1
|
Feng P, Zhang X, Gao J, Jiang L, Li Y. The Roles of Exosomes in Anti-Cancer Drugs. Cancer Med 2025; 14:e70897. [PMID: 40298189 PMCID: PMC12038748 DOI: 10.1002/cam4.70897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Cancer is an escalating global health issue, with rising incidence rates annually. Chemotherapy, a primary cancer treatment, often exhibits low tumor-targeting efficiency and severe side effects, limiting its effectiveness. Recent research indicates that exosomes, due to their immunogenicity and molecular delivery capabilities, hold significant potential as drug carriers for tumor treatment. METHODS This review summarizes the current status, powerful therapeutic potential, and challenges of using exosomes for the treatment of tumors. RESULTS Exosomes are crucial in tumor diagnosis, onset, and progression. To improve the efficacy of exosome-based treatments, researchers are exploring various biological, physical, and chemical approaches to engineer exosomes as a new nanomedicine translational therapy platform with broad and alterable therapeutic capabilities. Numerous clinical trials are currently underway investigating the safety and tolerability of exosomes carrying drugs to specific sites for the treatment of tumors. CONCLUSIONS Exosomes can be engineered as carriers to deliver therapeutic molecules to specific cells and tissues, offering a novel approach for disease treatment.
Collapse
Affiliation(s)
- Panpan Feng
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xiaodong Zhang
- Department of General SurgeryBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jian Gao
- Science Experiment Center of China Medical UniversityShenyangChina
| | - Lei Jiang
- Department of General SurgeryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Yan Li
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Liaoning Provincial Key Laboratory of Clinical Oncology MetabonomicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
2
|
Guo D, Meng Y, Zhao G, Wu Q, Lu Z. Moonlighting functions of glucose metabolic enzymes and metabolites in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00800-3. [PMID: 40175621 DOI: 10.1038/s41568-025-00800-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/04/2025]
Abstract
Glucose metabolic enzymes and their metabolites not only provide energy and building blocks for synthesizing macromolecules but also possess non-canonical or moonlighting functions in response to extracellular and intracellular signalling. These moonlighting functions modulate various cellular activities, including gene expression, cell cycle progression, DNA repair, autophagy, senescence and apoptosis, cell proliferation, remodelling of the tumour microenvironment and immune responses. These functions integrate glucose metabolism with other essential cellular activities, driving cancer progression. Targeting these moonlighting functions could open new therapeutic avenues and lead to cancer-specific treatments.
Collapse
Affiliation(s)
- Dong Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Gaoxiang Zhao
- Department of Oncology, Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Halvaei S, Salmond N, Williams KC. Identification of DYRK1b as a novel regulator of small extracellular vesicle release using a high throughput nanoscale flow cytometry screening platform. NANOSCALE 2025; 17:8206-8218. [PMID: 40063071 DOI: 10.1039/d4nr02510e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Extracellular vesicles (EVs) are important mediators of intercellular communication and have various roles in physiological and pathological processes. Discovery of regulators of EV biogenesis and release has led to significant improvements in our understanding of EV biology and has highlighted disease-specific pathways. Large scale discovery studies of EV regulators are limited by conventional methods of EV analysis with limited throughput and sensitivity. To address this, this study presents a high-throughput flow cytometry-based platform for the quantification of EVs released from cells. Here, a system was developed using the MDA-MB-231 cell line stably expressing ZsGreen, which passively loads ZsGreen proteins into EVs, and nanoscale flow cytometry. EV detection and quantitation was optimized and validated for a 96-well format. The high-throughput flow cytometry screening platform quantified the effect of 156 kinase inhibitors on EV number and identified AZ191 - a DYRK1b inhibitor - as a potent EV inhibitor. DYRK1b inhibition and knockdown confirmed a significant reduction in total EV number, with small EVs demonstrating the largest reduction. DYRK1b knockdown altered the intracellular distribution of EV marker CD63, suggesting a role for DYRK1b in EV trafficking. In conclusion, our study establishes a platform for high-throughput analysis of EV dynamics and introduces DYRK1b kinase as a novel EV-regulator.
Collapse
Affiliation(s)
- Sina Halvaei
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| | - Nikki Salmond
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| | - Karla C Williams
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Puagsopa J, Tongviseskul N, Jaroentomeechai T, Meksiriporn B. Recent Progress in Developing Extracellular Vesicles as Nanovehicles to Deliver Carbohydrate-Based Therapeutics and Vaccines. Vaccines (Basel) 2025; 13:285. [PMID: 40266147 PMCID: PMC11946770 DOI: 10.3390/vaccines13030285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/22/2025] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Cell-derived, nanoscale extracellular vesicles (EVs) have emerged as promising tools in diagnostic, therapeutic, and vaccine applications. Their unique properties including the capability to encapsulate diverse molecular cargo as well as the versatility in surface functionalization make them ideal candidates for safe and effective vehicles to deliver a range of biomolecules including gene editing cassettes, therapeutic proteins, glycans, and glycoconjugate vaccines. In this review, we discuss recent advances in the development of EVs derived from mammalian and bacterial cells for use in a delivery of carbohydrate-based protein therapeutics and vaccines. We highlight key innovations in EVs' molecular design, characterization, and deployment for treating diseases including Alzheimer's disease, infectious diseases, and cancers. We discuss challenges for their clinical translation and provide perspectives for future development of EVs within biopharmaceutical research and the clinical translation landscape.
Collapse
Affiliation(s)
- Japigorn Puagsopa
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Niksa Tongviseskul
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| | - Thapakorn Jaroentomeechai
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Bunyarit Meksiriporn
- Department of Biology, School of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand;
| |
Collapse
|
5
|
Tang Z, Chen C, Zhou C, Liu Z, Li T, Zhang Y, Feng Y, Gu C, Li S, Chen J. Insights into tumor-derived exosome inhibition in cancer therapy. Eur J Med Chem 2025; 285:117278. [PMID: 39823808 DOI: 10.1016/j.ejmech.2025.117278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/11/2025] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Exosomes are critical mediators of cell-to-cell communication in physiological and pathological processes, due to their ability to deliver a variety of bioactive molecules. Tumor-derived exosomes (TDEs), in particular, carry carcinogenic molecules that contribute to tumor progression, metastasis, immune escape, and drug resistance. Thus, TDE inhibition has emerged as a promising strategy to combat cancer. In this review, we discuss the key mechanisms of TDE biogenesis and secretion, emphasizing their implications in tumorigenesis and cancer progression. Moreover, we provide an overview of small-molecule TDE inhibitors that target specific biogenesis and/or secretion pathways, highlighting their potential use in cancer treatment. Lastly, we present the existing obstacles and propose corresponding remedies for the future development of TDE inhibitors.
Collapse
Affiliation(s)
- Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China.
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shijia Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
6
|
Olou AA, Tom WA, Krzyzanowski G, Jiang C, Chandel DS, Fernando N, Draney AW, Destino J, Welch DR, Fernando MR. EV DNA from pancreatic cancer patient-derived cells harbors molecular, coding, non-coding signatures and mutational hotspots. Commun Biol 2025; 8:368. [PMID: 40044954 PMCID: PMC11882941 DOI: 10.1038/s42003-025-07567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/17/2025] [Indexed: 03/09/2025] Open
Abstract
DNA packaged into cancer cell-derived EV is not well appreciated. Here, we uncovered signatures of EV DNA secreted by pancreatic cancer cells. The cancer cells and non-cancer counterparts exhibit distinct low vs. high molecular weight (LMW vs. HMW) EV DNA fragments distribution, respectively. Genome sequencing and Single Nucleotide Variants analysis revealed that 95% of reads and 94% of SNVs map to noncoding regions of the genome. Given that ~1% of the human genome represents coding regions, the 5% mapping rate to coding regions suggests a non-random enrichment of certain coding regions and mutations. The LMW DNA fragments not only set cancer cells apart, but also harbor cancer specific enrichment of unique coding regions, the top nine being FAM135B, COL22A1, TSNARE1, KCNK9, ZFAT, JRK, MROH5, GSDMD, and MIR3667HG. Additionally, the cancer cells' LMW DNA fragments exhibit dense centromeric mapping more strikingly on chromosomes 3, 7, 9, 10, 11, 13, 17, and 20. Mutational profiling turned up close to 200 mutations specific for the cancer cells. Altogether, our analyses suggest that centromeric regions might hold clues to EV DNA content from pancreatic cancer, the molecular, mutational signatures thereof, and rationalizes the need for a new approach to DNA biomarker research.
Collapse
Affiliation(s)
- Appolinaire A Olou
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.
| | - Wesley A Tom
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Gary Krzyzanowski
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Chao Jiang
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Dinesh S Chandel
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Nirmalee Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Adrian W Draney
- Department of Chemistry, Creighton University, Omaha, NE, USA
| | - Joel Destino
- Department of Chemistry, Creighton University, Omaha, NE, USA
| | - Danny R Welch
- Department of Cancer Biology, Kansas University Medical Center, and the University of Kansas Comprehensive Cancer Center, Kansas City, KS, USA
| | - M Rohan Fernando
- Molecular Diagnostic Research Laboratory, Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA.
| |
Collapse
|
7
|
Xue S, Luo Z, Mao Y, Liu S. A comprehensive analysis of the pyruvate kinase M1/2 (PKM) in human cancer. Gene 2025; 937:149155. [PMID: 39653090 DOI: 10.1016/j.gene.2024.149155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Pyruvate Kinase Muscle Isozyme (PKM), as a member of the pyruvate kinase, is a key enzyme in glycolysis. Numerous tumors have demonstrated its oncogenic properties. There is, however, no pan-carcinogenic analysis for PKM. METHODS A thorough analysis of PKM across various types of cancer was carried out using bioinformatics resources like The National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium (CPTAC) and The Cancer Genome Atlas (TCGA) database. This study involved analyzing the role of PKM in 33 various types of cancers, along with investigating gene expressions, survival rates, clinical importance, genetic changes, immune system presence, and related signaling pathways. Furthermore, we evaluated the effects of PKM knockdown on human colon carcinoma, and glioblastoma cell lines by in vitro experimentation. RESULTS In most tumors, PKM expression was markedly increased and was associated with unfavorable overall survival (OS) in certain individuals. In addition, infiltration of macrophages was associated with PKM expression in various tumors. PKM was linked to glycolysis/gluconeogenesis, HIF-1 signaling, carbon metabolism, and NADPH regeneration in a mechanistic manner. Additionally, cell experiments showed that the knockdown of PKM could reduce the proliferation and migration abilities while promoting the apoptosis of Caco-2, and U-87 MG cells. CONCLUSION PKM controls immune cell infiltration, impacts patient outcomes in various types of cancer, and plays an essential role in proliferation and migration in some tumor cells by affecting glycometabolism. The PKM molecule may serve as a potential prognostic biomarker and therapeutic target for human cancers.
Collapse
Affiliation(s)
- Shuaishuai Xue
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Ziyi Luo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yangqi Mao
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou 510515, China
| | - Siyuan Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
8
|
Peppicelli S, Calorini L, Bianchini F, Papucci L, Magnelli L, Andreucci E. Acidity and hypoxia of tumor microenvironment, a positive interplay in extracellular vesicle release by tumor cells. Cell Oncol (Dordr) 2025; 48:27-41. [PMID: 39023664 PMCID: PMC11850579 DOI: 10.1007/s13402-024-00969-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and continuously evolving features of the tumor microenvironment, varying between tumor histotypes, are characterized by the presence of host cells and tumor cells embedded in a milieu shaped by hypoxia and low pH, resulting from the frequent imbalance between vascularity and tumor cell proliferation. These microenvironmental metabolic stressors play a crucial role in remodeling host cells and tumor cells, contributing to the stimulation of cancer cell heterogeneity, clonal evolution, and multidrug resistance, ultimately leading to progression and metastasis. The extracellular vesicles (EVs), membrane-enclosed structures released into the extracellular milieu by tumor/host cells, are now recognized as critical drivers in the complex intercellular communication between tumor cells and the local cellular components in a hypoxic/acidic microenvironment. Understanding the intricate molecular mechanisms governing the interactions between tumor and host cells within a hypoxic and acidic microenvironment, triggered by the release of EVs, could pave the way for innovative strategies to disrupt the complex interplay of cancer cells with their microenvironment. This approach may contribute to the development of an efficient and safe therapeutic strategy to combat cancer progression. Therefore, we review the major findings on the release of EVs in a hypoxic/acidic tumor microenvironment to appreciate their role in tumor progression toward metastatic disease.
Collapse
Affiliation(s)
- Silvia Peppicelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy.
| | - Lido Calorini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Laura Papucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Lucia Magnelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| | - Elena Andreucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, 50134, Italy
| |
Collapse
|
9
|
Zhou S, Sun J, Zhu W, Yang Z, Wang P, Zeng Y. Hypoxia studies in non‑small cell lung cancer: Pathogenesis and clinical implications (Review). Oncol Rep 2025; 53:29. [PMID: 39749693 PMCID: PMC11715622 DOI: 10.3892/or.2024.8862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Non‑small cell lung cancer (NSCLC) is one of the most prevalent and lethal types of cancers worldwide and its high incidence and mortality rates pose a significant public health challenge. Despite significant advances in targeted therapy and immunotherapy, the overall prognosis of patients with NSCLC remains poor. Hypoxia is a critical driving factor in tumor progression, influencing the biological behavior of tumor cells through complex molecular mechanisms. The present review systematically examined the role of the hypoxic microenvironment in NSCLC, demonstrating its crucial role in promoting tumor cell growth, invasion and metastasis. Additionally, it has been previously reported that the hypoxic microenvironment enhances tumor cell resistance by activating hypoxia‑inducible factor and regulating exosome secretion. The hypoxic microenvironment also enables tumor cells to adapt to low oxygen and nutrient‑deficient conditions by enhancing metabolic reprogramming, such as through upregulating glycolysis. Further studies have shown that the hypoxic microenvironment facilitates immune escape by modulating tumor‑associated immune cells and suppressing the antitumor response of the immune system. Moreover, the hypoxic microenvironment increases tumor resistance to radiotherapy, chemotherapy and other types of targeted therapy through various pathways, significantly reducing the therapeutic efficacy of these treatments. Therefore, it could be suggested that early detection of cellular hypoxia and targeted therapy based on hypoxia may offer new therapeutic approaches for patients with NSCLC. The present review not only deepened the current understanding of the mechanisms of action and role of the hypoxic microenvironment in NSCLC but also provided a solid theoretical basis for the future development of precision treatments for patients with NSCLC.
Collapse
Affiliation(s)
- Sirui Zhou
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Jiazheng Sun
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Weijian Zhu
- Department of Orthopedics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Zhiying Yang
- Department of Radiation Oncology, Minda Hospital of Hubei Minzu University, Enshi, Hubei 445000, P.R. China
| | - Ping Wang
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| | - Yulan Zeng
- Department of Respiration, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, P.R. China
| |
Collapse
|
10
|
Vermeire CA, Tan X, Ramos-Leyva A, Wood A, Kotey SK, Hartson SD, Liang Y, Liu L, Cheng Y. Characterization of Exosomes Released from Mycobacterium abscessus-Infected Macrophages. Proteomics 2025; 25:e202400181. [PMID: 39279549 PMCID: PMC11798717 DOI: 10.1002/pmic.202400181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Extracellular vesicles (EVs), such as exosomes, play a critical role in cell-to-cell communication and regulating cellular processes in recipient cells. Non-tuberculous mycobacteria (NTM), such as Mycobacterium abscessus, are a group of environmental bacteria that can cause severe lung infections in populations with pre-existing lung conditions, such as cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD). There is limited knowledge of the engagement of EVs in the host-pathogen interactions in the context of NTM infections. In this study, we found that M. abscessus infection increased the release of a subpopulation of exosomes (CD9, CD63, and/or CD81 positive) by mouse macrophages in cell culture. Proteomic analysis of these vesicles demonstrated that M. abscessus infection affects the enrichment of host proteins in exosomes released by macrophages. When compared to exosomes from uninfected macrophages, exosomes released by M. abscessus-infected macrophages significantly improved M. abscessus growth and downregulated the intracellular level of glutamine in recipient macrophages in cell culture. Increasing glutamine concentration in the medium rescued intracellular glutamine levels and M. abscessus killing in recipient macrophages that were treated with exosomes from M. abscessus-infected macrophages. Taken together, our results indicate that exosomes may serve as extracellular glutamine eliminators that interfere with glutamine-dependent M. abscessus killing in recipient macrophages.
Collapse
Affiliation(s)
- Charlie A. Vermeire
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Xuejuan Tan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aidaly Ramos-Leyva
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Ava Wood
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Stephen K. Kotey
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Steven D. Hartson
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Center for Genomics and Proteomics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yurong Liang
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
- Department of Physiological Sciences, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yong Cheng
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, Oklahoma, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
11
|
Bavafa A, Izadpanahi M, Hosseini E, Hajinejad M, Abedi M, Forouzanfar F, Sahab-Negah S. Exosome: an overview on enhanced biogenesis by small molecules. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-024-03762-9. [PMID: 39862264 DOI: 10.1007/s00210-024-03762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Exosomes are extracellular vesicles that received attention for their potential use in the treatment of various injuries. They communicate intercellularly by transferring genetic and bioactive molecules from parent cells. Although exosomes hold immense promise for treating neurodegenerative and oncological diseases, their actual clinical use is very limited because of their biogenesis and secretion. Recent studies have shown that small molecules can significantly enhance exosome biogenesis, thereby remarkably improving yield, functionality, and therapeutic effects. These molecules modulate critical pathways toward optimum exosome production in a mode that is either ESCRT dependent or ESCRT independent. Improved exosome biogenesis may provide new avenues for targeted cancer therapy, neuroprotection in neurodegenerative diseases, and regenerative medicine in wound healing. This review explores the role of small molecules in enhancing exosome biogenesis and secretion, highlights their underlying mechanisms, and discusses emerging clinical applications. By addressing current challenges and focusing on translational opportunities, this study provides a foundation for advancing cell-free therapies in regenerative medicine and beyond.
Collapse
Affiliation(s)
- Amir Bavafa
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Izadpanahi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Hosseini
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Hajinejad
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Qaen Faculty of Medical Sciences, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahsa Abedi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Institute for Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Sajad Sahab-Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
| |
Collapse
|
12
|
Ji X, Zhang J, Qiu Y, Shi Y, Shao L, Wang H, Gao J, Cai M, Pan Y, Xu H, Wang H. Visualization of Mechanical Force Regulation of Exosome Secretion Using High Time-Spatial Resolution Imaging. Anal Chem 2025; 97:1210-1220. [PMID: 39760310 DOI: 10.1021/acs.analchem.4c04690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Exosomes are small endosome-derived extracellular vesicles that participate in cell-cell communication, particularly in the context of tumorigenesis, and their secretion is influenced by the tumor microenvironment. While previous studies suggest that mechanical forces may enhance exosome release, the direct relationship between these forces and exosome secretion needs to be further characterized. Here, we utilized dual-color CD63 reporter-based high-speed live-cell imaging to visualize how mechanical forces influence exosome release in situ. Through live-cell tracking, we observed the dynamic fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) to release exosomes at the single-vesicle level. More importantly, we directly detected a real-time stimulatory effect of mechanical forces on exosome release, with a bulk release of exosomes occurring under mechanical pressure stimulation. Furthermore, we identified mechanical force-induced actin rearrangement as a crucial determinant of exosome release. Our findings provide direct insights into the role of mechanical forces in exosome release and lay the groundwork for developing potential strategies to target disease-derived exosomes from their source.
Collapse
Affiliation(s)
- Xin Ji
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jinrui Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Yu Qiu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yan Shi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Lina Shao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Huili Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yangang Pan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| |
Collapse
|
13
|
ZHOU ZHENGYANG, QIAO LEI, WANG TONGTONG, PAN WEN, DUAN JINGJING, ZHANG HAIYANG, DENG TING, BA YI, HE YI. Exosomal miR-224-3p promotes lymphangiogenesis and lymph node metastasis by targeting GSK3B in gastric cancer. Oncol Res 2025; 33:327-345. [PMID: 39866224 PMCID: PMC11753999 DOI: 10.32604/or.2024.050431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 01/28/2025] Open
Abstract
Background Patients with gastric cancer (GC) are prone to lymph node metastasis (LNM), which is an important factor for recurrence and poor prognosis of GC. Nowadays, more and more studies have confirmed that exosomes can participate in tumor lymphangiogenesis. An in-depth exploration of the pathological mechanism in the process of LNM in GC may provide effective targets and improve the diagnosis and treatment effect. Materials and Methods We used sequencing analysis of collected serum to screen out exo-miRNA related to LNM in GC. ELISA, qRT-PCR, Western Blot, RNA pull-down assay, Transwell assay, animal experiments, and other experiments were used to verify the results. Results In this study, we screened out miR-224-3p related to GC progression and LNM in a vascular endothelial growth Factor C (VEGFC)-independent manner. We found that exo-miR-224-3p derived from GC cells could enter human lymphatic endothelial cells (HLECs) and promote the tube formation and migration of HLECs. In addition, it was revealed that miR-224-3p could bind to the 3'UTR region of GSK3B mRNA. Then, we proved that inhibiting the expression of GSK3B could suppress the phosphorylation of β-catenin and promote the transcription of PROX1, thus leading to tumor lymphangiogenesis. Furthermore, it was also found that hnRNPA1 mediated the sorting of miR-224-3p into exosomes, and the high expression of PKM2 promoted the secretion of exo-miR-224-3p. Conclusions Our discovery of the exo-miR-224-3p/GSK3B/β-catenin/PROX1 axis may provide a new direction for the clinical treatment of GC.
Collapse
Affiliation(s)
- ZHENGYANG ZHOU
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - LEI QIAO
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - TONGTONG WANG
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - WEN PAN
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - JINGJING DUAN
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - HAIYANG ZHANG
- Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, 300060, China
| | - TING DENG
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - YI BA
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - YI HE
- Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, 300060, China
| |
Collapse
|
14
|
Rana R, Devi SN, Bhardwaj AK, Yashavarddhan MH, Bohra D, Ganguly NK. Exosomes as nature's nano carriers: Promising drug delivery tools and targeted therapy for glioma. Biomed Pharmacother 2025; 182:117754. [PMID: 39731936 DOI: 10.1016/j.biopha.2024.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
Exosomes, minute vesicles originating from diverse cell types, exhibit considerable potential as carriers for drug delivery in glioma therapy. These naturally occurring nanocarriers facilitate the transfer of proteins, RNAs, and lipids between cells, offering advantages such as biocompatibility, efficient cellular absorption, and the capability to traverse the blood-brain barrier (BBB). In the realm of cancer, particularly gliomas, exosomes play pivotal roles in modulating tumor growth, regulating immunity, and combating drug resistance. Moreover, exosomes serve as valuable biomarkers for diagnosing diseases and assessing prognosis. This review aims to elucidate the therapeutic and diagnostic promise of exosomes in glioma treatment, highlighting the innovative advances in exosome engineering that enable precise drug loading and targeting. By circumventing challenges associated with current glioma treatments, exosome-mediated drug delivery strategies can enhance the efficacy of chemotherapy drugs like temozolomide and overcome drug resistance mechanisms. This review underscores the multifaceted roles of exosomes in glioma pathogenesis and therapy, underscoring their potential as natural nanocarriers for targeted therapy and heralding a new era of hope for glioma treatment.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| | | | - Amit Kumar Bhardwaj
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - M H Yashavarddhan
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Deepika Bohra
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| |
Collapse
|
15
|
Guo X, Song J, Liu M, Ou X, Guo Y. The interplay between the tumor microenvironment and tumor-derived small extracellular vesicles in cancer development and therapeutic response. Cancer Biol Ther 2024; 25:2356831. [PMID: 38767879 PMCID: PMC11110713 DOI: 10.1080/15384047.2024.2356831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
Collapse
Affiliation(s)
- Xuanyu Guo
- The Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Jiajun Song
- Department of Clinical Laboratory Medicine, the Affiliated Hospital, Southwest Medical University, Luzhou, PR China
| | - Miao Liu
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Xinyi Ou
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| | - Yongcan Guo
- Nanobiosensing and Microfluidic Point-of-Care Testing, Key Laboratory of Luzhou, Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, PR China
| |
Collapse
|
16
|
Hu X, Huang F, Yao J, Lv J, Mai J, Li N, Lu M. Cross-sectional study on the diagnostic significance of plasma exosomal miRNAs in HBV-related hepatocellular carcinoma. J Transl Med 2024; 22:1006. [PMID: 39511689 PMCID: PMC11546246 DOI: 10.1186/s12967-024-05787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE Hepatocellular carcinoma (HCC) associated with Hepatitis B Virus (HBV) is one of the most severe malignancies in East Asia, where early diagnosis is crucial for improving patient prognosis. So we aim to identify effective early diagnostic model for HCC. DESIGN AND METHODS We enrolled 108 early-stage HCC patients and 102 non-HCC individuals underlying HBV infection, collecting plasma exosomal miRNAs (exo-miRNAs) from all participants. These patients were randomly assigned to sequencing, screening, training, and validation group. After preliminary screening of candidate exo-miRNAs by next-generation high-throughput sequencing, qPCR data from the screening group were utilized in conjunction with the random forest machine learning algorithm to identify candidate exo-miRNAs with diagnostic potential. Subsequently, logistic regression diagnostic model was constructed using the relative expression levels of candidate exo-miRNAs, alpha-fetoprotein (AFP) levels and clinical parameters of gender and the presence of cirrhosis from the training group. The diagnostic accuracy of diagnostic model was subsequently validated in the validation group. RESULTS Firstly, we identified miR-212-5p, miR-1248, and miR-1250-5p as candidate exo-miRNAs with potential diagnostic value. The exo-miRNAs panel, which consisted of miR-212-5p, miR-1248, miR-1250-5p, along with clinical parameters of gender and cirrhosis, achieved an AUC of 0.8634 (95% CI: 0.8027-0.9241), demonstrating diagnostic performance non-inferior to AFP in the independent dataset. Subsequently, by combining exo-miRNAs, AFP level and clinical parameter of gender, we enhanced the diagnostic panel, miRAGe, which exhibited an AUC of 0.9499 (95% CI: 0.9192-0.9806), sensitivity of 0.8900, and specificity of 0.9468. CONCLUSION Our study indicates that the miRAGe panel has low rate of both missed diagnosis and misdiagnosis rates, potentially serving as a useful diagnostic tool for HBV-related HCC in early stage, which may subsequently contribute to improve the prognosis.
Collapse
Affiliation(s)
- Xiaoyuan Hu
- Department of Hepatic-Biliary-Pancreatic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Fa Huang
- Department of Anesthesiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiyou Yao
- Department of Hepatic-Biliary-Pancreatic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiaxian Lv
- The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jialuo Mai
- Department of Hepatic-Biliary-Pancreatic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Ning Li
- Department of Hepatic-Biliary-Pancreatic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China
| | - Minqiang Lu
- Department of Hepatic-Biliary-Pancreatic Surgery, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment. JOURNAL OF INTEGRATIVE MEDICINE 2024; 22:696-708. [PMID: 39521704 DOI: 10.1016/j.joim.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Tumor-derived exosomes (TDEs) play crucial roles in intercellular communication. Hypoxia in the tumor microenvironment enhances secretion of TDEs and accelerates tumor metastasis. Jiedu recipe (JR), a traditional Chinese medicinal formula, has demonstrated efficacy in preventing the metastasis of hepatocellular carcinoma (HCC). However, the underlying mechanism remains largely unknown. METHODS Animal experiments were performed to investigate the metastasis-preventing effects of JR. Bioinformatics analysis and in vitro assays were conducted to explore the potential targets and active components of JR. TDEs were assessed using nanoparticle tracking analysis (NTA) and Western blotting (WB). Exosomes derived from normoxic or hypoxic HCC cells (H-TDEs) were collected to establish premetastatic mouse models. JR was intragastrically administered to evaluate its metastasis-preventive effects. WB and lysosomal staining were performed to investigate the effects of JR on lysosomal function and autophagy. Bioinformatics analysis, WB, NTA, and immunofluorescence staining were used to identify the active components and potential targets of JR. RESULTS JR effectively inhibited subcutaneous-tumor-promoted lung premetastatic niche development and tumor metastasis. It inhibited the release of exosomes from tumor cells under hypoxic condition. JR treatment promoted both lysosomal acidification and suppressed secretory autophagy, which were dysregulated in hypoxic tumor cells. Quercetin was identified as the active component in JR, and the epidermal growth factor receptor (EGFR) was identified as a potential target. Quercetin inhibited EGFR phosphorylation and promoted the nuclear translocation of transcription factor EB (TFEB). Hypoxia-impaired lysosomal function was restored, and secretory autophagy was alleviated by quercetin treatment. CONCLUSION JR suppressed HCC metastasis by inhibiting hypoxia-stimulated exosome release, restoring lysosomal function, and suppressing secretory autophagy. Quercetin acted as a key component of JR and regulated TDE release through EGFR-TFEB signaling. Our study provides a potential strategy for retarding tumor metastasis by targeting H-TDE secretion. Please cite this article as: Jia WT, Xiang S, Zhang JB, Yuan JY, Wang YQ, Liang SF, Lin WF, Zhai XF, Shang Y, Ling CQ, Cheng BB. Jiedu recipe, a compound Chinese herbal medicine, suppresses hepatocellular carcinoma metastasis by inhibiting the release of tumor-derived exosomes in a hypoxic microenvironment through the EGFR-TFEB signaling pathway. J Integr Med. 2024; 22(6): 697-709.
Collapse
Affiliation(s)
- Wen-Tao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China; Department of General Practice, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Shuang Xiang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jin-Bo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Jia-Ying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital School of Medicine, Tongji University, Shanghai 200065, China
| | - Yu-Qian Wang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Shu-Fang Liang
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Wan-Fu Lin
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Xiao-Feng Zhai
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Yan Shang
- Department of General Practice, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
| | - Chang-Quan Ling
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Bin-Bin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
18
|
Viola M, Bebelman MP, Maas RGC, de Voogt WS, Verweij FJ, Seinen CS, de Jager SCA, Vader P, Pegtel DM, Petrus Gerardus Sluijter J. Hypoxia and TNF-alpha modulate extracellular vesicle release from human induced pluripotent stem cell-derived cardiomyocytes. J Extracell Vesicles 2024; 13:e70000. [PMID: 39508403 PMCID: PMC11541862 DOI: 10.1002/jev2.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/28/2024] [Accepted: 10/06/2024] [Indexed: 11/15/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in the heart under homeostatic and pathological conditions, such as myocardial infarction (MI). However, the basic mechanisms driving cardiomyocyte-derived EV (CM-EV) production following stress are poorly understood. In this study, we generated human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) that express NanoLuc-tetraspanin reporters. These modified hiPSC-CMs allow for quantification of tetraspanin-positive CM-EV secretion from small numbers of cells without the need for time-consuming EV isolation techniques. We subjected these cells to a panel of small molecules to study their effect on CM-EV biogenesis and secretion under basal and stress-associated conditions. We observed that EV biogenesis is context-dependent in hiPSC-CMs. Nutrient starvation decreases CM-EV secretion while hypoxia increases the production of CM-EVs in a nSmase2-dependent manner. Moreover, the inflammatory cytokine TNF-α increased CM-EV secretion through a process involving NLRP3 inflammasome activation and mTOR signalling. Here, we detailed for the first time the regulatory mechanisms of EV biogenesis in hiPSC-CMs upon MI-associated stressors.
Collapse
Affiliation(s)
- Margarida Viola
- Department of Experimental Cardiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Maarten P. Bebelman
- Department of Pathology, Cancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | - Renee G. C. Maas
- Department of Experimental Cardiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | | | - Frederik J. Verweij
- Division of Cell Biology, Neurobiology and BiophysicsUtrecht UniversityUtrechtThe Netherlands
| | - Cor S. Seinen
- CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Saskia C. A. de Jager
- Department of Experimental Cardiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dirk Michiel Pegtel
- Department of Pathology, Cancer Center AmsterdamVU University Medical CenterAmsterdamThe Netherlands
| | | |
Collapse
|
19
|
Wang G, Li Q, Liu S, Li M, Liu B, Zhao T, Liu B, Chen Z. An injectable decellularized extracellular matrix hydrogel with cortical neuron-derived exosomes enhances tissue repair following traumatic spinal cord injury. Mater Today Bio 2024; 28:101250. [PMID: 39318371 PMCID: PMC11421349 DOI: 10.1016/j.mtbio.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/11/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Traumatic spinal cord injury (SCI), known for its limited intrinsic regeneration capacity, often results in considerable neurological impairment. Studies suggest that therapeutic techniques utilizing exosomes (Exo) to promote tissue regeneration and modulate immune responses are promising for SCI treatment. However, combining exosome therapy with biomaterials for SCI treatment is not very effective. This study developed an adhesive hydrogel using exosomes secreted by cortical neurons derived from human induced pluripotent stem cells (iPSCs) and decellularized extracellular matrix (dECM) from human umbilical cord mesenchymal stem cells (hUCMSCs) to enhance motor function recovery post-SCI. In vitro assessments demonstrated the excellent cytocompatibility of the dECM hydrogel. Additionally, the Exo-dECM hydrogel facilitated the polarization of early M2 macrophages, reduced neuronal apoptosis, and established a pro-regenerative microenvironment in a rodent SCI model. Subsequent analyses revealed significant activation of endogenous neural stem cells and promotion of axon regeneration and remyelination at eight weeks post-surgery. The Exo-dECM hydrogel also promoted the functional recovery and preservation of urinary tissue in SCI-afflicted rats. These findings highlighted that the Exo-dECM hydrogel is a promising therapeutic strategy for treating SCI.
Collapse
Affiliation(s)
- Gang Wang
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Qian Li
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sumei Liu
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Mo Li
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Baoguo Liu
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Tianyao Zhao
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100069, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100069, China
| |
Collapse
|
20
|
Das Gupta A, Park J, Sorrells JE, Kim H, Krawczynska N, Pradeep D, Wang Y, Vidana Gamage HE, Nelczyk AT, Boppart SA, Boppart MD, Nelson ER. 27-Hydroxycholesterol Enhances Secretion of Extracellular Vesicles by ROS-Induced Dysregulation of Lysosomes. Endocrinology 2024; 165:bqae127. [PMID: 39298675 PMCID: PMC11448339 DOI: 10.1210/endocr/bqae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states; they have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, toward secretion as EVs. This altered lysosomal function is likely caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.
Collapse
Affiliation(s)
- Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jaena Park
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Janet E Sorrells
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dhanya Pradeep
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Adam T Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephen A Boppart
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- NIH/NIBIB Center for Label-free Imaging and Multi-scale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Marni D Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
21
|
Wei Z, Ni X, Cui H, Shu C, Peng Y, Li Y, Liu J. Neurotoxic effects of triclosan in adolescent mice: Pyruvate kinase M2 dimer regulated Signal transducer and activator of transcription 3 phosphorylation mediated microglia activation and neuroinflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173739. [PMID: 38839007 DOI: 10.1016/j.scitotenv.2024.173739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS), a commonly used antibacterial agent, is associated with various harmful effects on mammalian neurodevelopment, particularly when exposed prenatally. This study investigated the impact of long-term exposure to TCS on the prefrontal cortex development in adolescent mice. We evaluated the motor ability, motor coordination, and anxiety behavior of mice using open field tests (OFT) and elevated cross maze tests (EPM). An increase in movement distance, number of passes through the central area, and open arm retention time was observed in mice treated with TCS. Hematoxylin eosin staining and Nissl staining also showed significant adverse reactions in the brain tissue of TCS-exposed group. TCS induced microglia activation and increased inflammatory factors expression in the prefrontal cortex. TCS also increased the expression of pyruvate kinase M2 (PKM2), thereby elevating the levels of PKM2 dimer, which entered the nucleus. Treatment with TEPP46 (PKM2 dimer nuclear translocation inhibitor) blocked the expression of inflammatory factors induced by TCS. TCS induced the phosphorylation of nuclear signal transducer and activator of transcription 3 (STAT3) in vivo and in vitro, upregulating the levels of inflammatory cytokines. The results also demonstrated the binding of PKM2 to STAT3, which promoted STAT3 phosphorylation at the Tyr705 site, thereby regulating the expression of inflammatory factors. These findings highlight the role of PKM2-regulated STAT3 phosphorylation in TCS-induced behavioral disorders in adolescents and propose a reliable treatment target for TCS.
Collapse
Affiliation(s)
- Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yunwei Li
- Department of General Surgery, Colorectal Surgery, The First Hospital of China Medical University, Shenyang 110001, Liaoning, PR China.
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
22
|
Espiau-Romera P, Gordo-Ortiz A, Ortiz-de-Solórzano I, Sancho P. Metabolic features of tumor-derived extracellular vesicles: challenges and opportunities. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:455-470. [PMID: 39697624 PMCID: PMC11648520 DOI: 10.20517/evcna.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 08/16/2024] [Indexed: 12/20/2024]
Abstract
Tumor-derived extracellular vesicles (TDEVs) play crucial roles in intercellular communication both in the local tumor microenvironment and systemically, facilitating tumor progression and metastatic spread. They carry a variety of molecules with bioactive properties, such as nucleic acids, proteins and metabolites, that trigger different signaling processes in receptor cells and induce, among other downstream effects, metabolic reprogramming. Interestingly, the cargo of TDEVs also reflects the metabolic status of the producing cells in a time- and context-dependent manner, providing information on the functionality and state of those cells. For these reasons, together with their ability to be detected in diverse biofluids, there is increasing interest in the study of TDEVs, particularly their metabolic cargo, as diagnostic and prognostic tools in cancer management. This review presents a compilation of metabolism-related molecules (enzymes and metabolites) described in cancer extracellular vesicles (EVs) with potential use as cancer biomarkers, and discusses the challenges arising in this rapidly evolving field.
Collapse
Affiliation(s)
| | | | | | - Patricia Sancho
- Hospital Universitario Miguel Servet, IIS Aragón, Zaragoza 50009, Spain
| |
Collapse
|
23
|
Wang C, Xu S, Yang X. Hypoxia-Driven Changes in Tumor Microenvironment: Insights into Exosome-Mediated Cell Interactions. Int J Nanomedicine 2024; 19:8211-8236. [PMID: 39157736 PMCID: PMC11328847 DOI: 10.2147/ijn.s479533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024] Open
Abstract
Hypoxia, as a prominent feature of the tumor microenvironment, has a profound impact on the multicomponent changes within this environment. Under hypoxic conditions, the malignant phenotype of tumor cells, the variety of cell types within the tumor microenvironment, as well as intercellular communication and material exchange, undergo complex alterations. These changes provide significant prospects for exploring the mechanisms of tumor development under different microenvironmental conditions and for devising therapeutic strategies. Exosomes secreted by tumor cells and stromal cells are integral components of the tumor microenvironment, serving as crucial mediators of intercellular communication and material exchange, and have consequently garnered increasing attention from researchers. This review focuses on the mechanisms by which hypoxic conditions promote the release of exosomes by tumor cells and alter their encapsulated contents. It also examines the effects of exosomes derived from tumor cells, immune cells, and other cell types under hypoxic conditions on the tumor microenvironment. Additionally, we summarize current research progress on the potential clinical applications of exosomes under hypoxic conditions and propose future research directions in this field.
Collapse
Affiliation(s)
- Churan Wang
- Dalian Medical University, Dalian, 116000, People’s Republic of China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| | - Xiao Yang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, 110002, People’s Republic of China
| |
Collapse
|
24
|
Yuan N, Xiao L, Chen J, Liu B, Ren S, Sheng X, Qi X, Wang Y, Chen C, Guo K, Yang X, Yang L, Wang X. CREG1 promotes bovine placental trophoblast cells exosome release by targeting IGF2R and participates in regulating organoid differentiation via exosomes transport. Int J Biol Macromol 2024; 274:133298. [PMID: 38917918 DOI: 10.1016/j.ijbiomac.2024.133298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/27/2024]
Abstract
BACKGROUND Placental exosomes are a kind of intercellular communication media secreted by placental cells during pregnancy, exosomogenesis and release are regulated by many secretory glycoproteins. CREG1 is a kind of secreted glycoprotein widely expressed in various organs and tissues of the body, which inhibits cell proliferation and enhances cell differentiation. The aim of this study was to explore the role of CREG1 in regulating exosomogenesis during the proliferation and differentiation of placental trophoblast cells in early pregnant dairy cows by targeting IGF2R and participating in regulating organoid differentiation via exosomes transport. METHODS Molecular biological methods were firstly used to investigate the expression patterns of CREG1, IGF2R and exosomal marker proteins in early placental development of pregnant dairy cows. Subsequently, the effects of CREG1 on the formation and release of bovine placental trophoblast (BTCs) derived exosomes by targeting IGF2R were investigated. Further, the effects of CREG1 on the change of gene expression patterns along with the transport of exosomes to recipient cells and participate in regulating the differentiation of organoids were explored. RESULTS The expression of CREG1, IGF2R and exosomal marker proteins increased with the increase of pregnancy months during the early evolution of placental trophoblast cells in dairy cows. Overexpression of Creg1 enhanced the genesis and release of exosomes derived from BTCs, while knocking down the expression of Igf2r gene not only inhibited the genesis of exosomes, but also inhibited the genesis and release of exosomes induced by overexpression of CREG1 protein. Interestingly, IGF2R can regulate the expression of CREG1 through reverse secretion. What's more, the occurrence and release of trophoblast-derived exosomes are regulated by CREG1 binding to IGF2R, which subsequently binds to Rab11. CREG1 can not only promote the formation and release of exosomes in donor cells, but also regulate the change of gene expression patterns along with the transport of exosomes to recipient cells and participate in regulating the early development of placenta. CONCLUSIONS Our study confirmed that CREG1 is involved in the exosomogenesis and release of exosomes during the proliferation and differentiation of placental trophoblast cells in early pregnant dairy cows by targeting IGF2R, and is involved in the regulation of organoid differentiation through exosome transport.
Collapse
Affiliation(s)
- Naihan Yuan
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Jiaxi Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Bingying Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Siqi Ren
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yingqiu Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Chang Chen
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Kaijun Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaowen Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Yang
- Animal Epidemic prevention and Quarantine center, Huimin District, Hohhot, Inner Mongolia Autonomous Region 010030, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
25
|
Zhang H, Yao J, Jiang Q, Shi Y, Ge W, Xu X. Engineered Exosomes Biopotentiated Hydrogel Promote Hair Follicle Growth via Reprogramming the Perifollicular Microenvironment. Pharmaceutics 2024; 16:935. [PMID: 39065633 PMCID: PMC11279965 DOI: 10.3390/pharmaceutics16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/07/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Androgenetic alopecia (AGA) is a highly prevalent condition in contemporary society. The conventional treatment of minoxidil tincture is hindered by issues such as skin irritation caused by ethanol, non-specific accumulation in hair follicles, and short retention due to its liquid form. Herein, we have developed a novel minoxidil-incorporated engineered exosomes biopotentiated hydrogel (Gel@MNs) that has the capability to modulate the perifollicular microenvironment for the treatment of AGA. Leveraging the exceptional skin penetration abilities of flexible liposomes and the targeting properties of exosomes, the encapsulated minoxidil can be effectively delivered to the hair follicles. In comparison to free minoxidil, Gel@MNs demonstrated accelerated hair regeneration in an AGA mouse model without causing significant skin irritation. This was evidenced by an increase in both the number and size of hair follicles within the dermal layer, enhanced capillary formation surrounding the follicles, and the regulation of the transition of hair follicle cells from the telogen phase to the anagen growth phase. Therefore, this safe and microenvironment-modifying hybrid exosome-embedded hydrogel shows promising potential for clinical treatment of AGA.
Collapse
Affiliation(s)
- Hairui Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (H.Z.); (J.Y.)
| | - Jiali Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (H.Z.); (J.Y.)
| | - Qianyang Jiang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Q.J.); (Y.S.)
| | - Yurou Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Q.J.); (Y.S.)
| | - Weihong Ge
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (H.Z.); (J.Y.)
| | - Xiaoling Xu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (Q.J.); (Y.S.)
| |
Collapse
|
26
|
Huang H, Wan J, Ao X, Qu S, Jia M, Zhao K, Liang J, Zen K, Liang H. ECM1 and ANXA1 in urinary extracellular vesicles serve as biomarkers for breast cancer. Front Oncol 2024; 14:1408492. [PMID: 39040439 PMCID: PMC11260749 DOI: 10.3389/fonc.2024.1408492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Objective Although urinary extracellular vesicles (uEVs) have been extensively studied in various cancers, their involvement in breast cancer (BC) remains largely unexplored. The non-invasive nature of urine as a biofluid and its abundant protein content offer considerable potential for the early detection of breast cancer. Methods This study analyzed the proteomic profiles of uEVs from BC patients and healthy controls (HC). The dysregulation of ECM1 and ANXA1 in the uEVs was validated in a larger cohort of 128 BC patients, 25 HC and 25 benign breast nodules (BBN) by chemiluminescence assay (CLIA). The expression levels of ECM1 and ANXA1 were also confirmed in the uEVs of MMTV-PyMT transgenic breast cancer mouse models. Results LC-MS/MS analysis identified 571 dysregulated proteins in the uEVs of BC patients. ECM1 and ANXA1 were selected for validation in 128 BC patients, 25 HC and 25 BBN using CLIA, as their fold change showed a significant difference of more than 10 with p-value<0.05. Protein levels of ECM1 and ANXA1 in uEVs were significantly increased in BC patients. In addition, the protein levels of ECM1 and ANXA1 in the uEVs of MMTV-PyMT transgenic mice were observed to increase progressively with the progression of breast cancer. Conclusion We developed a simple and purification-free assay platform to isolate uEVs and quantitatively detect ECM1 and ANXA1 in uEVs by WGA-coupled magnetic beads and CLIA. Our results suggest that ECM1 and ANXA1 in uEVs could potentially serve as diagnostic biomarkers for breast cancer.
Collapse
Affiliation(s)
- Hai Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jingyu Wan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Xudong Ao
- Peking University Cancer Hospital, Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Shuang Qu
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Meng Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Keyu Zhao
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Junqing Liang
- Peking University Cancer Hospital, Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ke Zen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Hongwei Liang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
27
|
Ye Z, Chen W, Li G, Huang J, Lei J. Tissue-derived extracellular vesicles in cancer progression: mechanisms, roles, and potential applications. Cancer Metastasis Rev 2024; 43:575-595. [PMID: 37851319 DOI: 10.1007/s10555-023-10147-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Extracellular vesicles (EVs) are small lipid bilayer-enclosed vesicles that mediate vital cellular communication by transferring cargo between cells. Among these, tissue-derived extracellular vesicles (Ti-EVs) stand out due to their origin from the tissue microenvironment, providing a more accurate reflection of changes in this setting. This unique advantage makes Ti-EVs valuable in investigating the intricate relationship between extracellular vesicles and cancer progression. Despite considerable research efforts exploring the association between Ti-EVs and cancers, a comprehensive clustering or grouping of these studies remains lacking. In this review, we aim to fill this gap by presenting a comprehensive synthesis of the mechanisms underlying Ti-EV generation, release, and transport within cancer tissues. Moreover, we delve into the pivotal roles that Ti-EVs play in cancer progression, shedding light on their potential as diagnostic and therapeutic tools. The review culminates in the construction of a comprehensive functional spectrum of Ti-EVs, providing a valuable reference for future research endeavors. By summarizing the current state of knowledge on Ti-EVs and their significance in tumor biology, this work contributes to a deeper understanding of cancer microenvironment dynamics and opens up avenues for harnessing Ti-EVs in diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Ziyang Ye
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenjie Chen
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Genpeng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Huang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
28
|
Yang R, Zhang H, Chen S, Lou K, Zhou M, Zhang M, Lu R, Zheng C, Li L, Chen Q, Liu Z, Zen K, Yuan Y, Liang H. Quantification of urinary podocyte-derived migrasomes for the diagnosis of kidney disease. J Extracell Vesicles 2024; 13:e12460. [PMID: 38853287 PMCID: PMC11162892 DOI: 10.1002/jev2.12460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
Migrasomes represent a recently uncovered category of extracellular microvesicles, spanning a diameter range of 500 to 3000 nm. They are emitted by migrating cells and harbour a diverse array of RNAs and proteins. Migrasomes can be readily identified in bodily fluids like serum and urine, rendering them a valuable non-invasive source for disease diagnosis through liquid biopsy. In this investigation, we introduce a streamlined and effective approach for the capture and quantitative assessment of migrasomes, employing wheat germ agglutinin (WGA)-coated magnetic beads and flow cytometry (referred to as WBFC). Subsequently, we examined the levels of migrasomes in the urine of kidney disease (KD) patients with podocyte injury and healthy volunteers using WBFC. The outcomes unveiled a substantial increase in urinary podocyte-derived migrasome concentrations among individuals with KD with podocyte injury compared to the healthy counterparts. Notably, the urinary podocyte-derived migrasomes were found to express an abundant quantity of phospholipase A2 receptor (PLA2R) proteins. The presence of PLA2R proteins in these migrasomes holds promise for serving as a natural antigen for the quantification of autoantibodies against PLA2R in the serum of patients afflicted by membranous nephropathy. Consequently, our study not only pioneers a novel technique for the isolation and quantification of migrasomes but also underscores the potential of urinary migrasomes as a promising biomarker for the early diagnosis of KD with podocyte injury.
Collapse
Affiliation(s)
- Rong Yang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Heng Zhang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Si Chen
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Kaibin Lou
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Meng Zhou
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Rui Lu
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Chunxia Zheng
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Limin Li
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Qihan Chen
- Cancer Center, Faculty of Health SciencesUniversity of MacauMacauSARChina
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling HospitalNanjing University School of MedicineNanjingChina
| | - Ke Zen
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life ScienceNanjing UniversityNanjingChina
| | - Yanggang Yuan
- Department of NephrologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hongwei Liang
- Department of Emergency, Nanjing Drum Tower Hospital, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
29
|
Wang Y, Shu H, Qu Y, Jin X, Liu J, Peng W, Wang L, Hao M, Xia M, Zhao Z, Dong K, Di Y, Tian M, Hao F, Xia C, Zhang W, Ba X, Feng Y, Wei M. PKM2 functions as a histidine kinase to phosphorylate PGAM1 and increase glycolysis shunts in cancer. EMBO J 2024; 43:2368-2396. [PMID: 38750259 PMCID: PMC11183095 DOI: 10.1038/s44318-024-00110-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 06/19/2024] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is a key node enzyme that diverts the metabolic reactions from glycolysis into its shunts to support macromolecule biosynthesis for rapid and sustainable cell proliferation. It is prevalent that PGAM1 activity is upregulated in various tumors; however, the underlying mechanism remains unclear. Here, we unveil that pyruvate kinase M2 (PKM2) moonlights as a histidine kinase in a phosphoenolpyruvate (PEP)-dependent manner to catalyze PGAM1 H11 phosphorylation, that is essential for PGAM1 activity. Moreover, monomeric and dimeric but not tetrameric PKM2 are efficient to phosphorylate and activate PGAM1. In response to epidermal growth factor signaling, Src-catalyzed PGAM1 Y119 phosphorylation is a prerequisite for PKM2 binding and the subsequent PGAM1 H11 phosphorylation, which constitutes a discrepancy between tumor and normal cells. A PGAM1-derived pY119-containing cell-permeable peptide or Y119 mutation disrupts the interaction of PGAM1 with PKM2 and PGAM1 H11 phosphorylation, dampening the glycolysis shunts and tumor growth. Together, these results identify a function of PKM2 as a histidine kinase, and illustrate the importance of enzyme crosstalk as a regulatory mode during metabolic reprogramming and tumorigenesis.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Hengyao Shu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yanzhao Qu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Jia Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wanting Peng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Lihua Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miao Hao
- Science Research Center, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, 130033, Changchun, Jilin, China
| | - Mingjie Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Yao Di
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Miaomiao Tian
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Fengqi Hao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Chaoyi Xia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Wenxia Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, 5268 Renmin Street, 130024, Changchun, Jilin, China.
| |
Collapse
|
30
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
31
|
Zifkos K, Bochenek ML, Gogiraju R, Robert S, Pedrosa D, Kiouptsi K, Moiko K, Wagner M, Mahfoud F, Poncelet P, Münzel T, Ruf W, Reinhardt C, Panicot-Dubois L, Dubois C, Schäfer K. Endothelial PTP1B Deletion Promotes VWF Exocytosis and Venous Thromboinflammation. Circ Res 2024; 134:e93-e111. [PMID: 38563147 DOI: 10.1161/circresaha.124.324214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Endothelial activation promotes the release of procoagulant extracellular vesicles and inflammatory mediators from specialized storage granules. Endothelial membrane exocytosis is controlled by phosphorylation. We hypothesized that the absence of PTP1B (protein tyrosine phosphatase 1B) in endothelial cells promotes venous thromboinflammation by triggering endothelial membrane fusion and exocytosis. METHODS Mice with inducible endothelial deletion of PTP1B (End.PTP1B-KO) underwent inferior vena cava ligation to induce stenosis and venous thrombosis. Primary endothelial cells from transgenic mice and human umbilical vein endothelial cells were used for mechanistic studies. RESULTS Vascular ultrasound and histology showed significantly larger venous thrombi containing higher numbers of Ly6G (lymphocyte antigen 6 family member G)-positive neutrophils in mice with endothelial PTP1B deletion, and intravital microscopy confirmed the more pronounced neutrophil recruitment following inferior vena cava ligation. RT2 PCR profiler array and immunocytochemistry analysis revealed increased endothelial activation and adhesion molecule expression in primary End.PTP1B-KO endothelial cells, including CD62P (P-selectin) and VWF (von Willebrand factor). Pretreatment with the NF-κB (nuclear factor kappa B) kinase inhibitor BAY11-7082, antibodies neutralizing CD162 (P-selectin glycoprotein ligand-1) or VWF, or arginylglycylaspartic acid integrin-blocking peptides abolished the neutrophil adhesion to End.PTP1B-KO endothelial cells in vitro. Circulating levels of annexin V+ procoagulant endothelial CD62E+ (E-selectin) and neutrophil (Ly6G+) extracellular vesicles were also elevated in End.PTP1B-KO mice after inferior vena cava ligation. Higher plasma MPO (myeloperoxidase) and Cit-H3 (citrullinated histone-3) levels and neutrophil elastase activity indicated neutrophil activation and extracellular trap formation. Infusion of End.PTP1B-KO extracellular vesicles into C57BL/6J wild-type mice most prominently enhanced the recruitment of endogenous neutrophils, and this response was blunted in VWF-deficient mice or by VWF-blocking antibodies. Reduced PTP1B binding and tyrosine dephosphorylation of SNAP23 (synaptosome-associated protein 23) resulting in increased VWF exocytosis and neutrophil adhesion were identified as mechanisms, all of which could be restored by NF-κB kinase inhibition using BAY11-7082. CONCLUSIONS Our findings show that endothelial PTP1B deletion promotes venous thromboinflammation by enhancing SNAP23 phosphorylation, endothelial VWF exocytosis, and neutrophil recruitment.
Collapse
Affiliation(s)
- Konstantinos Zifkos
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Stéphane Robert
- Aix Marseille University, National Institute of Health and Medical Research (INSERM) 1263, National Research Institute for Agriculture, Food and Environment (INRAE), Cardiovascular and Nutrition Research Center (C2VN), France (S.R., L.P.-D., C.D.)
| | - Denise Pedrosa
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Kateryna Moiko
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Mathias Wagner
- Institute of Pathology, Saarland University Medical Center and Saarland University Faculty of Medicine, Homburg, Germany (M.W.)
| | - Felix Mahfoud
- Department of Internal Medicine III, Cardiology, Angiology and Internal Intensive Care Medicine, Saarland University Hospital and Saarland University, Homburg, Germany (F.M.)
| | | | - Thomas Münzel
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (K.Z., M.L.B., D.P., K.K., W.R., C.R.), University Medical Center Mainz, Germany
| | - Laurence Panicot-Dubois
- Aix Marseille University, National Institute of Health and Medical Research (INSERM) 1263, National Research Institute for Agriculture, Food and Environment (INRAE), Cardiovascular and Nutrition Research Center (C2VN), France (S.R., L.P.-D., C.D.)
| | - Christophe Dubois
- Aix Marseille University, National Institute of Health and Medical Research (INSERM) 1263, National Research Institute for Agriculture, Food and Environment (INRAE), Cardiovascular and Nutrition Research Center (C2VN), France (S.R., L.P.-D., C.D.)
| | - Katrin Schäfer
- Department of Cardiology, Cardiology I (M.L.B., R.G., K.M., T.M., K.S.), University Medical Center Mainz, Germany
| |
Collapse
|
32
|
Pandya P, Al-Qasrawi DS, Klinge S, Justilien V. Extracellular vesicles in non-small cell lung cancer stemness and clinical applications. Front Immunol 2024; 15:1369356. [PMID: 38765006 PMCID: PMC11099288 DOI: 10.3389/fimmu.2024.1369356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/18/2024] [Indexed: 05/21/2024] Open
Abstract
Non-small cell lung carcinoma (NSCLC) accounts for 85% of lung cancers, the leading cause of cancer associated deaths in the US and worldwide. Within NSCLC tumors, there is a subpopulation of cancer cells termed cancer stem cells (CSCs) which exhibit stem-like properties that drive NSCLC progression, metastasis, relapse, and therapeutic resistance. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells that carry vital messages for short- and long-range intercellular communication. Numerous studies have implicated NSCLC CSC-derived EVs in the factors associated with NSCLC lethality. In this review, we have discussed mechanisms of EV-directed cross-talk between CSCs and cells of the tumor microenvironment that promote stemness, tumor progression and metastasis in NSCLC. The mechanistic studies discussed herein have provided insights for developing novel NSCLC diagnostic and prognostic biomarkers and strategies to therapeutically target the NSCLC CSC niche.
Collapse
Affiliation(s)
- Prita Pandya
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | | | - Skyeler Klinge
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Verline Justilien
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
- Comprehensive Cancer Center, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
33
|
Das Gupta A, Park J, Sorrells JE, Kim H, Krawczynska N, Gamage HEV, Nelczyk AT, Boppart SA, Boppart MD, Nelson ER. Cholesterol Metabolite 27-Hydroxycholesterol Enhances the Secretion of Cancer Promoting Extracellular Vesicles by a Mitochondrial ROS-Induced Impairment of Lysosomal Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.591500. [PMID: 38746134 PMCID: PMC11092642 DOI: 10.1101/2024.05.01.591500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) serve as crucial mediators of cell-to-cell communication in normal physiology as well as in diseased states, and have been largely studied in regard to their role in cancer progression. However, the mechanisms by which their biogenesis and secretion are regulated by metabolic or endocrine factors remain unknown. Here, we delineate a mechanism by which EV secretion is regulated by a cholesterol metabolite, 27-Hydroxycholesterol (27HC), where treatment of myeloid immune cells (RAW 264.7 and J774A.1) with 27HC impairs lysosomal homeostasis, leading to shunting of multivesicular bodies (MVBs) away from lysosomal degradation, towards secretion as EVs. This impairment of lysosomal function is caused by mitochondrial dysfunction and subsequent increase in reactive oxygen species (ROS). Interestingly, cotreatment with a mitochondria-targeted antioxidant rescued the lysosomal impairment and attenuated the 27HC-mediated increase in EV secretion. Overall, our findings establish how a cholesterol metabolite regulates EV secretion and paves the way for the development of strategies to regulate cancer progression by controlling EV secretion.
Collapse
Affiliation(s)
- Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Jaena Park
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Janet E. Sorrells
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Hannah Kim
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Hashni Epa Vidana Gamage
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Adam T. Nelczyk
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Stephen A. Boppart
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana Illinois, 61801 USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana Illinois, 61801 USA
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana Illinois, 61801 USA
- NIH/NIBIB Center for Label-free Imaging and Multi-scale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, Illinois, 61801 USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Marni D. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana Illinois, 61801 USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana Illinois, 61801 USA
| | - Erik R. Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
- Carl R. Woese Institute for Genomic Biology-Anticancer Discovery from Pets to People, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, University of Illinois at Urbana-Champaign, Urbana Illinois, 61801 USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana Illinois, 61801 USA
| |
Collapse
|
34
|
Meng L, Zhang C, Yu P. Treating cancer through modulating exosomal protein loading and function: The prospects of natural products and traditional Chinese medicine. Pharmacol Res 2024; 203:107179. [PMID: 38615876 DOI: 10.1016/j.phrs.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024]
Abstract
Exosomes, small yet vital extracellular vesicles, play an integral role in intercellular communication. They transport critical components, such as proteins, lipid bilayers, DNA, RNA, and glycans, to target cells. These vesicles are crucial in modulating the extracellular matrix and orchestrating signal transduction processes. In oncology, exosomes are pivotal in tumor growth, metastasis, drug resistance, and immune modulation within the tumor microenvironment. Exosomal proteins, noted for their stability and specificity, have garnered widespread attention. This review delves into the mechanisms of exosomal protein loading and their impact on tumor development, with a focus on the regulatory effects of natural products and traditional Chinese medicine on exosomal protein loading and function. These insights not only offer new strategies and methodologies for cancer treatment but also provide scientific bases and directions for future clinical applications.
Collapse
Affiliation(s)
- Lulu Meng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Pei Yu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
35
|
Ming L, Tang J, Qin F, Qin Y, Wang D, Huang L, Cao Y, Huang Z, Yin Y. Exosome secretion related gene signature predicts chemoresistance in patients with colorectal cancer. Pathol Res Pract 2024; 257:155313. [PMID: 38642509 DOI: 10.1016/j.prp.2024.155313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/14/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) is a highly heterogeneous malignancy, and patients often have different responses to treatment. In this study, the genetic characteristics related to exosome formation and secretion procedure were used to predict chemoresistance and guide the individualized treatment of patients. METHODS Firstly, seven microarray datasets in Gene Expression Omnibus (GEO) and RNA-Seq dataset from the Cancer Genome Atlas (TCGA) were used to analysis the transcriptome profiles and associated characteristics of CRC patients. Then, a predictive model based on gene features linked to exosome formation and secretion was created and validated using Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine learning. Finally, we evaluated the model using chemoresistant/chemosensitive cells and tissues by immunofluorescence (IF), western blot (WB), quantitative real-time PCR (qRT-PCR) and immunocytochemistry (IHC) experiments, and the predictive value of integrated model in the clinical validation cohort were performed by Receiver Operating Characteristic (ROC) and Kaplan-Meier (K-M) curves analyses. RESULTS We established a risk score signature based on three genes related to exosome secretion in CRC. Better Overall Survival (OS) and greater chemosensitivity were seen in the low-risk group, whereas the high-risk group exhibited chemoresistance and a subpar response to immune checkpoint blockade (ICB) therapy. Higher expression of the model genes EXOC2, EXOC3 and STX4 were observed in chemoresistant cells and specimens. The AUC of 5-year disease-free survival (DFS) was 0.804. Compared with that in the low-risk group, patients' DFS was found to be significantly worse in the high-risk group. CONCLUSIONS In summary, the gene signature related to exosome formation and secretion could reliably predict patients' chemosensitivity and ICB treatment response, which providing new independent biomarkers for the treatment of CRC.
Collapse
Affiliation(s)
- Liang Ming
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhui Tang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Feiyu Qin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan Qin
- Department of Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China
| | - Duo Wang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liuying Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yulin Cao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, China; Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
36
|
Li G, Xiong Z, Li Y, Yan C, Cheng Y, Wang Y, Li J, Dai Z, Zhang D, Du W, Men C, Shi C. Hypoxic microenvironment-induced exosomes confer temozolomide resistance in glioma through transfer of pyruvate kinase M2. Discov Oncol 2024; 15:110. [PMID: 38598023 PMCID: PMC11006647 DOI: 10.1007/s12672-024-00963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024] Open
Abstract
OBJECTIVE Glioma, a malignant primary brain tumor, is notorious for its high incidence rate. However, the clinical application of temozolomide (TMZ) as a treatment option for glioma is often limited due to resistance, which has been linked to hypoxic glioma cell-released exosomes. In light of this, the present study aimed to investigate the role of exosomal pyruvate kinase M2 (PKM2) in glioma cells that exhibit resistance to TMZ. METHODS Sensitive and TMZ-resistant glioma cells were subjected to either a normoxic or hypoxic environment, and the growth patterns and enzymatic activity of glycolysis enzymes were subsequently measured. From these cells, exosomal PKM2 was isolated and the subsequent effect on TMZ resistance was examined and characterized, with a particular focus on understanding the relevant mechanisms. Furthermore, the intercellular communication between hypoxic resistant cells and tumor-associated macrophages (TAMs) via exosomal PKM2 was also assessed. RESULTS The adverse impact of hypoxic microenvironments on TMZ resistance in glioma cells was identified and characterized. Among the three glycolysis enzymes that were examined, PKM2 was found to be a critical mediator in hypoxia-triggered TMZ resistance. Upregulation of PKM2 was found to exacerbate the hypoxia-mediated TMZ resistance. Exosomal PKM2 were identified and isolated from hypoxic TMZ-resistant glioma cells, and were found to be responsible for transmitting TMZ resistance to sensitive glioma cells. The exosomal PKM2 also contributed towards mitigating TMZ-induced apoptosis in sensitive glioma cells, while also causing intracellular ROS accumulation. Additionally, hypoxic resistant cells also released exosomal PKM2, which facilitated TMZ resistance in tumor-associated macrophages. CONCLUSION In the hypoxic microenvironment, glioma cells become resistant to TMZ due to the delivery of PKM2 by exosomes. Targeted modulation of exosomal PKM2 may be a promising strategy for overcoming TMZ resistance in glioma.
Collapse
Affiliation(s)
- Guofu Li
- Department of Neurosurgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Ziyu Xiong
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ying Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Cong Yan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yingying Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yuwen Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jingwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zifeng Dai
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dongdong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenzhong Du
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chunyang Men
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Changbin Shi
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
37
|
Hershfinkel M. Cross-talk between zinc and calcium regulates ion transport: A role for the zinc receptor, ZnR/GPR39. J Physiol 2024; 602:1579-1594. [PMID: 37462604 DOI: 10.1113/jp283834] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/26/2023] [Indexed: 04/21/2024] Open
Abstract
Zinc is essential for many physiological functions, with a major role in digestive system, skin health, and learning and memory. On the cellular level, zinc is involved in cell proliferation and cell death. A selective zinc sensing receptor, ZnR/GPR39 is a Gq-coupled receptor that acts via the inositol trisphosphate pathway to release intracellular Ca2+. The ZnR/GPR39 serves as a mediator between extracellular changes in Zn2+ concentration and cellular Ca2+ signalling. This signalling pathway regulates ion transporters activity and thereby controls the formation of transepithelial gradients or neuronal membrane potential, which play a fundamental role in the physiological function of these tissues. This review focuses on the role of Ca2+ signalling, and specifically ZnR/GPR39, with respect to the regulation of the Na+/H+ exchanger, NHE1, and of the K+/Cl- cotransporters, KCC1-3, and also describes the physiological implications of this regulation.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Physiology and Cell Biology and the School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
38
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
39
|
Freag MS, Mohammed MT, Kulkarni A, Emam HE, Maremanda KP, Elzoghby AO. Modulating tumoral exosomes and fibroblast phenotype using nanoliposomes augments cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadk3074. [PMID: 38416824 PMCID: PMC10901379 DOI: 10.1126/sciadv.adk3074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/25/2024] [Indexed: 03/01/2024]
Abstract
Cancer cells program fibroblasts into cancer associated fibroblasts (CAFs) in a two-step manner. First, cancer cells secrete exosomes to program quiescent fibroblasts into activated CAFs. Second, cancer cells maintain the CAF phenotype via activation of signal transduction pathways. We rationalized that inhibiting this two-step process can normalize CAFs into quiescent fibroblasts and augment the efficacy of immunotherapy. We show that cancer cell-targeted nanoliposomes that inhibit sequential steps of exosome biogenesis and release from lung cancer cells block the differentiation of lung fibroblasts into CAFs. In parallel, we demonstrate that CAF-targeted nanoliposomes that block two distinct nodes in fibroblast growth factor receptor (FGFR)-Wnt/β-catenin signaling pathway can reverse activate CAFs into quiescent fibroblasts. Co-administration of both nanoliposomes significantly improves the infiltration of cytotoxic T cells and enhances the antitumor efficacy of αPD-L1 in immunocompetent lung cancer-bearing mice. Simultaneously blocking the tumoral exosome-mediated activation of fibroblasts and FGFR-Wnt/β-catenin signaling constitutes a promising approach to augment immunotherapy.
Collapse
Affiliation(s)
- May S. Freag
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Investigative Toxicology, Drug Safety Research and Evaluation, Takeda Pharmaceuticals, Cambridge, MA, USA
| | - Mostafa T. Mohammed
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Anatomical and Clinical Pathology Department, Tufts Medical Center, Boston, MA, USA
| | - Arpita Kulkarni
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hagar E. Emam
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Krishna P. Maremanda
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA
| | - Ahmed O. Elzoghby
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Wang P, Shao W, Li Z, Wang B, Lv X, Huang Y, Feng Y. Non-bone-derived exosomes: a new perspective on regulators of bone homeostasis. Cell Commun Signal 2024; 22:70. [PMID: 38273356 PMCID: PMC10811851 DOI: 10.1186/s12964-023-01431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/09/2023] [Indexed: 01/27/2024] Open
Abstract
Accumulating evidence indicates that exosomes help to regulate bone homeostasis. The roles of bone-derived exosomes have been well-described; however, recent studies have shown that some non-bone-derived exosomes have better bone targeting ability than bone-derived exosomes and that their performance as a drug delivery vehicle for regulating bone homeostasis may be better than that of bone-derived exosomes, and the sources of non-bone-derived exosomes are more extensive and can thus be better for clinical needs. Here, we sort non-bone-derived exosomes and describe their composition and biogenesis. Their roles and specific mechanisms in bone homeostasis and bone-related diseases are also discussed. Furthermore, we reveal obstacles to current research and future challenges in the practical application of exosomes, and we provide potential strategies for more effective application of exosomes for the regulation of bone homeostasis and the treatment of bone-related diseases. Video Abstract.
Collapse
Affiliation(s)
- Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Wang
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
41
|
Wang W, Wu X, Zheng J, Yin R, Li Y, Wu X, Xu L, Jin Z. Utilizing exosomes as sparking clinical biomarkers and therapeutic response in acute myeloid leukemia. Front Immunol 2024; 14:1315453. [PMID: 38292478 PMCID: PMC10824954 DOI: 10.3389/fimmu.2023.1315453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Acute myeloid leukemia (AML) is a malignant clonal tumor originating from immature myeloid hematopoietic cells in the bone marrow with rapid progression and poor prognosis. Therefore, an in-depth exploration of the pathogenesis of AML can provide new ideas for the treatment of AML. In recent years, it has been found that exosomes play an important role in the pathogenesis of AML. Exosomes are membrane-bound extracellular vesicles (EVs) that transfer signaling molecules and have attracted a large amount of attention, which are key mediators of intercellular communication. Extracellular vesicles not only affect AML cells and normal hematopoietic cells but also have an impact on the bone marrow microenvironment and immune escape, thereby promoting the progression of AML and leading to refractory relapse. It is worth noting that exosomes and the various molecules they contain are expected to become the new markers for disease monitoring and prognosis of AML, and may also function as drug carriers and vaccines to enhance the treatment of leukemia. In this review, we mainly summarize to reveal the role of exosomes in AML pathogenesis, which helps us elucidate the application of exosomes in AML diagnosis and treatment.
Collapse
Affiliation(s)
- Wandi Wang
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiaofang Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiamian Zheng
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Ran Yin
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Yangqiu Li
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Ling Xu
- Institute of Hematology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China
| | - Zhenyi Jin
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis and Infection Prevention and Control, Jinan University, Guangzhou, China
| |
Collapse
|
42
|
He S, Liang Y, Tan Y, Liu Q, Liu T, Lu X, Zheng S. Positioning determines function: Wandering PKM2 performs different roles in tumor cells. Cell Biol Int 2024; 48:20-30. [PMID: 37975488 DOI: 10.1002/cbin.12103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Short for pyruvate kinase M2 subtype, PKM2 can be said of all-round player that is notoriously known for its metabolic involvement in glycolysis. Holding a dural role as a metabolic or non-metabolic (kinase) enzyme, PKM2 has drawn extensive attention over its biological roles implicated in tumor cells, including proliferation, migration, invasion, metabolism, and so on. wandering PKM2 can be transboundary both intracellularly and extracellularly. Specifically, PKM2 can be nuclear, cytoplasmic, mitochondrial, exosomal, or even circulate within the body. Importantly, PKM2 can function as an RNA-binding protein (RBP) to self-support its metabolic function. Despite extensive investigations or reviews available surrounding the biological roles of PKM2 from different angles in tumor cells, little has been described regarding some novel role of PKM2 that has been recently found, including, for example, acting as RNA-binding protein, protection of Golgi apparatus, and remodeling of microenvironment, and so forth. Given these findings, in this review, we summarize the recent advancements made in PKM2 research, mainly from non-metabolic respects. By the way, PKM1, another paralog of PKM2, seems to have been overlooked or under-investigated since its discovery. Some recent discoveries made about PKM1 are also preliminarily mentioned and discussed.
Collapse
Affiliation(s)
- Shuo He
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yan Liang
- Department of Pathology, Basic Medicine College, Xinjiang Medical University, Urumqi, China
| | - Yiyi Tan
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Qing Liu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Tao Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| | - Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, PR China
| |
Collapse
|
43
|
Xu X, Wu T, Lin R, Zhu S, Ji J, Jin D, Huang M, Zheng W, Ni W, Jiang F, Xuan S, Xiao M. Differences between migrasome, a 'new organelle', and exosome. J Cell Mol Med 2023; 27:3672-3680. [PMID: 37665060 PMCID: PMC10718147 DOI: 10.1111/jcmm.17942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/17/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
The migrasome is a new organelle discovered by Professor Yu Li in 2015. When cells migrate, the membranous organelles that appear at the end of the retraction fibres are migrasomes. With the migration of cells, the retraction fibres which connect migrasomes and cells finally break. The migrasomes detach from the cell and are released into the extracellular space or directly absorbed by the recipient cell. The cytoplasmic contents are first transported to the migrasome and then released from the cell through the migrasome. This release mechanism, which depends on cell migration, is named 'migracytosis'. The main components of the migrasome are extracellular vesicles after they leave the cell, which are easy to remind people of the current hot topic of exosomes. Exosomes are extracellular vesicles wrapped by the lipid bimolecular layer. With extensive research, exosomes have solved many disease problems. This review summarizes the differences between migrasomes and exosomes in size, composition, property and function, extraction method and regulation mechanism for generation and release. At the same time, it also prospects for the current hotspot of migrasomes, hoping to provide literature support for further research on the generation and release mechanism of migrasomes and their clinical application in the future.
Collapse
Affiliation(s)
- Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Tong Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Renjie Lin
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Shengze Zhu
- Medical School of Nantong University oral medcine192NantongChina
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Wenjie Zheng
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
| | - Shihai Xuan
- Department of Clinical LaboratoryAffiliated Dongtai Hospital of Nantong UniversityDongtaiChina
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong UniversityMedical School of Nantong UniversityNantongChina
- Research Center of Clinical MedicineAffiliated Hospital of Nantong UniversityNantongChina
| |
Collapse
|
44
|
Matsui T, Sakamaki Y, Hiragi S, Fukuda M. VAMP5 and distinct sets of cognate Q-SNAREs mediate exosome release. Cell Struct Funct 2023; 48:187-198. [PMID: 37704453 PMCID: PMC11496780 DOI: 10.1247/csf.23067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/15/2023] Open
Abstract
Small extracellular vesicles (sEVs) are largely classified into two types, plasma-membrane derived sEVs and endomembrane-derived sEVs. The latter type (referred to as exosomes herein) is originated from late endosomes or multivesicular bodies (MVBs). In order to release exosomes extracellularly, MVBs must fuse with the plasma membrane, not with lysosomes. In contrast to the mechanism responsible for MVB-lysosome fusion, the mechanism underlying the MVB-plasma membrane fusion is poorly understood. Here, we systematically analyze soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family proteins and identify VAMP5 as an MVB-localized SNARE protein required for exosome release. Depletion of VAMP5 in HeLa cells impairs exosome release. Mechanistically, VAMP5 mediates exosome release by interacting with SNAP47 and plasma membrane SNARE Syntaxin 1 (STX1) or STX4 to release exosomes. VAMP5 is also found to mediate asymmetric exosome release from polarized Madin-Darby canine kidney (MDCK) epithelial cells through interaction with the distinct sets of Q-SNAREs, suggesting that VAMP5 is a general exosome regulator in both polarized cells and non-polarized cells.Key words: exosome, small extracellular vesicle (sEV), multivesicular body, SNARE, VAMP5.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo 113-8602, Japan
| | - Yuriko Sakamaki
- Microscopy Research Support Unit Research Core, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Shu Hiragi
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
45
|
Xi Y, Shen Y, Chen L, Tan L, Shen W, Niu X. Exosome-mediated metabolic reprogramming: Implications in esophageal carcinoma progression and tumor microenvironment remodeling. Cytokine Growth Factor Rev 2023; 73:78-92. [PMID: 37696716 DOI: 10.1016/j.cytogfr.2023.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Esophageal carcinoma is among the most fatal malignancies with increasing incidence globally. Tumor onset and progression can be driven by metabolic reprogramming, especially during esophageal carcinoma development. Exosomes, a subset of extracellular vesicles, display an average size of ∼100 nanometers, containing multifarious components (nucleic acids, proteins, lipids, etc.). An increasing number of studies have shown that exosomes are capable of transferring molecules with biological functions into recipient cells, which play crucial roles in esophageal carcinoma progression and tumor microenvironment that is a highly heterogeneous ecosystem through rewriting the metabolic processes in tumor cells and environmental stromal cells. The review introduces the reprogramming of glucose, lipid, amino acid, mitochondrial metabolism in esophageal carcinoma, and summarize current pharmaceutical agents targeting such aberrant metabolism rewiring. We also comprehensively overview the biogenesis and release of exosomes, and recent advances of exosomal cargoes and functions in esophageal carcinoma and their promising clinical application. Moreover, we discuss how exosomes trigger tumor growth, metastasis, drug resistance, and immunosuppression as well as tumor microenvironment remodeling through focusing on their capacity to transfer materials between cells or between cells and tissues and modulate metabolic reprogramming, thus providing a theoretical reference for the design potential pharmaceutical agents targeting these mechanisms. Altogether, our review attempts to fully understand the significance of exosome-based metabolic rewriting in esophageal carcinoma progression and remodeling of the tumor microenvironment, bringing novel insights into the prevention and treatment of esophageal carcinoma in the future.
Collapse
Affiliation(s)
- Yong Xi
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China; Department of Thoracic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Yaxing Shen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lijie Chen
- School of Medicine, Xiamen University, Xiamen 361102, Fujian, China; China Medical University, Shenyang 110122, Liaoning, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Weiyu Shen
- Department of Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo 315040, Zhejiang, China.
| | - Xing Niu
- China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
46
|
Lin W, Lin Y, Chao H, Lin Y, Hwang W. Haematopoietic cell-derived exosomes in cancer development and therapeutics: From basic science to clinical practice. Clin Transl Med 2023; 13:e1448. [PMID: 37830387 PMCID: PMC10571015 DOI: 10.1002/ctm2.1448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The tumour microenvironment (TME) is a specialised niche involving intercellular communication among cancer cells and various host cells. Among the host cells, the quantity and quality of immune cells within the TME play essential roles in cancer development and management. The immunologically suppressive, so-called 'cold' TME established by a series of tumour-host interactions, including generating immunosuppressive cytokines and recruiting regulatory host immune cells, is associated with resistance to therapies and worse clinical outcomes. MAIN BODY Various therapeutic approaches have been used to target the cold TME, including immune checkpoint blockade therapy and adoptive T-cell transfer. A promising, less explored therapeutic strategy involves targeting TME-associated exosomes. Exosomes are nanometer-sized, extracellular vesicles that transfer material from donor to recipient cells. These particles can reprogram the recipient cells and modulate the TME. In particular, exosomes from haematopoietic cells are known to promote or suppress cancer progression under specific conditions. Understanding the effects of haematopoietic cell-secreted exosomes may foster the development of therapeutic exosomes (tExos) for personalised cancer treatment. However, the development of exosome-based therapies has unique challenges, including scalable production, purification, storage and delivery of exosomes and controlling batch variations. Clinical trials are being conducted to verify the safety, feasibility, availability and efficacy of tExos. CONCLUSION This review summarises our understanding of how haematopoietic cell-secreted exosomes regulate the TME and antitumour immunity and highlights present challenges and solutions for haematopoietic cell-derived exosome-based therapies.
Collapse
Affiliation(s)
- Wen‐Chun Lin
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - You‐Tong Lin
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Hui‐Ching Chao
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| | - Yen‐Yu Lin
- Department of Pathology, Fu Jen Catholic University HospitalFu Jen Catholic UniversityNew Taipei CityTaiwan
- School of Medicine, College of MedicineFu Jen Catholic UniversityNew Taipei CityTaiwan
| | - Wei‐Lun Hwang
- Department of Biotechnology and Laboratory Science in MedicineNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
- Cancer and Immunology Research CenterNational Yang Ming Chiao Tung UniversityTaipeiTaiwan
| |
Collapse
|
47
|
Boussios S, Devo P, Goodall ICA, Sirlantzis K, Ghose A, Shinde SD, Papadopoulos V, Sanchez E, Rassy E, Ovsepian SV. Exosomes in the Diagnosis and Treatment of Renal Cell Cancer. Int J Mol Sci 2023; 24:14356. [PMID: 37762660 PMCID: PMC10531522 DOI: 10.3390/ijms241814356] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most prevalent type of kidney cancer originating from renal tubular epithelial cells, with clear cell RCC comprising approximately 80% of cases. The primary treatment modalities for RCC are surgery and targeted therapy, albeit with suboptimal efficacies. Despite progress in RCC research, significant challenges persist, including advanced distant metastasis, delayed diagnosis, and drug resistance. Growing evidence suggests that extracellular vesicles (EVs) play a pivotal role in multiple aspects of RCC, including tumorigenesis, metastasis, immune evasion, and drug response. These membrane-bound vesicles are released into the extracellular environment by nearly all cell types and are capable of transferring various bioactive molecules, including RNA, DNA, proteins, and lipids, aiding intercellular communication. The molecular cargo carried by EVs renders them an attractive resource for biomarker identification, while their multifarious role in the RCC offers opportunities for diagnosis and targeted interventions, including EV-based therapies. As the most versatile type of EVs, exosomes have attracted much attention as nanocarriers of biologicals, with multi-range signaling effects. Despite the growing interest in exosomes, there is currently no widely accepted consensus on their subtypes and properties. The emerging heterogeneity of exosomes presents both methodological challenges and exciting opportunities for diagnostic and clinical interventions. This article reviews the characteristics and functions of exosomes, with a particular reference to the recent advances in their application to the diagnosis and treatment of RCC.
Collapse
Affiliation(s)
- Stergios Boussios
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King’s College London, Strand, London WC2R 2LS, UK
- Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, UK
- AELIA Organization, 9th Km Thessaloniki–Thermi, 57001 Thessaloniki, Greece
| | - Perry Devo
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Iain C. A. Goodall
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| | - Konstantinos Sirlantzis
- School of Engineering, Technology and Design, Canterbury Christ Church University, Canterbury CT1 1QU, UK;
| | - Aruni Ghose
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
- Barts Cancer Centre, Barts Health NHS Trust, London EC1A 7BE, UK
- Mount Vernon Cancer Centre, East and North Hertfordshire NHS Trust, Northwood HA6 2RN, UK
- Immuno-Oncology Clinical Network, London, UK
| | - Sayali D. Shinde
- Centre for Tumour Biology, Barts Cancer Institute, Cancer Research UK Barts Centre, Queen Mary University of London, London EC1M 6BQ, UK;
| | | | - Elisabet Sanchez
- Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK; (A.G.); (E.S.)
| | - Elie Rassy
- Department of Medical Oncology, Gustave Roussy Institut, 94805 Villejuif, France;
| | - Saak V. Ovsepian
- School of Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK; (P.D.); (I.C.A.G.); (S.V.O.)
| |
Collapse
|
48
|
Xu J, Cui L, Wang J, Zheng S, Zhang H, Ke S, Cao X, Shi Y, Li J, Zen K, Vidal-Puig A, Zhang CY, Li L, Jiang X. Cold-activated brown fat-derived extracellular vesicle-miR-378a-3p stimulates hepatic gluconeogenesis in male mice. Nat Commun 2023; 14:5480. [PMID: 37673898 PMCID: PMC10482845 DOI: 10.1038/s41467-023-41160-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
During cold exposure, activated brown adipose tissue (BAT) takes up a large amount of circulating glucose to fuel non-shivering thermogenesis and defend against hypothermia. However, little is known about the endocrine function of BAT controlling glucose homoeostasis under this thermoregulatory challenge. Here, we show that in male mice, activated BAT-derived extracellular vesicles (BDEVs) reprogram systemic glucose metabolism by promoting hepatic gluconeogenesis during cold stress. Cold exposure facilitates the selective packaging of miR-378a-3p-one of the BAT-enriched miRNAs-into EVs and delivery into the liver. BAT-derived miR-378a-3p enhances gluconeogenesis by targeting p110α. miR-378 KO mice display reduced hepatic gluconeogenesis during cold exposure, while restoration of miR-378a-3p in iBAT induces the expression of gluconeogenic genes in the liver. These findings provide a mechanistic understanding of BDEV-miRNA as stress-induced batokine to coordinate systemic glucose homoeostasis. This miR-378a-3p-mediated interorgan communication highlights a novel endocrine function of BAT in preventing hypoglycemia during cold stress.
Collapse
Affiliation(s)
- Jinhong Xu
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Le Cui
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jiaqi Wang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shasha Zheng
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Huahua Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Shuo Ke
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoqin Cao
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Yanteng Shi
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Ke Zen
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge Metabolic Research Laboratories, Cambridge, UK.
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
| | - Chen-Yu Zhang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, China.
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, Jiangsu, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, Jiangsu, China.
| | - Liang Li
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, China.
| | - Xiaohong Jiang
- Nanjing Drum Tower Hospital Center of Molecular Diagnostic and Therapy, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China.
- Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, China.
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), Nanjing, Jiangsu, China.
| |
Collapse
|
49
|
Liu C, Liu D, Wang S, Gan L, Yang X, Ma C. Identification of the SNARE complex that mediates the fusion of multivesicular bodies with the plasma membrane in exosome secretion. J Extracell Vesicles 2023; 12:e12356. [PMID: 37700095 PMCID: PMC10497535 DOI: 10.1002/jev2.12356] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Exosomes play crucial roles in local and distant cellular communication and are involved in various physiological and pathological processes. Tumour-derived exosomes are pivotal to tumorigenesis, but the precise mechanisms underlying their secretion remain elusive. In particular, the SNARE proteins that mediate the fusion of multivesicular bodies (MVBs) with the plasma membrane (PM) in tumour cells are subject to debate. In this study, we identified syntaxin-4, SNAP-23, and VAMP-7 as the SNAREs responsible for exosome secretion in MCF-7 breast cancer cells and found that a SNARE complex consisting of these SNAREs can drive membrane fusion in vitro. Deletion of any of these SNAREs in MCF-7 cells did not affect MVB biogenesis and transportation, indicating their specific involvement in MVB-PM fusion. In addition, syntaxin-4, SNAP-23, and VAMP-7 play equivalent roles in exosome secretion in both HeLa cervical cancer cells and A375 melanoma cells, suggesting their conserved function in exosome secretion. Furthermore, deletion of VAMP-7 in 4T1 mammary carcinoma cells efficiently inhibited exosome secretion and led to significant attenuation of tumour growth and lung metastasis in mouse models, implying that VAMP-7 may hold promise as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Chuqi Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Dexiang Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Shen Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Lu Gan
- National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHuazhong University of Science and TechnologyWuhanChina
- GBA Research Innovation Institute for NanotechnologyGuangzhouGuangdongP. R. China
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
50
|
Zhao S, Wang Q, Ni K, Zhang P, Liu Y, Xie J, Ji W, Cheng C, Zhou Q. Combining single-cell sequencing and spatial transcriptome sequencing to identify exosome-related features of glioblastoma and constructing a prognostic model to identify BARD1 as a potential therapeutic target for GBM patients. Front Immunol 2023; 14:1263329. [PMID: 37727789 PMCID: PMC10505933 DOI: 10.3389/fimmu.2023.1263329] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
Background Glioblastoma (GBM) is a malignant primary brain tumor. This study focused on exploring the exosome-related features of glioblastoma to better understand its cellular composition and molecular characteristics. Methods Single-cell RNA sequencing (scRNA-seq) and spatial transcriptome RNA sequencing (stRNA-seq) were used to analyze the heterogeneity of glioblastomas. After data integration, cell clustering, and annotation, five algorithms were used to calculate scores for exosome-related genes(ERGs). Cell trajectory analysis and intercellular communication analysis were performed to explore exosome-related communication patterns. Spatial transcriptome sequencing data were analyzed to validate the findings. To further utilize exosome-related features to aid in clinical decision-making, a prognostic model was constructed using GBM's bulk RNA-seq. Results Different cell subpopulations were observed in GBM, with Monocytes/macrophages and malignant cells in tumor samples showing higher exosome-related scores. After identifying differentially expressed ERGs in malignant cells, pseudotime analysis revealed the cellular status of malignant cells during development. Intercellular communication analysis highlighted signaling pathways and ligand-receptor interactions. Spatial transcriptome sequencing confirmed the high expression of exosome-related gene features in the tumor core region. A prognostic model based on six ERGs was shown to be predictive of overall survival and immunotherapy outcome in GBM patients. Finally, based on the results of scRNA-seq and prognostic modeling as well as a series of cell function experiments, BARD1 was identified as a novel target for the treatment of GBM. Conclusion This study provides a comprehensive understanding of the exosome-related features of GBM in both scRNA-seq and stRNA-seq, with malignant cells with higher exosome-related scores exhibiting stronger communication with Monocytes/macrophages. In terms of spatial data, highly scored malignant cells were also concentrated in the tumor core region. In bulk RNA-seq, patients with a high exosome-related index exhibited an immunosuppressive microenvironment, which was accompanied by a worse prognosis as well as immunotherapy outcomes. Prognostic models constructed using ERGs are expected to be independent prognostic indicators for GBM patients, with potential implications for personalized treatment strategies for GBM. Knockdown of BARD1 in GBM cell lines reduces the invasive and value-added capacity of tumor cells, and thus BARD1-positively expressing malignant cells are a risk factor for GBM patients.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Kaixiang Ni
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuan Liu
- Department of General Surgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Ji
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Qiang Zhou
- Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, China
| |
Collapse
|