chen L, Li H, Liu X, Zhang N, Wang K, Shi A, Gao H, Akdis D, Saguner AM, Xu X, Osto E, Van de Veen W, Li G, Bayés-Genís A, Duru F, Song J, Li X, Hu S. PBX/Knotted 1 homeobox-2 (PKNOX2) is a novel regulator of myocardial fibrosis. Signal Transduct Target Ther 2024; 9:94. [PMID: 38644381 PMCID: PMC11033280 DOI: 10.1038/s41392-024-01804-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 02/08/2024] [Accepted: 03/13/2024] [Indexed: 04/23/2024] Open
Abstract
Much effort has been made to uncover the cellular heterogeneities of human hearts by single-nucleus RNA sequencing. However, the cardiac transcriptional regulation networks have not been systematically described because of the limitations in detecting transcription factors. In this study, we optimized a pipeline for isolating nuclei and conducting single-nucleus RNA sequencing targeted to detect a higher number of cell signal genes and an optimal number of transcription factors. With this unbiased protocol, we characterized the cellular composition of healthy human hearts and investigated the transcriptional regulation networks involved in determining the cellular identities and functions of the main cardiac cell subtypes. Particularly in fibroblasts, a novel regulator, PKNOX2, was identified as being associated with physiological fibroblast activation in healthy hearts. To validate the roles of these transcription factors in maintaining homeostasis, we used single-nucleus RNA-sequencing analysis of transplanted failing hearts focusing on fibroblast remodelling. The trajectory analysis suggested that PKNOX2 was abnormally decreased from fibroblast activation to pathological myofibroblast formation. Both gain- and loss-of-function in vitro experiments demonstrated the inhibitory role of PKNOX2 in pathological fibrosis remodelling. Moreover, fibroblast-specific overexpression and knockout of PKNOX2 in a heart failure mouse model induced by transverse aortic constriction surgery significantly improved and aggravated myocardial fibrosis, respectively. In summary, this study established a high-quality pipeline for single-nucleus RNA-sequencing analysis of heart muscle. With this optimized protocol, we described the transcriptional regulation networks of the main cardiac cell subtypes and identified PKNOX2 as a novel regulator in suppressing fibrosis and a potential therapeutic target for future translational studies.
Collapse
Affiliation(s)
- Liang Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Haotong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Xiaorui Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Ningning Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Kui Wang
- School of Statistics and Data Science, Nankai University, Tianjin, China
| | - Anteng Shi
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Hang Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Deniz Akdis
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ardan M Saguner
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Elena Osto
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Institute for Clinical Chemistry, University Hospital Zurich and University of Zürich, Zurich, Switzerland
| | - Willem Van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Guangyu Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Antoni Bayés-Genís
- Heart Institute, Hospital Universitari Germans Trias i Pujol, Badalona, CIBERCV, Spain
| | - Firat Duru
- Department of Cardiology, University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Jiangping Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Xiangjie Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
9
|
Altrieth A, Kenney J, Nelson D, Suarez E, Gellatly V, Gabunia S, Larsen M. Single-Cell Transcriptomic Analysis of Salivary Gland Endothelial Cells. J Dent Res 2024; 103:269-278. [PMID: 38411696 PMCID: PMC10985389 DOI: 10.1177/00220345231219987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Vascular endothelial cells have important tissue-specific functions in fibrosis and regeneration. In the salivary gland, endothelial cells are required for proper development, but their roles within adult glands are largely unknown. To identify ligand-receptor interactions between endothelial cells and other cell types that may be important during fibrosis and regeneration, we used a reversible ductal ligation injury. To induce injury, a clip was applied to the primary ducts for 14 d, and to induce a regenerative response, the clip was subsequently removed for 5 d. To identify endothelial cell-produced factors, we used single-cell RNA sequencing of stromal-enriched cells from adult female submandibular and sublingual salivary glands. Transcriptional profiles of homeostatic salivary gland endothelial cells were compared to endothelial cells of other organs. Salivary gland endothelial cells expressed many unique genes and displayed the highest overlap in gene expression with other fenestrated endothelial cells from the colon, small intestine, and kidney. Comparison of the 14-d ligated, mock-ligated, and 5-d deligated stromal-enriched transcripts and lineage tracing revealed that endothelial cells retain their identity following ligation and recovery from injury. CellChat and NATMI were used to predict changes in ligand-receptor interactions from endothelial cells to other cells in response to ligation and deligation. CellChat and NATMI predicted that after ligation, interactions with fibroblasts, epithelial cells, and glial cells were increased, and following deligation, interactions with pericyte, glia, fibroblasts, and immune cells were increased. Some of the highest-ranked interactions predicted in ligated compared to mock endothelial cells were between glial cells via Col4a2-Cd93 and Jag2-Notch1, as well as epithelial cells via Pecam1-Cd38, while in deligated compared to ligated endothelial cells, the top interactions were between fibroblasts via Ntf3-Ntrk2, glial cells via Hspg2-Itgb1, and pericytes via Jam2-F11r. Understanding salivary gland endothelial cell signaling will inform future endothelial cell-based regenerative therapies.
Collapse
Affiliation(s)
- A.L. Altrieth
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - J. Kenney
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - D.A. Nelson
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - E.G. Suarez
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - V. Gellatly
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - S. Gabunia
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - M. Larsen
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, Albany, NY, USA
- Molecular, Cellular, Developmental, and Neural Biology Graduate Program, Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
10
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, Singh S, Gore MT, le Noble F, Gabhann FM, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. Angiogenesis 2024; 27:67-89. [PMID: 37695358 PMCID: PMC10881643 DOI: 10.1007/s10456-023-09893-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Live-imaging of temporally controlled sFLT1 release from the endoplasmic reticulum showed clathrin-dependent sFLT1 trafficking at the Golgi into secretory vesicles that then trafficked to the plasma membrane. Depletion of STX6 altered vessel sprouting in 3D, suggesting that endothelial cell sFLT1 secretion influences proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Amy Gill
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Allison Marvin
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Renee Li
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Kaitlyn Quigley
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Simcha Singh
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Michaelanthony T Gore
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, CB No. 3280, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
Liu Z, Tanke NT, Neal A, Yu T, Branch T, Cook JG, Bautch VL. Differential endothelial cell cycle status in postnatal retinal vessels revealed using a novel PIP-FUCCI reporter and zonation analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574239. [PMID: 38249517 PMCID: PMC10798646 DOI: 10.1101/2024.01.04.574239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Cell cycle regulation is critical to blood vessel formation and function, but how the endothelial cell cycle integrates with vascular regulation is not well-understood, and available dynamic cell cycle reporters do not precisely distinguish all cell cycle stage transitions in vivo. Here we characterized a recently developed improved cell cycle reporter (PIP-FUCCI) that precisely delineates S phase and the S/G2 transition. Live image analysis of primary endothelial cells revealed predicted temporal changes and well-defined stage transitions. A new inducible mouse cell cycle reporter allele was selectively expressed in postnatal retinal endothelial cells upon Cre-mediated activation and predicted endothelial cell cycle status. We developed a semi-automated zonation program to define endothelial cell cycle status in spatially defined and developmentally distinct retinal areas and found predicted cell cycle stage differences in arteries, veins, and remodeled and angiogenic capillaries. Surprisingly, the predicted dearth of proliferative tip cells at the vascular front was accompanied by an unexpected enrichment for endothelial tip cells in G2, suggesting G2 stalling as a contribution to tip-cell arrest. Thus, this improved reporter precisely defines endothelial cell cycle status in vivo and reveals novel G2 regulation that may contribute to unique aspects of blood vessel network expansion.
Collapse
Affiliation(s)
- Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Natalie T Tanke
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC USA
| | - Alexandra Neal
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Tershona Branch
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Jean G Cook
- Department of Biochemistry and Biophysics, The University of North Carolina, Chapel Hill, NC USA
| | - Victoria L Bautch
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
- Curriculum in Cell Biology and Physiology, The University of North Carolina, Chapel Hill, NC USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
12
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
13
|
Wang S, Deng X, Wu Y, Wu Y, Zhou S, Yang J, Huang Y. Understanding the pathogenesis of brain arteriovenous malformation: genetic variations, epigenetics, signaling pathways, and immune inflammation. Hum Genet 2023; 142:1633-1649. [PMID: 37768356 DOI: 10.1007/s00439-023-02605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/10/2023] [Indexed: 09/29/2023]
Abstract
Brain arteriovenous malformation (BAVM) is a rare but serious cerebrovascular disease whose pathogenesis has not been fully elucidated. Studies have found that epigenetic regulation, genetic variation and their signaling pathways, immune inflammation, may be the cause of BAVM the main reason. This review comprehensively analyzes the key pathways and inflammatory factors related to BAVMs, and explores their interplay with epigenetic regulation and genetics. Studies have found that epigenetic regulation such as DNA methylation, non-coding RNAs and m6A RNA modification can regulate endothelial cell proliferation, apoptosis, migration and damage repair of vascular malformations through different target gene pathways. Gene defects such as KRAS, ACVRL1 and EPHB4 lead to a disordered vascular environment, which may promote abnormal proliferation of blood vessels through ERK, NOTCH, mTOR, Wnt and other pathways. PDGF-B and PDGFR-β were responsible for the recruitment of vascular adventitial cells and smooth muscle cells in the extracellular matrix environment of blood vessels, and played an important role in the pathological process of BAVM. Recent single-cell sequencing data revealed the diversity of various cell types within BAVM, as well as the heterogeneous expression of vascular-associated antigens, while neutrophils, macrophages and cytokines such as IL-6, IL-1, TNF-α, and IL-17A in BAVM tissue were significantly increased. Currently, there are no specific drugs targeting BAVMs, and biomarkers for BAVM formation, bleeding, and recurrence are lacking clinically. Therefore, further studies on molecular biological mechanisms will help to gain insight into the pathogenesis of BAVM and develop potential therapeutic strategies.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Xinpeng Deng
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yuefei Wu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Yiwen Wu
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Shengjun Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, 315010, Zhejiang, China.
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
14
|
Pulkkinen HH, Kivistö-Rahnasto A, Korpela H, Heikkilä M, Järveläinen N, Siimes S, Kilpeläinen L, Laham-Karam N, Ylä-Herttuala S, Laakkonen JP. BMP2 gene transfer induces pericardial effusion and inflammatory response in the ischemic porcine myocardium. Front Cardiovasc Med 2023; 10:1279613. [PMID: 38028463 PMCID: PMC10655027 DOI: 10.3389/fcvm.2023.1279613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Pro-angiogenic gene therapy is being developed to treat coronary artery disease (CAD). We recently showed that bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor-A synergistically regulate endothelial cell sprouting in vitro. BMP2 was also shown to induce endocardial angiogenesis in neonatal mice post-myocardial infarction. In this study, we investigated the potential of BMP2 gene transfer to improve cardiomyocyte function and neovessel formation in a pig chronic myocardial infarction model. Ischemia was induced in domestic pigs by placing a bottleneck stent in the proximal part of the left anterior descending artery 14 days before gene transfer. Intramyocardial gene transfers with adenovirus vectors (1 × 1012 viral particles/pig) containing either human BMP2 (AdBMP2) or beta-galactosidase (AdLacZ) control gene were performed using a needle injection catheter. BMP2 transgene expression in the myocardium was detected with immunofluorescence staining in the gene transfer area 6 days after AdBMP2 administration. BMP2 gene transfer did not induce angiogenesis or cardiomyocyte proliferation in the ischemic pig myocardium as determined by the quantitations of CD31 or Ki-67 stainings, respectively. Accordingly, no changes in heart contractility were detected in left ventricular ejection fraction and strain measurements. However, BMP2 gene transfer induced pericardial effusion (AdBMP2: 9.41 ± 3.17 mm; AdLacZ: 3.07 ± 1.33 mm) that was measured by echocardiography. Furthermore, an increase in the number of immune cells and CD3+ T cells was found in the BMP2 gene transfer area. No changes were detected in the clinical chemistry analysis of pig serum or histology of the major organs, implicating that the gene transfer did not induce general toxicity, myocardial injury, or off-target effects. Finally, the levels of fibrosis and cardiomyocyte apoptosis detected by Sirius red or caspase 3 stainings, respectively, remained unaltered between the groups. Our results demonstrate that BMP2 gene transfer causes inflammatory changes and pericardial effusion in the adult ischemic myocardium, which thus does not support its therapeutic use in chronic CAD.
Collapse
Affiliation(s)
- H. H. Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A. Kivistö-Rahnasto
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H. Korpela
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M. Heikkilä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Järveläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Siimes
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L. Kilpeläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N. Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S. Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Heart Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - J. P. Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
15
|
Huang W, Wu Y, Zhao Y, Gan X, Zhang B, Cen X, Huang X, Zhao Z. Down-regulation of hsa-circ-0107593 promotes osteogenic differentiation of hADSCs via miR-20a-5p/SMAD6 signaling. Oral Dis 2023; 29:3447-3459. [PMID: 35957556 DOI: 10.1111/odi.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/10/2022] [Accepted: 07/30/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Increasing evidence indicated circRNAs were involved in stem cells osteogenesis differentiation. Herein, we aimed to clarify the role of hsa-circ-0107593 during the osteogenesis process of human adipose-derived stem cells (hADSCs) and the underlying mechanisms. METHODS The ring structure of hsa-circ-0107593 was confirmed using RNase R treatment and Sanger sequencing. Nucleoplasmic separation and fluorescence in situ hybridization detected hsa-circ-0107593 distribution. Lentivirus and siRNA were used to modulate the expression of hsa-circ-0107593, and the binding relationship between hsa-circ-0107593 and miR-20a-5p was verified by luciferase assay and RNA immunoprecipitation. We detected the osteogenic activity of hADSCs through alkaline phosphatase staining, alizarin red S staining, real-time polymerase chain reaction (RT-PCR), western blot, and cellular immunofluorescence experiment. In vivo, micro-computed tomography was performed to analyze bone formation around skull defect. RESULTS RT-PCR results exhibited that hsa-circ-0107593 was downregulated while miR-20a-5p was upregulated during hADSCs osteogenesis. In vivo and in vitro experiments results indicated that knocking down hsa-circ-0107593 promoted the osteogenic differentiation of hADSCs, while overexpression of hsa-circ-0107593 showed an inhibitory effect on hADSCs osteogenic differentiation. In vitro experiment results showed hsa-circ-0107593 acted as a hADSCs osteogenic differentiation negative factor for it inhibited the suppressing effect of miR-20a-5p on SMAD6. CONCLUSION Knocking down hsa-circ-0107593 acts as a positive factor of the osteogenic differentiation of hADSCs via miR-20a-5p/SMAD6 signaling.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yongyao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yifan Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Hu J, Xu Z, Liao D, Jiang Y, Pu H, Wu Z, Xu X, Zhao Z, Liu J, Lu X, Liu X, Li B. An H 2 S-BMP6 Dual-Loading System with Regulating Yap/Taz and Jun Pathway for Synergistic Critical Limb Ischemia Salvaging Therapy. Adv Healthc Mater 2023; 12:e2301316. [PMID: 37531238 DOI: 10.1002/adhm.202301316] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/12/2023] [Indexed: 08/04/2023]
Abstract
Critical limb ischemia, the final course of peripheral artery disease, is characterized by an insufficient supply of blood flow and excessive oxidative stress. H2 S molecular therapy possesses huge potential for accelerating revascularization and scavenging intracellular reactive oxygen species (ROS). Moreover, it is found that BMP6 is the most significantly up-expressed secreted protein-related gene in HUVECs treated with GYY4137, a H2 S donor, based on the transcriptome analysis. Herein, a UIO-66-NH2 @GYY4137@BMP6 co-delivery nanoplatform to strengthen the therapeutic effects of limb ischemia is developed. The established UIO-66-NH2 @GYY4137@BMP6 nanoplatform exerts its proangiogenic and anti-oxidation functions by regulating key pathways. The underlying molecular mechanisms of UIO-66-NH2 @GYY4137@BMP6 dual-loading system lie in the upregulation of phosphorylated YAP/TAZ and Jun to promote HUVECs proliferation and downregulation of phosphorylated p53/p21 to scavenge excessive ROS. Meanwhile, laser-doppler perfusion imaging (LDPI), injury severity evaluation, and histological analysis confirm the excellent therapeutic effects of UIO-66-NH2 @GYY4137@BMP6 in vivo. This work may shed light on the treatment of critical limb ischemia by regulating YAP, Jun, and p53 signaling pathways based on gas-protein synergistic therapy.
Collapse
Affiliation(s)
- Jiateng Hu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhijue Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Donghui Liao
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Yihong Jiang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Hongji Pu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhaoyu Wu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xintong Xu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Zhen Zhao
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Jianqiang Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Zhanjiang, 523700, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Xiaobing Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- Vascular Centre of Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
17
|
Kulikauskas MR, Oatley M, Yu T, Liu Z, Matsumura L, Kidder E, Ruter D, Bautch VL. Endothelial cell SMAD6 balances Alk1 function to regulate adherens junctions and hepatic vascular development. Development 2023; 150:dev201811. [PMID: 37787089 PMCID: PMC10629679 DOI: 10.1242/dev.201811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BMP signaling is crucial to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here, we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo. At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. Mechanistically, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial cell junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a 'Goldilocks' pathway in vascular biology that requires a certain signaling amplitude, regulated by SMAD6, to function properly.
Collapse
Affiliation(s)
- Molly R. Kulikauskas
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Matsumura
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elise Kidder
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dana Ruter
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria L. Bautch
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Baldera D, Baxendale S, van Hateren NJ, Marzo M, Glendenning E, Geng F, Yokoya K, Knight RD, Whitfield TT. Enhancer trap lines with GFP driven by smad6b and frizzled1 regulatory sequences for the study of epithelial morphogenesis in the developing zebrafish inner ear. J Anat 2023; 243:78-89. [PMID: 36748120 PMCID: PMC10273346 DOI: 10.1111/joa.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Live imaging in the zebrafish embryo using tissue-specific expression of fluorescent proteins can yield important insights into the mechanisms that drive sensory organ morphogenesis and cell differentiation. Morphogenesis of the semicircular canal ducts of the vertebrate inner ear requires a complex rearrangement of epithelial cells, including outgrowth, adhesion, fusion and perforation of epithelial projections to generate pillars of tissue that form the hubs of each canal. We report the insertion sites and expression patterns of two enhancer trap lines in the developing zebrafish embryo, each of which highlight different aspects of epithelial cell morphogenesis in the inner ear. A membrane-linked EGFP driven by smad6b regulatory sequences is expressed throughout the otic epithelium, most strongly on the lateral side of the ear and in the sensory cristae. A second enhancer trap line, with cytoplasmic EGFP driven by frizzled1 (fzd1) regulatory sequences, specifically marks cells of the ventral projection and pillar in the developing ear, and marginal cells in the sensory cristae, together with variable expression in the retina and epiphysis, and neurons elsewhere in the developing central nervous system. We have used a combination of methods to identify the insertion sites of these two transgenes, which were generated through random insertion, and show that Targeted Locus Amplification is a rapid and reliable method for the identification of insertion sites of randomly inserted transgenes.
Collapse
Affiliation(s)
- Davide Baldera
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Present address:
CeSASt, University of CagliariCagliariItaly
| | | | | | - Mar Marzo
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | - Fan‐Suo Geng
- Brain and Mind Research Institute, University of SydneySydneyNew South WalesAustralia
- Present address:
Data Science Institute, The University of Technology SydneySydneyAustralia
| | - Kazutomo Yokoya
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | - Robert D. Knight
- Centre for Craniofacial and Regenerative Biology, King's College London, Guy's HospitalLondonUK
| | | |
Collapse
|
19
|
Ahmed T, Ramonett A, Kwak EA, Kumar S, Flores PC, Ortiz HR, Langlais PR, Hund TJ, Mythreye K, Lee NY. Endothelial tip/stalk cell selection requires BMP9-induced β IV-spectrin expression during sprouting angiogenesis. Mol Biol Cell 2023; 34:ar72. [PMID: 37126382 PMCID: PMC10295478 DOI: 10.1091/mbc.e23-02-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 05/02/2023] Open
Abstract
βIV-Spectrin is a membrane cytoskeletal protein with specialized roles in the nervous system and heart. Recent evidence also indicates a fundamental role for βIV-spectrin in angiogenesis as its endothelial-specific gene deletion in mice enhances embryonic lethality due to hypervascularization and hemorrhagic defects. During early vascular sprouting, βIV-spectrin is believed to inhibit tip cell sprouting in favor of the stalk cell phenotype by mediating VEGFR2 internalization and degradation. Despite these essential roles, mechanisms governing βIV-spectrin expression remain unknown. Here we identify bone morphogenetic protein 9 (BMP9) as a major inducer of βIV-spectrin gene expression in the vascular system. We show that BMP9 signals through the ALK1/Smad1 pathway to induce βIV-spectrin expression, which then recruits CaMKII to the cell membrane to induce phosphorylation-dependent VEGFR2 turnover. Although BMP9 signaling promotes stalk cell behavior through activation of hallmark stalk cell genes ID-1/3 and Hes-1 and Notch signaling cross-talk, we find that βIV-spectrin acts upstream of these pathways as loss of βIV-spectrin in neonate mice leads to retinal hypervascularization due to excessive VEGFR2 levels, increased tip cell populations, and strong Notch inhibition irrespective of BMP9 treatment. These findings demonstrate βIV-spectrin as a BMP9 gene target critical for tip/stalk cell selection during nascent vessel sprouting.
Collapse
Affiliation(s)
- Tasmia Ahmed
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Aaron Ramonett
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Eun-A Kwak
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research, Tirupati 517507, India
| | - Paola Cruz Flores
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
| | - Hannah R. Ortiz
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
| | | | - Thomas J. Hund
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210
| | - Karthikeyan Mythreye
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Nam Y. Lee
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85724
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724
- Comprehensive Cancer Center, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
20
|
Kulikauskas MR, Oatley M, Yu T, Liu Z, Matsumura L, Kidder E, Ruter D, Bautch VL. Endothelial Cell SMAD6 Balances ACVRL1/Alk1 Function to Regulate Adherens Junctions and Hepatic Vascular Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534007. [PMID: 36993438 PMCID: PMC10055411 DOI: 10.1101/2023.03.23.534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BMP signaling is critical to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1/ACVRL1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo . At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. At the mechanistic level, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a "Goldilocks" pathway in vascular biology regulated by SMAD6.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Lauren Matsumura
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Elise Kidder
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Dana Ruter
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Victoria L Bautch
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC USA
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
21
|
Notch Signaling in Acute Inflammation and Sepsis. Int J Mol Sci 2023; 24:ijms24043458. [PMID: 36834869 PMCID: PMC9967996 DOI: 10.3390/ijms24043458] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Notch signaling, a highly conserved pathway in mammals, is crucial for differentiation and homeostasis of immune cells. Besides, this pathway is also directly involved in the transmission of immune signals. Notch signaling per se does not have a clear pro- or anti-inflammatory effect, but rather its impact is highly dependent on the immune cell type and the cellular environment, modulating several inflammatory conditions including sepsis, and therefore significantly impacts the course of disease. In this review, we will discuss the contribution of Notch signaling on the clinical picture of systemic inflammatory diseases, especially sepsis. Specifically, we will review its role during immune cell development and its contribution to the modulation of organ-specific immune responses. Finally, we will evaluate to what extent manipulation of the Notch signaling pathway could be a future therapeutic strategy.
Collapse
|
22
|
Saadey AA, Yousif A, Osborne N, Shahinfar R, Chen YL, Laster B, Rajeev M, Bauman P, Webb A, Ghoneim HE. Rebalancing TGFβ1/BMP signals in exhausted T cells unlocks responsiveness to immune checkpoint blockade therapy. Nat Immunol 2023; 24:280-294. [PMID: 36543960 DOI: 10.1038/s41590-022-01384-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 12/24/2022]
Abstract
T cell dysfunctionality prevents the clearance of chronic infections and cancer. Furthermore, epigenetic programming in dysfunctional CD8+ T cells limits their response to immunotherapies, including immune checkpoint blockade (ICB). However, it is unclear which upstream signals drive acquisition of dysfunctional epigenetic programs, and whether therapeutically targeting these signals can remodel terminally dysfunctional T cells to an ICB-responsive state. Here we innovate an in vitro model system of stable human T cell dysfunction and show that chronic TGFβ1 signaling in posteffector CD8+ T cells accelerates their terminal dysfunction through stable epigenetic changes. Conversely, boosting bone morphogenetic protein (BMP) signaling while blocking TGFβ1 preserved effector and memory programs in chronically stimulated human CD8+ T cells, inducing superior responses to tumors and synergizing the ICB responses during chronic viral infection. Thus, rebalancing TGFβ1/BMP signals provides an exciting new approach to unleash dysfunctional CD8+ T cells and enhance T cell immunotherapies.
Collapse
Affiliation(s)
- Abbey A Saadey
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Amir Yousif
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Nicole Osborne
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Roya Shahinfar
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yu-Lin Chen
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Brooke Laster
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Meera Rajeev
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Parker Bauman
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Webb
- Biomedical Informatics Shared Resources, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Hazem E Ghoneim
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA.
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, USA.
- The Pelotonia Institute for Immuno-Oncology, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Hasan SS, Fischer A. Notch Signaling in the Vasculature: Angiogenesis and Angiocrine Functions. Cold Spring Harb Perspect Med 2023; 13:a041166. [PMID: 35667708 PMCID: PMC9899647 DOI: 10.1101/cshperspect.a041166] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Formation of a functional blood vessel network is a complex process tightly controlled by pro- and antiangiogenic signals released within the local microenvironment or delivered through the bloodstream. Endothelial cells precisely integrate such temporal and spatial changes in extracellular signals and generate an orchestrated response by modulating signaling transduction, gene expression, and metabolism. A key regulator in vessel formation is Notch signaling, which controls endothelial cell specification, proliferation, migration, adhesion, and arteriovenous differentiation. This review summarizes the molecular biology of endothelial Notch signaling and how it controls angiogenesis and maintenance of the established, quiescent vasculature. In addition, recent progress in the understanding of Notch signaling in endothelial cells for controlling organ homeostasis by transcriptional regulation of angiocrine factors and its relevance to disease will be discussed.
Collapse
Affiliation(s)
- Sana S Hasan
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Andreas Fischer
- Division Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
24
|
Kinghorn K, Gill A, Marvin A, Li R, Quigley K, le Noble F, Mac Gabhann F, Bautch VL. A defined clathrin-mediated trafficking pathway regulates sFLT1/VEGFR1 secretion from endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525517. [PMID: 36747809 PMCID: PMC9900880 DOI: 10.1101/2023.01.27.525517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
FLT1/VEGFR1 negatively regulates VEGF-A signaling and is required for proper vessel morphogenesis during vascular development and vessel homeostasis. Although a soluble isoform, sFLT1, is often mis-regulated in disease and aging, how sFLT1 is trafficked and secreted from endothelial cells is not well understood. Here we define requirements for constitutive sFLT1 trafficking and secretion in endothelial cells from the Golgi to the plasma membrane, and we show that sFLT1 secretion requires clathrin at or near the Golgi. Perturbations that affect sFLT1 trafficking blunted endothelial cell secretion and promoted intracellular mis-localization in cells and zebrafish embryos. siRNA-mediated depletion of specific trafficking components revealed requirements for RAB27A, VAMP3, and STX3 for post-Golgi vesicle trafficking and sFLT1 secretion, while STX6, ARF1, and AP1 were required at the Golgi. Depletion of STX6 altered vessel sprouting in a 3D angiogenesis model, indicating that endothelial cell sFLT1 secretion is important for proper vessel sprouting. Thus, specific trafficking components provide a secretory path from the Golgi to the plasma membrane for sFLT1 in endothelial cells that utilizes a specialized clathrin-dependent intermediate, suggesting novel therapeutic targets.
Collapse
Affiliation(s)
- Karina Kinghorn
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
| | - Amy Gill
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Allison Marvin
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Renee Li
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Kaitlyn Quigley
- Department of Biology, University of North Carolina, Chapel Hill NC USA
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Institute of Zoology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Feilim Mac Gabhann
- Institute for Computational Medicine and Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, University of North Carolina, Chapel Hill NC USA
- Department of Biology, University of North Carolina, Chapel Hill NC USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill NC USA
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill NC USA
| |
Collapse
|
25
|
Bautch VL, Mukouyama YS. The Beauty and Complexity of Blood Vessel Patterning. Cold Spring Harb Perspect Med 2022; 12:a041167. [PMID: 35379659 PMCID: PMC9619359 DOI: 10.1101/cshperspect.a041167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review highlights new concepts in vascular patterning in the last 10 years, with emphasis on its beauty and complexity. Endothelial cell signaling pathways that respond to molecular or mechanical signals are described, and examples of vascular patterning that use these pathways in brain, skin, heart, and kidney are highlighted. The pathological consequences of patterning loss are discussed in the context of arteriovenous malformations (AVMs), and prospects for the next 10 years presented.
Collapse
Affiliation(s)
- Victoria L Bautch
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yoh-Suke Mukouyama
- Laboratory of Stem Cell and Neuro-Vascular Biology, Cell and Development Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
26
|
Chavkin NW, Genet G, Poulet M, Jeffery ED, Marziano C, Genet N, Vasavada H, Nelson EA, Acharya BR, Kour A, Aragon J, McDonnell SP, Huba M, Sheynkman GM, Walsh K, Hirschi KK. Endothelial cell cycle state determines propensity for arterial-venous fate. Nat Commun 2022; 13:5891. [PMID: 36202789 PMCID: PMC9537338 DOI: 10.1038/s41467-022-33324-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/09/2022] [Indexed: 12/15/2022] Open
Abstract
During blood vessel development, endothelial cells become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Arterial-venous specification occurs in conjunction with suppression of endothelial cell cycle progression; however, the mechanistic role of cell cycle state is unknown. Herein, using Cdh5-CreERT2;R26FUCCI2aR reporter mice, we find that venous endothelial cells are enriched for the FUCCI-Negative state (early G1) and BMP signaling, while arterial endothelial cells are enriched for the FUCCI-Red state (late G1) and TGF-β signaling. Furthermore, early G1 state is essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-β1-induced arterial gene expression. Pharmacologically induced cell cycle arrest prevents arterial-venous specification defects in mice with endothelial hyperproliferation. Collectively, our results show that distinct endothelial cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous fate.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mathilde Poulet
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Erin D Jeffery
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Hema Vasavada
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Elizabeth A Nelson
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Bipul R Acharya
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Anupreet Kour
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Jordon Aragon
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Stephanie P McDonnell
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Mahalia Huba
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kenneth Walsh
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
- Hematovascular Biology Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
- Department of Medicine, Yale Cardiovascular Research Center Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
27
|
Hashemi G, Dight J, Khosrotehrani K, Sormani L. Melanoma Tumour Vascularization and Tissue-Resident Endothelial Progenitor Cells. Cancers (Basel) 2022; 14:4216. [PMID: 36077754 PMCID: PMC9454996 DOI: 10.3390/cancers14174216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The aggressiveness of solid cancers, such as melanoma, relies on their metastatic potential. It has become evident that this key cause of mortality is largely conferred by the tumour-associated stromal cells, especially endothelial cells. In addition to their essential role in the formation of the tumour vasculature, endothelial cells significantly contribute to the establishment of the tumour microenvironment, thus enabling the dissemination of cancer cells. Melanoma tumour vascularization occurs through diverse biological processes. Vasculogenesis is the formation of de novo blood vessels from endothelial progenitor cells (EPCs), and recent research has shown the role of EPCs in melanoma tumour vascularization. A more detailed understanding of the complex role of EPCs and how they contribute to the abnormal vessel structures in tumours is of importance. Moreover, anti-angiogenic drugs have a limited effect on melanoma tumour vascularization, and the role of these drugs on EPCs remains to be clarified. Overall, targeting cancer vasculature remains a challenge, and the role of anti-angiogenic drugs and combination therapies in melanoma, a focus of this review, is an area of extensive exploration.
Collapse
Affiliation(s)
| | | | - Kiarash Khosrotehrani
- Experimental Dermatology Group, Dermatology Research Centre, The UQ Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Laura Sormani
- Experimental Dermatology Group, Dermatology Research Centre, The UQ Diamantina Institute, The University of Queensland, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
28
|
Pibouin-Fragner L, Eichmann A, Pardanaud L. Environmental and intrinsic modulations of venous differentiation. Cell Mol Life Sci 2022; 79:491. [PMID: 35987946 PMCID: PMC11072674 DOI: 10.1007/s00018-022-04470-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/16/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
Abstract
Endothelial cells in veins differ in morphology, function and gene expression from those in arteries and lymphatics. Understanding how venous and arterial identities are induced during development is required to understand how arterio-venous malformations occur, and to improve the outcome of vein grafts in surgery by promoting arterialization of veins. To identify factors that promote venous endothelial cell fate in vivo, we isolated veins from quail embryos, at different developmental stages, that were grafted into the coelom of chick embryos. Endothelial cells migrated out from the grafted vein and their colonization of host veins and/or arteries was quantified. We show that venous fate is promoted by sympathetic vessel innervation at embryonic day 11. Removal of sympathetic innervation decreased vein colonization, while norepinephrine enhanced venous colonization. BMP treatment or inhibition of ERK enhanced venous fate, revealing environmental neurotransmitter and BMP signaling and intrinsic ERK inhibition as actors in venous fate acquisition. We also identify the BMP antagonist Noggin as a potent mediator of venous arterialization.
Collapse
Affiliation(s)
| | - Anne Eichmann
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France.
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Luc Pardanaud
- Université de Paris Cité, Inserm, PARCC, 75015, Paris, France.
| |
Collapse
|
29
|
Neugebauer M, Grundmann CE, Lehnert M, von Stetten F, Früh SM, Süss R. Analyzing siRNA Concentration, Complexation and Stability in Cationic Dendriplexes by Stem-Loop Reverse Transcription-qPCR. Pharmaceutics 2022; 14:pharmaceutics14071348. [PMID: 35890243 PMCID: PMC9320460 DOI: 10.3390/pharmaceutics14071348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/01/2023] Open
Abstract
RNA interference (RNAi) is a powerful therapeutic approach for messenger RNA (mRNA) level regulation in human cells. RNAi can be triggered by small interfering RNAs (siRNAs) which are delivered by non-viral carriers, e.g., dendriplexes. siRNA quantification inside carriers is essential in drug delivery system development. However, current siRNA measuring methods either are not very sensitive, only semi-quantitative or not specific towards intact target siRNA sequences. We present a novel reverse transcription real-time PCR (RT-qPCR)-based application for siRNA quantification in drug formulations. It enables specific and highly sensitive quantification of released, uncomplexed target siRNA and thus also indirect assessment of siRNA stability and concentration inside dendriplexes. We show that comparison with a dilution series allows for siRNA quantification, exclusively measuring intact target sequences. The limit of detection (LOD) was 4.2 pM (±0.2 pM) and the limit of quantification (LOQ) 77.8 pM (±13.4 pM) for uncomplexed siRNA. LOD and LOQ of dendriplex samples were 31.6 pM (±0 pM) and 44.4 pM (±9.0 pM), respectively. Unspecific non-target siRNA sequences did not decrease quantification accuracy when present in samples. As an example of use, we assessed siRNA complexation inside dendriplexes with varying nitrogen-to-phosphate ratios. Further, protection of siRNA inside dendriplexes from RNase A degradation was quantitatively compared to degradation of uncomplexed siRNA. This novel application for quantification of siRNA in drug delivery systems is an important tool for the development of new siRNA-based drugs and quality checks including drug stability measurements.
Collapse
Affiliation(s)
- Maximilian Neugebauer
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Correspondence:
| | - Clara E. Grundmann
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| | - Michael Lehnert
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
| | - Felix von Stetten
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Susanna M. Früh
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; (M.L.); (F.v.S.); (S.M.F.)
- Laboratory for MEMS Applications, IMTEK—Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Regine Süss
- Department of Pharmaceutical Technology and Biopharmacy, Institute of Pharmaceutical Sciences, University of Freiburg, Sonnenstr. 5, 79104 Freiburg, Germany; (C.E.G.); (R.S.)
| |
Collapse
|
30
|
Strohmeier K, Hofmann M, Jacak J, Narzt MS, Wahlmueller M, Mairhofer M, Schaedl B, Holnthoner W, Barsch M, Sandhofer M, Wolbank S, Priglinger E. Multi-Level Analysis of Adipose Tissue Reveals the Relevance of Perivascular Subpopulations and an Increased Endothelial Permeability in Early-Stage Lipedema. Biomedicines 2022; 10:biomedicines10051163. [PMID: 35625899 PMCID: PMC9138324 DOI: 10.3390/biomedicines10051163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Lipedema is a chronic, progressive disease of adipose tissue with unknown etiology. Based on the relevance of the stromal vascular fraction (SVF) cell population in lipedema, we performed a thorough characterization of subcutaneous adipose tissue, SVF isolated thereof and the sorted populations of endothelial cells (EC), pericytes and cultured adipose-derived stromal/stem cells (ASC) of early-stage lipedema patients. We employed histological and gene expression analysis and investigated the endothelial barrier by immunofluorescence and analysis of endothelial permeability in vitro. Although there were no significant differences in histological stainings, we found altered gene expression of factors relevant for local estrogen metabolism (aromatase), preadipocyte commitment (ZNF423) and immune cell infiltration (CD11c) in lipedema on the tissue level, as well as in distinct cellular subpopulations. Machine learning analysis of immunofluorescence images of CD31 and ZO-1 revealed a morphological difference in the cellular junctions of EC cultures derived from healthy and lipedema individuals. Furthermore, the secretome of lipedema-derived SVF cells was sufficient to significantly increase leakiness of healthy human primary EC, which was also reflected by decreased mRNA expression of VE-cadherin. Here, we showed for the first time that the secretome of SVF cells creates an environment that triggers endothelial barrier dysfunction in early-stage lipedema. Moreover, since alterations in gene expression were detected on the cellular and/or tissue level, the choice of sample material is of high importance in elucidating this complex disease.
Collapse
Affiliation(s)
- Karin Strohmeier
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Martina Hofmann
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- School of Medical Engineering and Applied Social Science, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Jaroslaw Jacak
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- School of Medical Engineering and Applied Social Science, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Marie-Sophie Narzt
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Marlene Wahlmueller
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Mario Mairhofer
- Department of Hematology and Internal Oncology, Johannes Kepler University, 4020 Linz, Austria;
| | - Barbara Schaedl
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Holnthoner
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Martin Barsch
- Austrian Center for Lipedema, Skin Aesthetic Vein Laser Practice, 4020 Linz, Austria; (M.B.); (M.S.)
| | - Matthias Sandhofer
- Austrian Center for Lipedema, Skin Aesthetic Vein Laser Practice, 4020 Linz, Austria; (M.B.); (M.S.)
| | - Susanne Wolbank
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
| | - Eleni Priglinger
- Ludwig Boltzmann Institute for Traumatology in Cooperation with the AUVA, 1200 Vienna, Austria; (K.S.); (M.-S.N.); (M.W.); (B.S.); (W.H.); (S.W.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria; (M.H.); (J.J.)
- Correspondence:
| |
Collapse
|
31
|
βIV-spectrin as a stalk cell-intrinsic regulator of VEGF signaling. Nat Commun 2022; 13:1326. [PMID: 35288568 PMCID: PMC8921520 DOI: 10.1038/s41467-022-28933-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
Defective angiogenesis underlies over 50 malignant, ischemic and inflammatory disorders yet long-term therapeutic applications inevitably fail, thus highlighting the need for greater understanding of the vast crosstalk and compensatory mechanisms. Based on proteomic profiling of angiogenic endothelial components, here we report βIV-spectrin, a non-erythrocytic cytoskeletal protein, as a critical regulator of sprouting angiogenesis. Early loss of endothelial-specific βIV-spectrin promotes embryonic lethality in mice due to hypervascularization and hemorrhagic defects whereas neonatal depletion yields higher vascular density and tip cell populations in developing retina. During sprouting, βIV-spectrin expresses in stalk cells to inhibit their tip cell potential by enhancing VEGFR2 turnover in a manner independent of most cell-fate determining mechanisms. Rather, βIV-spectrin recruits CaMKII to the plasma membrane to directly phosphorylate VEGFR2 at Ser984, a previously undefined phosphoregulatory site that strongly induces VEGFR2 internalization and degradation. These findings support a distinct spectrin-based mechanism of tip-stalk cell specification during vascular development. Defective angiogenesis remains a high source of morbidity in multiple disorders. Here they show that βIV-spectrin, a membrane-associated cytoskeletal protein, is essential for regulation of endothelial tip cell populations and VEGF signaling during sprouting angiogenesis.
Collapse
|
32
|
Pham DH, Dai CR, Lin B, Butcher JT. Local fluid shear stress operates a molecular switch to drive fetal semilunar valve extension. Dev Dyn 2022; 251:481-497. [PMID: 34535945 PMCID: PMC8891031 DOI: 10.1002/dvdy.419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND While much is known about the genetic regulation of early valvular morphogenesis, mechanisms governing fetal valvular growth and remodeling remain unclear. Hemodynamic forces strongly influence morphogenesis, but it is unknown whether or how they interact with valvulogenic signaling programs. Side-specific activity of valvulogenic programs motivates the hypothesis that shear stress pattern-specific endocardial signaling controls the elongation of leaflets. RESULTS We determined that extension of the semilunar valve occurs via fibrosa sided endocardial proliferation. Low OSS was necessary and sufficient to induce canonical Wnt/β-catenin activation in fetal valve endothelium, which in turn drives BMP receptor/ligand expression, and pSmad1/5 activity essential for endocardial proliferation. In contrast, ventricularis endocardial cells expressed active Notch1 but minimal pSmad1/5. Endocardial monolayers exposed to LSS attenuate Wnt signaling in a Notch1 dependent manner. CONCLUSIONS Low OSS is transduced by endocardial cells into canonical Wnt signaling programs that regulate BMP signaling and endocardial proliferation. In contrast, high LSS induces Notch signaling in endocardial cells, inhibiting Wnt signaling and thereby restricting growth on the ventricular surface. Our results identify a novel mechanically regulated molecular switch, whereby fluid shear stress drives the growth of valve endothelium, orchestrating the extension of the valve in the direction of blood flow.
Collapse
Affiliation(s)
- Duc H. Pham
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Charles R. Dai
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Belle Lin
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Jonathan T. Butcher
- The Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA,Corresponding author:
| |
Collapse
|
33
|
A cell atlas of microbe-responsive processes in the zebrafish intestine. Cell Rep 2022; 38:110311. [PMID: 35108531 DOI: 10.1016/j.celrep.2022.110311] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 10/28/2021] [Accepted: 01/07/2022] [Indexed: 02/08/2023] Open
Abstract
Gut microbial products direct growth, differentiation, and development in animal hosts. However, we lack system-wide understanding of cell-specific responses to the microbiome. We profiled cell transcriptomes from the intestine, and associated tissue, of zebrafish larvae raised in the presence or absence of a microbiome. We uncovered extensive cellular heterogeneity in the conventional zebrafish intestinal epithelium, including previously undescribed cell types with known mammalian homologs. By comparing conventional to germ-free profiles, we mapped microbial impacts on transcriptional activity in each cell population. We revealed intricate degrees of cellular specificity in host responses to the microbiome that included regulatory effects on patterning and on metabolic and immune activity. For example, we showed that the absence of microbes hindered pro-angiogenic signals in the developing vasculature, causing impaired intestinal vascularization. Our work provides a high-resolution atlas of intestinal cellular composition in the developing fish gut and details the effects of the microbiome on each cell type.
Collapse
|
34
|
Kulikauskas MR, X S, Bautch VL. The versatility and paradox of BMP signaling in endothelial cell behaviors and blood vessel function. Cell Mol Life Sci 2022; 79:77. [PMID: 35044529 PMCID: PMC8770421 DOI: 10.1007/s00018-021-04033-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/15/2022]
Abstract
Blood vessels expand via sprouting angiogenesis, and this process involves numerous endothelial cell behaviors, such as collective migration, proliferation, cell–cell junction rearrangements, and anastomosis and lumen formation. Subsequently, blood vessels remodel to form a hierarchical network that circulates blood and delivers oxygen and nutrients to tissue. During this time, endothelial cells become quiescent and form a barrier between blood and tissues that regulates transport of liquids and solutes. Bone morphogenetic protein (BMP) signaling regulates both proangiogenic and homeostatic endothelial cell behaviors as blood vessels form and mature. Almost 30 years ago, human pedigrees linked BMP signaling to diseases associated with blood vessel hemorrhage and shunts, and recent work greatly expanded our knowledge of the players and the effects of vascular BMP signaling. Despite these gains, there remain paradoxes and questions, especially with respect to how and where the different and opposing BMP signaling outputs are regulated. This review examines endothelial cell BMP signaling in vitro and in vivo and discusses the paradox of BMP signals that both destabilize and stabilize endothelial cell behaviors.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Shaka X
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Victoria L Bautch
- Curriculum in Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
35
|
Webb AM, Francis CR, Judson RJ, Kincross H, Lundy KM, Westhoff DE, Meadows SM, Kushner EJ. EHD2 modulates Dll4 endocytosis during blood vessel development. Microcirculation 2022; 29:e12740. [PMID: 34820962 PMCID: PMC9286817 DOI: 10.1111/micc.12740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 10/28/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Despite the absolute requirement of Delta/Notch signaling to activate lateral inhibition during early blood vessel development, many mechanisms remain unclear about how this system is regulated. Our objective was to determine the involvement of Epsin 15 Homology Domain Containing 2 (EHD2) in delta-like ligand 4 (Dll4) endocytosis during Notch activation. APPROACH AND RESULTS Using both in vivo and in vitro models, we demonstrate that EHD2 is a novel modulator of Notch activation in endothelial cells through controlling endocytosis of Dll4. In vitro, EHD2 localized to plasma membrane-bound Dll4 and caveolae. Chemical disruption of caveolae complexes resulted in EHD2 failing to organize around Dll4 as well as loss of Dll4 internalization. Reduced Dll4 internalization blunted Notch activation in endothelial cells. In vivo, EHD2 is primarily expressed in the vasculature, colocalizing with junctional marker VE-cadherin and Dll4. Knockout of EHD2 in zebrafish produced a significant increase in dysmorphic sprouts in zebrafish intersomitic vessels during development and a reduction in downstream Notch signaling. CONCLUSIONS Overall, we demonstrate that EHD2 is necessary for Dll4 transcytosis and downstream Notch activation.
Collapse
Affiliation(s)
- Amelia M. Webb
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | | | - Rachael J. Judson
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Hayle Kincross
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Keanna M. Lundy
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| | - Dawn E. Westhoff
- Cell and Molecular Biology DepartmentTulane UniversityNew OrleansLouisinaUSA
| | - Stryder M. Meadows
- Cell and Molecular Biology DepartmentTulane UniversityNew OrleansLouisinaUSA
| | - Erich J. Kushner
- Department of Biological SciencesUniversity of DenverDenverColoradoUSA
| |
Collapse
|
36
|
Cucu I, Nicolescu MI. A Synopsis of Signaling Crosstalk of Pericytes and Endothelial Cells in Salivary Gland. Dent J (Basel) 2021; 9:dj9120144. [PMID: 34940041 PMCID: PMC8700478 DOI: 10.3390/dj9120144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
The salivary gland (SG) microvasculature constitutes a dynamic cellular organization instrumental to preserving tissue stability and homeostasis. The interplay between pericytes (PCs) and endothelial cells (ECs) culminates as a key ingredient that coordinates the development, maturation, and integrity of vessel building blocks. PCs, as a variety of mesenchymal stem cells, enthrall in the field of regenerative medicine, supporting the notion of regeneration and repair. PC-EC interconnections are pivotal in the kinetic and intricate process of angiogenesis during both embryological and post-natal development. The disruption of this complex interlinkage corresponds to SG pathogenesis, including inflammation, autoimmune disorders (Sjögren’s syndrome), and tumorigenesis. Here, we provided a global portrayal of major signaling pathways between PCs and ECs that cooperate to enhance vascular steadiness through the synergistic interchange. Additionally, we delineated how the crosstalk among molecular networks affiliate to contribute to a malignant context. Additionally, within SG microarchitecture, telocytes and myoepithelial cells assemble a labyrinthine companionship, which together with PCs appear to synchronize the regenerative potential of parenchymal constituents. By underscoring the intricacy of signaling cascades within cellular latticework, this review sketched a perceptive basis for target-selective drugs to safeguard SG function.
Collapse
Affiliation(s)
- Ioana Cucu
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence:
| |
Collapse
|
37
|
Okasato R, Kano K, Kise R, Inoue A, Fukuhara S, Aoki J. An ATX-LPA 6-Gα 13-ROCK axis shapes and maintains caudal vein plexus in zebrafish. iScience 2021; 24:103254. [PMID: 34755093 PMCID: PMC8564058 DOI: 10.1016/j.isci.2021.103254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/06/2021] [Accepted: 10/08/2021] [Indexed: 12/31/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a potential regulator of vascular formation derived from blood. In this study, we utilized zebrafish as a model organism to monitor the blood vessel formation in detail. Zebrafish mutant of ATX, an LPA-producing enzyme, had a defect in the caudal vein plexus (CVP). Pharmacological inhibition of ATX resulted in a fusion of the delicate vessels in the CVP to form large sac-like vessels. Mutant embryos of LPA6 receptor and downstream Gα13 showed the same phenotype. Administration of OMPT, a stable LPA-analog, induced rapid CVP constriction, which was attenuated significantly in the LPA6 mutant. We also found that blood flow-induced CVP formation was dependent on ATX. The present study demonstrated that the ATX-LPA6 axis acts cooperatively with blood flow and contributes to the formation and maintenance of the CVP by generating contractive force in endothelial cells. Blocking an ATX-LPA6-Gα13-ROCK axis causes malformation of the caudal vein plexus The axis also contributes to maintaining the fine structure of the caudal vein plexus Activation of LPA6 induces vasoconstriction Caudal vein plexus formation evoked by blood flow is dependent on an ATX-LPA6 axis
Collapse
Affiliation(s)
- Ryohei Okasato
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Kuniyuki Kano
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryoji Kise
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.,AMED-LEAP, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
38
|
Gastfriend BD, Nishihara H, Canfield SG, Foreman KL, Engelhardt B, Palecek SP, Shusta EV. Wnt signaling mediates acquisition of blood-brain barrier properties in naïve endothelium derived from human pluripotent stem cells. eLife 2021; 10:70992. [PMID: 34755601 PMCID: PMC8664294 DOI: 10.7554/elife.70992] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Endothelial cells (ECs) in the central nervous system (CNS) acquire their specialized blood-brain barrier (BBB) properties in response to extrinsic signals, with Wnt/β-catenin signaling coordinating multiple aspects of this process. Our knowledge of CNS EC development has been advanced largely by animal models, and human pluripotent stem cells (hPSCs) offer the opportunity to examine BBB development in an in vitro human system. Here we show that activation of Wnt signaling in hPSC-derived naïve endothelial progenitors, but not in matured ECs, leads to robust acquisition of canonical BBB phenotypes including expression of GLUT-1, increased claudin-5, decreased PLVAP and decreased permeability. RNA-seq revealed a transcriptome profile resembling ECs with CNS-like characteristics, including Wnt-upregulated expression of LEF1, APCDD1, and ZIC3. Together, our work defines effects of Wnt activation in naïve ECs and establishes an improved hPSC-based model for interrogation of CNS barriergenesis.
Collapse
Affiliation(s)
- Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Scott G Canfield
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | | | - Sean P Palecek
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| | - Eric V Shusta
- Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
39
|
Gross SJ, Webb AM, Peterlin AD, Durrant JR, Judson RJ, Raza Q, Kitajewski JK, Kushner EJ. Notch regulates vascular collagen IV basement membrane through modulation of lysyl hydroxylase 3 trafficking. Angiogenesis 2021; 24:789-805. [PMID: 33956260 PMCID: PMC8487879 DOI: 10.1007/s10456-021-09791-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/19/2021] [Indexed: 11/26/2022]
Abstract
Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.
Collapse
Affiliation(s)
- Stephen J Gross
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Amelia M Webb
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Alek D Peterlin
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | | | - Rachel J Judson
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA
| | - Qanber Raza
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois, Chicago, IL, USA
| | - Erich J Kushner
- Department of Biological Sciences, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
40
|
Liu Z, Ruter DL, Quigley K, Tanke NT, Jiang Y, Bautch VL. Single-Cell RNA Sequencing Reveals Endothelial Cell Transcriptome Heterogeneity Under Homeostatic Laminar Flow. Arterioscler Thromb Vasc Biol 2021; 41:2575-2584. [PMID: 34433297 PMCID: PMC8454496 DOI: 10.1161/atvbaha.121.316797] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Endothelial cells (ECs) that form the innermost layer of all vessels exhibit heterogeneous cell behaviors and responses to pro-angiogenic signals that are critical for vascular sprouting and angiogenesis. Once vessels form, remodeling and blood flow lead to EC quiescence, and homogeneity in cell behaviors and signaling responses. These changes are important for the function of mature vessels, but whether and at what level ECs regulate overall expression heterogeneity during this transition is poorly understood. Here, we profiled EC transcriptomic heterogeneity, and expression heterogeneity of selected proteins, under homeostatic laminar flow.
Collapse
Affiliation(s)
- Ziqing Liu
- Integrative Program for Biological & Genome Sciences (Z.L., D.L.R., V.L.B.).,McAllister Heart Institute (Z.L., D.L.R., V.L.B.)
| | - Dana L Ruter
- Integrative Program for Biological & Genome Sciences (Z.L., D.L.R., V.L.B.).,Now with KBI Biopharma, Inc, RTP, NC (D.L.R.).,McAllister Heart Institute (Z.L., D.L.R., V.L.B.).,Lineberger Comprehensive Cancer Center (D.L.R., Y.J., V.L.B.)
| | | | | | - Yuchao Jiang
- Lineberger Comprehensive Cancer Center (D.L.R., Y.J., V.L.B.).,Department of Biostatistics (Y.J.).,Department of Genetics (Y.J.)
| | - Victoria L Bautch
- Integrative Program for Biological & Genome Sciences (Z.L., D.L.R., V.L.B.).,McAllister Heart Institute (Z.L., D.L.R., V.L.B.).,Lineberger Comprehensive Cancer Center (D.L.R., Y.J., V.L.B.).,Curriculum in Cell Biology and Physiology (N.T.T., V.L.B.).,Department of Biology, University of North Carolina, Chapel Hill (V.L.B.)
| |
Collapse
|
41
|
Han O, Pak B, Jin SW. The Role of BMP Signaling in Endothelial Heterogeneity. Front Cell Dev Biol 2021; 9:673396. [PMID: 34235147 PMCID: PMC8255612 DOI: 10.3389/fcell.2021.673396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic proteins (BMPs), which compose the largest group of the transforming growth factor-β (TGF-ß) superfamily, have been implied to play a crucial role in diverse physiological processes. The most intriguing feature of BMP signaling is that it elicits heterogeneous responses from cells with equivalent identity, thus permitting highly context-dependent signaling outcomes. In endothelial cells (ECs), which are increasingly perceived as a highly heterogeneous population of cells with respect to their morphology, function, as well as molecular characteristics, BMP signaling has shown to elicit diverse and often opposite effects, illustrating the innate complexity of signaling responses. In this review, we provide a concise yet comprehensive overview of how outcomes of BMP signaling are modulated in a context-dependent manner with an emphasis on the underlying molecular mechanisms and summarize how these regulations of the BMP signaling promote endothelial heterogeneity.
Collapse
Affiliation(s)
- Orjin Han
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Boryeong Pak
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| | - Suk-Won Jin
- Cell Logistics Research Center, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea
| |
Collapse
|
42
|
The BMP Pathway in Blood Vessel and Lymphatic Vessel Biology. Int J Mol Sci 2021; 22:ijms22126364. [PMID: 34198654 PMCID: PMC8232321 DOI: 10.3390/ijms22126364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.
Collapse
|
43
|
Fernández-Chacón M, García-González I, Mühleder S, Benedito R. Role of Notch in endothelial biology. Angiogenesis 2021; 24:237-250. [PMID: 34050878 DOI: 10.1007/s10456-021-09793-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022]
Abstract
The Notch signalling pathway is one of the main regulators of endothelial biology. In the last 20 years the critical function of Notch has been uncovered in the context of angiogenesis, participating in tip-stalk specification, arterial-venous differentiation, vessel stabilization, and maturation processes. Importantly, pharmacological compounds targeting distinct members of the Notch signalling pathway have been used in the clinics for cancer therapy. However, the underlying mechanisms that support the variety of outcomes triggered by Notch in apparently opposite contexts such as angiogenesis and vascular homeostasis remain unknown. In recent years, advances in -omics technologies together with mosaic analysis and high molecular, cellular and temporal resolution studies have allowed a better understanding of the mechanisms driven by the Notch signalling pathway in different endothelial contexts. In this review we will focus on the main findings that revisit the role of Notch signalling in vascular biology. We will also discuss potential future directions and technologies that will shed light on the puzzling role of Notch during endothelial growth and homeostasis. Addressing these open questions may allow the improvement and development of therapeutic strategies based on modulation of the Notch signalling pathway.
Collapse
Affiliation(s)
- Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain
| | - Irene García-González
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
44
|
Marziano C, Genet G, Hirschi KK. Vascular endothelial cell specification in health and disease. Angiogenesis 2021; 24:213-236. [PMID: 33844116 PMCID: PMC8205897 DOI: 10.1007/s10456-021-09785-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/17/2021] [Indexed: 02/08/2023]
Abstract
There are two vascular networks in mammals that coordinately function as the main supply and drainage systems of the body. The blood vasculature carries oxygen, nutrients, circulating cells, and soluble factors to and from every tissue. The lymphatic vasculature maintains interstitial fluid homeostasis, transports hematopoietic cells for immune surveillance, and absorbs fat from the gastrointestinal tract. These vascular systems consist of highly organized networks of specialized vessels including arteries, veins, capillaries, and lymphatic vessels that exhibit different structures and cellular composition enabling distinct functions. All vessels are composed of an inner layer of endothelial cells that are in direct contact with the circulating fluid; therefore, they are the first responders to circulating factors. However, endothelial cells are not homogenous; rather, they are a heterogenous population of specialized cells perfectly designed for the physiological demands of the vessel they constitute. This review provides an overview of the current knowledge of the specification of arterial, venous, capillary, and lymphatic endothelial cell identities during vascular development. We also discuss how the dysregulation of these processes can lead to vascular malformations, and therapeutic approaches that have been developed for their treatment.
Collapse
Affiliation(s)
- Corina Marziano
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA. .,Department of Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
45
|
Wu J, Chen X, Sehgal P, Zhang T, Jackson-Weaver O, Gou Y, Bautch V, Frenkel B, Sun H, Xu J. Arginine methylation of R81 in Smad6 confines BMP-induced Smad1 signaling. J Biol Chem 2021; 296:100496. [PMID: 33667543 PMCID: PMC8050389 DOI: 10.1016/j.jbc.2021.100496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) secreted by a variety of cell types are known to play essential roles in cell differentiation and matrix formation in the bone, cartilage, muscle, blood vessel, and neuronal tissue. BMPs activate intracellular effectors via C-terminal phosphorylation of Smad1, Smad5, and Smad9, which relay the signaling by forming a complex with Smad4 and translocate to the nucleus for transcriptional activation. Smad6 inhibits BMP signaling through diverse mechanisms operative at the membrane, cytosolic, and nuclear levels. However, the mechanistic underpinnings of Smad6 functional diversity remain unclear. Here, using a biochemical approach and cell differentiation systems, we report a cytosolic mechanism of action for Smad6 that requires arginine methylation at arginine 81 (R81) and functions through association with Smad1 and interference with the formation of Smad1–Smad4 complexes. By mutating the methylated arginine residue, R81, and by silencing the expression of protein arginine methyltransferase 1, we show that protein arginine methyltransferase 1 catalyzes R81 methylation of Smad6 upon BMP treatment, R81 methylation subsequently facilitates Smad6 interaction with the phosphorylated active Smad1, and R81 methylation facilitates Smad6-mediated interruption of Smad1–Smad4 complex formation and nuclear translocation. Furthermore, Smad6 WT but not the methylation-deficient R81A mutant inhibited BMP-responsive transcription, attenuated BMP-mediated osteogenic differentiation, and antagonized BMP-mediated inhibition of cell invasion. Taken together, our results suggest that R81 methylation plays an essential role in Smad6-mediated inhibition of BMP responses.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Xi Chen
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; College of Stomatology, China Medical University, Shenyang, China
| | - Prerna Sehgal
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Yongchao Gou
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Victoria Bautch
- Department of Biology and McAllister Heart Institute, University of Northern Carolina, Chapel Hill, North Carolina, USA
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Hongchen Sun
- College of Stomatology, China Medical University, Shenyang, China.
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA; Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA; Norris Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
46
|
Zou M, Sun J, Xiang Z. Induction of M2-Type Macrophage Differentiation for Bone Defect Repair via an Interpenetration Network Hydrogel with a GO-Based Controlled Release System. Adv Healthc Mater 2021; 10:e2001502. [PMID: 33464711 DOI: 10.1002/adhm.202001502] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/23/2020] [Indexed: 02/05/2023]
Abstract
Recently, biomaterials with immune-regulating properties have emerged as crucial new platforms for bone tissue engineering. Inducing macrophages to differentiate into M2 subtype can reduce immune inflammatory response and accelerate tissue repair after implantation. An interpenetration network hydrogel is developed utilizing graphene oxide (GO)-carboxymethyl chitosan (CMC)/poly(ethylene glycol) diacrylate (PEGDA), in which two bioactive molecules, interleukin-4 (IL-4) and bone morphogenetic protein-2 (BMP-2), are loaded and released in a controlled manner to induce macrophages to differentiate into M2 type and enhance bone formation. These two factors are initially loaded with GO and then embedded into the CMC/PEGDA hydrogel for sustained release. Results indicate that the hydrogel shows enhanced mechanical stiffness, strength, and stability. The hydrogel loaded with IL-4 and BMP-2 significantly promotes both macrophage M2-type differentiation and bone marrow mesenchymal stem cell osteogenesis differentiation in vitro. Furthermore, in vivo studies show that the implantation of this hydrogel markedly reduces local inflammation while enhancing bone regeneration at 8 weeks post-implantation. In all, the findings suggest that hydrogel loaded with IL-4 and BMP-2 has synergistic effects on bone regeneration. Such an induction and immunomodulation system offers a promising strategy for the development of future bone immune regulation and tissue engineering applications.
Collapse
Affiliation(s)
- Min Zou
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Orthopedics, No. 1 People's Hospital of Chengdu, Chengdu, Sichuan, 610041, P. R. China
| | - Jiachen Sun
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Division of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
47
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
48
|
García Muro AM, García Ruvalcaba A, Rizo de la Torre LDC, Sánchez López JY. Role of the BMP6 protein in breast cancer and other types of cancer. Growth Factors 2021; 39:1-13. [PMID: 34706618 DOI: 10.1080/08977194.2021.1994964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The BMP6 protein (Bone Morphogenetic Protein 6) is part of the superfamily of transforming growth factor-beta (TGF-β) ligands, participates in iron homeostasis, inhibits invasion by increasing adhesions and cell-cell type interactions and induces angiogenesis directly on vascular endothelial cells. BMP6 is coded by a tumor suppressor gene whose subexpression is related to the development and cancer progression; during neoplastic processes, methylation is the main mechanism by which gene silencing occurs. This work presents a review on the role of BMP6 protein in breast cancer (BC) and other types of cancer. The studies carried out to date suggest the participation of the BMP6 protein in the epithelial-mesenchymal transition (EMT) phenotype, cell growth and proliferation; however, these processes are affected in a variable way in the different types of cancer, the methylated CpG sites in BMP6 gene promoter, as well as the interaction with other proteins could be the cause of such variation.
Collapse
Affiliation(s)
- Andrea Marlene García Muro
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | - Azaria García Ruvalcaba
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
- Doctorado en Genética Humana, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, México
| | | | - Josefina Yoaly Sánchez López
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, México
| |
Collapse
|
49
|
Pulkkinen HH, Kiema M, Lappalainen JP, Toropainen A, Beter M, Tirronen A, Holappa L, Niskanen H, Kaikkonen MU, Ylä-Herttuala S, Laakkonen JP. BMP6/TAZ-Hippo signaling modulates angiogenesis and endothelial cell response to VEGF. Angiogenesis 2021; 24:129-144. [PMID: 33021694 PMCID: PMC7921060 DOI: 10.1007/s10456-020-09748-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The BMP/TGFβ-Smad, Notch and VEGF signaling guides formation of endothelial tip and stalk cells. However, the crosstalk of bone morphogenetic proteins (BMPs) and vascular endothelial growth factor receptor 2 (VEGFR2) signaling has remained largely unknown. We demonstrate that BMP family members regulate VEGFR2 and Notch signaling, and act via TAZ-Hippo signaling pathway. BMPs were found to be regulated after VEGF gene transfer in C57/Bl6 mice and in a porcine myocardial ischemia model. BMPs 2/4/6 were identified as endothelium-specific targets of VEGF. BMP2 modulated VEGF-mediated endothelial sprouting via Delta like Canonical Notch Ligand 4 (DLL4). BMP6 modulated VEGF signaling by regulating VEGFR2 expression and acted via Hippo signaling effector TAZ, known to regulate cell survival/proliferation, and to be dysregulated in cancer. In a matrigel plug assay in nude mice BMP6 was further demonstrated to induce angiogenesis. BMP6 is the first member of BMP family found to directly regulate both Hippo signaling and neovessel formation. It may thus serve as a target in pro/anti-angiogenic therapies.
Collapse
Affiliation(s)
- H H Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Kiema
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J P Lappalainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Chemistry, University of Eastern Finland and Eastern Finland Laboratory Centre, Kuopio, Finland
| | - A Toropainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Beter
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Tirronen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - S Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| | - Johanna P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
50
|
Chen M, Zhou M, Fu Y, Li J, Wang Z. Effects of miR-672 on the angiogenesis of adipose-derived mesenchymal stem cells during bone regeneration. Stem Cell Res Ther 2021; 12:85. [PMID: 33494825 PMCID: PMC7836178 DOI: 10.1186/s13287-021-02154-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Sufficient vascular network plays an important role in the repair of bone defects. Bone morphogenetic protein 2 (BMP2) being a key regulator of angiogenesis has attracted the attention of researchers. In addition, evidence has suggested that BMP2 coordinates with microRNAs (miRNAs) to form intracellular networks regulating mesenchymal stem cells (MSCs) angiogenesis. Elucidating the underlying mechanisms that are regulating adipose-derived mesenchymal stem cells (ADSCs) angiogenesis might provide more effective method to enhance bone regeneration. METHODS We identified the specific miRNA in rat ADSCs during BMP2-induced angiogenesis and chose the most significant differentially expressed miRNA, miR-672. Three lentiviral system named Lenti-miR-672, Lenti-as-miR-672, and Lenti-miR-NC were transduced into the ADSCs individually. Then, the quantitative real-time polymerase chain reaction (qPCR), western blotting, and blood vessel formation analysis were performed to investigate the effects of miR-672 on ADSCs angiogenesis. Bioinformation platforms were used to screen the potential target of miR-672. Small interfering RNA (siRNA) against TIMP2 (si-TIMP2) mRNA were obtained from GenePharma, and then si-TIMP2 miRNA and miR-672 were co-transfected into ADSCs to detect the effects of TIMP2 on angiogenesis. Calcium phosphate cement (CPC) scaffolds that seeded the lentiviral-modified ADSCs were constructed to test the vascularized bone regeneration in vivo. RESULTS Our data showed that after the angiogenesis of ADSCs induced by BMP2, miR-672 was the most significantly upregulated miRNA. Overexpression of miR-672 promoted the angiogenesis of ADSCs, while knockdown of miR-672 repressed the angiogenesis of ADSCs. The bioinformation prediction showed that TIMP2 might be the one of miR-672' potential targets. TIMP2 protein expression was gradually decreased in ADSCs with overexpressed miR-672. And the angiogenic factors were upregulated in the ADSCs which were transduced with si-TIMP2. Then, the CPC scaffolds coupled the miR-672-modified ADSCs and showed the good potential in vascularized bone regeneration. The overexpressed miR-672 could greatly enhance the blood vessel volume and Microfil-labeled blood vessel numbers in newly formed bone. CONCLUSION BMP2 could promote the angiogenesis of ADSCs through stimulating the expression of miR-672 in ADSCs. miR-672 acted as a positive regulator on the angiogenesis of ADSCs, and incorporating the miR-672-modified ADSCs in the CPC could significantly promote the vascularization and the bone regeneration.
Collapse
Affiliation(s)
- Mingjiao Chen
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Meng Zhou
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Yao Fu
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Jin Li
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| | - Zi Wang
- grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Zhizaoju Road No. 639, Shanghai, 200011 People’s Republic of China
| |
Collapse
|